DS-CPC7582-R3.0 10/4/2002 www.clare.com 1
Features
Small 16-pin SOIC or micro- leadf r ame package
MLP package printed-circuit board f ootp rint is 60
percent smaller than the SOI C version, 70 percent
smaller than 4th generation EMR solutions .
Monolithic IC reliability
Low matched R ON
Eliminates the need for zero cross switching
Fle xible s witch timing to transition from ringing mode
to talk mode.
Clean, bounce-free switching
Tertiary protection consisting of integrate d current
limiting, voltage clamping, and thermal shutdown for
SLIC protection
5 V operation with power consumption < 10 mW
Intelligent battery monitor
Latched logic-lev el inputs, no ex ternal drive circuitry
required
SOIC version is pin compatible with Agere product
Applications
Central office (CO)
Digital Loop Carrier (DLC)
PBX Systems
Digitally Added Main Line (DAML)
Hybrid Fiber Coax (HFC)
Fiber in the Loop (FITL)
P air Gain System
Channel Banks
Description
The CPC7582 is a monolithic solid-state switch in a
16-pin SOIC or MLP surface-mount pac kage. It
provides the necessary functions to replace two
2-F orm-C electro-mechanical relays on traditional
analog and integrated voice and data (IVD) line cards
f oun d in Cent ral Office, Access , and PBX equipment.
The de vice contains solid st ate switches for tip and
ring line break, ringing injection/ringing return and test
access. The CPC7582 requires only a +5V supply and
off ers break- before-make or mak e-before-break
s witch oper ation using simple logic-lev el input control.
The CPC7582xC logic states differ from the
CPC7582xA/B. See “Functional Description” on
page 9 f or more information. The CPC7582xC also
has a higher trigger and hold current f or the protect ion
SCR. Specify CPC7582Bx for SOIC or specify
CPC7582Mx for MLP package shipped in tubes. Add
-TR to the part number for tape and reel packaging.
Ordering Information
Figure 1. CPC7582 Bloc k Diagram
Part Number Description
CPC7582xA 6-pole LCAS with protection SCR
CPC7582xB 6-pole LCAS without protection SCR
CPC7582xC 6-pole LCAS with protection SCR and added
logic state
CPC7582
TLINE
RLINE
TBAT
VDD
RBAT
DGND
VBAT
FGND
VREF INACCESS
INRINGING
TSD
LATCH
3
54
14
2
6
78161
13
12
15
9
10
11
L
A
T
C
H
Switch
Control
Logic
SCR and
Trip Circuit
(CPC7582xB/C)
Secondary
Protection
+5 Vdc
Tip
Ring
SLIC
X
X
X
X
X
XSW5
SW6
SW2
SW4
TTEST
VBAT
RINGING
300
(min.)
RTEST
TRING
SW3
SW1
CPC7582
Line Card Access Switch
CPC7582
2 www.clare.com R3.0 10/4/2002
1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Package Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Absolute Maximum Ratings (at 25° C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Electrical Characteristics, TA = -40° C to +85° C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.1 Power Supply Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.2 Break Switches, SW1 and SW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.3 Ringing Return Switch, SW3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.4 Ringing Switch, SW4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.5 Test Switches, SW5 and SW6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Additional Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Protection Circuitry Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 CPC7582xA/B Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.8 CPC7582xC Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 CPC7582xA/B Logic States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 CPC7582xC Logic States: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Switch Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Make-Before-Break Operation - All Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Make-Before-Break Operation for All Versions (Ringing to Talk Transition). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Break-Before-Make Operation - CPC7582xA/B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Break-Before-Make Operation CPC7582xA/B (Ringing to Talk Transition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.5 Break-Before-Make Operation - All Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.6 Break-Before-Make Operation for all Version (Ringing to Talk Transition). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Data Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 TSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Ringing Switch Zero-Cross Current Turn Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Battery Voltage Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8.1 Diode Bridge/SCR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8.2 Current Limiting function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9 Temperature Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.10 External Protection Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Manufacturing Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Mechanical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.1 SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 MLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Printed-Circuit Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 MLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Tape and Reel Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 MLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.1 Moisture Reflow Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.2 Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Washing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
CPC7582
Rev. 3.0 10/4/2002 www.clare.com 3
1. Specifications
1.1 Package Pinout 1.2 Pinout
CPC7582
116
215
314
413
512
611
710
89
TBAT
SD
FGND
TLINE
TRINGING
TTEST
VDD
T
DGND
VBAT
RBAT
RLINE
RRINGING
RTEST
LATCH
INRINGING
INTEST
Pin Name Description
1FGND Fault ground
2TBAT Connect to tip on SLIC side
3TLINE Connect to tip on line side
4TRINGING Connect to ringing generator return
5TTEST Connect to test bus tip lead
6VDD +5 V supply
7TSD
Temperature shutdown pin. Bi-directional
I/O with internal pullup to VDD. Output
function indicates status of thermal
shutdown circuitry. Input function can be
used to set the ‘all off’ mode using an
open-drain type output.
8DGND Digital ground
9INTEST Logic-level switch control input
10 INRINGING Logic-level switch control input
11 LATCH Data latch control, active high, transparent
low
12 RTEST Connect to test bus ring lead
13 RRINGING
Connect to ringing generator current
limiting resistor
14 RLINE Connect to ring on the line side
15 RBAT Connect to ring on the SLIC side
16 VBAT
Battery voltage supply. Must be capable of
sourcing the trigger current for proper
operation of the protection SCR.
CPC7582
4 www.clare.com Rev. 3.0 10/4/2002
1.3 Absolute Maximum Ratings (at 25° C)
1.4 Electrical Characteristics, T A = -40° C to +85° C
Unless otherwise specified, minimum and maxim um
v alu es ar e production testing r equir ements. Typical
v alues are char acteristic of the device and are the
result of engineering evaluations. Typical v alues are
provided for information purposes only and are not
part of the testing requirements .
Absolute maximum ratings are stress ratings. Stresses in
excess of these ratings can cause permanent damage to
the device. Functional operation of the device at these or
any other conditions beyond those indicated in the
operational sections of this data sheet is not implied.
Exposure of the device to the absolute maximum r a tin gs
for an extended period may degrade the device and affect
its reliability.
1.4.1 Power Supply Specifications
1.4.2 Break Switches, SW1 and SW2
Parameter Minimum Maximum Unit
Operating temperature -40 +110 °C
Storage temperature -40 +150 °C
Operating relative humidity 5 95 %
Pin soldering temperature
(10 seconds max) - +220 °C
+5 V power supply (VDD)-0.3 7 V
Battery Supply - -85 V
Logic input voltage -0.3 VDD + 0.3 V
Logic input to switch output
isolation -330V
Switch open contact
isolation (SW1, SW2, SW3,
SW5, SW6)
-330V
Switch Open Contact
Isolation (SW4)* -480V
*Ringing supply side of switch limited to ±210 V with respect to ground
Supply Minimum Typical Maximum Unit
VDD +4.5 +5.0 +5.5 V
VBAT
1-19 - -72 V
1VBAT is used only for internal protection circuitry. If VBAT rises above
-10 V, the device will enter the all-off state and will remain in the all-off
state until the battery drops below -15 V.
ESD Rating (Human Body Model)
1000 V
Parameter Conditions Symbol Minimum Typical Maximum Unit
Off-state leakage current
+25° C VSW (differential) = -320 V to GND
VSW (differential) = +260 V to -60 V
ISW -
0.1
1µA+85° C
VSW (differential) = -330 V to GND
VSW (differential) = +270 V to -60 V 0.3
-40° C
VSW (differential) = -310 V to GND
VSW (differential) = +250 V to -60 V 0.1
RON
+25° C ISW = ±10 mA, ±40 mA,
RBAT and TBAT = -2 V RON
-
14.5 -
+85° C 20.5 28
-40° C 10.5 -
RON match
Per on-resistance test condition of
SW1, SW2.
Magnitude RON SW1 - RONSW2
RON 0.15 0.8
CPC7582
Rev. 3.0 10/4/2002 www.clare.com 5
1.4.3 Ringing Return Switch, SW3
DC current limit
+25° C
VSW (on) = ±10 V
ISW
- 300 -
mA+85° C 80 160 -
-40° C - 400 425
Dynamic current limit
(t = <0.5 µs)
Break switches on, all other switches
off, apply ±1 kV 10/1000 µs pulse, with
appropriate protection in place.
-2.5- A
Logic input to switch output isolation
+25° C VSW (TLINE, RLINE) = ±320 V, logic
inputs = gnd
ISW -
0.1
1µA+85° C VSW (TLINE, RLINE) = ±330 V, logic
inputs = gnd 0.3
-40° C VSW (TLINE, RLINE) = ±310 V, logic
inputs = gnd 0.1
dv/dt sensitivity - - 200 - V/µs
Parameter Conditions Symbol Minimum Typical Maximum Unit
Off-state leakage current
+25° C VSW (differential) = -320 V to GND
VSW (differential) = +260 V to -60 V
ISW -
0.1
1µA+85° C VSW (differential) = -330 V to GND
VSW (differential) = +270 V to -60 V 0.3
-40° C VSW (differential) = -310 V to GND
VSW (differential) = +250 V to -60 V 0.1
RON
+25° C
ISW (on) = ±0 mA, ±10 mA RON -
60 -
+85° C 85 100
-40° C 45 -
DC current limit
+25° C
VSW (on) = ±10 V
ISW
- 135
-
mA+85° C 70 85
-40° C
-
210
Dynamic current limit
(t = <0.5 µs)
Ringing switches on, all other switches
off, apply ±1 kV 10/1000 µs pulse, with
appropriate protection in place.
2.5 A
Logic input to switch output isolation
+25° C VSW (TRINGING, TLINE) = ±320 V, logic
inputs = gnd
ISW -
0.1
1µA+85° C VSW (TRINGING, TLINE) = ±330 V, logic
inputs = gnd 0.3
-40° C VSW (TRINGING, TLINE) = ±310 V, logic
inputs = gnd 0.1
dv/dt sensitivity - - 200 - V/µs
Parameter Conditions Symbol Minimum Typical Maximum Unit
CPC7582
6 www.clare.com Rev. 3.0 10/4/2002
1.4.4 Ringing Switch, SW4
1.4.5 Test Switches, SW5 and SW6
Parameter Conditions Symbol Minimum Typical Maximum Unit
Off-state leakage current
+25° C VSW (differential) = -255 V to +210 V
VSW (differential) = +255 V to -210 V
ISW
-
0.05
1µA+85° C VSW (differential) = -270 V to +210 V
VSW (differential) = +270 V to -210 V 0.1
-40° C VSW (differential) = -245 V to +210 V
VSW (differential) = +245 V to -210 V 0.05
On Voltage ISW (on) = ± 1 mA -1.53V
Ringing generator
current to ground during
ringing
VDD = 5 V, inputs set for ringing mode IRINGING 0.1 0.25 mA
Surge current*
Ringing switches on, all other switches
off, apply ±1 kV 10/1000 µs pulse, with
appropriate protection in place.
--2A
On steady-state current* Inputs set for ringing mode ISW - 150 mA
Release current - IRINGING 300 - µA
RON ISW (on) = ±70 mA, ±80 mA RON 10 15
Logic input to switch output isolation
+25° C VSW (RRINGING, RLINE) = ±320 V, logic
inputs = gnd
ISW -
0.1
1µA+85° C VSW (RRINGING, RLINE) = ±330 V, logic
inputs = gnd 0.3
-40° C VSW (RRINGING, RLINE) = ±310 V, logic
inputs = gnd 0.1
dv/dt sensitivity - - 200 - V/µs
*Secondary protection and ringing source current limiting must prevent exceeding this parameter.
Parameter Conditions Symbol Minimum Typical Maximum Unit
Off-state leakage current
+25° C
VSW (differential) = -320 V to GND
VSW (differential) = +260 V to -60 V
ISW -
0.1
1µA+85° C VSW (differential) = -330 V to GND
VSW (differential) = +270 V to -60 V 0.3
-40° C VSW (differential) = -310 V to GND
VSW (differential) = +250 V to -60 V 0.1
CPC7582
Rev. 3.0 10/4/2002 www.clare.com 7
1.5 Additional Electrical Characteristics
RON
+25° C ISW(ON) = ±10 mA, ±40 mA,
TBAT = -2 V RON -
38 -
+85° C 46 70
-40° C 28 -
DC current limit
+25° C
VSW (on) = ±10 V
ISW
- 175 -
mA+85° C 80 110 -
-40° C - 210 250
Dynamic current limit
(t = <0.5 µs)
Test switches on, all other switches off,
apply ±1 kV at 10/1000 µs pulse, with
appropriate protection in place.
-2.5- A
Logic input to switch output isolation
+25° C VSW (TTEST
, TLINE) = ±320 V,
logic inputs = gnd
ISW -
0.1
1µA+85° C VSW (TTEST
, TLINE) = ±330 V,
logic inputs = gnd 0.3
-40° C VSW (TTEST
, TLINE) = ±310 V,
logic inputs = gnd 0.1
Parameter Conditions Symbol Minimum Typical Maximum Unit
Parameter Conditions Symbol Minimum Typical Maximum Unit
Digital input characteristics
Input low voltage - VIL --1.5
V
Input high voltage - VIH 3.5 - -
Input leakage current
(high) VDD = 5.5 V, VBAT = -75 V, VIH = 5 V IIH -0.11µA
Input leakage current
(low) VDD = 5.5 V, VBAT = -75 V, VIL = 0 V IIL -0.11
Power requirements
Power consumption in
talk and all-off states VDD = 5 V, VBAT = -48 V, measure IDD
and IBAT
P
-5.510
mW
Power consumption in
all other states 6.5 10
VDD current in talk and
all-off states VDD = 5 V, VBAT = -48 V
IDD -1.12.0
mA
VDD current in all other
states
IDD -1.32.0
VBAT current in any
state VDD = 5 V, VBAT = -48 V IBAT -0.110µA
Temperature Shutdown Requirements (temperature shutdown flag is active low)
Shutdown activation
temperature - - 110 125 150 °C
Shutdown circuit
hysteresis --10-25°C
CPC7582
8 www.clare.com Rev. 3.0 10/4/2002
1.6 Protection Circuitry Electrical Specifi cations
1.7 CPC7582xA/B Truth Table
Parameter Conditions Symbol Minimum Typical Maximum Unit
Parameters Related to the Diodes in the Diode Bridge
Voltage drop at
continuous current
(50/60 Hz)
Apply ± dc current limit of break
switches
Forward
Voltage -2.13
V
Voltage drop at surge
current
Apply ± dynamic current limit of
break switches
Forward
Voltage -5-
Parameters Related to the Protection SCR
Surge current
-
-- - *A
Trigger current (+25° C)
ITRIG
-60 (CPC7582xA, xB)
70 (CPC7582xC) -
mA
Trigger current (+85° C) - 35 (CPC7582xA, xB)
40 (CPC7582xC) -
Hold current (+25° C)
IHOLD
-100 (CPC7582xA, xB)
135 (CPC7582xC) -
Hold current (+85° C) 60 (CPC7582xA, xB)
110 (CPC7582xC)
70 (CPC7582xA, xB)
115 (CPC7582xC) -
Gate trigger voltage IGATE = ITRIGGER** VTBAT or
VRBAT
VBAT -4 -VBAT -2 V
Reverse leakage
current VBAT = -48 V IVBAT --1.0µA
On-state voltage
0.5 A, t = 0.5 ms VTBAT or
VRBAT
--3-V
2.0 A, t = 0.5 ms
VTBAT or
VRBAT
--5-V
*Passes GR1089 and ITU-T K.20 with appropriate secondary protection in place.
**VBAT must be capable of sourcing ITRIGGER for the internal SCR to activate.
State INRINGING INTEST LATCH TSD
Break
Switches
Ringing
Switches
Test
Switches
Ta l k 0 0
01 or
Floating1
On Off Off
Te s t 0 1 O f f O f f On
Ringing 1 0 Off On Off
All Off 1 1 Off Off Off
Latched X X 1 Unchanged
All off XXX
02Off Off Off
1If TSD is tied high, thermal shutdown is disabled. If TSD is left floating, the thermal shutdown mechanism functions normally.
2Forcing TSD to ground overrides the logic input pins and forces an all off state.
CPC7582
Rev. 3.0 10/4/2002 www.clare.com 9
1.8 CPC7582xC Truth Table
2. Functional Description
2.1 Introduction
2.1.1 CPC7582xA/B Logic States
Talk. Break s witches SW1 and SW2 closed, ringing
switches SW3 and SW4 open, and test switches
SW5 and SW6 open.
Ringing. Break switches SW1 and SW2 open,
ringing swit ches SW3 and SW4 closed, and test
switches SW5 and SW6 open.
Test. Break switches SW1 and SW2 open, ringing
switches SW3 and SW4 open, and loop test
switches SW5 and SW6 closed.
All off . Break switches SW1 and SW2 open, ringing
switches SW3 and SW4 open, and test switches
SW5 and SW6 open.
2.1.2 CPC7582xC Logic States:
Talk. Break s witches SW1 and SW2 closed, ringing
switches SW3 and SW4 open, and test switches
SW5 and SW6 open.
Ringing. Break switches SW1 and SW2 open,
ringing swit ches SW3 and SW4 closed, and test
switches SW5 and SW6 open.
Test/Monitor. Break switches SW1 and SW2
closed, ringing switches SW3 and SW4 open , and
test s witches SW5 and SW6 closed.
Ringing Test. Break switches SW1 and SW2 open,
ringing swit ches SW3 and SW4 closed, and test
switches SW5 and SW6 closed.
All off . Break switches SW1 and SW2 open, ringing
switches SW3 and SW4 open, and test switches
SW5 and SW6 open.
The CPC7582 offers break-bef ore-make and make-
before-break switching from the ringing st ate t o the
talk state with simple logic- level input control. Solid-
state switch construction means no impulse noise is
generated when s w itching during ring cadence or ring
trip, eliminat in g the need for external zero-cross
s wit ching cir cuitry. State control is via log ic-level input
so no additional driver circu itry is required. The linear
break s witches SW1 a nd SW2 have exceptionally low
RON and excellent matching characteristics. The
ringing switch SW4 has a minimum open contact
breakdown voltage of 480 V. This is sufficiently high,
with proper protection, to prevent breakdown in the
presence of a transient f ault condition ( i.e., passing
the transient on t o t he ringing generator) .
Integrat ed into the CPC7582 is an over voltage
clamping circuit, active current limiting, and a thermal
shutdown mechanism to provide protection to the
SLIC de vice during a faul t condition. Positive and
negative surges are reduced by the current limiting
circuitry and hazardous potentials are diverted to
ground via diodes and, in xA/C parts, an integr ated
SCR. Power-cross potent ials are also reduced by the
current limiting and thermal shutdown circuits .
To protect the CPC7582 from an overvoltage fault
condition, use of a secondary protector is required.
The secondary protector must limit the v oltage seen at
the tip and ring terminals to a le vel below the
maximum breakdown voltage of the switches. To
minimize the stress o n the solid-state cont acts, use of
a foldback or cro wbar type secondary protector is
recommended. With proper selection of the secondary
protector, a line card using the CPC7582BC will meet
all relevant ITU, LSSGR, TIA/EIA and IEC protection
requirements.
The CPC7582 operates from a +5 V supply only. This
gives the device extremely low idle and active power
consumption and allows use wi th virtually any range of
State INRINGING INTEST LATCH TSD
Break
Switches
Ringing
Switches
Test
Switches
Ta l k 0 0
01 or
Floating1
On Off Off
Test/Monitor 0 1 On Off On
Ringing 1 0 Off On Off
Ringing Test 1 1 Off On On
Latched X X 1 Unchanged
All off XXX
02Off Off Off
1If TSD is tied high, thermal shutdown is disabled. If TSD is left floating, the thermal shutdown mechanism functions normally.
2Forcing TSD to ground overrides the logic input pins and forces an all off state.
CPC7582
10 www.clare.com Rev. 3.0 10/4/2002
battery voltage. Battery voltage is also used by the
CPC7582 as a reference for the int egrated protection
circuit. In the event of a loss of bat tery volt age, the
CPC7582 enters the all-off state.
2.2 Switch Logic
The CPC7582 prov ides, when switching from the
ringing state to the talk sta te , th e ability t o control the
release timing of the ringing s witche s SW3 and SW4
relativ e t o the sta te of the break switches SW1 and
SW2 using simple logic-le v el inputs . This is ref erred to
as make-before-break or break-before-make
operation. When the break switch contacts (SW1 and
SW2) are closed (or made) before the ringing s witch
contacts (SW3 and SW4) are ope ned (or brok en), this
is ref erred to as mak e-before-break operation. Break-
before-make operat ion occurs when t he ringing
contacts (SW3 and SW4) are opened ( broken) bef ore
the break switch contacts (SW1 and SW2) are closed
(made). With the CPC7582, t he make-bef ore-break
and break-bef ore- mak e oper ations can easily be
selected by applying logic-level inputs to the device.
The logic sequences f or these modes of operation are
given in “Make-Bef ore-Break Operation for All
Versions (Ringing to Talk Transition)” on page 10,
“Break-Before-Make Oper ation CPC7582xA/B
(Ringing to Talk Transition)” on page 11, and “Break-
Bef ore-Mak e Operat ion for all Version (Ringing to Talk
Transition)” on page 11. Logic states and input control
settings are given in “CPC7582xA/B Truth Table” on
page 8 and “CPC7582xC Truth Table” on page 9.
2.2.1 Make-Before-Break Operation - All Versions
To use make-bef ore-break oper ation, change the logic
inputs to the talk state immediately following the
ringing state. Applicat ion of the talk state opens the
ringing return swit ch (SW3) as the break s wit ches
(SW1 and SW2) close . The ringing switch (SW4)
remains open until the next zero-crossing of the
ringing supply current. While in the make-bef ore-break
state, ringing potentials in excess of the CPC7582
protection circuitry trigger le vels will be diverted to
ground.
2.2.2 Make-Before-Break Operation for All Versions (Ringing to Talk Transition)
2.2.3 Break-Before-Make Operation - CPC7582xA/B
Break-before-make oper ation of the CPC7582xA/ B
can be achieved using tw o different techniques.
The first method uses manipulation of the I NRINGING
and INTEST logic inputs as shown in “Break-Before-
Make Oper ation CPC7582xA/ B (Ringing to Talk
Transition)” on page 11.
1. At the end of the ringing state apply the all off
state (0, 0). This releases the ringing return
switch (SW3) while the ringing switch remains
on, waiting for the next zero current event.
2. Hold the all off state for at least one-half of a
ringing cycle to assure that a z ero crossing e v ent
occurs and that the ringing switch (SW4) has
opened.
Break-bef ore-mak e operation occurs when the ringing
s w itch opens before the break switches ( SW1 and
SW2) close.
State INRINGING INTEST LATCH TSD Timing Break
Switches
Ringing
Return
Switch
(SW3)
Ringing
Switch
(SW4)
Test
Switches
Ringing 1 0
0 Floating
-Off
On On Off
Make-
before-
break
00
SW4 waiting for next zero-current
crossing to turn off. Maximum time is
one-half of the ringing cycle. In this
transition state, current that is limited to
the dc break switch current limit value
will be sourced from the ring node of the
SLIC.
On Off On Off
Talk 0 0 Zero-cross current has occurred On Off Off Off
CPC7582
Rev. 3.0 10/4/2002 www.clare.com 11
2.2.4 Break-Before-Make Operation CPC7582xA/B (Ringing to Talk Transition)
2.2.5 Break-Before-Make Operation - All Versions
The second break-bef ore-make method for the
CPC7582xA/B is also the only method available f or
the CPC7582xC. As shown in “CPC7582xA/B Truth
Table” on page 8 and “CPC7582xC Truth Tab l e” o n
page 9, the bi-directional TSD interf ace disables all of
the CPC7582 switches when pulled to a logic lo w.
Although logically disab led, if the ringing switch (SW4)
is activ e (closed), it will remain closed until the next
current zero crossing event.
As shown in the t able “Break-Bef ore-Make Operation
for all Version (Ringing to Talk Transition)” on
page 11, this operation is similar t o the one shown in
“Break-Before-Make Operat ion - All Versions” on
page 11, except in the method used to select the all off
state, and in when the IN RINGING and INTEST input s
are reconfigured for the talk state .
1. Pull TSD to a logic low to end the ringing state.
This opens the ringing return switch (SW3) and
prevents any other switches from closing.
2. Keep TSD lo w f or at least one-h alf the dur ation of
the ringing cycle period to allow sufficient time f or
a zero cro ssing current e ven t to occur and f or the
circuit to enter the break before make state.
3. During the TSD low period, set the INRINGING and
INTEST inputs to the talk state (0, 0).
4. Release TSD, allowing the internal pull-up to
activate the break switches.
When using TSD as an input, the two recommended
states are 0 (o verrides logic input pins and f orces an
all off state) and float (allo ws switch control via logic
input pins and the thermal shutdown mechanism is
activ e). This requires the use of an open-collector type
buffer.
F orcing TSD t o a logic high disables the thermal
shutdown circuit and is theref ore not recommended as
this could lead to device damage or destruction in the
presence of ex cessiv e tip or ring potentials.
2.2.6 Break-Before-Make Operation for all Version (Ringing to Talk Transition)
State INRINGING INTEST LATCH TSD Timing Break
Switches
Ringing
Return
Switch
(SW3)
Ringing
Switch
(SW4)
Test
Switches
Ringing 1 0
0 Floating
-Off
On On Off
All-Off 1 1
Hold this state for at least one-half of the
ringing cycle. SW4 waiting for zero
current to turn off.
Off Off On Off
Break-
Before-
Make
1 1 SW4 has opened Off Off Off Off
Talk 0 0 Close Break Switches On Off Off Off
State INRINGING INTEST LATCH TSD Timing Break
Switches
Ringing
Return
Switch
(SW3)
Ringing
Switch
(SW4)
Test
Switches
Ringing 1 0
0
Floating - Off On On Off
All-Off 0 0
0
Hold this state for at least one-half of the
ringing cycle. SW4 waiting for zero
current to turn off.
Off Off On Off
Break-
Before-
Make
0 0 SW4 has opened Off Off Off Off
Talk 0 0 Floating Close Break Switches On Off Off Off
CPC7582
12 www.clare.com Rev. 3.0 10/4/2002
2.3 Data Latch
The CPC7582 has an integrated data latch. The latch
operation is controlled by logic-le vel input pin 11
(LATCH). The data input of the latch is pin 10
(INRINGING) and pin 9 (I NTEST) of the device while the
output of the data latch is an internal node used for
state control. When LATCH cont rol pin is at logic 0,
the data latch is tr ansparent and da ta control sign als
flow directly through to state control. A change in input
will be reflected in the switch state. When LATCH
control pin is at logic 1, the dat a latch is active and a
change in input control will not aff ect switch state. The
switches will remain in the position they w er e in when
the LATCH changed from logic 0 to logic 1 and will not
respond to changes in input as long as the lat ch is at
logic 1. The TSD input is not tied to t he dat a latch.
Theref ore , TSD is not aff ected b y the LATCH input and
the TSD input will o verride state control.
2.4 TSD
Setting TSD to +5 V allows switch contr ol using t he
logic inputs. This setting, however, also disables the
thermal shutdown circuit and is therefore not recom-
mended. When using logic cont rols via the input pins,
pin 7 (TSD) should be allowed to float. As a result , the
two recommended states when using pin 7 (TSD) as a
control are 0, which forces the device to the all-off
state, or f loat, which allows logic inputs to remain
active. This requires the use of an open-collector type
buffer.
2.5 Ringing Switc h Zer o-Cr oss Current Turn Off
After the application of a logic input t o turn SW4 off,
the ringing switch is designed to delay the change in
state until the next zero-crossing. Once on, the switch
requires a zero-current cross to tu rn off, and therefore
should not be used to switch a pure DC signal. The
switch will remain in the on state no matter the logic
input until the next zero crossing. These switching
characteristics will reduce and possib ly eliminate
ov erall system impulse noise normally associated with
ringing swit ches . See application note AN-144,
Impulse Noise Benefits of Line Card Access Switches. The
attributes of ringing switch SW4 ma y make it possible
to eliminate the need f or a zero-cross switching
scheme. A minim um impedance of 300 in series
with the ringing generator is recommended.
2.6 Power Suppli es
Both a +5 V supply and battery v oltage are connected
to the CPC7582. CPC7582 switch state control is
pow ered exclusively b y the +5 V supply. As a result,
the CPC7582BC e xhibits extremely low pow er
dissipation during both active and idle states.
The battery voltage is not u sed for switch control but
rather as a su pply for the integrated secondary
protection circuitry. The integrated SCR is designed to
trigger when pin 2 (TBAT) or pin 15 (RBAT) drops 2 to
4 V below the voltage on pin 16 (VBAT). This trigger
pre v ents a f ault in duced overvoltage e v ent at the T BAT
or RBAT nodes.
2.7 Battery Voltage Monito r
The CPC7582 also uses the VBAT voltage to monitor
battery v oltage. If battery voltage is lost, the CPC7582
immediately enters the all-off st ate. It remains in this
state until the battery voltage is rest ored. The device
also enters the all-off state if t he bat tery volt age rises
above –10 V and remains in the all-off st ate unt il the
battery v oltag e drops belo w –15 V. This batt ery
monitor f eature dr aws a small current from the battery
(less than 1 µA typical) and will add slightly t o t he
de vice’s overall power dissipation.
2.8 Protection
2.8.1 Diode Bridge/SCR
The CPC7582 uses a combination of current limited
break s witches, a diode bridge/SCR clamping circuit,
and a thermal shutdown mechanism to protect the
SLIC device or other associated circuitry from damage
during line transient e v ents such as lightning. During a
positive transient condition, the fault current is
conducted through the diod e bridge to g r ound via
FGND. Voltage is clamped to a diod e drop abo ve
ground. During a negative tr ansient of 2 to 4 V more
negative than the volta ge at VBAT, the SCR conducts
and f aults are shunted to FGND via the SCR or the
diode bridge.
In order f or the SCR to crowbar or f oldback, the on
v olt age (see “Protection Circuitry Electrical
Specifications” on page 8) of the SCR must be less
negative than the VBAT v oltage. If the VBAT voltage is
less negativ e than the SCR on voltage or if the VBAT
supply is unab le to source the trigger current, the SCR
will not crowbar.
F or po w er induction or po w er-cross fault conditions,
the positive cycle of the transient is clamped to the
diode drop abov e ground and the f ault current directed
to ground. The negative cycle of the transient will
cause the SCR to conduct when the voltage e xceeds
CPC7582
Rev. 3.0 10/4/2002 www.clare.com 13
the VBAT voltage b y two to four volts, steering the
current to ground.
2.8.2 Current Limiting function
If a lightning strike transient occurs when the device is
in the talk state, the current is passed along the line to
the integr ated protection circuit ry and limited by th e
dynamic current limit response of the active switches
during the talk state. During the talk state, when a
1000V 10/1000 µs pulse (GR-1089-CORE lightning) is
applied to the line though a properly clamped e xternal
protector, the current seen at pins 2 (TBAT) and pin 15
(RBAT) will be a pulse with a typical magnitude of 2.5 A
and a duration of less t han 0.5 µs.
If a power-cross fault occurs with the device in the talk
state, the current is passed though break switches
SW1 and SW2 on to the integ rated protection circuit
and is limited by the dynamic DC current limit
response of the tw o break switches. The DC current
limit, specified over temperature, is betw een 80 mA
and 425 mA, and the circuitry has a negative
temperature coeff icien t. As a re sult, if th e device is
subjected to ex tended heating due to a pow er cross
f ault , the measured current at pin 3 (TLINE) and pin 14
(RLINE) will decrease as the device temperature
increases. If the device temperature rises sufficiently,
the temperature shutdown mechanism will activate
and the device will enter the all-off state .
2.9 Temperature Shutdown
The thermal shutdown mechanism will activate when
the de vice temperature reaches a minimum of 110° C ,
placing the device in the all-off state regardless of
logic input. During thermal shutdown mode, pin 7
(TSD) will read 0 V. Normal output of TSD is +VDD.
If presented with a sh ort duration transient such as a
lightning e vent, the thermal shutdown feature will
typically not activate. But in an extended power-cross
transient, the device temperature will rise and the
thermal shutdown will activ ate forcing the s witches to
the all-off state. At this point the current measured at
pin 3 (TLINE) and pin 14 (RLINE) will drop to zero . Once
the device enters thermal shutdown it will remain in
the all-off state unt il t he temperature of the de vice
drops below the de-activation level of the thermal
shutdown circuit. This will permit the de vice t o return
to normal operation. If the transient has not passe d,
current will flow at the v alue allow ed b y the dynamic
DC current limiting of the switches and heating will
begin again, reactivating the thermal shutdown
mechanism. This cycle of entering and exiting the
thermal shutdown mode will continue as long as the
f ault condition persists. If the magnitude of the fault
condition is great enough, the external secondary
protector could activate and shunt all current to
ground.
The thermal shutdown mechanism of the CPC7582
can be disab l e by applying a logic high to pin 7 (TSD).
2.10 External Protection Elements
The CPC7582 requires only o verv olt age secondary
protection on the loop side of t he device. The
integrated pr otection featu re described abov e negates
the need f or protection on the line side. The secondary
protector limits voltage transients to levels that do not
e xceed t he breakdo wn voltage or input-output
isolation barrier of the CPC7582. A foldback or
crowbar t ype protect or is recommended to minimiz e
stresses on the de vice .
Consult Clare’s application note, AN-100, Designing
Surge and Power Fault Protection Circuits for Solid
State Subscriber Line Interf aces” for equations related
to the specifications of external secondary protectors,
fused resistors and PTCs.
CPC7582
14 www.clare.com Rev. 3.0 10/4/2002
3. Manufacturing Information
3.1 Mechanical D ime ns io n s
3.1.1 SOIC
3.1.2 MLP
7.40 MIN / 7.60 MAX
(.291 MIN / .299 MAX)
0.23 MIN / 0.32 MAX
(.0091 MIN / .0125 MAX)
1.27
(.050)
2.44 MIN / 2.64 MAX
(.096 MIN / .104 MAX)
0.51 MIN / 1.01 MAX
(.020 MIN / .040 MAX)
10.11 MIN / 10.51 MAX
(.398 MIN / .414 MAX)
0.36 MIN / 0.46 MAX
(.014 MIN / .018 MAX)
10.11 MIN / 10.31 MAX
(.398 MIN / .406 MAX)
16 Pin SOIC (JEDEC Package)
0.55
0.80
0.23
0.55
0.33
(+0.07, -0.05)
0.2
0.80
(±0.10)
0.02
(+0.05, -0)
Terminal Tip
INDEX AREA
SEATING
PLANE
EXPOSED PAD
TOP VIEW
SIDE VIEW
BOTTOM VIEW
16
12
7
6
4.0
(±0.05)
6.0
(±0.05)
0.55
(±0.1)
Dimensions in mm
CPC7582
Rev. 3.0 10/4/2002 www.clare.com 15
3.2 Printed-Circuit Board Layout
3.2.1 SOIC
3.2.2 MLP
NOTE: For optimum solder joint size , MLP package
printed-circuit board pads should extend no more than
.05 mm past the chip post on t he sh ort sides, and no
more than .025 mm past the chip posts on the long
sides.
As the metallic pad on the bott om of the MLP pac kage
is connected to the substr ate of the die, Clare
recommends that no printed circuit board traces or
vias be placed under this area to maintain minimum
creepage and clearance values.
PC Board Pattern
(Top View)
1.193
(.047)
9.728 ± .051
(.383 ± .002)
.787
(.031)
1.270
(.050)
0.65
6.1
0.38
0.65
0.38
0.47
0.66
5.75
6.13
0.75 on center
5.35 on center
Detail A
Detail A
All dimensions in mm
Not drawn to scale
CPC7582
16 www.clare.com Rev. 3.0 10/4/2002
3.3 Tape and Reel Packaging
3.3.1 SOIC
3.3.2 MLP
B0
16.00
7.50
R = .50
2.30
K0
K1
1.30
6.80
3.00
A0
2.00
4.00
2.00
1.50
12.00
6.50
2.70
A0 =
B0 =
K0 =
K1 =
NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETERS AND CARRY TOLERANCES OF EIA
STANDARD 481-2. 2. THE TAPE COMPLIES WITH ALL "NOTES" FOR CONSTANT DIMENSIONS
LISTED ON PAGE 5 OF EIA-481-2.
6.5 mm
10.3 mm
2.3 mm
2.7 mm
B0
16.00
R = .50
1.4
K0
K1
7.40
A0
4.00
2.00
1.50
12.00
6.4
1.4
A0 =
B0 =
K0 =
K1 =
NOTES:1.ALL DIMENSIONS ARE IN MILLIMETERS AND CARRYTOLERANCES OF EIA
STANDARD 481-2. 2.THE TAPE COMPLIES WITH ALL "NOTES" FOR CONSTANT DIMENSIONS
LISTED ON PAGE 5 OF EIA-481-2.
6.4 mm
7.4 mm
1.4 mm
1.4 mm
3.4 Soldering
3.4.1 Moisture Reflow Sensitivity
Clare has characterized the moist ure reflow sensitivity
of LCAS products using IPC/JEDEC standard
J-STD-020A. Moisture uptak e from atmosph eric
humidity occurs b y dif fusion. During the solder reflow
process, in which the component is at tached to the
PCB, the whole body of the component is e xposed to
high process temperatures. The combination of
moisture uptak e and high r eflow soldering
temperatures may lead to moisture induced
delamination and cracking of the component. To
pre vent this, this component must be handled in
accordance with IPC/JEDEC standard J-STD-020A
per the labelled moisture sensitivity level (MSL), level
1 for the SOIC package, and level 3 for the MLP
package.
3.4.2 Reflow Profile
The maximum ramp rates , dwell times , and
temperatures of the assemb ly reflow profile should no t
e xceed those specif ied in IPC standard IPC-9502,
tabl e 2. Soldering processes are limited to 220 °C
component body temperature.
3.5 Wash i ng
Clare does not recommend ultrasonic cleaning of
LCAS parts.
For additional information please visit www.clare.com
Clare, Inc. makes no representations or warran ties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make
changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses or indemnity are expressed or implie d. Except as set
forth in Clare’s Standard Terms and Conditions of Sale, Clare, Inc. assumes no liability whatsoever, and disclaims any express or implied w arranty relating to its
products, including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.
The products described in this document are not designed, intended, authorized, or warranted for use as components in systems intended for surgical implant into
the body, or in other applications intended to support or sustain life, or where malfunction of Clare’s product may result in direct physical harm, injury, or death to a
person or severe property or environmental damage. Clare, Inc. reserves the right to discontinue or make changes to its products at any time without notice.
Specifications: DS-CPC7582-R3.0
© Copyright 2002 , Clare, Inc.
All rights reserved. Printed in USA.
10/4/2002