Products and specifications discussed herein are subject to change by Micron without notice.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Features
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_1.fm - Rev. D 8/05 EN 1©2004 Micron Technology, Inc. All rights reserved.
DDR SDRAM Registered DIMM
MT9VDDT1672 – 128MB
MT9VDDT3272 – 256MB
MT9VDDT6472 – 512MB
For the latest data sheet, please refer to the Micron® Web site: www.micron.com/products/modules
Features
184-pin, dual in-line memory modules (DIMM)
Fast data transfer rates: PC1600, PC2100, and
PC2700
Supports ECC error detection and correction
Registered inputs with one-clock delay
Phase-lock loop (PLL) clock driver to reduce loading
Utilizes 200 MT/s, 266 MT/s, and 333 MT/s DDR
SDRAM components
128MB (16 Meg x 72), 256MB (32 Meg x 72), and
512MB (64 Meg x 72)
•V
DD= VDDQ= +2.5V
•V
DDSPD = +2.3V to +3.6V
2.5V I/O (SSTL_2 compatible)
Commands entered on each positive CK edge
DQS edge-aligned with data for READs; center-
aligned with data for WRITEs
Internal, pipelined double data rate (DDR)
architecture; two data accesses per clock cycle
Bidirectional data strobe (DQS) transmitted/
received with data, i.e., source-synchronous data
capture
Differential clock inputs (CK and CK#)
Four internal device banks for concurrent operation
Selectable burst lengths: 2, 4, or 8
Auto precharge option, auto refresh and self refresh
modes
15.6µs (128MB); 7.8125µs (256MB, 512MB)
maximum average periodic refresh interval
Serial Presence-Detect (SPD) with EEPROM
Selectable READ CAS latency
Gold edge contacts
Figure 1: 184-Pin DIMM (MO-206)
Notes: 1. Contact Micron for product availability; not
recommended for new designs.
2. CL = Device CAS (READ) Latency; registered
mode adds one clock cycle to CL.
3. Available in 128MB density only.
Options Marking
Operating Temperature Range
Commercial No Mark
•Package
184-pin DIMM (standard) G
184-pin DIMM (lead-free)1Y
Memory Clock, Speed, CAS Latency2
6ns (167 MHz), 333 MT/s, CL = 2.5 -3353
7.5ns (133 Mhz), 266 MT/s, CL = 2 -2621
7.5ns (133 Mhz), 266 MT/s, CL = 2 -26A1
7.5ns (133 Mhz), 266 MT/s, CL = 2.5 -2651
10ns (100 Mhz), 200 MT/s, CL = 2 -2021
•PCB Height
Standard 1.7in. (43.18mm)1
See note, page 2
Low Profile 1.2in. (30.48mm)1
See note, page 2
Standard PCB 1.7in. (43.18mm)
Low Profile PCB 1.2in. (30.48mm)
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_1.fm - Rev. D 8/05 EN 2©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Features
Note: All part numbers end with a two-place code (not shown), designating component and PCB
revisions. Consult factory for current revision codes. Example: MT9VDDT3272G-265A1.
Table 1: Address Table
MT9VDDT1672 MT9VDDT3272 MT9VDDT6472
Refresh Count 4K 8K 8K
Row Addressing 4K (A0–A11) 8K(A0–A12) 8K(A0–A12)
Device Bank Addressing 4 (BA0, BA1) 4 (BA0, BA1) 4 (BA0, BA1)
Base Device Configuration 128Mb (16 Meg x 8) 256Mb (32 Meg x 8) 512Mb (64 Meg x 8)
Column Addressing 1K (A0–A9) 1K(A0–A9) 2K(A0–A9, A11)
Module Rank Addressing 1 (S0#) 1 (S0#) 1 (S0#)
Table 2: Part Numbers and Timing Parameters
Part Number
Module
Density Configuration
Module
Bandwidth
Memory Clock/
Data Frequency
Latency
(CL - tRCD - tRP)
MT9VDDT1672G-335__ 128MB 16 Meg x 72 2.7 GB/s 6ns/333 MT/s 2.5-2-2
MT9VDDT1672Y-335__ 128MB 16 Meg x 72 2.7 GB/s 6ns/333 MT/s 2.5-2-2
MT9VDDT1672G-262__ 128MB 16 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-2-2
MT9VDDT1672Y-262__ 128MB 16 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-2-2
MT9VDDT1672G-26A__ 128MB 16 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-3-3
MT9VDDT1672Y-26A__ 128MB 16 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-3-3
MT9VDDT1672G-265__ 128MB 16 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2.5-3-3
MT9VDDT1672Y-265__ 128MB 16 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2.5-3-3
MT9VDDT1672G-202__ 128MB 16 Meg x 72 1.6 GB/s 10ns/200 MT/s 2-2-2
MT9VDDT1672Y-202__ 128MB 16 Meg x 72 1.6 GB/s 10ns/200 MT/s 2-2-2
MT9VDDT3272G-262__ 256MB 32 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-2-2
MT9VDDT3272Y-262__ 256MB 32 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-2-2
MT9VDDT3272G-26A__ 256MB 32 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-3-3
MT9VDDT3272Y-26A__ 256MB 32 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-3-3
MT9VDDT3272G-265__ 256MB 32 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2.5-3-3
MT9VDDT3272Y-265__ 256MB 32 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2.5-3-3
MT9VDDT3272G-202__ 256MB 32 Meg x 72 1.6 GB/s 10ns/200 MT/s 2-2-2
MT9VDDT3272Y-202__ 256MB 32 Meg x 72 1.6 GB/s 10ns/200 MT/s 2-2-2
MT9VDDT6472G-262__ 512MB 64 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-2-2
MT9VDDT6472Y-262__ 512MB 64 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-2-2
MT9VDDT6472G-26A__ 512MB 64 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-3-3
MT9VDDT6472Y-26A__ 512MB 64 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-3-3
MT9VDDT6472G-265__ 512MB 64 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2.5-3-3
MT9VDDT6472Y-265__ 512MB 64 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2.5-3-3
MT9VDDT6472G-202__ 512MB 64 Meg x 72 1.6 GB/s 10ns/200 MT/s 2-2-2
MT9VDDT6472Y-202__ 512MB 64 Meg x 72 1.6 GB/s 10ns/200 MT/s 2-2-2
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72TOC.fm - Rev. D 8/05 EN 3©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Table of Contents
Table of Contents
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Pin Assignments and Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
PLL and Register Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Serial Presence-Detect Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Mode Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Burst Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Burst Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Read Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Extended Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
DLL Enable/Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Register and PLL Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Serial Presence-Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
SPD Clock and Data Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
SPD Start Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
SPD Stop Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
SPD Acknowledge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Module Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Data Sheet Designation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72LOF.fm - Rev. D 8/05 EN 4©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
List of Figures
List of Figures
Figure 1: 184-Pin DIMM (MO-206) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Figure 2: Pin Locations (184-Pin DIMM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Figure 3: Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Figure 4: Mode Register Definition Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Figure 5: CAS Latency Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Figure 6: Extended Mode Register Definition Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Figure 7: Derating Data Valid Window (tQH - tDQSQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Figure 8: Pull-Down Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Figure 9: Pull-Up Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Figure 10: Initialization Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Figure 11: Data Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Figure 12: Definition of Start and Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Figure 13: Acknowledge Response From Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Figure 14: SPD EEPROM Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Figure 15: 184-Pin DIMM Dimensions (Standard). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Figure 16: 184-Pin DIMM Dimensions (Low-Profile) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72LOT.fm - Rev. D 8/05 EN 5©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
List of Tables
List of Tables
Table 1: Address Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Table 2: Part Numbers and Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Table 3: Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Table 4: Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Table 5: Burst Definition Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Table 6: CAS Latency (CL) Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Table 7: Commands Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Table 8: DM Operation Truth Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Table 9: DC Electrical Characteristics and Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Table 10: AC Input Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Table 11: IDD Specifications and Conditions – 128MB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Table 12: IDD Specifications and Conditions – 256MB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Table 13: IDD Specifications and Conditions – 512MB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Table 14: Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Table 15: DDR Device Electrical Characteristics and Recommended AC Operating Conditions. . . . . . . . . . . .22
Table 16: DDR Device Electrical Characteristics and Recommended AC Operating Conditions. . . . . . . . . . . .23
Table 17: Register Timing Requirements and Switching Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Table 18: PLL Clock Driver Timing Requirements and Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . .33
Table 19: EEPROM Device Select Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Table 20: EEPROM Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Table 21: Serial Presence-Detect EEPROM DC Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Table 22: Serial Presence-Detect EEPROM AC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Table 23: Serial Presence-Detect Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 6©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Pin Assignments and Descriptions
Pin Assignments and Descriptions
Notes: 1. Pin 115 is no connect (NC) for 128MB, A12 for 256MB and 512MB.
Figure 2: Pin Locations (184-Pin DIMM)
Table 3: Pin Assignment
184-Pin DIMM Front 184-Pin DIMM Back
Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol
1VREF 24 DQ17 47 DQS8 70 VDD 93 VSS 116 VSS 139 VSS 162 DQ47
2DQ025 DQS2 48 A0 71 NC 94 DQ4 117 DQ21 140 DM8 163 NC
3V
SS 26 VSS 49 CB2 72 DQ48 95 DQ5 118 A11 141 A10 164 VDDQ
4DQ127 A9 50 VSS 73 DQ49 96 VDDQ119 DM2 142 CB6 165 DQ52
5DQS028 DQ18 51 CB3 74 VSS 97 DM0 120 VDD 143 VDDQ166 DQ53
6DQ229 A7 52 BA1 75 DNU 98 DQ6 121 DQ22 144 CB7 167 NC
7V
DD 30 VDDQ53 DQ32 76 DNU 99 DQ7 122 A8 145 VSS 168 VDD
8 DQ3 31 DQ19 54 VDDQ77VDDQ 100 VSS 123 DQ23 146 DQ36 169 DM6
9NC32 A5 55 DQ33 78 DQS6 101 NC 124 VSS 147DQ37170DQ54
10 RESET# 33 DQ24 56 DQS4 79 DQ50 102 NC 125 A6 148 VDD 171 DQ55
11 VSS 34 VSS 57 DQ34 80 DQ51 103 NC 126 DQ28 149 DM4 172 VDDQ
12 DQ8 35 DQ25 58 VSS 81 VSS 104 VDDQ127DQ29150DQ38173 NC
13 DQ9 36 DQS3 59 BA0 82 NC 105 DQ12 128 VDDQ151DQ39174DQ60
14 DQS1 37 A4 60 DQ35 83 DQ56 106 DQ13 129 DM3 152 VSS 175 DQ61
15 VDDQ38 VDD 61 DQ40 84 DQ57 107 DM1 130 A3 153 DQ44 176 VSS
16 DNU 39 DQ26 62 VDDQ85 VDD 108 VDD 131 DQ30 154RAS#177DM7
17 DNU 40 DQ27 63 WE# 86 DQS7 109 DQ14 132 VSS 155DQ45178DQ62
18 VSS 41 A2 64 DQ41 87 DQ58 110 DQ15 133 DQ31 156 VDDQ179 DQ63
19 DQ10 42 VSS 65 CAS# 88 DQ59 111 NC 134 CB4 157 S0# 180 VDDQ
20 DQ11 43 A1 66 VSS 89 VSS 112 VDDQ 135 CB5 158 NC 181 SA0
21 CKE0 44 CB0 67 DQS5 90 NC 113 NC 136 VDDQ 159 DM5 182 SA1
22 VDDQ45 CB1 68 DQ42 91 SDA 114 DQ20 137 CK0 160 VSS 183 SA2
23 DQ16 46 VDD 69 DQ43 92 SCL 115 NC/A12 138 CK0# 161 DQ46 184 VDDSPD
PIN 1
U1 U5 U7 U9
U15 U17 U19 U21
PIN 52 PIN 53 PIN 92
Back View
Front View
U10
U11 U12 U13
Standard 1.7in. (43.18mm)
U3
PIN 93
PIN 144
PIN 145
PIN 184
PIN 1 PIN 52 PIN 53 PIN 92
U1 U3
U11
U12
U5 U7 U9
U10
U15 U17
U13
U19 U21
Indicates a V
DD
or V
DD
Q pin Indicates a V
SS
pin
Front View
Low Profile 1.2in. (30.48mm)
Back View
PIN 93
PIN 144
PIN 145
PIN 184
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 7©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Pin Assignments and Descriptions
Table 4: Pin Descriptions
Pin numbers may not correlate with symbols. Refer to pin assignment tables on page 6 for more information
Pin Numbers Symbol Type Description
63, 65, 154 WE#, CAS#, RAS# Input Command Inputs: RAS#, CAS#, and WE# (along with S#) define
the command being entered.
137, 138 CK0, CK0# Input Clock: CK and CK# are differential clock inputs. All address and
control input signals are sampled on the crossing of the positive
edge of CK and negative edge of CK#. Output data (DQs and
DQS) is referenced to the crossings of CK and CK#.
21 CKE0 Input Clock Enable: CKE HIGH activates and CKE LOW deactivates the
internal clock, input buffers, and output drivers. Taking CKE LOW
provides PRECHARGE POWER-DOWN and SELF REFRESH
operations (all device banks idle), or ACTIVE POWER-DOWN (row
ACTIVE in any device bank). CKE is synchronous for POWER-
DOWN entry and exit, and for SELF REFRESH entry. CKE is
asynchronous for SELF REFRESH exit and for disabling the outputs.
CKE must be maintained HIGH throughout read and write
accesses. Input buffers (excluding CK, CK# and CKE) are disabled
during POWER-DOWN. Input buffers (excluding CKE) are disabled
during SELF REFRESH. CKE is an SSTL_2 input but will detect an
LVCMOS LOW level after VDD is applied and until CKE is first
brought HIGH. After CKE is brought HIGH, it becomes an SSTL_2
input only.
157 S0# Input Chip Select: S# enables (registered LOW) and disables (registered
HIGH) the command decoder. All commands are masked when S#
is registered HIGH. S# is considered part of the command code.
52, 59 BA0, BA1 Input Bank Address: BA0 and BA1 define to which device bank an
ACTIVE, READ, WRITE, or PRECHARGE command is being applied.
27, 29, 32, 37, 41, 43,
48, 115 (A12), 118, 122,
125, 130, 141
A0–A11
(128MB)
A0–A12
(256MB, 512MB)
Input Address Inputs: Provide the row address for ACTIVE commands,
and the column address and auto precharge bit (A10) for READ/
WRITE commands, to select one location out of the memory array
in the respective device bank. A10 sampled during a PRECHARGE
command determines whether the PRECHARGE applies to one
device bank (A10 LOW, device bank selected by BA0, BA1) or all
device banks (A10 HIGH). The address inputs also provide the op-
code during a MODE REGISTER SET command. BA0 and BA1
define which mode register (mode register or extended mode
register) is loaded during the LOAD MODE REGISTER command.
91 SDA Input/
Output
Serial Presence-Detect Data: SDA is a bidirectional pin used to
transfer addresses and data into and out of the presence-detect
portion of the module.
92 SCL Input Serial Clock for Presence-Detect: SCL is used to synchronize the
presence-detect data transfer to and from the module.
181, 182, 183 SA0–SA2 Input Presence-Detect Address Inputs: These pins are used to configure
the presence-detect device.
10 RESET# Input Asynchronously forces all register outputs LOW when RESET# is
LOW. This signal can be used during power-up to ensure CKE is
LOW and SDRAM DQ is High-Z.
44, 45, 49, 51, 134, 135,
142, 144
CB0–CB7 Input/
Output
Check bits.
97, 107, 119, 129, 140, 149,
159, 169, 177
DM0–DM8 Input Data Write Mask: DM LOW allows WRITE operation. DM HIGH
blocks WRITE operation. DM state does not affect READ
command.
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 8©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Pin Assignments and Descriptions
5, 14, 25, 36, 47, 56, 67, 78,
86
DQS0–DQS8 Input/
Output
Data Strobe: Output with READ data, input with WRITE data. DQS
is edge-aligned with READ data, centered in WRITE data. Used to
capture data.
2, 4, 6, 8, 12, 13, 19, 20, 23,
24, 28, 31, 33, 35, 39, 40,
53, 55, 57, 60, 61, 64, 68,
69, 72, 73, 79, 80, 83, 84,
87, 88, 94, 95, 98, 99, 105,
106, 109, 110, 114, 117,
121, 123, 126, 127, 131,
133, 146, 147, 150, 151,
153, 155, 161, 162, 165,
166, 170, 171, 174, 175,
178, 179
DQ0–DQ63 Input/
Output
Data I/Os: Data bus.
1V
REF Supply SSTL_2 reference voltage.
15, 22, 30, 54, 62, 77, 96,
104, 112, 128, 136, 143,
156, 164, 172, 180
VDDQ Supply DQ Power Supply: +2.5V ±0.2V.
7, 38, 46, 70, 85, 108, 120,
148, 168
VDD Supply Power Supply: +2.5V ±0.2V.
3, 11, 18, 26, 34, 42, 50, 58,
66, 74, 81, 89, 93, 100, 116,
124, 132, 139, 145, 152,
160, 176
VSS Supply Ground.
184 VDDSPD Supply Serial EEPROM positive power supply: +2.3V to +3.6V.
9, 71, 82, 90, 101, 102, 103,
111, 113, 115 (128MB),
158, 163, 167, 173
NC No Connect: These pins should be left unconnected.
16, 17, 75, 76 DNU Do Not Use: These pins are not connected on this module but are
assigned pins on other modules in this product family.
Table 4: Pin Descriptions
Pin numbers may not correlate with symbols. Refer to pin assignment tables on page 6 for more information
Pin Numbers Symbol Type Description
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 9©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Functional Block Diagram
Functional Block Diagram
All resistor values are 22Ω unless otherwise specified. Per industry standard, Micron
modules utilize various component speed grades, as referenced in the module part
number guide at www.micron.com/numberguide.
Standard modules use the following DDR SDRAM devices: MT46V16M8TG (128MB);
MT46V32M8TG (256MB); MT46V64M8TG (512MB). Lead-free modules use the follow-
ing DDR SDRAM devices: MT46V16M8P (128MB); MT46V32M8P (256MB);
MT46V64M8P (512MB). Contact Micron for availability of IT DIMMs.
Figure 3: Functional Block Diagram
A0
SA0
SERIAL PD
SDA
A1
SA1
A2
SA2
S0#
BA0, BA1
A0-A11 (128MB)
A0-A12 (256MB, 512MB)
RAS#
RS0#
RBA0, RBA1: DDR SDRAMS
RA0-RA11: DDR SDRAMS
RA0-RA12: DDR SDRAMS
RRAS#: DDR SDRAMS
RCAS#: DDR SDRAMS
RCKE0: DDR SDRAMS
RWE#: DDR SDRAMS
RESET#
CAS#
CKE0
WE#
CK
CK#
VREF
VSS
DDR SDRAMS
DDR SDRAMS
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
U9
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
U7
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
U17
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
U5
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
U19
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
U21
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DM CS# DQS
U1
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DM0
RS0#
U3
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
R
E
G
I
S
T
E
R
S
PLL
DDR SDRAM
DDR SDRAM
DDR SDRAM
DDR SDRAM
DDR SDRAM
DDR SDRAM
DDR SDRAM
DDR SDRAM
DDR SDRAM
REGISTER X 2
SCL
DM CS# DQS
DM CS# DQS
DM CS# DQS
DQS0
DM4
DQS4
DM1
DQS1
DM5
DQS5
DM2
DQS2
DM6
DQS6
DM CS# DQS
U15
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DM CS# DQS
DM CS# DQS DM CS# DQS
DM CS# DQS
DM3
DQS3
DM7
DQS7
DM8
DQS8
CB0
CB1
CB2
CB3
CB4
CB5
CB6
CB7
VDDQ
VDD DDR SDRAMS
DDR SDRAMS
CK0
CK0#
120 U12
U10
U11, U13
SPD/EEPROM
VDDSPD
WP
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 10 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
General Description
General Description
The MT9VDDT1672, MT9VDDT3272, and MT9VDDT6472
are high-speed CMOS, dynamic
random-access, 128MB, 256MB, and 512MB registered memory modules organized in a
x72 (ECC) configuration. DDR SDRAM modules use internally configured quad-bank
DDR SDRAM devices.
DDR SDRAM modules use a double data rate architecture to achieve high-speed opera-
tion. The double data rate architecture is essentially a 2n-prefetch architecture with an
interface designed to transfer two data words per clock cycle at the I/O pins. A single
read or write access for the DDR SDRAM module effectively consists of a single 2n-bit
wide, one-clock-cycle data transfer at the internal DRAM core and two corresponding n-
bit wide, one-half-clock-cycle data transfers at the I/O pins.
A bidirectional data strobe (DQS) is transmitted externally, along with data, for use in
data capture at the receiver. DQS is an intermittent strobe transmitted by the DDR
SDRAM during READs and by the memory controller during WRITEs. DQS is edge-
aligned with data for READs and center-aligned with data for WRITEs.
DDR SDRAM modules operate from a differential clock (CK and CK#); the crossing of CK
going HIGH and CK# going LOW will be referred to as the positive edge of CK. Com-
mands (address and control signals) are registered at every positive edge of CK. Input
data is registered on both edges of DQS, and output data is referenced to both edges of
DQS, as well as to both edges of CK.
Read and write accesses to DDR SDRAM modules are burst oriented; accesses start at a
selected location and continue for a programmed number of locations in a programmed
sequence. Accesses begin with the registration of an ACTIVE command, which is then
followed by a READ or WRITE command. The address bits registered coincident with
the ACTIVE command are used to select the device bank and row to be accessed (BA0,
BA1 select device bank; A0–A11 select device row for 128MB; A0–A12 select device row
for 256MB, 512MB). The address bits registered coincident with the READ or WRITE
command are used to select the device bank and the starting device column location for
the burst access.
DDR SDRAM modules provide for programmable read or write burst lengths of 2, 4, or 8
locations. An auto precharge function may be enabled to provide a self-timed row pre-
charge that is initiated at the end of the burst access.
The pipelined, multibank architecture of DDR SDRAM modules allows for concurrent
operation, thereby providing high effective bandwidth by hiding row precharge and acti-
vation time.
An auto refresh mode is provided, along with a power-saving power-down mode. All
inputs are compatible with the JEDEC Standard for SSTL_2. All outputs are SSTL_2, Class
II compatible. For more information regarding DDR SDRAM operation, refer to the
128Mb, 256Mb, or 512Mb DDR SDRAM component data sheets.
PLL and Register Operation
DDR SDRAM modules operate in registered mode where the control/address input sig-
nals are latched in the register on one rising clock edge and sent to the DDR SDRAM
devices on the following rising clock edge (data access is delayed by one clock). A phase-
lock loop (PLL) on the module is used to redrive the differential clock signals CK and CK#
to the DDR SDRAM devices to minimize system clock loading.
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 11 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Mode Register Definition
Serial Presence-Detect Operation
DDR SDRAM modules incorporate serial presence-detect (SPD). The SPD function is
implemented using a 2,048-bit EEPROM. This nonvolatile storage device contains 256
bytes. The first 128 bytes can be programmed by Micron to identify the module type and
various SDRAM organizations and timing parameters. The remaining 128 bytes of stor-
age are available for use by the customer. System READ/WRITE operations between the
master (system logic) and the slave EEPROM device (DIMM) occur via a standard I2C
bus using the DIMM’s SCL (clock) and SDA (data) signals, together with SA (2:0), which
provide eight unique DIMM/EEPROM addresses. Write protect (WP) is tied to ground on
the module, permanently disabling hardware write protect.
Mode Register Definition
The mode register is used to define the specific mode of operation of DDR SDRAM
devices. This definition includes the selection of a burst length, a burst type, a CAS
latency and an operating mode, as shown in Figure 4, Mode Register Definition Dia-
gram, on page 12. The mode register is programmed via the MODE REGISTER SET com-
mand (with BA0 = 0 and BA1 = 0) and will retain the stored information until it is
programmed again or the device loses power (except for bit A8, which is self-clearing).
Reprogramming the mode register will not alter the contents of the memory, provided it
is performed correctly. The mode register must be loaded (reloaded) when all device
banks are idle and no bursts are in progress, and the controller must wait the specified
time before initiating the subsequent operation. Violating either of these requirements
will result in unspecified operation.
Mode register bits A0–A2 specify the burst length, A3 specifies the type of burst (sequen-
tial or interleaved), A4–A6 specify the CAS latency, and A7–A11 (128MB) or A7–A12
(256MB, 512MB) specify the operating mode.
Burst Length
Read and write accesses to the DDR SDRAM are burst oriented, with the burst length
being programmable, as shown in Figure 4, Mode Register Definition Diagram. The
burst length determines the maximum number of column locations that can be
accessed for a given READ or WRITE command. Burst lengths of 2, 4, or 8 locations are
available for both the sequential and the interleaved burst types.
Reserved states should not be used, as unknown operation or incompatibility with
future versions may result.
When a READ or WRITE command is issued, a block of columns equal to the burst
length is effectively selected. All accesses for that burst take place within this block,
meaning that the burst will wrap within the block if a boundary is reached. The block is
uniquely selected by A1–Ai when the burst length is set to two, by A2–Ai when the burst
length is set to four and by A3–Ai when the burst length is set to eight (where Ai is the
most significant column address bit for a given configuration. See Note 5 of Table 5,
Burst Definition Table, on page 13). The remaining (least significant) address bit(s) is
(are) used to select the starting location within the block. The programmed burst length
applies to both read and write bursts.
Burst Type
Accesses within a given burst may be programmed to be either sequential or interleaved;
this is referred to as the burst type and is selected via bit M3.
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 12 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Mode Register Definition
The ordering of accesses within a burst is determined by the burst length, the burst type
and the starting column address, as shown in Figure 5, Burst Definition Table, on
page 13.
Figure 4: Mode Register Definition Diagram
M3 = 0
Reserved
2
4
8
Reserved
Reserved
Reserved
Reserved
M3 = 1
Reserved
2
4
8
Reserved
Reserved
Reserved
Reserved
Operating Mode
Normal Operation
Normal Operation/Reset DLL
All other states reserved
0
1
-
0
0
-
0
0
-
0
0
-
0
0
-
0
0
-
Valid
Valid
-
0
1
Burst Type
Sequential
Interleaved
CAS Latency
Reserved
Reserved
2
Reserved
Reserved
Reserved
2.5
Reserved
Burst Length
M0
0
1
0
1
0
1
0
1
Burst LengthCAS Latency BT0*
A9 A7 A6 A5 A4 A3
A8 A2 A1 A0
Mode Register (Mx)
Address Bus
976543
8210
M1
0
0
1
1
0
0
1
1
M2
0
0
0
0
1
1
1
1
M3
M4
0
1
0
1
0
1
0
1
M5
0
0
1
1
0
0
1
1
M6
0
0
0
0
1
1
1
1
M6-M0
M8 M7
Operating Mode
A10
A12 A11
BA0
BA1
10
11
12
13
0*
14
* M14 and M13 (BA0 and BA1)
must be “0, 0” to select the
base mode register (vs. the
extended mode register).
M9M10M12 M11
Burst LengthCAS Latency BT0*0*
A9 A7 A6 A5 A4 A3
A8 A2 A1 A0
Mode Register (Mx)
Address Bus
976543
8210
Operating Mode
A10
A11
BA0
BA1
10
11
12
13
* M13 and M12 (BA0 and BA1)
must be “0, 0” to select the
base mode register (vs. the
extended mode register).
256MB and 512MB Modules
128MB Module
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 13 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Mode Register Definition
Notes: 1. For a burst length of two, A1-Ai select the two-data-element block; A0 selects the first
access within the block.
2. For a burst length of four, A2-Ai select the four-data-element block; A0-A1 select the first
access within the block.
3. For a burst length of eight, A3-Ai select the eight-data-element block; A0-A2 select the
first access within the block.
4. Whenever a boundary of the block is reached within a given sequence above, the follow-
ing access wraps within the block.
5. i = 9 (128MB, 256MB)
i = 9, 11 (512MB)
Table 5: Burst Definition Table
Burst Length
Starting Column
Address
Order of Accesses Within a Burst
Type = Sequential Type = Interleaved
2
A0
00-1 0-1
11-0 1-0
4
A1 A0
0 0 0-1-2-3 0-1-2-3
0 1 1-2-3-0 1-0-3-2
1 0 2-3-0-1 2-3-0-1
1 1 3-0-1-2 3-2-1-0
8
A2 A1 A0
0 0 0 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7
0 0 1 1-2-3-4-5-6-7-0 1-0-3-2-5-4-7-6
0 1 0 2-3-4-5-6-7-0-1 2-3-0-1-6-7-4-5
0 1 1 3-4-5-6-7-0-1-2 3-2-1-0-7-6-5-4
1 0 0 4-5-6-7-0-1-2-3 4-5-6-7-0-1-2-3
1 0 1 5-6-7-0-1-2-3-4 5-4-7-6-1-0-3-2
1 1 0 6-7-0-1-2-3-4-5 6-7-4-5-2-3-0-1
1 1 1 7-0-1-2-3-4-5-6 7-6-5-4-3-2-1-0
Table 6: CAS Latency (CL) Table
Allowable Operating Clock Frequency (MHz)
Speed CL = 2 CL = 2.5
-335 75 f 133 75 f 167
-262 75 f 133 75 f 133
-26A 75 f 133 75 f 133
-265 75 f 100 75 f 133
-202 75 f 100 N/A
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 14 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Mode Register Definition
Figure 5: CAS Latency Diagram
Read Latency
The READ latency is the delay, in clock cycles, between the registration of a READ com-
mand and the availability of the first bit of output data. The latency can be set to 2 or 2.5
clocks, as shown in Figure 5, CAS Latency Diagram.
If a READ command is registered at clock edge n, and the latency is m clocks, the data
will be available nominally coincident with clock edge n + m. Figure 6, CAS Latency (CL)
Table, indicates the operating frequencies at which each CAS latency setting can be
used.
Reserved states should not be used as unknown operation or incompatibility with future
versions may result.
Operating Mode
The normal operating mode is selected by issuing a MODE REGISTER SET command
with bits A7–A11 (128MB), or A7–A12 (256MB, 512MB) each set to zero, and bits A0-A6
set to the desired values. A DLL reset is initiated by issuing a MODE REGISTER SET com-
mand with bits A7 and A9–A11 (128MB), or A7 and A9–A12 (256MB, 512MB) each set to
zero, bit A8 set to one, and bits A0–A6 set to the desired values. Although not required by
the Micron device, JEDEC specifications recommend when a LOAD MODE REGISTER
command is issued to reset the DLL, it should always be followed by a LOAD MODE
REGISTER command to select normal operating mode.
CK
CK#
COMMAND
DQ
DQS
CL = 2
READ NOP NOP NOP
READ NOP NOP NOP
Burst Length = 4 in the cases shown
Shown with nominal tAC, tDQSCK, and tDQSQ
CK
CK#
COMMAND
DQ
DQS
CL = 2.5
T0 T1 T2 T2n T3 T3n
T0 T1 T2 T2n T3 T3n
DON’T CARETRANSITIONING DATA
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 15 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Extended Mode Register
All other combinations of values for A7–A11 (128MB), or A7–A12 (256MB, 512MB) are
reserved for future use and/or test modes. Test modes and reserved states should not be
used because unknown operation or incompatibility with future versions may result.
Extended Mode Register
The extended mode register controls functions beyond those controlled by the mode
register; these additional functions are DLL enable/disable and output drive strength.
These functions are controlled via the bits shown in Figure 6, Extended Mode Register
Definition Diagram. The extended mode register is programmed via the LOAD MODE
REGISTER command to the mode register (with BA0 = 1 and BA1 = 0) and will retain the
stored information until it is programmed again or the device loses power. The enabling
of the DLL should always be followed by a LOAD MODE REGISTER command to the
mode register (BA0/BA1 both low) to reset the DLL.
The extended mode register must be loaded when all device banks are idle and no bursts
are in progress, and the controller must wait the specified time before initiating any sub-
sequent operation. Violating either of these requirements could result in unspecified
operation.
DLL Enable/Disable
The DLL must be enabled for normal operation. DLL enable is required during power-
up initialization and upon returning to normal operation after having disabled the DLL
for the purpose of debug or evaluation. (When the device exits self refresh mode, the
DLL is enabled automatically.) Any time the DLL is enabled, 200 clock cycles with CKE
HIGH must occur before a READ command can be issued.
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 16 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Extended Mode Register
Figure 6: Extended Mode Register Definition Diagram
Notes: 1. BA1 and BA0 (E13 and E12 for 128MB, E14 and E13 for 256MB and 512MB) must be “0, 1”
to select the Extended Mode Register (vs. the base Mode Register.
2. QFC# is not supported.
Operating Mode
Reserved
Reserved
0
0
Valid
0
1
DLL
Enable
Disable
DLL11
01
A9 A7 A6 A5 A4 A3
A8 A2 A1 A0
Extended Mode
Register (Ex)
Address Bus
976543
8210
E0
0
Drive Strength
Normal
E1
E0
E1,
Operating Mode
A10
A11A12
BA1 BA0
10
11
12
1314
E3E4
0
0
0
0
0
E6 E5
E7E8E9
0
0
E10E11
0
E12
DS
DLL11
01
A9 A7 A6 A5 A4 A3
A8 A2 A1 A0
Extended Mode
Register (Ex)
Address Bus
976543
8210
Operating Mode
A10
A11
BA1 BA0
10
11
12
13
DS
128MB Module
256MB and 512MB Modules
0
E2
2
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 17 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Commands
Commands
Table 7, Commands Truth Table, and Table 8, DM Operation Truth Table, provide a gen-
eral reference of available commands. For a more detailed description of commands and
operations, refer to the 128Mb, 256Mb, or 512Mb DDR SDRAM component data sheet.
Notes: 1. DESELECT and NOP are functionally interchangeable.
2. BA0–BA1 provide device bank address and A0–A11 (128MB) or A0–A12 (256MB, 512MB)
provide row address.
3. BA0–BA1 provide device bank address; A0–A9 (128MB, 256MB) or A0–A9, A11 (512MB)
provide column address; A10 HIGH enables the auto precharge feature (nonpersistent),
and A10 LOW disables the auto precharge feature.
4. Applies only to read bursts with auto precharge disabled; this command is undefined (and
should not be used) for READ bursts with auto precharge enabled and for WRITE bursts.
5. A10 LOW: BA0–BA1 determine which device bank is precharged. A10 HIGH: all device
banks are precharged and BA0–BA1 are “Don’t Care.”
6. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW.
7. Internal refresh counter controls row addressing; all inputs and I/Os are “Don’t Care”
except for CKE.
8. BA0–BA1 select either the mode register or the extended mode register (BA0 = 0, BA1 = 0
select the mode register; BA0 = 1, BA1 = 0 select extended mode register; other combina-
tions of BA0–BA1 are reserved). A0–A11 (128MB) or A0–A12 (256MB, 512MB) provide the
op-code to be written to the selected mode register.
Table 7: Commands Truth Table
CKE is HIGH for all commands shown except SELF REFRESH; all states/sequences not shown are illegal or reserved
Name (Function) CS# RAS# CAS# WE# Address Notes
DESELECT (NOP) HXXX X 1
NO OPERATION (NOP) LHHH X 1
ACTIVE (Select bank and activate row) L L H H Bank/Row 2
READ (Select bank and column, and start READ burst) L H L H Bank/Col 3
WRITE (Select bank and column, and start WRITE burst) L H L L Bank/Col 3
BURST TERMINATE LHHL X 4
PRECHARGE (Deactivate row in bank or banks) L L H L Code 5
AUTO REFRESH or SELF REFRESH (Enter self refresh mode) LLLH X 6, 7
LOAD MODE REGISTER L L L L Op-Code 8
Table 8: DM Operation Truth Table
Used to mask write data; provided coincident with the corresponding data
Name (Function) DM DQs
WRITE Enable LValid
WRITE Inhibit HX
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 18 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Absolute Maximum Ratings
Absolute Maximum Ratings
Stresses greater than those listed may cause permanent damage to the device. This is a
stress rating only, and functional operation of the device at these or any other conditions
above those indicated in the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect reli-
ability.
Voltage on VDD Supply Relative to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1V to +3.6V
Voltage on VDDQ Supply Relative to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1V to +3.6V
Voltage on VREF and Inputs Relative to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1V to +3.6V
Voltage on I/O Pins Relative to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to VDDQ +0.5V
Operating Temperature
TA (commercial). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0°C to +70°C
Storage Temperature (plastic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55°C to +150°C
Short Circuit Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA
Electrical Specifications
Table 9: DC Electrical Characteristics and Operating Conditions
Notes: 1–5, 14; notes appear on pages 25–29; 0°C TA +70°C
Parameter/Condition Symbol Min Max Units Notes
Supply Voltage VDD 2.3 2.7 V 32, 36
I/O Supply Voltage VDDQ 2.3 2.7 V 32, 36, 39
I/O Reference Voltage VREF 0.49 ×
VDDQ
0.51 ×
VDDQ
V6, 39
I/O Termination Voltage (system) VTT VREF - 0.04 VREF + 0.04 V 7, 39
Input High (Logic 1) Voltage VIH(DC)VREF + 0.15 VDD + 0.3 V 25
Input Low (Logic 0) Voltage VIL(DC)-0.3VREF - 0.15 V 25
INPUT LEAKAGE CURRENT
Any input 0V VIN VDD, VREF pin 0V VIN
1.35V (All other pins not under test = 0V)
Command/
Address
, RAS#,
CAS#, WE#, CKE,
S#
II
-5 5
µA 47
CK, CK# -10 10
DM -2 2
OUTPUT LEAKAGE CURRENT: Single-Rank
DIMM
(DQ are disabled; 0V VOUT VDDQ)
DQ, DQS IOZ -5 5 µA 47
OUTPUT LEVELS
High Current (VOUT = VDDQ-0.373V, minimum VREF, minimum VTT)
Low Current (VOUT = 0.373V, maximum VREF, maximum VTT)
IOH -16.8 mA
33, 34
IOL 16.8 mA
Table 10: AC Input Operating Conditions
Notes: 1–5, 14, 48; notes appear pages 25–29; 0°C TA +70°C; VDD = VDDQ = +2.5V ±0.2V
Parameter/Condition Symbol Min Max Units Notes
Input High (Logic 1) Voltage VIH(AC)VREF + 0.310 V 12, 25, 35
Input Low (Logic 0) Voltage VIL(AC)–VREF - 0.310 V 12, 25, 35
I/O Reference Voltage VREF(AC)0.49 × VDDQ0.51 × VDDQV 6
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 19 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Electrical Specifications
Table 11: IDD Specifications and Conditions – 128MB
DDR SDRAM components only
Notes: 1–5, 8, 10, 12, 48; notes appear on pages 25–29; 0°C TA +70°C; VDD = VDDQ = +2.5V ±0.2V
Max
Parameter/Condition Symbol -335 -262
-26A/
-265/
-202 Units Notes
OPERATING CURRENT: One device bank; Active-Precharge;
tRC = tRC (MIN); tCK = tCK (MIN); DQ, DM and DQS inputs
changing once per clock cyle; Address and control inputs
changing once every two clock cycles
IDD0 1,125 990 945 mA 20, 42
OPERATING CURRENT: One device bank; Active -Read
Precharge; Burst = 2; tRC = tRC (MIN); tCK = tCK (MIN); IOUT =
0mA; Address and control inputs changing once per clock
cycle
IDD1 1,215 1,080 1,080 mA 20, 42
PRECHARGE POWER-DOWN STANDBY CURRENT: All device
banks idle; Power-down mode;
t
CK =
t
CK (MIN); CKE = (LOW)
IDD2P 27 27 27 mA 21, 28,
44
IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle;
tCK = tCK MIN; CKE = HIGH; Address and other control
inputs changing once per clock cycle. VIN = VREF for DQ, DQS,
and DM
IDD2F 405 405 360 mA 45
ACTIVE POWER-DOWN STANDBY CURRENT: One device
bank
active; Power-down mode;
t
CK =
t
CK (MIN);
CKE = LOW
IDD3P 225 225 180 mA 21, 28,
44
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One
device bank; Active-Precharge; tRC = tRAS (MAX); tCK = tCK
(MIN); DQ, DM and DQS inputs changing twice per clock
cycle; Address and other control inputs changing once per
clock cycle
IDD3N 450 450 405 mA 20, 41
OPERATING CURRENT: Burst = 2; Reads; Continuous burst;
One bank active; Address and control inputs changing once
per clock cycle; tCK = tCK (MIN); IOUT = 0mA
IDD4R 1,260 1,170 1,125 mA 20, 42
OPERATING CURRENT: Burst = 2; Writes; Continuous burst;
One device bank active; Address and control inputs
changing once per clock cycle; tCK = tCK (MIN); DQ, DM, and
DQS inputs changing twice per clock cycle
IDD4W 1,260 1,125 1,080 mA 20
AUTO REFRESH CURRENT tREFC = tRFC
(MIN)
IDD5 2,385 1,980 1,980 mA 24, 44
tREFC = 15.625µs IDD5A 45 45 45 mA 24, 44
SELF REFRESH CURRENT: CKE 0.2V IDD6 27 27 18 mA 9
OPERATING CURRENT: Four device bank interleaving READs
(BL = 4) with auto precharge, tRC = tRC (MIN); tCK = tCK
(MIN); Address and control inputs change only during Active
READ, or WRITE commands
IDD7 3,195 2,970 2,925 mA 20, 43
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 20 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Electrical Specifications
Table 12: IDD Specifications and Conditions – 256MB
DDR SDRAM components only
Notes: 1–5, 8, 10, 12, 48; notes appear on pages 25–29; 0°C TA +70°C; VDD = VDDQ = +2.5V ±0.2V
Max
Parameter/Condition Symbol -262
-26A/
-265/
-202 Units Notes
OPERATING CURRENT: One device bank; Active-Precharge; tRC = tRC
(MIN); tCK = tCK (MIN); DQ, DM and DQS inputs changing once per
clock cyle; Address and control inputs changing once every two clock
cycles
IDD0 1,125 1,080 mA 20, 42
OPERATING CURRENT: One device bank; Active -Read Precharge; Burst =
4; tRC = tRC (MIN); tCK = tCK (MIN); IOUT = 0mA; Address and control
inputs changing once per clock cycle
IDD1 1,440 1,305 mA 20, 42
PRECHARGE POWER-DOWN STANDBY CURRENT: All device
banks idle;
Power-down mode;
t
CK =
t
CK (MIN); CKE = (LOW)
IDD2P 36 36 mA 21, 28,
44
IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle; tCK = tCK
MIN; CKE = HIGH; Address and other control inputs changing once per
clock cycle. VIN = VREF for DQ, DQS, and DM
IDD2F 405 405 mA 45
ACTIVE POWER-DOWN STANDBY CURRENT: One device
bank active;
Power-down mode;
t
CK =
t
CK (MIN);
CKE = LOW
IDD3P 225 225 mA 21, 28,
44
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One device bank;
Active-Precharge; tRC = tRAS (MAX); tCK = tCK (MIN); DQ, DM and DQS
inputs changing twice per clock cycle; Address and other control inputs
changing once per clock cycle
IDD3N 450 450 mA 20, 41
OPERATING CURRENT: Burst = 2; Reads; Continuous burst; One bank
active; Address and control inputs changing once per clock cycle; tCK =
tCK (MIN); IOUT = 0mA
IDD4R 1,350 1,350 mA 20, 42
OPERATING CURRENT: Burst = 2; Writes; Continuous burst; One device
bank active; Address and control inputs changing once per clock cycle;
tCK = tCK (MIN); DQ, DM, and DQS inputs changing twice per clock cycle
IDD4W 1,350 1,350 mA 20
AUTO REFRESH CURRENT tREFC = tRFC (MIN) IDD5 2,115 2,115 mA 24, 44
tREFC = 7.8125µs IDD5A 54 54 mA 24, 44
SELF REFRESH CURRENT: CKE 0.2V IDD6 36 36 mA 9
OPERATING CURRENT: Four device bank interleaving READs (BL = 4)
with auto precharge, tRC = tRC (MIN); tCK = tCK (MIN); Address and
control inputs change only during Active READ, or WRITE commands
IDD7 3,150 3,150 mA 20, 43
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 21 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Electrical Specifications
Table 13: IDD Specifications and Conditions – 512MB
DDR SDRAM components only
Notes: 1–5, 8, 10, 12, 48; notes appear on pages 25–29; 0°C TA +70°C; VDD = VDDQ = +2.5V ±0.2V
Max
Parameter/Condition Symbol -262
-26A/
-265/
-202 Units Notes
OPERATING CURRENT: One device bank; Active-Precharge;
tRC = tRC (MIN); tCK = tCK (MIN); DQ, DM and DQS inputs
changing once per clock cyle; Address and control inputs changing
once every two clock cycles
IDD0 1,170 1,035 mA 20, 42
OPERATING CURRENT: One device bank; Active -Read Precharge;
Burst = 4; tRC = tRC (MIN); tCK = tCK (MIN); IOUT = 0mA; Address
and control inputs changing once per clock cycle
IDD1 1,440 1,305 mA 20, 42
PRECHARGE POWER-DOWN STANDBY CURRENT: All device banks
idle; Power-down mode; tCK = tCK (MIN); CKE = (LOW)
IDD2P 45 45 mA 21, 28,
44
IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle;
tCK = tCK MIN; CKE = HIGH; Address and other control inputs
changing once per clock cycle. VIN = VREF for DQ, DQS, and DM
IDD2F 405 360 mA 45
ACTIVE POWER-DOWN STANDBY CURRENT: One device
bank
active; Power-down mode;
t
CK =
t
CK (MIN); CKE = LOW
IDD3P 315 270 mA 21, 28,
44
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One device
bank; Active-Precharge; tRC = tRAS (MAX); tCK = tCK (MIN); DQ,
DM andDQS inputs changing twice per clock cycle; Address and
other control inputs changing once per clock cycle
IDD3N 450 405 mA 20, 41
OPERATING CURRENT: Burst = 2; Reads; Continuous burst; One
bank active; Address and control inputs changing once per clock
cycle; tCK = tCK (MIN); IOUT = 0mA
IDD4R 1,485 1,305 mA 20, 42
OPERATING CURRENT: Burst = 2; Writes; Continuous burst; One
device bank active; Address and control inputs changing once per
clock cycle; tCK = tCK (MIN); DQ, DM, and DQS inputs changing
twice per clock cycle
IDD4W 1,575 1,215 mA 20
AUTO REFRESH CURRENT tREFC = tRFC (MIN) IDD5 2,610 2,520 mA 24, 44
tREFC = 7.8125µs IDD5A 90 90 mA 24, 44
SELF REFRESH CURRENT: CKE 0.2V IDD6 45 45 mA 9
OPERATING CURRENT: Four device bank interleaving READs (BL =
4) with auto precharge, tRC = tRC (MIN); tCK = tCK (MIN); Address
and control inputs change only during Active READ, or WRITE
commands
IDD7 3,600 3,150 mA 20, 43
Table 14: Capacitance
Note: 11; notes appear on pages 25–29
Parameter Symbol Min Max Units
Input/Output Capacitance: DQ, DQS, DM CIO 45 pF
Input Capacitance: Command and Address, S#, CK, CK#, CKE CI1 2.5 3.5 pF
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 22 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Electrical Specifications
Table 15: DDR Device Electrical Characteristics and Recommended AC Operating Conditions
Notes: 1–5, 8, 12–15, 29; notes appear on pages 25–29; 0°C TA +70°C; VDD = VDDQ = +2.5V ±0.2V
AC Characteristics -335 -262
UnitsParameter Sym Min Max Min Max
Notes
Access window of DQ from CK/CK# tAC -0.7 +0.7 -0.70 +0.70 ns
CK high-level width tCH 0.45 0.55 0.45 0.55 tCK 26
CK low-level width tCL 0.45 0.55 0.45 0.55 tCK 26
Clock cycle time CL = 2.5 tCK (2.5) 6 13 6 13 ns 40, 46
CL = 2 tCK (2) 7.5 13 7.5 13 ns 40, 46
DQ and DM input hold time relative to DQS tDH 0.45 0.45 ns 23, 27
DQ and DM input setup time relative to DQS tDS 0.45 0.45 ns 23, 27
DQ and DM input pulse width (for each input) tDIPW 1.75 1.75 ns 27
Access window of DQS from CK/CK#
t
DQSCK
-0.60 +0.60 -0.65 +0.60 ns
DQS input high pulse width tDQSH 0.35 0.35 tCK
DQS input low pulse width tDQSL 0.35 0.35 tCK
DQS-DQ skew, DQS to last DQ valid, per group, per
access
tDQSQ 0.45 0.45 ns 22, 23
Write command to first DQS latching transition tDQSS 0.75 1.25 0.75 1.25 tCK
DQS falling edge to CK rising - setup time tDSS 0.2 0.2 tCK
DQS falling edge from CK rising - hold time tDSH 0.2 0.2 tCK
Half clock period tHP tCH,tCL tCH,tCL ns 30
Data-out high-impedance window from CK/CK# tHZ +0.70 +0.70 ns 16, 37
Data-out low-impedance window from CK/CK# tLZ -0.70 -0.70 ns 16, 37
Address and control input hold time (fast slew rate) tIHF0.75 0.75 ns 12
Address and control input setup time (fast slew rate) tISF0.75 0.75 ns 12
Address and control input hold time (slow slew rate) tIHS0.80 0.8 ns 12
Address and control input setup time (slow slew rate) tISS0.80 0.8 ns 12
Address and control input pulse width (for each input) tIPW 2.2 2.2 ns
LOAD MODE REGISTER command cycle time tMRD 12 15 ns
DQ-DQS hold, DQS to first DQ to go non-valid, per
access
tQH tHP -tQHS tHP-
tQHS
ns 22, 23
Data hold skew factor tQHS 0.55 0.75 ns
ACTIVE to PRECHARGE command tRAS 42 70,000 40
120,000
ns 31
ACTIVE to READ with auto precharge command tRAP 15 15 ns
ACTIVE to ACTIVE/AUTO REFRESH command period tRC 60 60 ns
AUTO REFRESH command period 128MB, 256MB tRFC 72 75 ns 44
512MB 120 120 ns
ACTIVE to READ or WRITE delay tRCD 15 15 ns
PRECHARGE command period tRP 15 15 ns 38
DQS read preamble tRPRE 0.9 1.1 0.9 1.1 tCK 38
DQS read postamble tRPST 0.4 0.6 0.4 0.6 tCK
ACTIVE bank a to ACTIVE bank b command tRRD 12 15 ns
DQS write preamble tWPRE 0.25 0.25 tCK 19, 19
DQS write preamble setup time
t
WPRES
00ns18
DQS write postamble tWPST 0.4 0.6 0.4 0.6 tCK
Write recovery time tWR 15 15 ns
Internal WRITE to READ command delay tWTR 1 1 tCK 22
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 23 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Electrical Specifications
Data valid output window (DVW) na tQH -tDQSQ tQH -tDQSQ ns 21
REFRESH to REFRESH command interval tREFC 70.3 70.3 µs
Average periodic refresh interval tREFI 7.8 7.8 µs 21
Terminating voltage delay to VDD tVTD 0 0 ns
Exit SELF REFRESH to non-READ
command
128MB, 256MB tXSNR 75 75 ns
512MB 127.5 127.5 ns
Exit SELF REFRESH to READ command tXSRD 200 200 tCK
Table 16: DDR Device Electrical Characteristics and Recommended AC Operating Conditions
Notes: 1–5, 8, 12–15, 29; notes appear on pages 25–29; 0°C TA +70°C; VDD = VDDQ = +2.5V ±0.2V
AC Characteristics -26A/-265 -202
Parameter
Sym
Min Max
Min
Max
Units Notes
Access window of DQs from CK/CK# tAC -0.75 +0.75 -0.8 +0.8 ns
CK high-level width tCH 0.45 0.55 0.45 0.55 tCK 26
CK low-level width tCL 0.45 0.55 0.45 0.55 tCK 26
Clock cycle time CL= 2.5 tCK (2.5) 7.5 13 8 13 ns 40, 46
CL= 2 tCK (2) 7.5/10 13 10 13 ns 40, 46
DQ and DM input hold time relative to DQS tDH 0.5 0.6 ns 23, 27
DQ and DM input setup time relative to DQS tDS 0.5 0.6 ns 23, 27
DQ and DM input pulse width (for each input) tDIPW 1.75 2 ns 27
Access window of DQS from CK/CK# tDQSCK -0.75 +0.75 -0.8 +0.8 ns
DQS input high pulse width tDQSH 0.35 0.35 tCK
DQS input low pulse width tDQSL 0.35 0.35 tCK
DQS-DQ skew, DQS to last DQ valid, per group, per
access
tDQSQ 0.5 0.6 ns 22, 23
Write command to first DQS latching transition tDQSS 0.75 1.25 0.75 1.25 tCK
DQS falling edge to CK rising - setup time tDSS 0.20 0.20 tCK
DQS falling edge from CK rising - hold time tDSH 0.20 0.20 tCK
Half clock period tHP tCH,tCL tCH,tCL ns 30
Data-out high-impedance window from CK/CK# tHZ +0.75 +0.8 ns 16, 37
Data-out low-impedance window from CK/CK# tLZ -0.75 -0.8 ns 16, 37
Address and control input hold time (fast slew rate) tIHF0.90 1.1 ns 12
Address and control input setup time (fast slew rate) tISF0.90 1.1 ns 12
Address and control input hold time (slow slew rate) tIHS11.1ns12
Address and control input setup time (slow slew rate) tISS11.1ns12
Address and control input pulse width (for each input) tIPW 2.2 2.2 ns
LOAD MODE REGISTER command cycle time tMRD 15 16 ns
DQ-DQS hold, DQS to first DQ to go non-valid, per
access
tQH tHP -
tQHS
tHP -
tQHS
ns 22, 23
Data hold skew factor tQHS 0.75 1 ns
ACTIVE to PRECHARGE command tRAS 40
120,000
40
120,000
ns 31
ACTIVE to READ with auto precharge command tRAP 20 20 ns
Table 15: DDR Device Electrical Characteristics and Recommended AC Operating Conditions
(Continued)
AC Characteristics -335 -262
UnitsParameter Sym Min Max Min Max
Notes
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 24 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Electrical Specifications
ACTIVE to ACTIVE/AUTO REFRESH command period tRC 65 70 ns
AUTO REFRESH command period tRFC 75 80 ns 44
ACTIVE to READ or WRITE delay tRCD 20 20 ns
PRECHARGE command period tRP 20 20 ns
DQS read preamble tRPRE 0.9 1.1 0.9 1.1 tCK 38
DQS read postamble tRPST 0.4 0.6 0.4 0.6 tCK 38
ACTIVE bank a to ACTIVE bank b command tRRD 15 15 ns
DQS write preamble tWPRE 0.25 0.25 tCK
DQS write preamble setup time tWPRES 0 0 ns 19, 19
DQS write postamble tWPST 0.4 0.6 0.4 0.6 tCK 18
Write recovery time tWR 15 15 ns
Internal WRITE to READ command delay tWTR 1 1 tCK
Data valid output window na tQH -tDQSQ
t
QH -
t
DQSQ
ns 22
REFRESH to REFRESH command
interval
128MB tREFC 140.6 140.6 µs 21
256MB, 512MB 70.3 70.3 µs
Average periodic refresh interval 128MB tREFI 15.6 15.6 µs 21
256MB, 512MB 7.8 7.8 µs
Terminating voltage delay to VDD tVTD 0 0 ns
Exit SELF REFRESH to non-READ command tXSNR 75 80 ns
Exit SELF REFRESH to READ command tXSRD 200 200 tCK
Table 16: DDR Device Electrical Characteristics and Recommended AC Operating Conditions
(Continued)
AC Characteristics -26A/-265 -202
Parameter
Sym
Min Max
Min
Max
Units Notes
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 25 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Notes
Notes
1. All voltages referenced to VSS.
2. Tests for AC timing, IDD, and electrical AC and DC characteristics may be conducted
at nominal reference/supply voltage levels, but the related specifications and device
operation are guaranteed for the full voltage range specified.
3. Outputs measured with equivalent load:
4. AC timing and IDD tests may use a VIL-to-VIH swing of up to 1.5V in the test environ-
ment, but input timing is still referenced to VREF (or to the crossing point for CK/CK#),
and parameter specifications are guaranteed for the specified AC input levels under
normal use conditions. The minimum slew rate for the input signals used to test the
device is 1V/ns in the range between VIL(AC) and VIH(AC).
5. The AC and DC input level specifications are as defined in the SSTL_2 Standard (i.e.,
the receiver will effectively switch as a result of the signal crossing the AC input level,
and will remain in that state as long as the signal does not ring back above [below] the
DC input LOW [HIGH] level).
6. VREF is expected to equal VDDQ/2 of the transmitting device and to track variations in
the DC level of the same. Peak-to-peak noise (non-common mode) on VREF may not
exceed ±2 percent of the DC value. Thus, from VDDQ/2, VREF is allowed ±25mV for DC
error and an additional ±25mV for AC noise. This measurement is to be taken at the
nearest VREF by-pass capacitor.
7. VTT is not applied directly to the device. VTT is a system supply for signal termination
resistors, is expected to be set equal to VREF and must track variations in the DC level
of VREF.
8. IDD is dependent upon output loading and cycle rates. Specified values are obtained
with minimum cycle time at CL = 2 for -262, -26A, and -202, CL = 2.5 for -335 and -265
with the outputs open.
9. Enables on-chip refresh and address counters.
10. IDD specifications are tested after the device is properly initialized, and is averaged at
the defined cycle rate.
11. This parameter is sampled. VDD = +2.5V ±0.2V, VDDQ = +2.5V ±0.2V, VREF = VSS, f = 100
MHz, TA=25°C, V
OUT(DC) = VDDQ/2, VOUT (peak to peak) = 0.2V. DM input is grouped
with I/O pins, reflecting the fact that they are matched in loading.
12.
For slew rates < 1V/ns and
0.5 V/ns. If slew rate is < 0.5 V/ns, timing must be derated:
t
IS
has an additional 50ps per each 100 mV/ns reduction in slew rate from 500 mV/ns, while
t
IH is unaffected. If slew rate exceeds 4.5 V/ns, functionality is uncertain.
13. The CK/CK# input reference level (for timing referenced to CK/CK#) is the point at
which CK and CK# cross; the input reference level for signals other than CK/CK# is
VREF.
14. Inputs are not recognized as valid until VREF stabilizes. Exception: during the period
before VREF stabilizes, CKE 0.3 x VDDQ is recognized as LOW.
15. The output timing reference level, as measured at the timing reference point indi-
cated in Note 3, is VTT.
Output
(VOUT)
Reference
Point
50Ω
VTT
30pF
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 26 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Notes
16. tHZ and tLZ transitions occur in the same access time windows as valid data transi-
tions. These parameters are not referenced to a specific voltage level, but specify
when the device output is no longer driving (HZ) or begins driving (LZ).
17. The intent of the Dont Care state after completion of the postamble is the DQS-driven
signal should either be high, low, or high-Z and that any signal transition within the
input switching region must follow valid input requirements. That is, if DQS transi-
tions high (above VIHDC (MIN) then it must not transition low (below VIHDC) prior to
tDQSH (MIN)).
18. This is not a device limit. The device will operate with a negative value, but system
performance could be degraded due to bus turnaround.
19. It is recommended that DQS be valid (HIGH or LOW) on or before the WRITE com-
mand. The case shown (DQS going from High-Z to logic LOW) applies when no
WRITEs were previously in progress on the bus. If a previous WRITE was in progress,
DQS could be HIGH during this time, depending on tDQSS.
20. MIN (tRC or tRFC) for IDD measurements is the smallest multiple of tCK that meets the
minimum absolute value for the respective parameter. tRAS (MAX) for IDD measure-
ments is the largest multiple of tCK that meets the maximum absolute value for tRAS.
21. The refresh period 64ms. This equates to an average refresh rate of 15.625µs (128MB)
or 7.8125µs (256MB, 512MB). However, an AUTO REFRESH command must be
asserted at least once every 140.6µs (128MB) or 70.3µs (256MB, 512MB); burst
refreshing or posting by the DDR SDRAM controller greater than eight refresh cycles is
not allowed.
22. The valid data window is derived by achieving other specifications: tHP (tCK/2),
tDQSQ, and tQH (tQH = tHP - tQHS). The data valid window derates directly porpor-
tionally with the clock duty cycle and a practical data valid window can be derived.
The clock is allowed a maximum duty cycle variation of 45/55, beyond which func-
tionality is uncertain. Figure 7, Derating Data Valid Window (tQH - tDQSQ), shows
derating curves duty cycles ranging between 50/50 and 45/55.
23. Each byte lane has a corresponding DQS.
24. This limit is actually a nominal value and does not result in a fail value. CKE is HIGH
during REFRESH command period (tRFC [MIN]) else CKE is LOW (i.e., during
standby).
25. To maintain a valid level, the transitioning edge of the input must:
a. Sustain a constant slew rate from the current AC level through to the target AC
level, VIL (AC) or VIH (AC).
b. Reach at least the target AC level.
c. After the AC target level is reached, continue to maintain at least the target DC
level, VIL (DC) or VIH (DC).
26. CK and CK# input slew rate must be 1V/ns (2V/ns differentially).
27.
DQ and DM input slew rates must not deviate from DQS by more than 10 percent. If
the DQ/DM/DQS slew rate is less than 0.5V/ns, timing must be derated: 50ps must be
added to
t
DS and
t
DH for each 100mV/ns reduction in slew rate. If slew rate exceeds
4V/ns, functionality is uncertain.
28. VDD must not vary more than 4 percent if CKE is not active while any bank is active.
29. The clock is allowed up to ±150ps of jitter. Each timing parameter is allowed to vary by
the same amount.
30. tHP min is the lesser of tCL minimum and tCH minimum actually applied to the
device CK and CK# inputs, collectively during bank active.
31. READs and WRITEs with auto precharge are not allowed to be issued until tRAS(MIN)
can be satisfied prior to the internal precharge command being issued.
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 27 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Notes
Figure 7: Derating Data Valid Window (tQH - tDQSQ)
32. Any positive glitch in the nominal voltage must be less than 1/3 of the clock and not
more than +400mV or 2.9V, whichever is less. Any negative glitch must be less than 1/
3 of the clock cycle and not exceed either -300mV or 2.2V, whichever is more positive.
However, the DC average cannot be below 2.3V minimum.
33. Normal Output Drive Curves:
a. The full variation in driver pull-down current from minimum to maximum pro-
cess, temperature and voltage will lie within the outer bounding lines of the V-I
curve of Figure 8, Pull-Down Characteristics.
b. The variation in driver pull-down current within nominal limits of voltage and
temperature is expected, but not guaranteed, to lie within the inner bounding
lines of the V-I curve of Figure 8, Pull-Down Characteristics.
c. The full variation in driver pull-up current from minimum to maximum process,
temperature and voltage will lie within the outer bounding lines of the V-I curve
of Figure 9, Pull-Up Characteristics.
d. The variation in driver pull-up current within nominal limits of voltage and tem-
perature is expected, but not guaranteed, to lie within the inner bounding lines of
the V-I curve of Figure 9, Pull-Up Characteristics.
e. The full variation in the ratio of the maximum to minimum pull-up and pull-
down current should be between 0.71 and 1.4, for device drain-to-source voltages
from 0.1V to 1.0V, and at the same voltage and temperature.
f. The full variation in the ratio of the nominal pull-up to pull-down current should
be unity ±10 percent, for device drain-to-source voltages from 0.1V to 1.0V.
34. The voltage levels used are derived from a minimum VDD level and the referenced test
load. In practice, the voltage levels obtained from a properly terminated bus will pro-
vide significantly different voltage values.
3.750 3.700 3.650 3.600 3.550
3.500 3.450
3.400 3.350 3.300 3.250
3.400 3.350 3.300
3.250
3.200 3.150 3.100 3.050
3.000 2.950 2.900
2.500 2.463 2.425 2.388 2.350 2.313 2.275 2.238 2.200 2.163 2.125
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
50/50 49.5/50.5 49/51 48.5/52.5 48/52 47.5/53.5 47/53 46.5/54.5 46/54 45.5/55.5 45/55
Clock Duty Cycle
ns
-262/-26A/-265 @ tCK = 10ns
-202 @ tCK = 10ns
-262/-26A/-265 @ tCK = 7.5ns
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 28 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Notes
Figure 8: Pull-Down Characteristics
Figure 9: Pull-Up Characteristics
35. VIH overshoot: VIH (MAX) = VDDQ+1.5V for a pulse width 3ns and the pulse width
can not be greater than 1/3 of the cycle rate. VIL undershoot: VIL(MIN) = -1.5V for a
pulse width 3ns and the pulse width can not be greater than 1/3 of the cycle rate.
36. VDD and VDDQ must track each other.
37. tHZ(MAX) will prevail over tDQSCK (MAX) + tRPST (MAX) condition. tLZ (MIN) will
prevail over tDQSCK (MIN) + tRPRE ( MAX) condition.
38. tRPST end point and tRPRE begin point are not referenced to a specific voltage level
but specify when the device output is no longer driving (tRPST), or begins driving
(tRPRE).
39. During initialization, VDDQ, VTT, and VREF must be equal to or less than VDD + 0.3V.
Alternatively, VTT may be 1.35V maximum during power up, even if VDD/VDDQ are 0
volts, provided a minimum of 42Ω of series resistance is used between the VTT supply
and the input pin.
40. The current Micron part operates below the slowest JEDEC operating frequency of 83
MHz. As such, future die may not reflect this option.
41. For -335, -262, -265, and -26A speed grades, IDD3N is specified to be 35mA per DDR
SDRAM device at 100 MHz.
42. Random addressing changing and 50 percent of data changing at every transfer.
43. Random addressing changing and 100 percent of data changing at every transfer.
44. CKE must be active (high) during the entire time a refresh command is executed.
That is, from the time the AUTO REFRESH command is registered, CKE must be
active at each rising clock edge, until tREF later.
160
140
IOUT (mA)
VOUT (V)
Nominal low
Minimum
Nominal high
Maximum
120
100
80
60
40
20
0
0.0 0.5 1.0 1.5 2.0 2.5
VOUT (V)
0
-20
IOUT (mA)
Nominal low
Minimum
Nominal high
Maximum
-40
-60
-80
-100
-120
-140
-160
-180
-200
0.0 0.5 1.0 1.5 2.0 2.5
VDDQ - VOUT (V)
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 29 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Notes
45. IDD2N specifies the DQ, DQS, and DM to be driven to a valid high or low logic level.
IDD2Q is similar to IDD2F except IDD2Q specifies the address and control inputs to
remain stable. Although IDD2F, IDD2N, and IDD2Q are similar, IDD2F is “worst case.
46. Whenever the operating frequency is altered, not including jitter, the DLL is required
to be reset. This is followed by 200 clock cycles.
47. Leakage number reflects the worst case leakage possible through the module pin, not
what each memory device contributes.
48. When an input signal is HIGH or LOW, it is defined as a steady state logic high or logic
low.
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 30 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Initialization
Initialization
To ensure device operation the DRAM must be initialized as described below:
1. Simultaneously apply power to VDD and VDDQ.
2. Apply VREF and then VTT power.
3. Assert and hold CKE at a LVCMOS logic LOW.
4. Provide stable CLOCK signals.
5. Wait at least 200µs.
6. Bring CKE high and provide at least one NOP or DESELECT command. At this point
the CKE input changes from a LVCMOS input to a SSTL2 input only and will remain a
SSTL_2 input unless a power cycle occurs.
7. Perform a PRECHARGE ALL command.
8. Wait at least tRP time, during this time NOPs or DESELECT commands must be given.
9. Using the LMR command program the extended mode register (E0 = 0 to enable the
DLL and E1 = 0 for normal drive or E1 = 1 for reduced drive, E2 through En must be set
to 0; where n = most significant bit).
10. Wait at least tMRD time, only NOPs or DESELECT commands are allowed.
11. Using the LMR command program the Mode Register to set operating parameters
and to reset the DLL. Note at least 200 clock cycles are required between a DLL reset
and any READ command.
12. Wait at least tMRD time, only NOPs or DESELECT commands are allowed.
13. Issue a PRECHARGE ALL command.
14. Wait at least tRP time, only NOPs or DESELECT commands are allowed.
15. Issue an AUTO REFRESH command (Note this may be moved prior to step 13).
16. Wait at least tRFC time, only NOPs or DESELECT commands are allowed.
17. Issue an AUTO REFRESH command (Note this may be moved prior to step 13).
18. Wait at least tRFC time, only NOPs or DESELECT commands are allowed.
19. Although not required by the Micron device, JEDEC requires a LMR command to clear
the DLL bit (set M8 = 0). If a LMR command is issued the same operating parameters
should be utilized as in step 11.
20. Wait at least tMRD time, only NOPs or DESELECT commands are allowed.
21. At this point the DRAM is ready for any valid command. Note 200 clock cycles are
required between step 11 (DLL Reset) and any READ command.
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 31 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Initialization
Figure 10: Initialization Flow Diagram
V
DD
and V
DD
Q Ramp
Apply V
REF
and V
TT
CKE must be LVCMOS Low
Apply stable CLOCKs
Bring CKE High with a NOP command
Wait at least 200µs
PRECHARGE ALL
Assert NOP or DESELECT for tRP time
Configure Extended Mode Register
Configure Load Mode Register and reset DLL
Assert NOP or DESELECT for tMRD time
Assert NOP or DESELECT for tMRD time
PRECHARGE ALL
Issue AUTO REFRESH command
Assert NOP or DESELECT for tRFC time
Optional LMR command to clear DLL bit
Assert NOP or DESELECT for tMRD time
DRAM is ready for any valid command
Step
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Assert NOP or DESELECT commands for tRFC
Issue AUTO REFRESH command
Assert NOP or DESELECT for tRP time
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 32 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Register and PLL Specifications
Register and PLL Specifications
Notes: 1. The timing and switching specifications for the register listed above are critical for proper
operation of the DDR SDRAM Registered DIMMs. These are meant to be a subset of the
parameters for the specific device used on the module. Detailed information for this regis-
ter is available in JEDEC Standard JESD82.
2. Data inputs must be low a minimum time of tact (MAX), after RESET# is taken HIGH.
3. Data and clock inputs must be held at valid levels (not floating) a minimum time of tinact
(MAX), after RESET# is taken LOW.
4. For data signal input slew rate 1 V/ns.
5. For data signal input slew rate 0.5 V/ns and < 1 V/ns.
6. CK, CK# signals input slew rate 1 V/ns.
Table 17: Register Timing Requirements and Switching Characteristics
Note: 1
Register Symbol Paramerter Condition
0°C TA +70°C
VDD = 2.5V ± 0.2V
Units NotesMin Max
SSTL
(bit pattern
by JESD82-3
or JESD82-4)
fclock Clock Frequency - 200 MHz
tpd Clock to Output Time 30pF to GND and
50Ω to VTT
1.1 2.8 ns
tPHL Reset to Output Time - 5 ns
twPulse Duration CK, CK# HIGH or
LOW
2.5 - ns
tact Differential Inputs Active Time - 22 ns 2
tinact Differential Inputs Inactive
Time
-22ns 3
tsu Setup Time, Fast Slew Rate Data Before CK
HIGH, CK# LOW
0.75 - ns 4, 6
Setup Time, Slow Slew Rate 0.90 - ns 5, 6
thHold Time, Fast Slew Rate Data After CK HIGH,
CK# LOW
0.75 - ns 4, 6
Hold Time, Slow Slew Rate 0.90 - ns 5, 6
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 33 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Register and PLL Specifications
Notes: 1. The timing and switching specifications for the PLL listed above are critical for proper
operation of the DDR SDRAM Registered DIMMs. These are meant to be a subset of the
parameters for the specific device used on the module. Detailed information for this PLL is
available in JEDEC Standard JESD82.
2. The PLL must be able to handle spread spectrum induced skew.
3. Operating clock frequency indicates a range over which the PLL must be able to lock, but
in which it is not required to meet the other timing parameters. (Used for low speed sys-
tem debug.)
4. Stabilization time is the time required for the integrated PLL circuit to obtain phase lock of
its feedback signal to its reference signal after power up.
5. Static Phase Offset does not include Jitter.
6. Period Jitter and Half-Period Jitter specifications are separate specifications that must be
met independently of each other.
7. The Output Slew Rate is determined from the IBIS model:
Table 18: PLL Clock Driver Timing Requirements and Switching Characteristics
Note: 1
Parameter Symbol
0°C TA +70°C
VDD = 2.5V ± 0.2V
Units notesMin Nominal Max
Operating Clock Frequency fCK 60 - 170 MHz 2, 3
Input Duty Cycle tDC 40 - 60 %
Stabilization Time tSTAB - - 100 ms 4
Cycle to Cycle Jitter tJITCC -75 - 75 ps
Static Phase Offset t-50 0 50 ps 5
Output Clock Skew tSKO-- 100ps
Period Jitter tJITPER -75 - 75 ps 6
Half-Period Jitter tJITHPER -100 - 100 ps 6
Input Clock Slew Rate tLSI1.0 - 4 V/ns
Output Clock Slew Rate tLSO1.0 - 2 V/ns 7
V
DD
/2
GND
V
DD
CDCV857
R=60
Ω
ΩΩ
Ω
R=60
Ω
ΩΩ
Ω
V
CK
V
CK
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 34 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Serial Presence-Detect
Serial Presence-Detect
SPD Clock and Data Conventions
Data states on the SDA line can change only during SCL LOW. SDA state changes during
SCL HIGH are reserved for indicating start and stop conditions (as shown in Figure 11,
Data Validity, and Figure 12, Definition of Start and Stop).
SPD Start Condition
All commands are preceded by the start condition, which is a HIGH-to-LOW transition
of SDA when SCL is HIGH. The SPD device continuously monitors the SDA and SCL
lines for the start condition and will not respond to any command until this condition
has been met.
SPD Stop Condition
All communications are terminated by a stop condition, which is a LOW-to-HIGH tran-
sition of SDA when SCL is HIGH. The stop condition is also used to place the SPD device
into standby power mode.
SPD Acknowledge
Acknowledge is a software convention used to indicate successful data transfers. The
transmitting device, either master or slave, will release the bus after transmitting eight
bits. During the ninth clock cycle, the receiver will pull the SDA line LOW to acknowledge
that it received the eight bits of data (as shown in Figure 13, Acknowledge Response
From Receiver).
The SPD device will always respond with an acknowledge after recognition of a start
condition and its slave address. If both the device and a WRITE operation have been
selected, the SPD device will respond with an acknowledge after the receipt of each sub-
sequent eight-bit word. In the read mode the SPD device will transmit eight bits of data,
release the SDA line and monitor the line for an acknowledge. If an acknowledge is
detected and no stop condition is generated by the master, the slave will continue to
transmit data. If an acknowledge is not detected, the slave will terminate further data
transmissions and await the stop condition to return to standby power mode.
Figure 11: Data Validity
SCL
SDA
DATA STABLE DATA STABLEDATA
CHANGE
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 35 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Serial Presence-Detect
Figure 12: Definition of Start and Stop
Figure 13: Acknowledge Response From Receiver
SCL
SDA
START
BIT
STOP
BIT
SCL from Master
Data Output
from Transmitter
Data Output
from Receiver
98
Acknowledge
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 36 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Serial Presence-Detect
Figure 14: SPD EEPROM Timing Diagram
Table 19: EEPROM Device Select Code
Most significant bit (b7) is sent first
Select Code Device Type Identifier Chip Enable RW
b7 b6 b5 b4 b3 b2 b1 b0
Memory Area Select Code (two arrays) 1 0 1 0 SA2 SA1 SA0 RW
Protection Register Select Code 0 1 1 0 SA2 SA1 SA0 RW
Table 20: EEPROM Operating Modes
Mode RW Bit WC Bytes Initial Sequence
Current Address Read 1V
IH or VIL 1START, Device Select, RW = ‘1’
Random Address Read 0VIH or VIL 1START, Device Select, RW = ‘0’, Address
1V
IH or VIL 1reSTART, Device Select, RW = ‘1’
Sequential Read 1VIH or VIL 1 Similar to Current or Random Address Read
Byte Write 0V
IL 1START, Device Select, RW = ‘0’
Page Write 0VIL 16 START, Device Select, RW = ‘0’
SCL
SDA IN
SDA OUT
tLOW
tSU:STA tHD:STA
tFtHIGH tR
tBUF
tDH
tAA
tSU:STO
tSU:DAT
tHD:DAT
UNDEFINED
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 37 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Serial Presence-Detect
Notes: 1. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL = 1
and the falling or rising edge of SDA.
2. This parameter is sampled.
3. For a reSTART condition, or following a WRITE cycle.
4. The SPD EEPROM WRITE cycle time (tWRC) is the time from a valid stop condition of a
write sequence to the end of the EEPROM internal erase/program cycle. During the WRITE
cycle, the EEPROM bus interface circuit is disabled, SDA remains HIGH due to pull-up resis-
tor, and the EEPROM does not respond to its slave address.
Table 21: Serial Presence-Detect EEPROM DC Operating Conditions
All voltages referenced to VSS; VDDSPD = +2.3V to +3.6V
Parameter/Condition Symbol Min Max Units
SUPPLY VOLTAGE VDDSPD 2.3 3.6 V
INPUT HIGH VOLTAGE: Logic 1; All inputs VIH VDD × 0.7 VDD + 0.5 V
INPUT LOW VOLTAGE: Logic 0; All inputs VIL -1 VDD + 0.3 V
OUTPUT LOW VOLTAGE: IOUT = 3mA VOL –0.4V
INPUT LEAKAGE CURRENT: VIN = GND to VDD ILI –10µA
OUTPUT LEAKAGE CURRENT: VOUT = GND to VDD ILO –10µA
STANDBY CURRENT: SCL = SDA = VDD - 0.3V; All other inputs = VSS or VDD ISB –30µA
POWER SUPPLY CURRENT: SCL clock frequency = 100 KHz ICC –2mA
Table 22: Serial Presence-Detect EEPROM AC Operating Conditions
All voltages referenced to VSS; VDDSPD = +2.3V to +3.6V
Parameter/condition Symbol Min Max Units Notes
SCL LOW to SDA data-out valid tAA 0.2 0.9 µs 1
Time the bus must be free before a new transition can start tBUF 1.3 µs
Data-out hold time tDH 200 ns
SDA and SCL fall time tF 300 ns 2
Data-in hold time tHD:DAT 0 µs
Start condition hold time tHD:STA 0.6 µs
Clock HIGH period tHIGH 0.6 µs
Noise suppression time constant at SCL, SDA inputs tI50ns
Clock LOW period tLOW 1.3 µs
SDA and SCL rise time tR0.3µs2
SCL clock frequency fSCL 400 KHz
Data-in setup time tSU:DAT 100 ns
Start condition setup time tSU:STA 0.6 µs 3
Stop condition setup time tSU:STO 0.6 µs
WRITE cycle time tWRC 10 ms 4
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 38 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Serial Presence-Detect
Table 23: Serial Presence-Detect Matrix
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 40
Byte Description Entry (Version)
MT9VDDT1672 MT9VDDT3272 MT9VDDT6472
0Number of SPD Bytes Used by Micron 128 808080
1Total Number of Bytes In SPD Device 256 080808
2Fundamental Memory Type SDRAM DDR070707
3Number of Row Addresses on Assembly 12 or 13 0C 0D 0D
4Number of Column Addresses on
Assembly
10 or 11 0A 0A 0B
5Number of Physical Ranks on DIMM 1 010101
6Module Data Width 72 48 48 48
7Module Data Width (Continued) 0 000000
8
Module Voltage Interface Levels
SSTL 2.5V 04 04 04
9SDRAM Cycle Time, tCK (CAS Latency =
2.5) (See note 1)
6ns(-335)
7ns (-262/-26A)
7.5ns (-265)
8ns (-202)
60
70
75
80
60
70
75
80
60
70
75
80
10 SDRAM Access from Clock, tAC (CAS
Latency = 2.5)
0.7(-335)
0.75ns (-262/-26A/-265)
0.8ns (-202)
70
75
80
70
75
80
70
75
80
11 Module Configuration Type ECC 020202
12 Refresh Rate/Type 15.6 or 7.81µs/SELF 80 82 82
13 SDRAM Device Width (Primary DDR
SDRAM)
8 080808
14 Error-checking DDR SDRAM Data Width 8 080808
15 Minimum Clock Delay, Back-to-Back
Random Column Access
1 clock 010101
16 Burst Lengths Supported 2, 4, 8 0E 0E 0E
17 Number of Banks on DDR SDRAM Device 4 040404
18 CAS Latencies Supported 2, 2.5 0C0C0C
19 CS Latency 0 010101
20 WE Latency 1 020202
21 SDRAM Module Attributes
Registered, PLL/Diff. Clock
26 26 26
22 SDRAM Device Attributes: General Fast/Concurrent AP C0 C0 C0
23 SDRAM Cycle Time, tCK (CAS Latency = 2) 7.5ns (-335/-262/-26A)
10ns (-265/-202)
75
A0
75
A0
75
A0
24 SDRAM Access from CK, tAC (CAS Latency
= 2)
0.70ns (-335)
0.75ns (-262/-26A/-265)
0.8ns (-202)
70
75
80
70
75
80
70
75
80
25 SDRAM Cycle Time, tCK (CAS Latency =
1.5)
N/A 000000
26 SDRAM Access from CK, tAC (CAS Latency
= 1.5)
N/A 000000
27 Minimum Row Precharge Time, tRP 18ns (-335)
15ns (-262)
20ns (-202/-265/-26A)
48
3C
50
48
3C
50
48
3C
50
28 Minimum Row Active to Row Active,
tRRD
12ns (
-335
)
15ns (-262/-26A/-265/-202)
30
3C
30
3C
30
3C
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 39 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Serial Presence-Detect
29 Minimum RAS# to CAS# Delay, tRCD 18ns (-335)
15ns (-262)
20ns (-202/-265/-26A)
48
3C
50
48
3C
50
48
3C
50
30 Minimum RAS# Pulse Width, tRAS (See
note 2)
42ns (-335)
45ns (-262/-26A/-265)
40ns (-202)
2A
2D
28
2A
2D
28
2A
2D
28
31 Module Rank Density 128MB, 256MB, 512MB 20 20 20
32 Address And Command Setup Time, tISs
(See note 3)
0.80ns (-335)
1ns (-262/-26A/-265)
1.1ns (-202)
80
A0
B0
80
A0
B0
80
A0
B0
33 Address And Command Hold Time, tIHs
(See note 3)
0.80ns (-335)
1ns (-262/-26A/-265)
1.1ns (-202)
80
A0
B0
80
A0
B0
80
A0
B0
34 Data/ Data Mask Input Setup Time, tDS 0.45ns (-335)
0.50ns (-262/-26A/-265)
0.60ns (-202)
45
50
60
45
50
60
45
50
60
35 Data/ Data Mask Input Hold Time, tDH 0.45ns (-335)
0.50ns (-262/-26A/-265)
0.60ns (-202)
45
50
60
45
50
60
45
50
60
36-40 Reserved 00 00 00
41 Min Active Auto Refresh Time tRC 60ns (-335/-262)
65ns (-26A/-265)
70ns (-202)
3C
41
46
3C
41
46
3C
41
46
42 Minimum Auto Refresh to Active/ Auto
Refresh Command Period, tRFC
72ns (-335)
75ns (-262/-26A/-265)
80ns (-202)
48
4B
50
48
4B
50
48
4B
50
43 SDRAM Device Max Cycle Time, tCKMAX
12ns (
-335)
13ns (-262/-26A/-265/-202)
30
34
30
34
30
34
44 SDRAM Device Max DQS-DQ Skew Time,
tDQSQ
0.4ns (-335)
0.5ns (-262/-26A/-265)
0.6ns (-202)
2D
32
3C
2D
32
3C
2D
32
3C
45 SDRAM Device Max Read Data Hold Skew
Facto,r tQHS
0.5ns (-335)
0.75ns (-262/-26A/-265)
1.0ns (-202)
55
75
A0
55
75
A0
55
75
A0
46 Reserved 00 00 00
47 DIMM Height Standard/Low-Profile 10/01 10/01 10/01
48–61 Reserved 00 00 00
62 SPD Revision Release 1.0 10 10 10
63 Checksum for Bytes 0-62
(Standard/Low-profile)
-335
-262
-26A
-265
-202
2B/1C
BE/AF
EB/DC
1B/0C
B6/A7
4E/3F
E1/D2
0E/FF
3E/2F
D9/CA
8F/80
22/13
4F/40
7F/70
1A/0B
64 Manufacturer’s JEDEC ID Code MICRON 2C 2C 2C
65-71 Manufacturer’s JEDEC ID Code (Continued) FF FF FF
72 Manufacturing Location 01–12 01–0C 01–0C 01–0C
73-90 Module Part Number (ASCII) Variable Data Variable Data Variable Data
91 PCB Identification Code 1-9 01–09 01–09 01–09
92 Identification Code (Continued) 0 000000
Table 23: Serial Presence-Detect Matrix (Continued)
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 40
Byte Description Entry (Version)
MT9VDDT1672 MT9VDDT3272 MT9VDDT6472
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 40 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Serial Presence-Detect
Notes: 1. Value for -262/-26A tCK set to 7ns (0x70) for optimum BIOS compatibility. Actual device
spec. value is 7.5ns.
2. The value of tRAS used for -262/-26A/-265 modules is calculated from tRC - tRP. Actual
device spec. value is 40ns.
3. The JEDEC SPD specification allows fast or slow slew rate values for these bytes. The worst-
case (slow slew rate) value is represented here. Systems requiring the fast slew rate setup
and hold values are supported, provided the faster minimum slew rate is met.
93 Year of Manufacture in BCD Variable Data Variable Data Variable Data
94 Week of Manufacture in BCD Variable Data Variable Data Variable Data
95-98 Module Serial Number Variable Data Variable Data Variable Data
99-127
Manufacturer-Specific Data (RSVD) ———
Table 23: Serial Presence-Detect Matrix (Continued)
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 40
Byte Description Entry (Version)
MT9VDDT1672 MT9VDDT3272 MT9VDDT6472
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 41 ©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Module Dimensions
Module Dimensions
All dimensions are in inches (millimeters); or typical where noted.
Figure 15: 184-Pin DIMM Dimensions (Standard)
Figure 16: 184-Pin DIMM Dimensions (Low-Profile)
MAX
MIN
1.705 (43.31)
1.695 (43.05)
PIN 1
0.700 (17.78)
TYP.
0.098 (2.50) D
(2X)
0.091 (2.30) TYP.
0.250 (6.35) TYP.
4.750 (120.65)
0.050 (1.27)
TYP.
0.091 (2.30)
TYP.
0.040 (1.02)
TYP.
0.079 (2.00) R
(4X)
0.035 (0.90) R
PIN 92
FRONT VIEW
0.054 (1.37)
0.046 (1.17)
5.256 (133.50)
5.244 (133.20)
2.55 (64.77) 1.95 (49.53)
0.394 (10.00)
TYP.
0.125 (3.175)
MAX
BACK VIEW
PIN 184 PIN 93
U1 U3 U5
U11 U12
U7
U13
U9
U10
U15 U17 U19 U21
U1 U3
U11
U12
U5 U7 U9
U15 U17
U13
U10
U19 U21
0.054 (1.37)
0.046 (1.17)
0.125 (3.175)
MAX
1.205 (30.61)
1.195 (30.35)
PIN 1
0.700 (17.78)
TYP.
0.098 (2.50) D
(2X)
0.091 (2.30) TYP.
0.250 (6.35) TYP.
4.750 (120.65)
0.050 (1.27)
TYP.
0.091 (2.30)
TYP.
0.040 (1.02)
TYP.
0.079 (2.00) R
(4X)
0.035 (0.90) R
PIN 92
FRONT VIEW
5.256 (133.50)
5.244 (133.20)
2.55 (64.77) 1.95 (49.53)
0.394 (10.00)
TYP.
BACK VIEW
PIN 184 PIN 93
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
prodmktg@micron.com www.micron.com Customer Comment Line: 800-932-4992
Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc.
All other trademarks are the property of their respective owners.
This data sheet contains minimum and maximum limits specified over the complete power supply and temperature range
for production devices. Although considered final, these specifications are subject to change, as further product
development and data characterization sometimes occur.
128MB, 256MB, 512MB: (x72, ECC, PLL, SR) 184-Pin DDR RDIMM
Data Sheet Designation
pdf: 09005aef80e119b2, source: 09005aef80a2e15c Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD9C16_32_64x72_2.fm - Rev. D 8/05 EN 42 ©2004 Micron Technology, Inc. All rights reserved.
Data Sheet Designation
Released (No Mark): This data sheet contains minimum and maximum limits specified
over the complete power supply and temperature range for production devices.
Although considered final, these specifications are subject to change, as further product
development and data characterization sometimes occur.