ADVANCED AND EVER ADVANCING MITSUBISHI ELECTRIC
MITSUBISHI 8-BIT SINGLE-CHIP MICROCOMPUTER
740 FAMILY / 38000 SERIES
3802
Group
Users Manual
MITSUBISHI
ELECTRIC
keep safety first in your circuit designs !
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor
products better and more reliable, but there is always the possibility that trouble
may occur with them. Trouble with semiconductors may lead to personal injury,
fire or property damage. Remember to give due consideration to safety when
making your circuit designs, with appropriate measures such as (i) placement
of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention
against any malfunction or mishap.
Notes regarding these materials
These materials are intended as a reference to assist our customers in the
selection of the Mitsubishi semiconductor product best suited to the customer’s
application; they do not convey any license under any intellectual property rights,
or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
Mitsubishi Electric Corporation assumes no responsibility for any damage, or
infringement of any third-party’s rights, originating in the use of any product
data, diagrams, charts or circuit application examples contained in these materials.
All information contained in these materials, including product data, diagrams
and charts, represent information on products at the time of publication of these
materials, and are subject to change by Mitsubishi Electric Corporation without
notice due to product improvements or other reasons. It is therefore recommended
that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for the latest product information before
purchasing a product listed herein.
Mitsubishi Electric Corporation semiconductors are not designed or manufactured
for use in a device or system that is used under circumstances in which human
life is potentially at stake. Please contact Mitsubishi Electric Corporation or an
authorized Mitsubishi Semiconductor product distributor when considering the
use of a product contained herein for any specific purposes, such as apparatus
or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea
repeater use.
The prior written approval of Mitsubishi Electric Corporation is necessary to
reprint or reproduce in whole or in part these materials.
If these products or technologies are subject to the Japanese export control
restrictions, they must be exported under a license from the Japanese government
and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of
Japan and/or the country of destination is prohibited.
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for further details on these materials or the
products contained therein.
Preface
This user’s manual describes Mitsubishi’s CMOS 8-
bit microcomputers 3802 Group.
After reading this manual, the user should have a
through knowledge of the functions and features of
the 3802 Group, and should be able to fully utilize
the product. The manual starts with specifications
and ends with application examples.
For details of software, refer to the “SERIES MELPS
740 <SOFTWARE> USER’S MANUAL.”
For details of development support tools, refer to the
“DEVELOPMENT SUPPORT TOOLS FOR MICRO-
COMPUTERS” data book.
BEFORE USING THIS USER’S MANUAL
This user’s manual consists of the following three chapters. Refer to the chapter appropriate to your conditions, such
as hardware design or software development. Chapter 3 also includes necessary information for systems development.
Be sure to refer to this chapter.
1. Organization
CHAPTER 1 HARDWARE
This chapter describes features of the microcomputer and operation of each peripheral function.
CHAPTER 2 APPLICATION
This chapter describes usage and application examples of peripheral functions, based mainly on setting examples
of related registers.
CHAPTER 3 APPENDIX
This chapter includes necessary information for systems development using the microcomputer, electric
characteristics, a list of registers, the masking confirmation (mask ROM version), and mark specifications which
are to be submitted when ordering.
2. Structure of register
The figure of each register structure describes its functions, contents at reset, and attributes as follows :
0 0 : Single-chip mode
Note 2. Bit attributes••••••The attributes of control register bits are classified into 3 bytes : read-only, write-only
and read and write. In the figure, these attributes are represented as follows :
: Bit in which nothing is arranged
0 1 :
Name Function
At reset
RWB
0
1
2
3
4
0
0
0
0
0
5
6
7
1
b0b1b2b3b4b5b6b7
Contents immediately after reset release
Bit attributes
(Note 1)
Processor mode bits
Stack page selection bit
Nothing arranged for these bits. These are write disabled
bits. When these bits are read out, the contents are “0.”
Fix this bit to “0.”
Main clock (X
IN
-X
OUT
) stop bit
Internal system clock selection bit
1 0 :
1 1 : Not available
b1 b0
0 : 0 page
1 : 1 page
0 : Operating
1 : Stopped
0 : X
IN
-X
OUT
selected
1 : X
CIN
-X
COUT
selected
: Bit that is not used for control of the corresponding function
0
Note 1. Contents immediately after reset release
0••••••“0” at reset release
1••••••“1” at reset release
Undefined••••••Undefined or reset release
••••••Contents determined by option at reset release
R••••••Read
••••••Read enabled
••••••Read disabled
W••••••Write
••••••Write enabled
••••••Write disabled
(Note 2)
CPU mode register (CPUM) [Address : 3B
16
]
Bits
LIST OF GROUPS HAVING THE SIMILAR FUNCTIONS
Prescaler : 3
Timer : 4
<8-bit>
Prescaler : 3
Timer : 4
<8-bit> Prescaler : 3
Timer : 4
<8-bit>
Function Group
Pin
(Package type)
Timer
A-D converter
D-A converter
Clock generating circuit
Serial I/O
Remarks
One Time
PROM
EPROM
RAM
Mask
ROM
Memory
type
24K
512 384
32K
8K
16K 32K
16K
(Note 1)
8K
(Note 1)
16K
(Note 1)
32K
(Note 1)
384 384 640
8K
(Note 1)
24K
384 384 640
16K
(Note 1)
32K
(Note 1)
32K
(Note 1)
32K
1024
PWM output
512
16K
16K
16K
3800 group
64 pin
• 64P4B
• 64P6N-A
• 64P6D-A
1 circuit
UART or
Clock synchronous 1
3802 group
64 pin
• 64P4B
• 64P6N-A
8-bit 8-channel
8-bit 2-channel
UART or
Clock synchronous 1
Clock synchronous 1
1 circuit 1 circuit
UART or
Clock synchronous 1
Clock synchronous 1
3806 group 3807 group
80 pin
• 80P6N-A
2 circuit
8-bit 13-channel
8-bit 4-channel
UART or
Clock synchronous 1
Clock synchronous 1
Timer : 3
<8-bit>
Timer X/Y : 2
Timer A/B : 2
<16-bit>
80 pin
• 80P6N-A
• 80P6S-A
• 80P6D-A
12K
(Note 1)
16K
(Note 1)
24K
(Note 3)
24K
32K
(Note 3)
48K
(Note 3)
1024512384 384 1024
24K
(Note 2)
48K
(Note 3)
8-bit 8-channel
8-bit 2-channel
As of September 1995
Real time port output
Analog comparator
Watchdog timer
48K
(Note 2)
Notes 1: Extended operating temperature version available
2: High-speed version available
3: Extended operating temperature version and High-speed version available
. ROM expansion
3802 group, one of the CMOS 8-bit microcomputer 38000 series presented in this user’s manual is provided with
standard functions.
The basic functions of the 3800, 3802, 3806 and 3807 groups having the same functions are shown below. For the
detailed functions of each group, refer to the related data book and user’s manual.
List of groups having the same functions
i
Table of contents
3802 GROUP USER'S MANUAL
Table of contents
CHAPTER 1. HARDWARE
DESCRIPTION ................................................................................................................................ 1-2
FEATURES...................................................................................................................................... 1-2
APPLICATIONS .............................................................................................................................. 1-2
PIN CONFIGURATION................................................................................................................... 1-2
FUNCTIONAL BLOCK................................................................................................................... 1-4
PIN DESCRIPTION ......................................................................................................................... 1-5
PART NUMBERING ....................................................................................................................... 1-6
GROUP EXPANSION ..................................................................................................................... 1-7
GROUP EXPANSION (EXTENDED OPERATING TEMPERATURE VERSION).................... 1-8
FUNCTIONAL DESCRIPTION....................................................................................................... 1-9
Central Processing Unit (CPU) ...............................................................................................1-9
Memory ....................................................................................................................................1-13
I/O Ports ..................................................................................................................................1-15
Interrupts..................................................................................................................................1-18
Timers ......................................................................................................................................1-20
Serial I/O..................................................................................................................................1-22
Pulse Width Modulation (PWM) ............................................................................................1-28
A-D Converter ......................................................................................................................... 1-30
D-A Converter ......................................................................................................................... 1-31
Reset Circuit ............................................................................................................................1-32
Clock Generating Circuit........................................................................................................1-34
Processor Modes .................................................................................................................... 1-35
NOTES ON PROGRAMMING .....................................................................................................1-37
Processor Status Register .....................................................................................................1-37
Interrupts..................................................................................................................................1-37
Decimal Calculations ..............................................................................................................1-37
Timers ......................................................................................................................................1-37
Multiplication and Division Instructions ................................................................................1-37
Ports ......................................................................................................................................... 1-37
Serial I/O..................................................................................................................................1-37
A-D Converter ......................................................................................................................... 1-37
D-A Converter ......................................................................................................................... 1-37
Instruction Execution Time ....................................................................................................1-37
Memory Expansion Mode.......................................................................................................1-37
Memory Expansion Mode and Microprocessor Mode ....................................................... 1-37
DATA REQUIRED FOR MASK ORDERS.................................................................................1-38
ii 3802 GROUP USER'S MANUAL
Table of contents
ROM PROGRAMMING METHOD ...............................................................................................1-38
FUNCTIONAL DESCRIPTION SUPPLEMENT..........................................................................1-39
Interrupt....................................................................................................................................1-39
Timing After Interrupt .............................................................................................................1-40
A-D Converter .........................................................................................................................1-41
CHAPTER 2. APPLICATION
2.1 I/O port ..................................................................................................................................... 2-2
2.1.1 Memory map of I/O port................................................................................................2-2
2.1.2 Related registers .............................................................................................................2-3
2.1.3 Handling of unused pins ................................................................................................2-4
2.2 Timer......................................................................................................................................... 2-5
2.2.1 Memory map of timer .....................................................................................................2-5
2.2.2 Related registers .............................................................................................................2-6
2.2.3 Timer application examples.........................................................................................2-11
2.3 Serial I/O ................................................................................................................................2-23
2.3.1 Memory map of serial I/O ...........................................................................................2-23
2.3.2 Related registers ...........................................................................................................2-24
2.3.3 Serial I/O connection examples ..................................................................................2-30
2.3.4 Setting of serial I/O transfer data format ................................................................. 2-32
2.3.5 Serial I/O application examples ..................................................................................2-33
2.4 PWM ........................................................................................................................................2-53
2.4.1 Memory map of PWM ..................................................................................................2-53
2.4.2 Related registers ...........................................................................................................2-54
2.4.3 PWM output circuit application example ................................................................... 2-56
2.5 A-D converter ........................................................................................................................ 2-59
2.5.1 Memory map of A-D conversion.................................................................................2-59
2.5.2 Related registers ...........................................................................................................2-60
2.5.3 A-D conversion application example ..........................................................................2-62
2.6 Processor mode ...................................................................................................................2-64
2.6.1 Memory map of processor mode ................................................................................2-64
2.6.2 Related register.............................................................................................................2-64
2.6.3 Processor mode application examples...................................................................... 2-65
2.7 Reset....................................................................................................................................... 2-69
2.7.1 Connection example of reset IC.................................................................................2-69
CHAPTER 3. APPENDIX
3.1 Electrical characteristics ......................................................................................................3-2
3.1.1 Absolute maximum ratings ............................................................................................3-2
3.1.2 Recommended operating conditions.............................................................................3-2
3.1.3 Electrical characteristics.................................................................................................3-3
iii
Table of contents
3802 GROUP USER'S MANUAL
3.1.4 A-D converter characteristics ........................................................................................3-3
3.1.5 D-A converter characteristics ........................................................................................3-4
3.1.6 Timing requirements and Switching characteristics .................................................. 3-5
3.1.7 Absolute maximum ratings (Extended operating temperature version) .................. 3-9
3.1.8 Recommended operating conditions(Extended operating temperature version) .... 3-9
3.1.9 Electrical characteristics (Extended operating temperature version) .................... 3-10
3.1.10 A-D converter characteristics (Extended operating temperature version) ........ 3-10
3.1.11 D-A converter characteristics (Extended operating temperature version) ........ 3-11
3.1.12 Timing requirements and Switching characteristics
(Extended operating temperature version) ......................................................... 3-12
3.1.13 Timing diagram ...........................................................................................................3-14
3.2 Standard characteristics.....................................................................................................3-17
3.2.1 Power source current characteristic examples ........................................................ 3-17
3.2.2 Port standard characteristic examples...................................................................... 3-18
3.2.3 A-D conversion standard characteristics .................................................................. 3-20
3.2.4 D-A conversion standard characteristics .................................................................. 3-21
3.3 Notes on use......................................................................................................................... 3-22
3.3.1 Notes on interrupts .......................................................................................................3-22
3.3.2 Notes on the serial I/O1 ..............................................................................................3-22
3.3.3 Notes on the A-D converter........................................................................................3-23
3.3.4 Notes on the RESET pin .............................................................................................3-24
3.3.5 Notes on input and output pins..................................................................................3-24
3.3.6 Notes on memory expansion mode and microprocessor mode ............................ 3-25
3.3.7 Notes on built-in PROM...............................................................................................3-26
3.4 Countermeasures against noise .......................................................................................3-28
3.4.1 Shortest wiring length ..................................................................................................3-28
3.4.2 Connection of a bypass capacitor across the Vss line and the Vcc line............ 3-29
3.4.3 Wiring to analog input pins .........................................................................................3-30
3.4.4 Consideration for oscillator ..........................................................................................3-30
3.4.5 Setup for I/O ports .......................................................................................................3-31
3.4.6 Providing of watchdog timer function by software .................................................. 3-31
3.5 List of registers.................................................................................................................... 3-33
3.6 Mask ROM ordering method..............................................................................................3-47
3.7 Mark specification form ......................................................................................................3-61
3.8 Package outline.................................................................................................................... 3-63
3.9 List of instruction codes....................................................................................................3-65
3.10 Machine Instructions .........................................................................................................3-66
3.11 SFR memory map ..............................................................................................................3-76
3.12 Pin configuration................................................................................................................3-77
3802 GROUP USER’S MANUAL i
List of figures
List of figures
CHAPTER 1 HARDWARE
Fig. 1 Pin configuration of M38022M4-XXXFP ..........................................................................1-2
Fig. 2 Pin configuration of M38022M4-XXXSP ..........................................................................1-3
Fig. 3 Functional block diagram ...................................................................................................1-4
Fig. 4 Part numbering ....................................................................................................................1-6
Fig. 5 Memory expansion plan.....................................................................................................1-7
Fig. 6 Memory expansion plan (Extended operating temperature version) .......................... 1-8
Fig. 7 740 Family CPU register structure...................................................................................1-9
Fig. 8 Register push and pop at interrupt generation and subroutine call ........................ 1-10
Fig. 9 Structure of CPU mode register.....................................................................................1-11
Fig. 10 Memory map diagram ....................................................................................................1-12
Fig. 11 Memory map of special function register (SFR)....................................................... 1-13
Fig. 12 Port block diagram (single-chip mode) (1) ................................................................ 1-16
Fig. 13 Port block diagram (single-chip mode) (2) ................................................................ 1-17
Fig. 14 Interrupt control...............................................................................................................1-18
Fig. 15 Structure of interrupt-related registers........................................................................ 1-18
Fig. 16 Structure of timer XY register.......................................................................................1-19
Fig. 17 Block diagram of timer X, timer Y, timer 1, and timer 2 ........................................ 1-21
Fig. 18 Block diagram of clock synchronous serial I/O1....................................................... 1-22
Fig. 19 Operation of clock synchronous serial I/O1 function ............................................... 1-22
Fig. 20 Block diagram of UART serial I/O .............................................................................. 1-23
Fig. 21 Operation of UART serial I/O function ....................................................................... 1-24
Fig. 22 Structure of serial I/O control registers...................................................................... 1-25
Fig. 23 Structure of serial I/O2 control register...................................................................... 1-26
Fig. 24 Block diagram of serial I/O2 function ......................................................................... 1-26
Fig. 25 Timing of serial I/O2 function .......................................................................................1-27
Fig. 26 Timing of PWM cycle .....................................................................................................1-28
Fig. 27 Block diagram of PWM function ...................................................................................1-28
Fig. 28 Structure of PWM control register............................................................................... 1-29
Fig. 29 PWM output timing when PWM register or PWM prescaler is changed............... 1-29
Fig. 30 Structure of AD/DA control register ............................................................................ 1-30
Fig. 31 Block diagram of A-D converter...................................................................................1-30
Fig. 32 Block diagram of D-A converter...................................................................................1-31
Fig. 33 Equivalent connection circuit of D-A converter......................................................... 1-31
Fig. 34 Example of reset circuit.................................................................................................1-32
Fig. 35 Internal status of microcomputer after reset ............................................................. 1-32
Fig. 36 Timing of reset ................................................................................................................1-33
Fig. 37 Ceramic resonator circuit...............................................................................................1-34
Fig. 38 External clock input circuit ............................................................................................1-34
Fig. 39 Block diagram of clock generating circuit.................................................................................. 1-34
Fig. 40 Memory maps in various processor modes............................................................... 1-35
Fig. 41 Structure of CPU mode register ...................................................................................1-35
Fig. 42 ONW function timing ......................................................................................................1-36
Fig. 43 Programming and testing of One Time PROM version ........................................... 1-38
Fig. 44 Timing chart after an interrupt occurs ........................................................................ 1-40
Fig. 45 Time up to execution of the interrupt processing routine ....................................... 1-40
Fig. 46 A-D conversion equivalent circuit.................................................................................1-42
Fig. 47 A-D conversion timing chart..........................................................................................1-42
ii 3802 GROUP USER’S MANUAL
List of figures
CHAPTER 2 APPLICATION
Fig. 2.1.1 Memory map of I/O port related registers............................................................... 2-2
Fig. 2.1.2 Structure of Port Pi (i=0, 1, 2, 3, 4, 5, 6)............................................................... 2-3
Fig. 2.1.3 Structure of Port Pi direction register (i=0, 1, 2, 3, 4, 5, 6)................................ 2-3
Fig. 2.2.1 Memory map of timer related registers......................................................................2-5
Fig. 2.2.2 Structure of Prescaler 12, Prescaler X, Prescaler Y.............................................. 2-6
Fig. 2.2.3 Structure of Timer 1.....................................................................................................2-6
Fig. 2.2.4 Structure of Timer 2, Timer X, Timer Y ....................................................................2-7
Fig. 2.2.5 Structure of Timer XY mode register.........................................................................2-8
Fig. 2.2.6 Structure of Interrupt request register 1....................................................................2-9
Fig. 2.2.7 Structure of Interrupt request register 2....................................................................2-9
Fig. 2.2.8 Structure of Interrupt control register 1 .................................................................. 2-10
Fig. 2.2.9 Structure of Interrupt control register 2 .................................................................. 2-10
Fig. 2.2.10 Connection of timers and setting of division ratios [Clock function] ................ 2-12
Fig. 2.2.11 Setting of related registers [Clock function] ......................................................... 2-13
Fig. 2.2.12 Control procedure [Clock function] ........................................................................ 2-14
Fig. 2.2.13 Example of a peripheral circuit...............................................................................2-15
Fig. 2.2.14
Connection of the timer and setting of the division ratio [Piezoelectric buzzer output]
........... 2-15
Fig. 2.2.15 Setting of related registers [Piezoelectric buzzer output] ................................... 2-16
Fig. 2.2.16 Control procedure [Piezoelectric buzzer output].................................................. 2-16
Fig. 2.2.17 A method for judging if input pulse exists ........................................................... 2-17
Fig. 2.2.18 Setting of related registers [Measurement of frequency] ................................... 2-18
Fig. 2.2.19 Control procedure [Measurement of frequency]................................................... 2-19
Fig. 2.2.20
Connection of the timer and setting of the division ratio [Measurement of pulse width] ...........
2-20
Fig. 2.2.21 Setting of related registers [Measurement of pulse width] ................................ 2-21
Fig. 2.2.22 Control procedure [Measurement of pulse width] ................................................ 2-22
Fig. 2.3.1 Memory map of serial I/O related registers ........................................................... 2-23
Fig. 2.3.2 Structure of Transmit/Receive buffer register ........................................................ 2-24
Fig. 2.3.3 Structure of Serial I/O1 status register................................................................... 2-24
Fig. 2.3.4 Structure of Serial I/O1 control register.................................................................. 2-25
Fig. 2.3.5 Structure of UART control register...........................................................................2-25
Fig. 2.3.6 Structure of Baud rate generator ..............................................................................2-26
Fig. 2.3.7 Structure of Serial I/O2 control register.................................................................. 2-26
Fig. 2.3.8 Structure of Serial I/O2 register................................................................................2-27
Fig. 2.3.9 Structure of Interrupt edge selection register ........................................................ 2-27
Fig. 2.3.10 Structure of Interrupt request register 1............................................................... 2-28
Fig. 2.3.11 Structure of Interrupt request register 2............................................................... 2-28
Fig. 2.3.12 Structure of Interrupt control register 1................................................................ 2-29
Fig. 2.3.13 Structure of Interrupt control register 2................................................................ 2-29
Fig. 2.3.14 Serial I/O connection examples (1) ....................................................................... 2-30
Fig. 2.3.15 Serial I/O connection examples (2) ....................................................................... 2-31
Fig. 2.3.16 Setting of Serial I/O transfer data format............................................................. 2-32
Fig. 2.3.17 Connection diagram [Communication using a clock synchronous serial I/O] .. 2-33
Fig. 2.3.18 Timing chart [Communication using a clock synchronous serial I/O]............... 2-33
Fig. 2.3.19 Setting of related registers at a transmitting side
[Communication using a clock synchronous serial I/O] ................................ 2-34
Fig. 2.3.20 Setting of related registers at a receiving side
[Communication using a clock synchronous serial I/O] ................................ 2-35
3802 GROUP USER’S MANUAL iii
List of figures
Fig. 2.3.21 Control procedure at a transmitting side
[Communication using a clock synchronous serial I/O] .................................. 2-36
Fig. 2.3.22
Control procedure at a receiving side[Communication using a clock synchronous serial I/O]
.. 2-37
Fig. 2.3.23 Connection diagram [Output of serial data] ......................................................... 2-38
Fig. 2.3.24 Timing chart [Output of serial data]...................................................................... 2-38
Fig. 2.3.25 Setting of serial I/O1 related registers [Output of serial data] .......................... 2-39
Fig. 2.3.26 Setting of serial I/O1 transmission data [Output of serial data]........................ 2-39
Fig. 2.3.27 Control procedure of serial I/O1 [Output of serial data] .................................... 2-40
Fig. 2.3.28 Setting of serial I/O2 related registers [Output of serial data] .......................... 2-41
Fig. 2.3.29 Setting of serial I/O2 transmission data [Output of serial data]........................ 2-41
Fig. 2.3.30 Control procedure of serial I/O2 [Output of serial data] .................................... 2-42
Fig. 2.3.31 Connection diagram
[Cyclic transmission or reception of block data between microcomputers]..2-43
Fig. 2.3.32
Timing chart [Cyclic transmission or reception of block data between microcomputers] ..........
2-44
Fig. 2.3.33 Setting of related registers
[Cyclic transmission or reception of block data between microcomputers]..2-44
Fig. 2.3.34 Control in the master unit .......................................................................................2-45
Fig. 2.3.35 Control in the slave unit ..........................................................................................2-46
Fig. 2.3.36 Connection diagram [Communication using UART] ............................................ 2-47
Fig. 2.3.37 Timing chart [Communication using UART] ......................................................... 2-47
Fig. 2.3.38
Setting of related registers at a transmitting side [Communication using UART]........................
2-49
Fig. 2.3.39
Setting of related registers at a receiving side [Communication using UART] ............................
2-50
Fig. 2.3.40 Control procedure at a transmitting side [Communication using UART] .......... 2-51
Fig. 2.3.41 Control procedure at a receiving side [Communication using UART]............. 2-52
Fig. 2.4.1 Memory map of PWM related registers.................................................................. 2-53
Fig. 2.4.2 Structure of PWM control register............................................................................2-54
Fig. 2.4.3 Structure of PWM prescaler......................................................................................2-54
Fig. 2.4.4 Structure of PWM register.........................................................................................2-55
Fig. 2.4.5 Connection diagram ....................................................................................................2-56
Fig. 2.4.6 PWM output timing.....................................................................................................2-56
Fig. 2.4.7 Setting of related registers........................................................................................2-57
Fig. 2.4.8 PWM output .................................................................................................................2-57
Fig. 2.4.9 Control procedure .......................................................................................................2-58
Fig. 2.5.1 Memory map of A-D conversion related registers................................................ 2-59
Fig. 2.5.2 Structure of AD/DA control register ........................................................................ 2-60
Fig. 2.5.3 Structure of A-D conversion register ...................................................................... 2-60
Fig. 2.5.4 Structure of Interrupt request register 2 ................................................................ 2-61
Fig. 2.5.5 Structure of Interrupt control register 2 ................................................................. 2-61
Fig. 2.5.6 Connection diagram [Conversion of Analog input voltage] ................................. 2-62
Fig. 2.5.7 Setting of related registers [Conversion of Analog input voltage] ..................... 2-62
Fig. 2.5.8 Control procedure [Conversion of Analog input voltage]..................................... 2-63
Fig. 2.6.1 Memory map of processor mode related register ................................................ 2-64
Fig. 2.6.2 Structure of CPU mode register.............................................................................. 2-64
Fig. 2.6.3 Expansion example of ROM and RAM .................................................................. 2-65
Fig. 2.6.4 Read-cycle (OE access, SRAM) ............................................................................. 2-66
Fig. 2.6.5 Read-cycle (OE access, EPROM) .......................................................................... 2-66
Fig. 2.6.6 Write-cycle (W control, SRAM).................................................................................2-67
Fig. 2.6.7 Application example of the ONW function............................................................. 2-68
iv 3802 GROUP USER’S MANUAL
List of figures
Fig. 2.7.1 Example of Poweron reset circuit........................................................................... 2-69
Fig. 2.7.2 RAM back-up system .................................................................................................2-69
CHAPTER 3 APPENDIX
Fig. 3.1.1 Circuit for measuring output switching characteristics......................................... 3-13
Fig. 3.1.2 Timing diagram (in single-chip mode)..................................................................... 3-14
Fig. 3.1.3 Timing diagram (in memory expansion mode and microprocessor mode) (1) .. 3-15
Fig. 3.1.4 Timing diagram (in memory expansion mode and microprocessor mode) (2) .. 3-16
Fig. 3.2.1 Power source current characteristic example ....................................................... 3-17
Fig. 3.2.2 Power source current characteristic example (in wait mode) ............................. 3-17
Fig. 3.2.3 Standard characteristic example of CMOS output port at P-channel drive(1).3-18
Fig. 3.2.4 Standard characteristic example of CMOS output port at P-channel drive(2).3-18
Fig. 3.2.5 Standard characteristic example of CMOS output port at N-channel drive(1) .3-19
Fig. 3.2.6 Standard characteristic example of CMOS output port at N-channel drive(2) .3-19
Fig. 3.2.7 A-D conversion standard characteristics................................................................ 3-20
Fig. 3.2.8 D-A conversion standard characteristics................................................................ 3-21
Fig. 3.3.1 Structure of interrupt control register 2 ................................................................. 3-22
Fig. 3.4.1 Wiring for the RESET pin .........................................................................................3-28
Fig. 3.4.2 Wiring for clock I/O pins ...........................................................................................3-29
Fig. 3.4.3 Wiring for the VPP pin of the One Time PROM and the EPROM version.......3-29
Fig. 3.4.4 Bypass capacitor across the VSS line and the VCC line..................................... 3-29
Fig. 3.4.5 Analog signal line and a resistor and a capacitor ............................................... 3-30
Fig. 3.4.6 Wiring for a large current signal line ..................................................................... 3-30
Fig. 3.4.7 Wiring to a signal line where potential levels change frequently ...................... 3-30
Fig. 3.4.8 Stepup for I/O ports ...................................................................................................3-31
Fig. 3.4.9 Watchdog timer by software .....................................................................................3-31
Fig. 3.5.1 Structure of Port Pi (i=0, 1, 2, 3, 4, 5, 6)............................................................. 3-33
Fig. 3.5.2 Structure of Port Pi direction register (i=0, 1, 2, 3, 4, 5, 6).............................. 3-33
Fig. 3.5.3 Structure of Transmit/Receive buffer register ....................................................... 3-34
Fig. 3.5.4 Structure of Serial I/O1 status register.................................................................. 3-34
Fig. 3.5.5 Structure of Serial I/O1 control register ................................................................. 3-35
Fig. 3.5.6 Structure of UART control register ......................................................................... 3-35
Fig. 3.5.7 Structure of Baud rate generator ............................................................................ 3-36
Fig. 3.5.8 Structure of Serial I/O2 control register ................................................................. 3-36
Fig. 3.5.9 Structure of Serial I/O2 register .............................................................................. 3-37
Fig. 3.5.10 Structure of Prescaler 12, Prescaler X, Prescaler Y......................................... 3-37
Fig. 3.5.11 Structure of Timer 1 ................................................................................................3-38
Fig. 3.5.12 Structure of Timer 2, Timer X, Timer Y .............................................................. 3-38
Fig. 3.5.13 Structure of Timer XY mode register ................................................................... 3-39
Fig. 3.5.14 Structure of PWM control register ........................................................................ 3-40
Fig. 3.5.15 Structure of PWM prescaler ...................................................................................3-40
Fig. 3.5.16 Structure of PWM register.......................................................................................3-41
Fig. 3.5.17 Structure of AD/DA control register ...................................................................... 3-42
Fig. 3.5.18 Structure of A-D conversion register..................................................................... 3-42
Fig. 3.5.19 Structure of D-A 1 conversion, D-A 2 conversion register ................................ 3-43
Fig. 3.5.20 Structure of Interrupt edge selection register ...................................................... 3-43
Fig. 3.5.21 Structure of CPU mode register .............................................................................3-44
3802 GROUP USER’S MANUAL v
List of figures
Fig. 3.5.22 Structure of Interrupt request register 1............................................................... 3-45
Fig. 3.5.23 Structure of Interrupt request register 2............................................................... 3-45
Fig. 3.5.24 Structure of Interrupt control register 1................................................................ 3-46
Fig. 3.5.25 Structure of Interrupt control register 2................................................................ 3-46
3802 GROUP USER’S MANUAL i
List of tables
List of tables
CHAPTER 1 HARDWARE
Table 1 Pin description..................................................................................................................1-5
Table 2 List of supported products..............................................................................................1-7
Table 3 List of supported products (Extended operating temperature version)................... 1-8
Table 4 Push and pop instructions of accumulator or processor status register .............. 1-10
Table 5 Set and clear instructions of each bit of processor status register...................... 1-11
Table 6 List of I/O port functions ..............................................................................................1-15
Table 7 Interrupt vector addresses and priority ..................................................................... 1-18
Table 8 Functions of ports in memory expansion mode and microprocessor mode ........ 1-35
Table 9 Programming adapter....................................................................................................1-38
Table 10 Interrupt sources, vector addresses and interrupt priority.................................... 1-39
Table 11 Change of A-D conversion register during A-D conversion ................................. 1-41
CHAPTER 2 APPLICATION
Table 2.1.1 Handling of unused pins (in single-chip mode).................................................... 2-4
Table 2.1.2 Handling of unused pins (
in memory expansion mode and microprocessor mode
)......... 2-4
Table 2.2.1 Function of CNTR0/CNTR1 edge switch bit .......................................................... 2-8
Table 2.3.1
Setting examples of Baud rate generator values and transfer bit rate values
...................... 2-48
CHAPTER 3 APPENDIX
Table 3.1.1 Absolute maximum ratings .......................................................................................3-2
Table 3.1.2 Recommended operating conditions.......................................................................3-2
Table 3.1.3 Electrical characteristics...........................................................................................3-3
Table 3.1.4 A-D converter characteristics...................................................................................3-3
Table 3.1.5 D-A converter characteristics...................................................................................3-4
Table 3.1.6 Timing requirements .................................................................................................3-5
Table 3.1.7 Timing requirements (2) ...........................................................................................3-5
Table 3.1.8 Switching characteristics (1) ....................................................................................3-6
Table 3.1.9 Switching characteristics (2) ....................................................................................3-6
Table 3.1.10
Timing requirements in memory expansion mode and microprocessor mode (1) .....................
3-7
Table 3.1.11
Switching characteristics in memory expansion mode and microprocessor mode (1) ............
3-7
Table 3.1.12
Timing requirements in memory expansion mode and microprocessor mode (2) .....................
3-8
Table 3.1.13
Switching characteristics in memory expansion mode and microprocessor mode (2) ............
3-8
Table 3.1.14 Absolute maximum ratings (Extended operating temperature version).......... 3-9
Table 3.1.15 Recommended operating conditions (
Extended operating temperature version
) ...... 3-9
Table 3.1.16 Electrical characteristics (Extended operating temperature version)............ 3-10
Table 3.1.17 A-D converter characteristics (Extended operating temperature version).... 3-10
Table 3.1.18 D-A converter characteristics (Extended operating temperature version).... 3-11
Table 3.1.19 Timing requirements (Extended operating temperature version)................... 3-12
Table 3.1.20 Switching characteristics (Extended operating temperature version) ........... 3-12
ii 3802 GROUP USER’S MANUAL
List of tables
Table 3.1.21 Timing requirements in memory expansion mode and microprocessor mode
(Extended operating temperature version) .................................................. 3-13
Table 3.1.22 Switching characteristics in memory expansion mode and microprocessor mode
(Extended operating temperature version) .................................................. 3-13
Table 3.3.1 Programming adapter..............................................................................................3-26
Table 3.3.2 Setting of programming adapter switch .............................................................. 3-26
Table 3.3.3 Setting of PROM programmer address............................................................... 3-27
Table 3.5.1 Function of CNTR0/CNTR1 edge switch bit ....................................................... 3-39
CHAPTER 1CHAPTER 1
HARDWARE
DESCRIPTION
FEATURES
APPLICATIONS
PIN CONFIGURATION
FUNCTIONAL BLOCK
PIN DESCRIPTION
PART NUMBERING
GROUP EXPANSION
FUNCTIONAL DESCRIPTION
NOTES ON PROGRAMMING
DATA REQUIRED FOR
MASK ORDERS
ROM PROGRAMMING METHOD
FUNCTIONAL DESCRIPTION
SUPPLEMENT
3802 GROUP USER’S MANUAL
1-2
HARDWARE
PIN CONFIGURATION (TOP VIEW)
Package type : 64P6N-A
64-pin plastic-molded QFP
DESCRIPTION
The 3802 group is the 8-bit microcomputer based on the 740 fam-
ily core technology.
The 3802 group is designed for controlling systems that require
analog signal processing and include two serial I/O functions, A-D
converters, and D-A converters.
The various microcomputers in the 3802 group include variations
of internal memory size and packaging. For details, refer to the
section on part numbering.
For details on availability of microcomputers in the 3802 group, re-
fer to the section on group expansion.
FEATURES
Basic machine-language instructions....................................... 71
The minimum instruction execution time ............................ 0.5 µs
(at 8 MHz oscillation frequency)
Memory size
ROM .................................................................. 8 K to 32 K bytes
RAM ................................................................. 384 to 1024 bytes
Programmable input/output ports ............................................. 56
Interrupts .................................................. 16 sources, 16 vectors
Timers ............................................................................. 8 bit 4
Serial I/O1 .................... 8-bit 1 (UART or Clock-synchronized)
Serial I/O2 ....................................8-bit 1 (Clock-synchronized)
PWM................................................................................ 8-bit 1
A-D converter .................................................. 8-bit 8 channels
D-A converter .................................................. 8-bit 2 channels
Clock generating circuit ....................... Internal feedback resistor
(connect to external ceramic resonator or quartz-crystal oscillator)
Power source voltage..................................................3.0 to 5.5 V
(Extended operating temperature version : 4.0 to 5.5 V)
Power dissipation...............................................................32 mW
Memory expansion possible
Operating temperature range .................................... –20 to 85°C
(Extended operating temperature version : –40 to 85°C)
APPLICATIONS
Office automation, VCRs, tuners, musical instruments, cameras,
air conditioners, etc.
Fig. 1 Pin configuration of M38022M4-XXXFP
DESCRIPTION/FEATURES/APPLICATIONS/PIN CONFIGURATION
P41/INT0
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
P00/AD0
P03/AD3
P04/AD4
P05/AD5
P06/AD6
P07/AD7
P11/AD9
P12/AD10
P13/AD11
P14/AD12
P15/AD13
P16/AD14
P17/AD15
P62/AN2
P61/AN1
P60/AN0
P57/INT3
M38022M4-XXXFP
P56/PWM
P55/CNTR1
P54/CNTR0
P52/SCLK2
P51/SOUT2
P50/SIN2
P47/SRDY1
P45/TXD
P44/RXD
P43/INT2
P63 /AN3
P64/AN4
P65/AN5
AV
SS
VREF
VCC
P30/DA1
P31/DA2
P32/ONW
P33/RESETOUT
P34/φ
P35/SYNC
P36/WR
P37/RD
P42/INT1
CNVSS
XIN
XOUT
VSS
P27/DB7
P26/DB6
P25/DB5
P24/DB4
P23/DB3
P22/DB2
P21/DB1
P20/DB0
RESET
P53/SRDY2
P46/SCLK1
P10/AD8
P01/AD1
P02/AD2
P40/INT4
P6
7
/AN
7
P6
6
/AN
6
41
42
43
44
45
46
47
1-3
HARDWARE
3802 GROUP USER'S MANUAL
PIN CONFIGURATION (TOP VIEW)
Package type : 64P4B
64-pin shrink plastic-molded DIP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
P6
4
/AN
4
P6
6
/AN
6
P6
7
/AN
7
AV
SS
V
REF
V
CC
P6
3
/AN
3
P6
5
/AN
5
P6
2
/AN
2
P6
1
/AN
1
P6
0
/AN
0
P5
7
/INT
3
P5
6
/PWM
P5
5
/CNTR
1
P5
4
/CNTR
0
P5
3
/S
RDY2
P5
2
/S
CLK2
P5
1
/S
OUT2
P5
0
/S
IN2
P4
7
/S
RDY1
P4
6
/S
CLK1
P4
3
/INT
2
P4
4
/R
X
D
P4
5
/T
X
D
CNV
SS
P4
1
/INT
0
P4
0
/INT
4
X
IN
X
OUT
V
SS
P4
2
/INT
1
RESET
P2
4
/DB
4
P2
3
/DB
3
P2
2
/DB
2
P2
0
/DB
0
P2
1
/DB
1
P2
5
/DB
5
P2
7
/DB
7
P2
6
/DB
6
P3
3
/RESET
OUT
P3
4
/φ
P3
5
/SYNC
P3
7
/RD
P3
6
/WR
P3
2
/ONW
P3
0
/DA
1
P3
1
/DA
2
P0
0
/AD
0
P0
1
/AD
1
P0
2
/AD
2
P0
3
/AD
3
P0
4
/AD
4
P0
5
/AD
5
P0
6
/AD
6
P0
7
/AD
7
P1
0
/AD
8
P1
1
/AD
9
P1
2
/AD
10
P1
3
/AD
11
P1
4
/AD
12
P1
7
/AD
15
P1
6
/AD
14
P1
5
/AD
13
M38022M4-XXXSP
PIN CONFIGURATION
Fig.2 Pin configuration of M38022M4-XXXSP
3802 GROUP USER’S MANUAL
1-4
HARDWARE
FUNCTIONAL BLOCK DIAGRAM (Package : 64P4B)
FUNCTIONAL BLOCK
FUNCTIONAL BLOCK
Fig. 3 Functional block diagram
CNTR1
CNTR0
VREF AVSS
RAM ROM
CPU
A
X
Y
S
PCHPCL
PS
VSS
32
RESET
27
VCC
126
CNVSS
P0(8)
49 50 51 52 53 54 55 56
P1(8)
41 43 45 47
42 44 46 48
P2(8)
33 35 37 39
36 38 40
P3(8)
57 59 61 63
58 60 62 64
P4(8)
20 22 24 28
21 23 25 29
P5(8)
12 14 16 18
13 15 17 19
P6(8)
46 10
59
11
334
2
XIN
30
XOUT
31
D-A
(8)
D-A
(8)
A-D
(8)
Reset input
Clock generating circuit
Clock input Clock output
Prescaler 12 (8)
Timer 1 (8)
Timer 2 (8)
I/O port P4 I/O port P0I/O port P1I/O port P2I/O port P3
I/O port P5
I/O port P6
7 8
SI/O1 (8)
INT0
INT2
INT4
Prescaler X (8) Timer X (8)
Prescaler Y (8) Timer Y (8)
converter 2 converter 1
~
SI/O2 (8)
PWM (8)
INT3
converter
1-5
HARDWARE
3802 GROUP USER'S MANUAL
PIN DESCRIPTION
Pin
VCC, VSS
CNVSS
VREF
AVSS
RESET
XIN
XOUT
P00–P07
P10–P17
P20–P27
P30/DA1,
P31/DA2
P32–P37
P40/INT4,
P41/INT0,
P42/INT1,
P43/INT2
P44/RXD,
P45/TXD,
P46/SCLK1,
P47/SRDY1
P50/SIN2,
P51/SOUT2,
P52/SCLK2,
P53/SRDY2
P54/CNTR0,
P55/CNTR1
P56/PWM
P57/INT3
P60/AN0
P67/AN7
Function
Apply voltage of 3.0 V–5.5 V to VCC, and 0 V to VSS.
(Extended operating temperature version : 4.0 V to 5.5 V)
This pin controls the operation mode of the chip.
Normally connected to VSS.
If this pin is connected to VCC, the internal ROM is inhibited and external memory is accessed.
Reference voltage input pin for A-D and D-A converters
GND input pin for A-D and D-A converters
Connect to VSS.
Reset input pin for active “L”
Input and output signals for the clock generating circuit.
Connect a ceramic resonator or quartz-crystal oscillator between the XIN and XOUT pins to set the
oscillation frequency.
If an external clock is used, connect the clock source to the XIN pin and leave the XOUT pin open.
The clock is used as the oscillating source of system clock.
8 bit CMOS I/O port
I/O direction register allows each pin to be individually programmed as either input or output.
At reset this port is set to input mode.
In modes other than single-chip, these pins are used as address, data, and control bus I/O pins.
CMOS compatible input level
CMOS 3-state output structure
8-bit CMOS I/O port with the same function as port P0
CMOS compatible input level
CMOS 3-state output structure
8-bit CMOS I/O port with the same function as port P0
CMOS compatible input level
CMOS 3-state output structure
8-bit CMOS I/O port with the same function as port P0
CMOS compatible input level
CMOS 3-state output structure
Function except a port function
D–A conversion output pins
External interrupt input pin
Serial I/O1 I/O pins
Serial I/O2 I/O pins
Timer X and Timer Y I/O pins
PWM output pin
External interrupt input pin
A-D conversion input pins
Name
Power source
CNVSS
Analog reference
voltage
Analog power
source
Reset input
Clock input
Clock output
I/O port P0
I/O port P1
I/O port P2
I/O port P3
I/O port P4
I/O port P5
I/O port P6
PIN DESCRIPTION
Table 1. Pin description
3802 GROUP USER’S MANUAL
1-6
HARDWARE
PART NUMBERING
M3802 2 M 4 - XXX SP
Product
Package type
ROM number
ROM/PROM size
: 4096 bytes
: 8192 bytes
: 12288 bytes
: 16384 bytes
: 20480 bytes
: 24576 bytes
: 28672 bytes
: 32768 bytes
The first 128 bytes and the last 2 bytes of ROM
are reserved areas ; they cannot be used.
Memory type
: Mask ROM version
: EPROM or One Time PROM version
RAM size
: 192 bytes
: 256 bytes
: 384 bytes
: 512 bytes
: 640 bytes
: 768 bytes
: 896 bytes
: 1024 bytes
Normally, using hyphen.
When electrical characteristic, or division of quality
identification code using alphanumeric character
– : standard
D : Extended operating temperature version
SP : 64P4B package
FP : 64P6N-A package
SS : 64S1B-E package
FS : 64D0 package
Omitted in some types.
1
2
3
4
5
6
7
8
M
E
0
1
2
3
4
5
6
7
Fig.4 Part numbering
PART NUMBERING
1-7
HARDWARE
3802 GROUP USER'S MANUAL
RAM size (bytes)
384
384
640
1024
Remarks
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
One Time PROM version
One Time PROM version (blank)
Mask ROM version
One Time PROM version
One Time PROM version (blank)
EPROM version
EPROM version
Package
64P4B
64P6N-A
64P4B
64P6N-A
64P4B
64P6N-A
64P4B
64P6N-A
64S1B-E
64D0
Product
M38022M2-XXXSP
M38022M2-XXXFP
M38022M4-XXXSP
M38022M4-XXXFP
M38024M6-XXXSP
M38024M6-XXXFP
M38027M8-XXXSP
M38027E8-XXXSP
M38027E8SP
M38027M8-XXXFP
M38027E8-XXXFP
M38027E8FP
M38027E8SS
M38027E8FS
(P) ROM size (bytes)
ROM size for User in ( )
8192
(8062)
GROUP EXPANSION
Mitsubishi plans to expand the 3802 group as follows:
(1) Support for mask ROM, One Time PROM, and EPROM
versions
ROM/PROM capacity................................... 8 K to 32 K bytes
RAM capacity .............................................. 384 to 1024 bytes
(2) Packages
64P4B ............................................ Shrink plastic molded DIP
64P6N-A................................................... Plastic molded QFP
64S1B-E.................................................... Shrink ceramic DIP
64D0................................................................... Ceramic LCC
Memory Expansion Plan
Currently supported products are listed below As of May 1996
16384
(16254)
24576
(24446)
32768
(32638)
M38022M2
M38022M4
M38024M6
M38027M8/E8
Mass product
Mass product
Mass product
Mass product
ROM size (bytes)
32K
28K
24K
20K
16K
12K
8K
4K
192 256 384 512 640 768 896 1024
RAM size (bytes)
GROUP EXPANSION
Fig. 5 Memory expansion plan
Table 2. List of supported products
1-8
HARDWARE
3802 GROUP USER’S MANUAL
GROUP EXPANSION
(Extended operating temperature version)
Mitsubishi plans to expand the 3802 group (extended operating
temperature version) as follows:
(1) Support for mask ROM One Time PROM, and EPROM ver-
sions
ROM/PROM capacity................................... 8 K to 32 K bytes
RAM capacity .............................................. 384 to 1024 bytes
(2) Packages
64P4B ............................................ Shrink plastic molded DIP
64P6N-A................................................... Plastic molded QFP
Memory Expansion Plan (Extended operating temperature version)
Currently supported products are listed below.
Table 3. List of supported products (Extended operating temperature version)
RAM size (bytes)
384
384
1024
8192
(8062)
16384
(16254)
32768
(32638)
Remarks
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
One Time PROM version
One Time PROM version (blank)
Mask ROM version
One Time PROM version
One Time PROM version (blank)
Package
64P4B
64P6N-A
64P4B
64P6N-A
64P4B
64P6N-A
Product
M38022M2DXXXSP
M38022M2DXXXFP
M38022M4DXXXSP
M38022M4DXXXFP
M38027M8DXXXSP
M38027E8DXXXSP
M38027E8DSP
M38027M8DXXXFP
M38027E8DXXXFP
M38027E8DFP
(P) ROM size (bytes)
M38022M2D
M38022M4D
M38027M8D/E8D
Mass product
Mass product
Mass product
ROM size (bytes)
32K
28K
24K
20K
16K
12K
8K
4K
192 256 384 512 640 768 896 1024
RAM size (bytes)
GROUP EXPANSION
Fig. 6 Memory expansion plan (Extended operating temperature version)
As of May 1996
1-9
3802 GROUP USER’S MANUAL
HARDWARE
FUNCTIONAL DESCRIPTION
FUNCTIONAL DESCRIPTION
Central Processing Unit (CPU)
The 3802 group uses the standard 740 family instruction set. Refer
to the table of 740 family addressing modes and machine instruc-
tions or the SERIES 740 <Software> User´s Manual for details on
the instruction set.
Machine-resident 740 family instructions are as follows:
The FST and SLW instructions cannot be used.
The MUL, DIV, WIT and STP instruction can be used.
The central processing unit (CPU) has the six registers.
Accumulator (A)
The accumulator is an 8-bit register. Data operations such as data
transfer, etc., are executed mainly through the accumulator.
Index register X (X), Index register Y (Y)
Both index register X and index register Y are 8-bit registers. In the
index addressing modes, the value of the OPERAND is added to the
contents of register X or register Y and specifies the real address.
When the T flag in the processor status register is set to “1”, the
value contained in index register X becomes the address for the sec-
ond OPERAND.
Stack pointer (S)
The stack pointer is an 8-bit register used during sub-routine calls
and interrupts. The stack is used to store the current address data
and processor status when branching to subroutines or interrupt rou-
tines.
The lower eight bits of the stack address are determined by the con-
tents of the stack pointer. The upper eight bits of the stack address
are determined by the Stack Page Selection Bit. If the Stack Page
Selection Bit is “0”, then the RAM in the zero page is used as the
stack area. If the Stack Page Selection Bit is “1”, then RAM in page
1 is used as the stack area.
The Stack Page Selection Bit is located in the SFR area in the zero
page. Note that the initial value of the Stack Page Selection Bit var-
ies with each microcomputer type. Also some microcomputer types
have no Stack Page Selection Bit and the upper eight bits of the
stack address are fixed. The operations of pushing register contents
onto the stack and popping them from the stack are shown in Fig.7.
Program counter (PC)
The program counter is a 16-bit counter consisting of two 8-bit registers
PCH and PCL. It is used to indicate the address of the next instruction to
be executed.
Fig. 7. 740 Family CPU register structure
b7 b0
X
b7 b0
S
b7 b0
Y
b7 b0
PC
L
Processor Status Register (PS)
Carry Flag
b7 b0
b7 b0
A
b15 PC
H
Zero Flag
Interrupt Disable Flag
Decimal Mode Flag
Break Flag
Index X Mode Flag
Overflow Flag
Negative Flag
Program Counter
Stack Pointer
Index Register Y
Index Register X
Accumulator
CZIDBTVN
1-10 3802 GROUP USER’S MANUAL
HARDWARE
FUNCTIONAL DESCRIPTION
Execute JSR
On-going Routine
M (S) (PC
H
)
(S)
(S – 1)
M (S) (PC
L
)
Execute RTS
(PC
L
) M (S)
(S)
(S – 1)
(S)
(S + 1)
(S)
(S + 1)
(PC
H
) M (S)
Subroutine
Restore Return
Address
Store Return Address
on Stack (Note 2) M (S) (PS)
Execute RTI
(PS) M (S)
(S)
(S – 1)
(S)
(S + 1)
Interrupt
Service Routine
Restore Contents of
Processor Status Register
M (S) (PC
H
)
(S)
(S – 1)
M (S) (PC
L
)
(S)
(S – 1)
(PC
L
) M (S)
(S)
(S + 1)
(S)
(S + 1)
(PC
H
) M (S)
Restore Return
Address
I Flag “0” to “1”
Fetch the Jump Vector
Store Return Address
on Stack (Note 2)
Store Contents of Processor
Status Register on Stack
Interrupt request
(Note 1)
Note 1 : The condition to enable the interrupt Interrupt enable bit is “1”
Interrupt disable flag is “0”
2 : When an interrupt occurs, the address of the next instruction to be executed is stored in
the stack area. When a subroutine is called, the address one before the next instruction
to be executed is stored in the stack area.
Accumulator
Processor status register
Push instruction to stack
PHA
PHP
Pop instruction from stack
PLA
PLP
Fig. 8. Register push and pop at interrupt generation and subroutine call
Table. 4. Push and pop instructions of accumulator or processor status register
1-11
3802 GROUP USER’S MANUAL
HARDWARE
FUNCTIONAL DESCRIPTION
Processor status register (PS)
The processor status register is an 8-bit register consisting of flags
which indicate the status of the processor after an arithmetic opera-
tion. Branch operations can be performed by testing the Carry (C)
flag, Zero (Z) flag, Overflow (V) flag, or the Negative (N) flag. In deci-
mal mode, the Z, V, N flags are not valid.
After reset, the Interrupt disable (I) flag is set to “1”, but all other flags
are undefined. Since the Index X mode (T) and Decimal mode (D)
flags directly affect arithmetic operations, they should be initialized in
the beginning of a program.
(1) Carry flag (C)
The C flag contains a carry or borrow generated by the arithmetic
logic unit (ALU) immediately after an arithmetic operation. It can
also be changed by a shift or rotate instruction.
(2) Zero flag (Z)
The Z flag is set if the result of an immediate arithmetic operation
or a data transfer is “0”, and cleared if the result is anything other
than “0”.
(3) Interrupt disable flag (I)
The I flag disables all interrupts except for the interrupt
generated by the BRK instruction.
Interrupts are disabled when the I flag is “1”.
When an interrupt occurs, this flag is automatically set to “1” to
prevent other interrupts from interfering until the current interrupt
is serviced.
(4) Decimal mode flag (D)
The D flag determines whether additions and subtractions are
executed in binary or decimal. Binary arithmetic is executed when
this flag is “0”; decimal arithmetic is executed when it is “1”.
Decimal correction is automatic in decimal mode. Only the ADC
and SBC instructions can be used for decimal arithmetic.
(5) Break flag (B)
The B flag is used to indicate that the current interrupt was
generated by the BRK instruction. The BRK flag in the processor
status register is always “0”. When the BRK instruction is used to
generate an interrupt, the processor status register is pushed
onto the stack with the break flag set to “1”. The saved processor
status is the only place where the break flag is ever set.
(6) Index X mode flag (T)
When the T flag is “0”, arithmetic operations are performed
between accumulator and memory, e.g. the results of an
operation between two memory locations is stored in the
accumulator. When the T flag is “1”, direct arithmetic operations
and direct data transfers are enabled between memory locations,
i.e. between memory and memory, memory and I/O, and I/O and
I/O. In this case, the result of an arithmetic operation performed
on data in memory location 1 and memory location 2 is stored in
memory location 1. The address of memory location 1 is
specified by index register X, and the address of memory
location 2 is specified by normal addressing modes.
(7) Overflow flag (V)
The V flag is used during the addition or subtraction of one byte
of signed data. It is set if the result exceeds +127 to -128. When
the BIT instruction is executed, bit 6 of the memory location
operated on by the BIT instruction is stored in the overflow flag.
(8) Negative flag (N)
The N flag is set if the result of an arithmetic operation or data
transfer is negative. When the BIT instruction is executed, bit 7 of
the memory location operated on by the BIT instruction is stored
in the negative flag.
Table. 5. Set and clear instructions of each bit of processor status register
Set instruction
Clear instruction
C flag Z flag I flag D flag B flag T flag V flag N flag
SEC
CLC
_
_SEI
CLI SED
CLD
_
_SET
CLT CLV
__
_
1-12 3802 GROUP USER’S MANUAL
HARDWARE
FUNCTIONAL DESCRIPTION
CPU Mode Register
The CPU mode register is allocated at address 003B16. The CPU mode
register contains the stack page selection bit.
Fig. 9. Structure of CPU mode register
CPU mode register
(
CPUM : address
003B
16
)
b7 b0
Stack page selection bit
0 : 0 page
1 : 1 page
Not used (return “0” when read)
Processor mode bits
b1 b0
0 0 : Single-chip mode
0 1 : Memory expansion mode
1 0 : Microprocessor mode
1 1 : Not available
1-13
HARDWARE
3802 GROUP USER’S MANUAL
Memory
Special function register (SFR) area
The Special Function Register area in the zero page contains con-
trol registers such as I/O ports and timers.
RAM
RAM is used for data storage and for stack area of subroutine
calls and interrupts.
ROM
The first 128 bytes and the last 2 bytes of ROM are reserved for
device testing and the rest is user area for storing programs.
Interrupt vector area
The interrupt vector area contains reset and interrupt vectors.
Zero page
The 256 bytes from addresses 000016 to 00FF16 are called the
zero page area. The internal RAM and the special function regis-
ters (SFR) are allocated to this area.
The zero page addressing mode can be used to specify memory
and register addresses in the zero page area. Access to this area
with only 2 bytes is possible in the zero page addressing mode.
Special page
The 256 bytes from addresses FF0016 to FFFF 16 are called the
special page area. The special page addressing mode can be
used to specify memory addresses in the special page area. Ac-
cess to this area with only 2 bytes is possible in the special page
addressing mode.
Fig. 10 Memory map diagram
0100
16
0000
16
0040
16
0440
16
FF00
16
FFDC
16
FFFE
16
FFFF
16
192
256
384
512
640
768
896
1024 XXXX
16
00FF
16
013F
16
01BF
16
023F
16
02BF
16
033F
16
03BF
16
043F
16
4096
8192
12288
16384
20480
24576
28672
32768
F000
16
E000
16
D000
16
C000
16
B000
16
A000
16
9000
16
8000
16
F080
16
E080
16
D080
16
C080
16
B080
16
A080
16
9080
16
8080
16
YYYY
16
ZZZZ
16
RAM
ROM
Reserved area
SFR area
Not used
Interrupt vector area
ROM area
Reserved ROM area
(128 bytes)
Zero page
Special page
RAM area
RAM capacity
(bytes) Address
XXXX
16
ROM capacity
(bytes) Address
YYYY
16
Reserved ROM area
Address
ZZZZ
16
FUNCTIONAL DESCRIPTION
3802 GROUP USER’S MANUAL
1-14
HARDWARE
Fig. 11 Memory map of special function register (SFR)
0020
16
0021
16
0022
16
0023
16
0024
16
0025
16
0026
16
0027
16
0028
16
0029
16
002A
16
002B
16
002C
16
002D
16
002E
16
002F
16
0030
16
0031
16
0032
16
0033
16
0034
16
0035
16
0036
16
0037
16
0038
16
0039
16
003A
16
003B
16
003C
16
003D
16
003E
16
003F
16
0000
16
0001
16
0002
16
0003
16
0004
16
0005
16
0006
16
0007
16
0008
16
0009
16
000A
16
000B
16
000C
16
000D
16
000E
16
000F
16
0010
16
0011
16
0012
16
0013
16
0014
16
0015
16
0016
16
0017
16
0018
16
0019
16
001A
16
001B
16
001C
16
001D
16
001E
16
001F
16
Serial I/O2 register (SIO2)
Port P0 (P0)
Port P0 direction register (P0D)
Port P1 (P1)
Port P1 direction register (P1D)
Port P2 (P2)
Port P2 direction register (P2D)
Port P3 (P3)
Port P3 direction register (P3D)
Port P4 (P4)
Port P4 direction register (P4D)
Port P5 (P5)
Port P5 direction register (P5D)
Port P6 (P6)
Port P6 direction register (P6D)
Transmit/Receive buffer register (TB/RB)
Serial I/O1 status register (SIO1STS)
Serial I/O1 control register (SIO1CON)
UART control register (UARTCON)
Baud rate generator (BRG)
Serial I/O2 control register (SIO2CON)
Interrupt control register 2(ICON2)
A-D conversion register (AD)
Prescaler Y (PREY)
Timer Y (TY)
AD/DA control register (ADCON)
D-A1 conversion register (DA1)
D-A2 conversion register (DA2)
Interrupt edge selection register
(INTEDGE)
CPU mode register (CPUM)
Interrupt request register 1(IREQ1)
Interrupt request register 2(IREQ2)
Interrupt control register 1(ICON1)
Prescaler 12 (PRE12)
Timer 2 (T2)
Prescaler X (PREX)
Timer X (TX)
Timer 1 (T1)
Timer XY mode register (TM)
PWM control register (PWMCON)
PMW prescaler (PREPWM)
PWM register (PWM)
FUNCTIONAL DESCRIPTION
1-15
HARDWARE
3802 GROUP USER’S MANUAL
Related SFRs
CPU mode register
CPU mode register
CPU mode register
AD/DA control register
CPU mode register
CPU mode register
Interrupt edge selection
register
Serial I/O1 control
register
UART control register
Serial I/O2 control
register
Timer XY mode register
PWM control register
Interrupt edge selection register
Pin
P00–P07
P10–P17
P20–P27
P30/DA1
P31/DA2
P32–P37
P40/INT4,
P41/INT0,
P43/INT2
P44/RXD,
P45/TXD,
P46/SCLK1,
P47/SRDY1
P50/SIN2,
P51/SOUT2,
P52/SCLK2,
P53/SRDY2
P54/CNTR0,
P55/CNTR1
P56/PWM
P57/INT3
P60/AN0
P67/AN7
Name
Port P0
Port P1
Port P2
Port P3
Port P4
Port P5
Port P6
Input/Output
Input/output,
individual bits
Input/output,
individual bits
Input/output,
individual bits
Input/output,
individual bits
Input/output,
individual bits
Input/output,
individual bits
Input/output,
individual bits
I/O Format
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
Non-Port Function
Address low-order byte
output
Address high-order
byte output
Data bus I/O
D-A conversion output
Control signal I/O
External interrupt input
Serial I/O1 function I/O
Serial I/O2 function I/O
Timer X and Timer Y
function I/O
PWM output
External interrupt input
A-D conversion input
Ref.No.
(1)
(2)
(1)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(3)
(14)
Table 6. list of I/O port functions
Note 1: For details of the functions of ports P0 to P3 in modes other than single-chip mode, and how to use double-function ports as func-
tion I/O ports, refer to the applicable sections.
2: Make sure that the input level at each pin is either 0 V or VCC during execution of the STP instruction.
When an input level is at an intermediate potential, a current will flow from VCC to VSS through the input-stage gate.
I/O Ports
Direction registers
The 3802 group has 56 programmable I/O pins arranged in seven
I/O ports (ports P0 to P6). The I/O ports have direction registers
which determine the input/output direction of each individual pin.
Each bit in a direction register corresponds to one pin, each pin
can be set to be input port or output port.
When “0” is written to the bit corresponding to a pin, that pin be-
comes an input pin. When “1” is written to that bit, that pin be-
comes an output pin.
If data is read from a pin which is set to output, the value of the
port output latch is read, not the value of the pin itself. Pins set to
input are floating. If a pin set to input is written to, only the port
output latch is written to and the pin remains floating.
FUNCTIONAL DESCRIPTION
3802 GROUP USER’S MANUAL
1-16
HARDWARE
Fig. 12 Port block diagram (single-chip mode) (1)
(1) Ports P0, P1, P2, P32–P37
Direction register
Data bus Port latch
(2) Ports P30, P31
(3) Ports P40–P43, P57
Direction register
Data bus Port latch
Serial I/O1 input
Serial I/O1 enable bit
Receive enable bit
(4) Port P44
(5) Port P45(6) Port P46
Direction register
Data bus Port latch
Serial I/O1 ready output
Serial I/O1 enable bit
SRDY1 output enable bit
Serial I/O1 mode selection bit
(7) Port P47(8) Port P50
Serial I/O2 input
Direction register
Data bus Port latch
D–A conversion output
DA1 output enable bit (P30)
DA2 output enable bit (P31)
Direction register
Data bus Port latch
Interrupt input
Direction register
Data bus Port latch
Serial I/O1 output
Serial I/O1 enable bit
Transmit enable bit
P45/TXD P-channel output disable bit
Direction register
Data bus Port latch
Serial I/O1 clock output
Serial I/O1 mode selection bit
Serial I/O1 enable bit
Serial I/O1 enable bit
Serial I/O1 synchronous
clock selection bit
Serial I/O1
external
clock input
Direction register
Data bus Port latch
FUNCTIONL DESCRIPTION
1-17
HARDWARE
3802 GROUP USER’S MANUAL
Fig. 13 Port block diagram (single-chip mode) (2)
(14) Port P6(13) Port P5
6
(12) Ports P5
4
, 5
5
(9) Port P5
1
(10) Port P5
2
(11) Port P5
3
Serial I/O2 transmit end signal
Serial I/O2 port selection bit
P5
1
/S
OUT2
P-channel output disable bit
Direction register
Data bus Port latch
Serial I/O2 output
Serial I/O2 external clock input
Serial I/O2
synchronous clock selection bit
Serial I/O2 port selection bit
Direction register
Data bus Port latch
Serial I/O2 clock output
Direction register
Data bus Port latch
Serial I/O2 ready output
S
RDY2
output enable bit
Direction register
Data bus Port latch
Pulse output mode
Timer output CNTR
0
, CNTR
1
Interrupt input
Direction register
Data bus Port latch
PWM output
PWM output enable bit
A-D conversion input
Direction register
Data bus Port latch
Analog input pin selection bit
FUNCTIONAL DESCRIPTION
3802 GROUP USER’S MANUAL
1-18
HARDWARE
INTERRUPTS
Interrupts occur by sixteen sources: seven external, eight internal,
and one software.
Interrupt control
Each interrupt is controlled by an interrupt request bit, an interrupt
enable bit, and the interrupt disable flag except for the software in-
terrupt set by the BRK instruction. An interrupt occurs if the corre-
sponding interrupt request and enable bits are “1” and the inter-
rupt disable flag is “0”.
Interrupt enable bits can be set or cleared by software.
Interrupt request bits can be cleared by software, but cannot be
set by software.
The BRK instruction cannot be disabled with any flag or bit. The I
(interrupt disable) flag disables all interrupts except the BRK in-
struction interrupt.
When several interrupts occur at the same time, the interrupts are
received according to priority.
Interrupt operation
When an interrupt is received, the contents of the program counter
and processor status register are automatically stored into the
stack. The interrupt disable flag is set to inhibit other interrupts
from interfering.The corresponding interrupt request bit is cleared
and the interrupt jump destination address is read from the vector
table into the program counter.
Notes on use
When the active edge of an external interrupt (INT0 to INT4,
CNTR0, or CNTR1) is changed, the corresponding interrupt re-
quest bit may also be set. Therefore, please take following se-
quence;
(1) Disable the external interrupt which is selected.
(2) Change the active edge selection.
(3) Clear the interrupt request bit which is selected to “0”.
(4) Enable the external interrupt which is selected.
Interrupt Source
Reset (Note 2)
INT0
INT1
Serial I/O1
reception
Serial I/O1
transmission
Timer X
Timer Y
Timer 1
Timer 2
CNTR0
CNTR1
Serial I/O2
INT2
INT3
INT4
A-D converter
BRK instruction
Low
FFFC16
FFFA16
FFF816
FFF616
FFF416
FFF216
FFF016
FFEE16
FFEC16
FFEA16
FFE816
FFE616
FFE416
FFE216
FFE016
FFDE16
FFDC16
High
FFFD16
FFFB16
FFF916
FFF716
FFF516
FFF316
FFF116
FFEF16
FFED16
FFEB16
FFE916
FFE716
FFE516
FFE316
FFE116
FFDF16
FFDD16
Table 7. Interrupt vector addresses and priority
Priority
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Interrupt Request
Generating Conditions
At reset
At detection of either rising or
falling edge of INT0 input
At detection of either rising or
falling edge of INT1 input
At completion of serial I/O1
data reception
At completion of serial I/O1
transfer shift or when
transmission buffer is empty
At timer X underflow
At timer Y underflow
At timer 1 underflow
At timer 2 underflow
At detection of either rising or
falling edge of CNTR0 input
At detection of either rising or
falling edge of CNTR1 input
At completion of serial I/O2
data transfer
At detection of either rising or
falling edge of INT2 input
At detection of either rising or
falling edge of INT3 input
At detection of either rising or
falling edge of INT4 input
At completion of A-D conversion
At BRK instruction execution
Remarks
Non-maskable
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
Valid when serial I/O1 is selected
Valid when serial I/O1 is selected
STP release timer underflow
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
Valid when serial I/O2 is selected
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
Non-maskable software interrupt
Note 1: Vector addresses contain interrupt jump destination addresses.
2: Reset function in the same way as an interrupt with the highest priority.
Vector Addresses (Note 1)
FUNCTIONAL DESCRIPTION
1-19
HARDWARE
3802 GROUP USER’S MANUAL
Fig. 14 Interrupt control
Fig. 15 Structure of interrupt-related registers
FUNCTIONAL DESCRIPTION
b7 b0
b7 b0
b7 b0
b7 b0
b7 b0
Interrupt edge selection register
INT
0
active edge selection bit
INT
1
active edge selection bit
Not used (returns “0” when read)
INT
2
active edge selection bit
INT
3
active edge selection bit
INT
4
active edge selection bit
Not used (returns “0” when read)
(INTEDGE : address 003A
16
)
Interrupt request register 1
INT
0
interrupt request bit
INT
1
interrupt request bit
Serial I/O1 receive interrupt request bit
Serial I/O1 transmit interrupt request bit
Timer X interrupt request bit
Timer Y interrupt request bit
Timer 1 interrupt request bit
Timer 2 interrupt request bit
Interrupt control register 1
INT
0
interrupt enable bit
INT
1
interrupt enable bit
Serial I/O1 receive interrupt enable bit
Serial I/O1 transmit interrupt enable bit
Timer X interrupt enable bit
Timer Y interrupt enable bit
Timer 1 interrupt enable bit
Timer 2 interrupt enable bit
0 : No interrupt request issued
1 : Interrupt request issued
(IREQ1 : address 003C
16
)
(ICON1 : address 003E
16
)
Interrupt request register 2
CNTR
0
interrupt request bit
CNTR
1
interrupt request bit
Serial I/O2 interrupt request bit
INT
2
interrupt request bit
INT
3
interrupt request bit
INT
4
interrupt request bit
AD converter interrupt request bit
Not used (returns “0” when read)
(IREQ2 : address 003D
16
)
Interrupt control register 2
CNTR
0
interrupt enable bit
CNTR
1
interrupt enable bit
Serial I/O2 interrupt enable bit
INT
2
interrupt enable bit
INT
3
interrupt enable bit
INT
4
interrupt enable bit
AD converter interrupt enable bit
Not used (returns “0” when read)
(Do not write “1” to this bit)
0 : Interrupts disabled
1 : Interrupts enabled
(ICON2 : address 003F
16
)
0 : Falling edge active
1 : Rising edge active
Interrupt disable flag (I)
Interrupt request
Interrupt request bit
Interrupt enable bit
BRK instruction
Reset
3802 GROUP USER’S MANUAL
1-20
HARDWARE
Timer X count stop bit
0: Count start
1: Count stop
Timer XY mode register
(TM : address 0023
16)
Timer Y operating mode bit
0 0: Timer mode
0 1: Pulse output mode
1 0: Event counter mode
1 1: Pulse width measurement mode
CNTR
1
active edge switch bit
0: Interrupt at falling edge
Count at rising edge in event
counter mode
1: Interrupt at rising edge
Count at falling edge in event
counter mode
b7
CNTR
0
active edge switch bit
0: Interrupt at falling edge
Count at rising edge in event
counter mode
1: Interrupt at rising edge
Count at falling edge in event
counter mode
b0
Timer X operating mode bit
0 0: Timer mode
0 1: Pulse output mode
1 0: Event counter mode
1 1: Pulse width measurement mode
b1b0
b4b5
Timer Y count stop bit
0: Count start
1: Count stop
Timers
The 3802 group has four timers: timer X, timer Y, timer 1, and timer
2.
All timers are count down. When the timer reaches “0016”, an un-
derflow occurs at the next count pulse and the corresponding
timer latch is reloaded into the timer and the count is continued.
When a timer underflows, the interrupt request bit corresponding
to that timer is set to “1”.
The division ratio of each timer or prescaler is given by 1/(n + 1),
where n is the value in the corresponding timer or prescaler latch.
Timer 1 and Timer 2
The count source of prescaler 12 is the oscillation frequency di-
vided by 16. The output of prescaler 12 is counted by timer 1 and
timer 2, and a timer underflow sets the interrupt request bit.
Timer X and Timer Y
Timer X and Timer Y can each be selected in one of four operating
modes by setting the timer XY mode register.
Timer Mode
The timer counts f(XIN)/16 in timer mode.
Pulse Output Mode
Timer X (or timer Y) counts f(XIN)/16. Whenever the contents of
the timer reach “0016”, the signal output from the CNTR0 (or
CNTR1) pin is inverted. If the CNTR0 (or CNTR1) active edge
switch bit is “0”, output begins at “ H”.
If it is “1”, output starts at “L”. When using a timer in this mode, set
the corresponding port P54 ( or port P55) direction register to out-
put mode.
Event Counter Mode
Operation in event counter mode is the same as in timer mode,
except the timer counts signals input through the CNTR0 or
CNTR1 pin.
Pulse Width Measurement Mode
If the CNTR0 (or CNTR1) active edge selection bit is “0”, the timer
counts at the oscillation frequency divided by 16 while the CNTR0
(or CNTR1) pin is at “H”. If the CNTR0 (or CNTR1) active edge
switch bit is “1”, the count continues during the time that the
CNTR0 (or CNTR1) pin is at “L”.
In all of these modes, the count can be stopped by setting the
timer X (timer Y) count stop bit to “1”. Every time a timer
underflows, the corresponding interrupt request bit is set.
Fig. 16 Structure of timer XY register
FUNCTIONAL DESCRIPTION
1-21
HARDWARE
3802 GROUP USER’S MANUAL
Fig. 17 Block diagram of timer X, timer Y, timer 1, and timer 2
Timer X latch (8)
Timer X (8)
Prescaler X latch (8)
Prescaler X (8)
Oscillator Divider
f(XIN)1/16
CNTR0 active
edge switch bit
P54/CNTR0 pin
Port P54
direction register
“0”
“1”
Event
counter
mode Timer X count stop bit
CNTR0 active
edge switch
bit
Port P54
latch
Pulse output
mode
Pulse width
measurement
mode
Timer mode
Pulse output
mode
“1”
“0”
Timer X latch write pulse
Pulse output mode
To timer X interrupt
request bit
To CNTR0 interrupt
request bit
Data bus
Timer Y latch (8)
Timer Y (8)
Prescaler Y latch (8)
Prescaler Y (8)
CNTR1 active
edge switch bit
P55/CNTR1 pin
Port P55
direction register
“0”
“1”
Event
counter
mode Timer Y count stop bit
CNTR1 active
edge switch
bit
Port P55
latch
Pulse output
mode
Pulse width
measurement
mode
Timer mode
Pulse output
mode
“1”
“0”
Timer Y latch write pulse
Pulse output mode
To timer Y interrupt
request bit
To CNTR1 interrupt
request bit
Data bus
Q
QR
Toggle flip- flop T
Q
QR
Toggle flip- flop T
Timer 2 latch (8) Timer 1 latch (8)
Prescaler
12 latch (8)
Prescaler 12 (8) Timer 2 (8)Timer 1 (8)
Data bus
To timer 2 interrupt
request bit
To timer 1 interrupt
request bit
FUNCTIONAL DESCRIPTION
3802 GROUP USER’S MANUAL
1-22
HARDWARE
Serial I/O
Serial I/O1
Serial I/O1 can be used as either clock synchronous or asynchro-
nous (UART) serial I/O. A dedicated timer is also provided for
baud rate generation.
Clock synchronous serial I/O mode
Clock synchronous serial I/O1 mode can be selected by setting
the mode selection bit of the serial I/O1 control register to “1”.
For clock synchronous serial I/O1, the transmitter and the receiver
must use the same clock. If an internal clock is used, transfer is
started by a write signal to the TB/RB (address 001816).
Fig. 18 Block diagram of clock synchronous serial I/O1
Fig. 19 Operation of clock synchronous serial I/O1 function
FUNCTIONAL DESCRIPTION
1/4
X
IN
1/4
F/F
P4
6
/S
CLK1
Serial I/O1 status register
Serial I/O1 control register
P4
7
/S
RDY1
P4
4
/R
X
D
P4
5
/T
X
D
f(X
IN
)
Receive buffer
Address 0018
16
Receive shift register
Receive buffer full flag (RBF)
Receive interrupt request (RI)
Clock control circuit
Shift clock
Serial I/O1 synchronous
clock selection bit
Frequency division ratio 1/(n+1)
Baud rate generator
Address 001C
16
BRG count source selection bit
Clock control circuit
Falling-edge detector
Transmit buffer
Data bus Address 0018
16
Shift clock Transmit shift completion flag (TSC)
Transmit buffer empty flag (TBE)
Transmit interrupt request (TI)
Transmit interrupt source selection bit
Address 0019
16
Data bus
Address 001A
16
Transmit shift register
D7
D7
D0D1D2D3D4D5D6
D0D1D2D3D4D5D6
RBF = 1
TSC = 1
TBE = 0 TBE = 1
TSC = 0
Transfer shift clock
(1/2 to 1/2048 of the internal
clock, or an external clock)
Serial output TxD
Serial input RxD
Write pulse to receive/transmit
buffer (address 001816)
Overrun error (OE)
detection
Notes 1 : The transmit interrupt (TI) can be selected to occur either when the transmit buffer has emptied (TBE=1) or after the
transmit shift operation has ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the serial I/O1
control register.
2 : If data is written to the transmit buffer when TSC=0, the transmit clock is generated continuously and serial data is
output continuously from the TxD pin.
3 : The receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes “1” .
Receive enable signal SRDY1
1-23
HARDWARE
3802 GROUP USER’S MANUAL
Asynchronous serial I/O (UART) mode
Clock asynchronous serial I/O mode (UART) can be selected by
clearing the serial I/O mode selection bit of the serial I/O control
register to “0”.
Eight serial data transfer formats can be selected, and the transfer
formats used by a transmitter and receiver must be identical.
The transmit and receive shift registers each have a buffer, but the
two buffers have the same address in memory. Since the shift reg-
ister cannot be written to or read from directly, transmit data is
written to the transmit buf fer, and receive data is read from the re-
ceive buf fer.
The transmit buffer can also hold the next data to be transmitted,
and the receive buffer can hold a character while the next charac-
ter is being received.
Fig. 20 Block diagram of UART serial I/O
FUNCTIONAL DESCRIPTION
f(X
IN
)
1/4
OE
PE FE
1/16
1/16
Data bus
Receive buffer
Address 0018
16
Receive shift register
Receive buffer full flag (RBF)
Receive interrupt request (RI)
Baud rate generator
Frequency division ratio 1/(n+1)
Address 001C
16
ST/SP/PA generator
Transmit buffer
Data bus
Transmit shift register
Address
0018
16
Transmit shift completion flag (TSC)
Transmit buffer empty flag (TBE)
Transmit interrupt request (TI)
Address
0019
16
STdetector
SP detector UART control register
Address 001B
16
Character length selection bit
Address 001A
16
BRG count source selection bit
Transmit interrupt source selection bit
Serial I/O1 synchronous clock selection bit
Clock control circuit
Character length selection bit
7 bits
8 bits
Serial I/O1 control register
P4
6
/S
CLK1
Serial I/O1 status register
P4
4
/R
X
D
P4
5
/T
X
D
3802 GROUP USER’S MANUAL
1-24
HARDWARE
Fig. 21 Operation of UART serial I/O function
Serial I/O1 control register (SIO1CON) 001A16
The serial I/O control register consists of eight control bits for the
serial I/O function.
UART control register (UARTCON) 001B16
The UART control register consists of four control bits (bits 0 to 3)
which are valid when asynchronous serial I/O is selected and set
the data format of an data transfer. One bit in this register (bit 4) is
always valid and sets the output structure of the P45/TXD pin.
Serial I/O1 status register (SIO1STS) 001916
The read-only serial I/O1 status register consists of seven flags
(bits 0 to 6) which indicate the operating status of the serial I/O
function and various errors.
Three of the flags (bits 4 to 6) are valid only in UART mode.
The receive buffer full flag (bit 1) is cleared to “0” when the receive
buffer is read.
If there is an error, it is detected at the same time that data is
transferred from the receive shift register to the receive buffer, and
the receive buffer full flag is set. A write to the serial I/O status reg-
ister clears all the error flags OE, PE, FE, and SE (bit 3 to bit 6, re-
spectively). Writing “0” to the serial I/O enable bit SIOE (bit 7 of
the Serial I/O Control Register) also clears all the status flags, in-
cluding the error flags.
All bits of the serial I/O1 status register are initialized to “0” at re-
set, but if the transmit enable bit (bit 4) of the serial I/O control reg-
ister has been set to “1”, the transmit shift completion flag (bit 2)
and the transmit buffer empty flag (bit 0) become “1”.
Transmit buffer/Receive buffer register (TB/
RB) 001816
The transmit buffer and the receive buffer are located at the same
address. The transmit buffer is write-only and the receive buffer is
read-only. If a character bit length is 7 bits, the MSB of data stored
in the receive buffer is “0”.
Baud rate generator (BRG) 001C16
The baud rate generator determines the baud rate for serial trans-
fer.
The baud rate generator divides the frequency of the count source
by 1/(n + 1), where n is the value written to the baud rate genera-
tor.
FUNCTIONAL DESCRIPTION
TSC=0
TBE=1
RBF=0
TBE=0 TBE=0
RBF=1 RBF=1
ST
D
0
D
1
SP D
0
D
1
ST SP
TBE=1 TSC=1
ST
D
0
D
1
SP D
0
D
1
ST SP
Transmit or receive clock
Transmit buffer write
signal
Generated at 2nd bit in 2-stop-bit mode
1 start bit
7 or 8 data bit
1 or 0 parity bit
1 or 2 stop bit (s)
1: Error flag detection occurs at the same time that the RBF flag becomes "1" (at 1st stop bit, during reception).
2: The transmit interrupt (TI) can be selected to occur when either the TBE or TSC flag becomes "1", depending on the setting of the transmit interrupt
source selection bit (TIC) of the serial I/O control register.
3: The receive interrupt (RI) is set when the RBF flag becomes "1".
4: After data is written to the transmit buffer when TSC=1, 0.5 to 1.5 cycles of the data shift cycle is necessary until changing to TSC=0.
Notes
Serial output T
X
D
Serial input R
X
D
Receive buffer read
signal
1-25
HARDWARE
3802 GROUP USER’S MANUAL
b7
b7
Transmit buffer empty flag (TBE)
0: Buffer full
1: Buffer empty
Receive buffer full flag (RBF)
0: Buffer empty
1: Buffer full
Transmit shift completion flag (TSC)
0: Transmit shift in progress
1: Transmit shift completed
Overrun error flag (OE)
0: No error
1: Overrun error
Parity error flag (PE)
0: No error
1: Parity error
Framing error flag (FE)
0: No error
1: Framing error
Summing error flag (SE)
0: (OE) U (PE) U (FE)=0
1: (OE) U (PE) U (FE)=1
Not used (returns "1" when read)
Serial I/O1 status register
(SIO1STS : address 0019
16
) Serial I/O1 control register
(SIO1CON : address 001A
16
)
b0 b0
BRG count source selection bit (CSS)
0: f(X
IN
)
1: f(X
IN
)/4
Serial I/O1 synchronous clock selection bit (SCS)
0: BRG output divided by 4 when clock synchronous
serial I/O is selected, BRG output divided by 16
when UART is selected.
1: External clock input when clock synchronous serial
I/O is selected, external clock input divided by 16
when UART is selected.
S
RDY1
output enable bit (SRDY)
0: P4
7
pin operates as ordinaly I/O pin
1: P4
7
pin operates as S
RDY1
output pin
Transmit interrupt source selection bit (TIC)
0: Interrupt when transmit buffer has emptied
1: Interrupt when transmit shift operation is completed
Transmit enable bit (TE)
0: Transmit disabled
1: Transmit enabled
Receive enable bit (RE)
0: Receive disabled
1: Receive enabled
Serial I/O1 mode selection bit (SIOM)
0: Asynchronous serial I/O (UART)
1: Clock synchronous serial I/O
Serial I/O enable bit (SIOE)
0: Serial I/O disabled
(pins P4
4
to P4
7
operate as ordinary I/O pins)
1: Serial I/O enabled
(pins P4
4
to P4
7
operate as serial I/O pins)
b7
UART control register
(UARTCON : address 001B
16
)
Character length selection bit (CHAS)
0: 8 bits
1: 7 bits
Parity enable bit (PARE)
0: Parity checking disabled
1: Parity checking enabled
Parity selection bit (PARS)
0: Even parity
1: Odd parity
Stop bit length selection bit (STPS)
0: 1 stop bit
1: 2 stop bits
P4
5
/T
X
D P-channel output disable bit (POFF)
0: CMOS output (in output mode)
1: N-channel open drain output (in output mode)
Not used (return "1" when read)
b0
Fig. 22 Structure of serial I/O control registers
FUNCTIONAL DESCRIPTION
3802 GROUP USER’S MANUAL
1-26
HARDWARE
Serial I/O2
The serial I/O2 function can be used only for clock synchronous
serial I/O.
For clock synchronous serial I/O the transmitter and the receiver
must use the same clock. If the internal clock is used, transfer is
started by a write signal to the serial I/O2 register.
Serial I/O2 control register (SIO2CON) 001D16
The serial I/O2 control register contains seven bits which control
various serial I/O functions.
Fig. 23 Structure of serial I/O2 control register
Fig. 24 Block diagram of serial I/O2 function
FUNCTIONAL DESCRIPTION
X
IN
"1"
"0"
"0"
"1"
"0"
"1"
S
RDY2
S
CLK2
"0"
"1"
1/8
1/16
1/32
1/64
1/128
1/256
Data bus
Serial I/O2
interrupt request
Serial I/O2 port selection bit
Serial I/O counter 2 (3)
Serial I/O shift register 2 (8)
Synchronization circuit
Serial I/O2 port selection bit
Serial I/O2 synchronous
clock selection bit
S
RDY2
output enable bit
External clock
Internal synchronous
clock selection bits
Divider
P5
3
latch
P5
3
/S
RDY2
P5
2
/S
CLK2
P5
1
/S
OUT2
P5
0
/S
IN2
P5
2
latch
P5
1
latch
Serial I/O2 control register
(SIO2CON : address 001D
16
)
b7
Internal synchronous clock selection bits
0 0 0: f(X
IN
)/8
0 0 1: f(X
IN
)/16
0 1 0: f(X
IN
)/32
0 1 1: f(X
IN
)/64
1 1 0: f(X
IN
)/128
1 1 1: f(X
IN
)/256
Serial I/O2 port selection bit (SM2
3
)
0: I/O port
1: S
OUT2
,S
CLK2
output pin
S
RDY2
output enable bit (SM2
4
)
0: I/O port
1: S
RDY2
output pin
Transfer direction selection bit (SM2
5
)
0: LSB first
1: MSB first
Serial I/O2 synchronous clock selection bit (SM2
6
)
0: External clock
1: Internal clock
P5
1
/S
OUT2
P-channel output disable bit
0: CMOS output (in output mode)
1: N-channel open-drain output (in output mode)
b0
b2 b1 b0
1-27
HARDWARE
3802 GROUP USER’S MANUAL
Fig. 25 Timing of serial I/O2 function
FUNCTIONAL DESCRIPTION
D7D0D1D2D3D4D5D6
Transfer clock (Note 1)
Serial I/O2 output SOUT2
Serial I/O2 input SIN2
Receive enable signal SRDY2
Serial I/O2 register
write signal
(Note 2)
Serial I/O2 interrupt request bit set
1: When the internal clock is selected as the transfer clock, the divide ratio can be selected by setting bits 0 to 2 of the serial
I/O2 control register.
2: When the internal clock is selected as the transfer clock, the SOUT2 pin goes to high impedance after transfer completion.
Notes
3802 GROUP USER’S MANUAL
1-28
HARDWARE
Data bus
Count source
selection bit
“0”
“1”
PWM
prescaler pre-latch PWM
register pre-latch
PWM
prescaler latch PWM
register latch
Transfer control circuit
PWM register
1/2
XIN
Port P56 latch
PWM enable bit
Port P56
PWM prescaler
PULSE WIDTH MODULATION (PWM)
The 3802 group has a PWM function with an 8-bit resolution,
based on a signal that is the clock input XIN or that clock input di-
vided by 2.
Data Setting
The PWM output pin also functions as port P56. Set the PWM pe-
riod by the PWM prescaler, and set the period during which the
output pulse is an “H” by the PWM register.
If the value in the PWM prescaler is n and the value in the PWM
register is m (where n = 0 to 255 and m = 0 to 255) :
PWM period = 255 (n+1)/f(XIN)
= 51 (n+1) µs (when X IN = 5 MHz)
Output pulse “H” period = PWM period m/255
= 0.2 (n+1) m µs
(when XIN = 5 MHz)
PWM Operation
When bit 0 (PWM enable bit) of the PWM control register is set to
“1”, operation starts by initializing the PWM output circuit, and
pulses are output starting at an “H”.
If the PWM register or PWM prescaler is updated during PWM
output, the pulses will change in the cycle after the one in which
the change was made.
Fig. 26 Timing of PWM cycle
Fig. 27 Block diagram of PWM function
51 m (n+1)
255 µs
T = [51 (n+1)] µs
PWM output
m: Contents of PWM register
n : Contents of PWM prescaler
T : PWM cycle (when X
IN
= 5 MHz)
FUNCTIONAL DESCRIPTION
1-29
HARDWARE
3802 GROUP USER’S MANUAL
ABC
B
T
C
T2
=
PWM output
PWM register
write signal
PWM prescaler
write signal
(Changes from “A” to “B” during “H” period)
(Changes from “T” to “T2” during PWM period)
When the contents of the PWM register or PWM prescaler have changed, the PWM
output will change from the next period after the change.
TTT2
Fig. 28 Structure of PWM control register
Fig. 29 PWM output timing when PWM register or PWM prescaler is changed
PWM control register
(PWMCON : address 002B
16
)
PWM function enable bit
Count source selection bit
Not used (return “0” when read)
b7 b0
0: PWM disabled
1: PWM enabled
0: f(X
IN
)
1: f(X
IN
)/2
FUNCTIONAL DESCRIPTION
3802 GROUP USER’S MANUAL
1-30
HARDWARE
A-D Converter
The functional blocks of the A-D converter are described below.
[A-D conversion register]
The A-D conversion register is a read-only register that stores the
result of an A-D conversion. When reading this register during an
A-D conversion, the previous conversion result is read.
[AD/DA control register]
The AD/DA control register controls the A-D conversion process.
Bits 0 to 2 select a specific analog input pin. Bit 3 signals the
completion of an A-D conversion. The value of this bit remains at
“0” during an A-D conversion, and changes to “1” when an A-D
conversion ends. Writing “0” to this bit starts the A-D conversion.
Bits 6 and 7 are used to control the output of the D-A converter.
[Comparison voltage generator]
The comparison voltage generator divides the voltage between
AVSS and VREF into 256, and outputs the divided voltages.
[Channel selector]
The channel selector selects one of the ports P60/AN0 to P67/AN7,
and inputs the voltage to the comparator.
Fig.30 Structure of AD/DA control register
Fig. 31 Block diagram of A-D converter
[Comparator and Control circuit]
The comparator and control circuit compares an analog input volt-
age with the comparison voltage, then stores the result in the A-D
conversion register. When an A-D conversion is complete, the
control circuit sets the AD conversion completion bit and the AD
interrupt request bit to “1”.
Note that the comparator is constructed linked to a capacitor, so
set f(XIN) to 500 kHz or more during an A-D conversion.
AD/DA control register
(ADCON : address 003416)
Analog input pin selection bits
0 0 0: P60/AN0
0 0 1: P61/AN1
0 1 0: P62/AN2
0 1 1: P63/AN3
1 0 0: P64/AN4
1 0 1: P65/AN5
1 1 0: P66/AN6
1 1 1: P67/AN7
AD conversion completion bit
0: Conversion in progress
1: Conversion completed
Not used (return "0" When read)
DA1 output enable bit
0: DA1 output disabled
1: DA1 output enabled
DA2 output enable bit
0: DA2 output disabled
1: DA2 output enabled
b7 b0
b2 b1 b0
Channel selector
A-D control circuit
A-D conversion register
Resistor ladder
V
REF
AV
SS
Comparator
A-D interrupt request
b7 b0
3
8
P6
0
/AN
0
P6
1
/AN
1
P6
2
/AN
2
P6
3
/AN
3
P6
4
/AN
4
P6
5
/AN
5
P6
6
/AN
6
P6
7
/AN
7
Data bus
(Address 0035
16
)
AD/DA control register
(Address 0034
16
)
FUNCTIONAL DESCRIPTION
1-31
HARDWARE
3802 GROUP USER’S MANUAL
D-A Converter
The 3802 group has two internal D-A converters (DA1 and DA2)
with 8-bit resolutions.
The D-A converter is performed by setting the value in the D-A
conversion register. The result of D-A converter is output from the
DA1 or DA2 pin by setting the DA output enable bit to “1”.
When using the D-A converter, the corresponding port direction
register bit (P30/DA1 or P31/DA2) should be set to “0” (input sta-
tus).
The output analog voltage V is determined by the value n (base
10) in the D-A conversion register as follows:
V = VREF n/256 (n = 0 to 255)
Where VREF is the reference voltage.
At reset, the D-A conversion registers are cleared to “0016”, the DA
output enable bits are cleared to “0”, and the P30/DA1 and P31/
DA2 pins are set to input (high impedance).
The D-A output is not buffered, so connect an external buffer when
driving a low-impedance load.
Set VCC to 3.0 V or more when using the D-A converter.
Fig. 32 Block diagram of D-A converter
Fig. 33 Equivalent connection circuit of D-A converter
P3
0
/DA
1
D-A1 conversion register (8)
R-2R resistor ladder DA
1
output enable bit
P3
1
/DA
2
D-A2 conversion register (8)
R-2R resistor ladder DA
2
output enable bit
Data bus
FUNCTIONAL DESCRIPTION
AV
SS
V
REF
"0"
"1"
MSB
"0" "1"
R
2R
R
2R
R
2R
R
2R
R
2R
R
2R
R
2R 2R
LSB
2R
P3
0
/DA1
D-A1
conversion
register
DA
1
output enable bit
3802 GROUP USER’S MANUAL
1-32
HARDWARE
Note. : Undefined
: The initial values of CM1 are determined by the level at the
CNVSS pin.
The contents of all other registers and RAM are undefined
after a reset, so they must be initialized by software.
Register contents
(000116) · · ·
Prescaler X
Port P0 direction register
Port P1 direction register
Port P2 direction register
Port P3 direction register
Port P4 direction register
Port P5 direction register
Port P6 direction register
Serial I/O1 status register
Serial I/O1 control register
Timer X
UART control register
Serial I/O2 control register
Prescaler 12
Timer 1
Timer XY mode register
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(000316) · · ·
(000516) · · ·
(000716) · · ·
(000916) · · ·
(000B16) · · ·
(000D16) · · ·
(001916) · · ·
(001A16) · · ·
(001B16) · · ·
(001D16) · · ·
(002016) · · ·
(002116) · · ·
(002216) · · ·
(002316) · · ·
(002416) · · ·
(002516) · · ·
(002616) · · ·
(002716) · · ·
(002B16) · · ·
(003416) · · ·
(003616) · · ·
(003716) · · ·
(003A16) · · ·
(003B16) · · ·
(003C16) · · ·
(003D16) · · ·
(003E16) · · ·
Address
Timer 2
Prescaler Y
Timer Y
PWM control register
AD/DA control register
D-A1 conversion register
D-A2 conversion register
Interrupt edge selection register
CPU mode register
Interrupt request register 1
Interrupt request register 2
Interrupt control register 1
Interrupt control register 2
Processor status register
Program counter
0016
0016
0016
0016
0016
0016
0016
FF16
FF16
FF16
FF16
0016
FF16
0116
0016
0016
0016
111000 00
0016
0016
0016
Contents of address FFFC16
✕✕✕✕✕1
(PS)
(PCH)
(PCL)
Contents of address FFFD16
0016
0016
0016
(003F16) · · ·
100000 00
FF16
000010 00
0016
000000 0
Reset Circuit
To reset the microcomputer, the RESET pin should be held at an
“L” level for 2 µs or more. Then the RESET pin is returned to an “H”
level (the power source voltage should be between 4.0 V and 5.5
V), reset is released. Internal operation begin until after 8 to 13 XIN
clock cycles are completed. After the reset is completed, the pro-
gram starts from the address contained in address FFFD16 (high-
order byte) and address FFFC16 (low-order byte).
Make sure that the reset input voltage is less than 0.6 V for VCC of
3.0 V (Extended operating temperature version : the reset input
voltage is less than 0.8 V for VCC of 4.0 V).
Fig. 35 Internal status of microcomputer after reset
Fig. 34 Example of reset circuit
FUNCTIONAL DESCRIPTION
4.0V
0.8V
0V
0V
V
CC
RESET
Power source
voltage
Reset input
voltage
V
SS
M51953AL 4
5
1
30.1 µ F
3802 group
1-33
HARDWARE
3802 GROUP USER’S MANUAL
Fig. 36 Timing of reset
FUNCTIONAL DESCRIPTION
RESET
Data
φ
Address
SYNC
X
IN
: 8 to 13 clock cycles
X
IN
???? ?FFFC FFFD AD
H
, AD
L
??? ??AD
L
AD
H
1: f(X
IN
) and f(φ) are in the relationship: f(X
IN
)=2
f(φ).
2: A question mark (?) indicates an undefined status that depends on the previous status.
Reset address from the vector table
Notes
?
?
RESET
OUT
(internal reset)
3802 GROUP USER’S MANUAL
1-34
HARDWARE
Clock Generating Circuit
An oscillation circuit can be formed by connecting a resonator be-
tween XIN and XOUT. To supply a clock signal externally, input it to
the XIN pin and make the XOUT pin open.
Oscillation control
Stop Mode
If the STP instruction is executed, the internal clock φ stops at an
“H”. Timer 1 is set to “0116” and prescaler 12 is set to “FF16”.
Oscillator restarts when an external interrupt is received, but the
internal clock φ remains at an “H” until timer 1 underflow.
This allows time for the clock circuit oscillation to stabilize.
If oscillator is restarted by a reset, no wait time is generated, so
keep the RESET pin at an “L” level until oscillation has stabilized.
Wait Mode
If the WIT instruction is executed, the internal clock φ stops at an
“H” level, but the oscillator itself does not stop. The internal clock
restarts if a reset occurs or when an interrupt is received.
Since the oscillator does not stop, normal operation can be started
immediately after the clock is restarted.
To ensure that interrupts will be received to release the STP or
WIT state, interrupt enable bits must be set to “1” before the STP
or WIT instruction is executed.
When the STP status is released, prescaler 12 and timer 1 will
start counting and reset will not be released until timer 1
underflows, so set the timer 1 interrupt enable bit to “0” before the
STP instruction is executed.
Fig. 39 Block diagram of clock generating circuit
Fig. 38 External clock input circuit
Fig. 37 Ceramic resonator circuit
FUNCTIONAL DESCRIPTION
COUT
XIN XOUT
CIN
X
IN
X
OUT
Open
External oscillation
circuit Vss
Vcc
1/8
X
OUT
X
IN
R
SQ
STP instruction WIT
instruction R
SQ
R
S
QReset
STP instruction
Timer 1
ONW
control
Prescaler 12
1/2
φ output
Internal clock φ
Rd
Rf
ONW pin
Single-chip mode
Reset
Interrupt request
Interrupt disable
flag (I)
FF
16
01
16
Reset or STP instruction
1-35
HARDWARE
3802 GROUP USER’S MANUAL
Processor Modes
Single-chip mode, memory expansion mode, and microprocessor
mode can be selected by changing the contents of the processor
mode bits CM0 and CM1 (bits 0 and 1 of address 003B16). In
memory expansion mode and microprocessor mode, memory can
be expanded externally through ports P0 to P3. In these modes,
ports P0 to P3 lose their I/O port functions and become bus pins.
Fig. 40 Memory maps in various processor modes
Fig. 41 Structure of CPU mode register
Single-Chip Mode
Select this mode by resetting the microcomputer with CNV SS con-
nected to VSS.
Memory Expansion Mode
Select this mode by setting the processor mode bits to “01” in soft-
ware with CNVSS connected to VSS. This mode enables external
memory expansion while maintaining the validity of the internal
ROM. Internal ROM will take precedence over external memory if
addresses conflict.
Microprocessor Mode
Select this mode by resetting the microcomputer with CNV SS con-
nected to VCC, or by setting the processor mode bits to “10” in
software with CNVSS connected to VSS. In microprocessor mode,
the internal ROM is no longer valid and external memory must be
used.
Port Name
Port P0
Port P1
Port P2
Port P3
Function
Outputs low-order byte of address.
Outputs high-order byte of address.
Operates as I/O pins for data D7 to D0
(including instruction codes).
P30 and P31 function only as output pins
(except that the port latch cannot be read).
P32 is the ONW input pin.
P33 is the RESETOUT output pin. (Note)
P34 is the φ output pin.
P35 is the SYNC output pin.
P36 is the WR output pin, and P37 is the
RD output pin.
Note: If CNV SS is connected to VSS, the microcomputer goes to
single-chip mode after a reset, so this pin cannot be used
as the RESETOUT output pin.
Table 8. Functions of ports in memory expansion mode and
microprocessor mode
0000
16
0040
16
0008
16
0000
16
YYYY
16
FFFF
16
0008
16
0040
16
FFFF
16
Internal RAM
reserved area
Internal ROM
Memory expansion mode
The shaded areas are external memory areas.
SFR area
:
YYYY
16
is the start address of internal ROM.
SFR area
Microprocessor mode
Internal RAM
reserved area
0440
16
0440
16
b0
CPU mode register
(CPUM : address 003B
16
)
Processor mode bits
0 0 : Single-chip mode
0 1 : Memory expansion mode
1 0 : Microprocessor mode
1 1 : Not available
Stack page selection bit
0 : 0 page
1 : 1 page
b7
Not used (return “0” when read)
b1 b0
FUNCTIONAL DESCRIPTION
3802 GROUP USER’S MANUAL
1-36
HARDWARE
Bus control with memory expansion
The 3802 group has a built-in ONW function to facilitate access to
external memory and I/O devices in memory expansion mode or
microprocessor mode.
If an “L” level signal is input to the ONW pin when the CPU is in a
read or write state, the corresponding read or write cycle is ex-
tended by one cycle of φ. During this extended period, the RD or
WR signal remains at “L”. This extension period is valid only for
writing to and reading from addresses 000016 to 000716 and
044016 to FFFF16 in microprocessor mode, 044016 to YYYY16 in
memory expansion mode, and only read and write cycles are ex-
tended.
Fig. 42 ONW function timing
FUNCTIONAL DESCRIPTION
φ
Read cycle Write cycle
Dummy cycle Write cycle Read cycle Dummy cycle
AD
15
to AD
0
Period during which ONW input signal is received
During this period, the ONW signal must be fixed at either “H” or “L”. At all other times, the input level of the ONW
signal has no affect on operations.
The bus cycles is not extended for an address in the area 0008
16
to 043F
16,
regardless of whether the ONW signal
is received.
:
✽✽
ONW
WR
RD
1-37
HARDWARE
3802 GROUP USER’S MANUAL
NOTES ON PROGRAMMING
Processor Status Register
The contents of the processor status register (PS) after a reset are
undefined, except for the interrupt disable flag (I) which is “1”. Af-
ter a reset, initialize flags which affect program execution.
In particular, it is essential to initialize the index X mode (T) and
the decimal mode (D) flags because of their effect on calculations.
Interrupts
The contents of the interrupt request bits do not change immedi-
ately after they have been written. After writing to an interrupt re-
quest register, execute at least one instruction before executing a
BBC or BBS instruction.
Decimal Calculations
To calculate in decimal notation, set the decimal mode flag (D) to
“1”, then execute an ADC or SBC instruction. Only the ADC and
SBC instructions yield proper decimal results. After executing an
ADC or SBC instruction, execute at least one instruction before
executing a SEC, CLC, or CLD instruction.
In decimal mode, the values of the negative (N), overflow (V), and
zero (Z) flags are invalid.
The carry flag can be used to indicate whether a carry or borrow
has occurred. Initialize the carry flag before each calculation.
Clear the carry flag before an ADC and set the flag before an
SBC.
Timers
If a value n (between 0 and 255) is written to a timer latch, the fre-
quency division ratio is 1/(n + 1).
Multiplication and Division Instructions
The index X mode (T) and the decimal mode (D) flags do not af-
fect the MUL and DIV instruction.
The execution of these instructions does not change the contents
of the processor status register.
Ports
The contents of the port direction registers cannot be read.
The following cannot be used:
The data transfer instruction (LDA, etc.)
The operation instruction when the index X mode flag (T) is “1”
The addressing mode which uses the value of a direction regis-
ter as an index
The bit-test instruction (BBC or BBS, etc.) to a direction register
The read-modify-write instruction (ROR, CLB, or SEB, etc.) to a
direction register
Use instructions such as LDM and STA, etc., to set the port direc-
tion registers.
Serial I/O
In clock synchronous serial I/O, if the receive side is using an ex-
ternal clock and it is to output the SRDY1 signal, set the transmit
enable bit, the receive enable bit, and the SRDY1 output enable bit
to “1”.
Serial I/O1 continues to output the final bit from the TXD pin after
transmission is completed. The SOUT2 pin from serial I/O2 goes to
high impedance after transmission is completed.
A-D Converter
The comparator uses internal capacitors whose charge will be lost
if the clock frequency is too low.
Make sure that f(XIN) is at least 500 kHz during an A-D conver-
sion. (If the ONW pin has been set to “L”, the A-D conversion will
take twice as long to match the longer bus cycle, and so f(XIN)
must be at least 1 MHz.)
Do not execute the STP or WIT instruction during an A-D conver-
sion.
D-A Converter
The accuracy of the D-A converter becomes poor rapidly under
the VCC = 3.0 V or less condition.
Instruction Execution Time
The instruction execution time is obtained by multiplying the fre-
quency of the internal clock φ by the number of cycles needed to
execute an instruction.
The number of cycles required to execute an instruction is shown
in the list of machine instructions.
The frequency of the internal clock φ is half of the XIN frequency.
When the ONW function is used in modes other than single-chip
mode, the frequency of the internal clock φ may be one fourth the
XIN frequency.
Memory Expansion Mode
The memory expansion mode is not available in the following mi-
crocomputers.
• M38024M6-XXXSP
• M38024M6-XXXFP
Memory Expansion Mode and Microproces-
sor Mode
Execute the LDM or STA instruction for writing to port P3 (address
000616) in memory expansion mode and microprocessor mode.
Set areas which can be read out and write to port P3 (address
000616) in a memory, using the read-modify-write instruction
(SEB, CLB).
NOTE ON PROGRAMMING
3802 GROUP USER’S MANUAL
1-38
HARDWARE
DATA REQUIRED FOR MASK ORDERS
The following are necessary when ordering a mask ROM produc-
tion:
1. Mask ROM Order Confirmation Form
2. Mark Specification Form
3. Data to be written to ROM, in EPROM form (three identical
copies)
ROM PROGRAMMING METHOD
The built-in PROM of the blank One Time PROM version and built-
in EPROM version can be read or programmed with a general-
purpose PROM programmer using a special programming
adapter. Set the address of PROM programmer in the user ROM
area.
The PROM of the blank One Time PROM version is not tested or
screened in the assembly process and following processes. To en-
sure proper operation after programming, the procedure shown in
Figure 35 is recommended to verify programming.
Fig. 43 Programming and testing of One Time PROM version
Package
64P4B, 64S1B
64P6N
64D0
Name of Programming Adapter
PCA4738S-64A
PCA4738F-64A
PCA4738L-64A
Programming with PROM
programmer
Screening (Caution)
(150°C for 40 hours)
Verification with
PROM programmer
Functional check in
target device
The screening temperature is far higher
than the storage temperature. Never
expose to 150 °C exceeding 100 hours.
Caution :
Table 9. Programming adapter
DATA REQUIRED FOR MASK ORDERS/ROM PROGRAMMING METHOD
HARDWARE
1-39
3802 GROUP USER’S MANUAL
FUNCTIONAL DESCRIPTION SUPPLEMENT
Interrupt
3802 group permits interrupts on the basis of 16
sources. It is vector interrupts with a fixed priority
system. Accordingly, when two or more interrupt
requests occur during the same sampling, the higher-
priority interrupt is accepted first. This priority is
determined by hardware, but variety of priority
processing can be performed by software, using an
interrupt enable bit and an interrupt disable flag.
For interrupt sources, vector addresses and inter-
rupt priority, refer to “Table 10.”
Vector addresses
FFFD16
FFFB16
FFF916
FFF716
FFF516
FFF316
FFF116
FFEF16
FFED16
FFEB16
FFE916
FFE716
FFE516
FFE316
FFE116
FFDF16
FFDD16
FFFC16
FFFA16
FFF816
FFF616
FFF416
FFF216
FFF016
FFEE16
FFEC16
FFEA16
FFE816
FFE616
FFE416
FFE216
FFE016
FFDE16
FFDC16
Table 10. Interrupt sources, vector addresses and interrupt priority
Remarks
Non-maskable
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
Valid when serial I/O1 is selected
Valid when serial I/O1 is selected
STP release timer underflow
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
Valid when serial I/O2 is selected
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
Non-maskable software interrupt
High-order Low-order
Note: Reset functions in the same way as an interrupt with the highest priority.
Interrupt sources
Reset (Note)
INT0 interrupt
INT1 interrupt
Serial I/O1 receive interrupt
Serial I/O1 transmit interrupt
Timer X interrupt
Timer Y interrupt
Timer 1 interrupt
Timer 2 interrupt
CNTR0 interrupt
CNTR1 interrupt
Serial I/O2 interrupt
INT2 interrupt
INT3 interrupt
INT4 interrupt
A-D conversion interrupt
BRK instruction interrupt
Priority
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
FUNCTIONAL DESCRIPTION SUPPLEMENT
1-40
HARDWARE
3802 GROUP USER’S MANUAL
FUNCTIONAL DESCRIPTION SUPPLEMENT
Timing After Interrupt
The interrupt processing routine begins with the
machine cycle following the completion of the in-
struction that is currently in execution.
Figure 44 shows a timing chart after an interrupt
occurs, and Figure 45 shows the time up to execu-
tion of the interrupt processing routine.
Fig. 44 Timing chart after an interrupt occurs
Fig. 45 Time up to execution of the interrupt processing routine
Generation of interrupt request
Main routine Interrupt processing routine
7 to 23 cycles
(At performing 8.0 MHz, 1.75 µs to 5.75 µs)
2 cycles 5 cycles
Start of interrupt processing
0 to 16 cycles
Waiting time for
post-processing
of pipeline
Stack push and
Vector fetch
: at execution of DIV instruction (16 cycles)
: CPU operation code fetch cycle
: Vector address of each interrupt
: Jump destination address of each interrupt
: “0016” or “0116
SYNC
BL, BH
AL, AH
SPS
Data bus Not used PCHPCLPS ALAH
Address bus
S, SPS S-2, SPSS-1, SPS
PC BLBHAL, AH
SYNC
RD
WR
HARDWARE
1-41
3802 GROUP USER’S MANUAL
FUNCTIONAL DESCRIPTION SUPPLEMENT
A-D Converter
A-D conversion is started by setting AD conversion
completion bit to “0.” During A-D conversion, inter-
nal operations are performed as follows.
1. After the start of A-D conversion, A-D conversion
register goes to “0016.”
2. The highest-order bit of A-D conversion register
is set to “1,” and the comparison voltage Vref is
input to the comparator. Then, Vref is compared
with analog input voltage VIN.
3. As a result of comparison, when Vref < VIN, the
highest-order bit of A-D conversion register be
comes “1.” When Vref > VIN, the highest-order
bit becomes “0.”
By repeating the above operations up to the lowest-
order bit of the A-D conversion register, an analog
value converts into a digital value.
A-D conversion completes at 50 clock cycles (12.5
s at f(XIN) = 8.0 MHz) after it is started, and the
result of the conversion is stored into the A-D con-
version register.
Concurrently with the completion of A-D conversion,
A-D conversion interrupt request occurs, so that the
AD conversion interrupt request bit is set to “1.”
Relative formula for a reference voltage VREF of A-D converter and Vref
When n = 0 Vref = 0
When n = 1 to 255 Vref = (n – 0.5)
n : the value of A-D converter (decimal numeral)
VREF
256
1: A result of the first comparison
3: A result of the third comparison
5: A result of the fifth comparison
7: A result of the seventh comparison
2: A result of the second comparison
4: A result of the fourth comparison
6: A result of the sixth comparison
8: A result of the eighth comparison
Table 11. Change of A-D conversion register during A-D conversion
At start of conversion
First comparison
Second comparison
Third comparison
After completion of eighth
comparison
10000
100000
1000000
0000000
A result of A-D conversion
1
12
✽✽ ✽✽
12345678
Change of A-D conversion register
0
0
0
00
±
±
±
Value of comparison voltage (Vref)
VREF
VREF VREF
VREF VREF VREF VREF
VREFVREF
24512
512
2
24512
8
µ
1-42
HARDWARE
3802 GROUP USER’S MANUAL
FUNCTIONAL DESCRIPTION SUPPLEMENT
Figures 46 shows A-D conversion equivalent cir-
cuit, and Figure 47 shows A-D conversion timing
chart.
Fig. 46 A-D conversion equivalent circuit
Fig. 47 A-D conversion timing chart
Write signal for AD/DA control register
AD conversion completion bit
Sampling clock
50 cycles
VSSVCC AVSSVCC
AN0
AN1
AN2
AN3
AN4
AN5
AN6
AN7
VREF
AVSS
AD/DA control register
Build-in
D-A converter
Vref
Reference
clock
A-D conversion register
A-D conversion interrupt request
Chopper amplifier
Sampling
clock
VIN
C
b1b2 b0
about 2 k
CHAPTER 2CHAPTER 2
APPLICATION
2.1 I/O port
2.2 Timer
2.3 Serial I/O
2.4 PWM
2.5 A-D converter
2.6 Processor mode
2.7 Reset
APPLICATION
2.1 I/O port
2-2 3802 GROUP USER’S MANUAL
2.1 I/O port
2.1.1 Memory map of I/O port
000916
000016
000116
000216
000316
000416
000516
000616
000716
000816
000A16
000B16
000C16
000D16
Port P0 (P0)
Port P0 direction register (P0D)
Port P1 (P1)
Port P1 direction register (P1D)
Port P2 (P2)
Port P2 direction register (P2D)
Port P3 (P3)
Port P3 direction register (P3D)
Port P4 (P4)
Port P4 direction register (P4D)
Port P5 (P5)
Port P5 direction register (P5D)
Port P6 (P6)
Port P6 direction register (P6D)
Fig. 2.1.1 Memory map of I/O port related registers
APPLICATION
2.1 I/O port
2-3
3802 GROUP USER’S MANUAL
2.1.2 Related registers
Fig. 2.1.2 Structure of Port Pi (i = 0, 1, 2, 3, 4, 5, 6)
Port Pi
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
4
5
6
7
Name
Port Pi0
Port Pi1
Port Pi2
Port Pi3
Port Pi4
Port Pi5
Port Pi6
Port Pi7
In output mode
Write
Read
Port latch
In input mode
Write : Port latch
Read : Value of pins
?
Port Pi (Pi) (i = 0, 1, 2, 3, 4, 5, 6)
[Address : 0016, 0216, 0416, 0616, 0816, 0A16, 0C16]
?
?
?
?
?
?
?
Fig. 2.1.3 Structure of Port Pi direction register (i = 0, 1, 2, 3, 4, 5, 6)
Port Pi direction register
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
4
5
6
7
Name
Port Pi direction register 0
0
0
0
0
0
0
0
Port Pi direction register (PiD) (i = 0, 1, 2, 3, 4, 5, 6)
[Address : 0116, 0316, 0516, 0716, 0916, 0B16, 0D16]
0 : Port Pi0 input mode
1 : Port Pi0 output mode
0 : Port Pi1 input mode
1 : Port Pi1 output mode
0 : Port Pi2 input mode
1 : Port Pi2 output mode
0 : Port Pi3 input mode
1 : Port Pi3 output mode
0 : Port Pi4 input mode
1 : Port Pi4 output mode
0 : Port Pi5 input mode
1 : Port Pi5 output mode
0 : Port Pi6 input mode
1 : Port Pi6 output mode
0 : Port Pi7 input mode
1 : Port Pi7 output mode
APPLICATION
2.1 I/O port
2-4 3802 GROUP USER’S MANUAL
2.1.3 Handling of unused pins
Table 2.1.1 Handling of unused pins (in single-chip mode)
Name of Pins/Ports
Set to the input mode and connect to VCC or VSS through a
resistor of 1 k to 10 k .
• Set to the output mode and open at “L” or “H.”
Connect to VSS(GND) or open.
Connect to VSS(GND).
Open (only when using external clock).
Handling
P0, P1, P2, P3, P4, P5, P6
VREF
AVSS
XOUT
Name of Pins/Ports Handling
Table 2.1.2 Handling of unused pins (in memory expansion mode and microprocessor mode)
Open
Set to the input mode and connect to VCC or VSS through a
resistor of 1 k to 10 k .
• Set to the output mode and open at “L” or “H.”
Connect to VSS(GND) or open.
Connect to VCC through a resistor of 1 k to 10 k .
Open
Open
Open
Connect to VSS(GND).
Open (only when using external clock).
P30, P31
P4, P5, P6
VREF
____
ONW
_________
RESETOUT
SYNC
AVSS
XOUT
2-5
3802 GROUP USER’S MANUAL
APPLICATION
2.2 Timer
2.2 Timer
2.2.1 Memory map of timer
Fig. 2.2.1 Memory map of timer related registers
003C16
002016
002116
002216
002316
002416
002516
002616
002716
003D16
003E16
003F16
Prescaler 12 (PRE12)
Timer 1 (T1)
Timer 2 (T2)
Timer XY mode register (TM)
Prescaler X (PREX)
Timer X (TX)
Prescaler Y (PREY)
Timer Y (TY)
Interrupt request register 1 (IREQ1)
Interrupt request register 2 (IREQ2)
Interrupt control register 1 (ICON1)
Interrupt control register 2 (ICON2)
APPLICATION
2.2 Timer
2-6 3802 GROUP USER’S MANUAL
2.2.2 Related registers
Fig. 2.2.2 Structure of Prescaler 12, Prescaler X, Prescaler Y
Fig. 2.2.3 Structure of Timer 1
Prescaler 12, Prescaler X, Prescaler Y
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
4
5
6
7
1
1
1
1
1
1
1
1
Prescaler 12 (PRE12), Prescaler X (PREX), Prescaler Y (PREY)
[Address : 2016, 2416, 2616]
The count value of each prescaler is set.
The value set in this register is written to both the prescaler and
the prescaler latch at the same time.
When the prescaler is read out, the value (count value) of the
prescaler is read out.
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
4
5
6
7
1
0
0
0
0
0
0
0
Timer 1 (T1) [Address : 2116]
The count value of the Timer 1 is set.
The value set in this register is written to both the Timer 1 and
the Timer 1 latch at the same time.
When the Timer 1 is read out, the value (count value) of the
Timer 1 is read out.
Timer 1
2-7
3802 GROUP USER’S MANUAL
APPLICATION
2.2 Timer
Fig. 2.2.4 Structure of Timer 2, Timer X, Timer Y
Timer 2, Timer X, Timer Y
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
4
5
6
7
1
1
1
1
1
1
1
1
Timer 2 (T2), Timer X (TX), Timer Y (TY)
[Address : 2216, 2516, 2716]
The count value of each timer is set.
The value set in this register is written to both the Timer and the
Timer latch at the same time.
When the Timer is read out, the value (count value) of the Timer
is read out.
APPLICATION
2.2 Timer
2-8 3802 GROUP USER’S MANUAL
Fig. 2.2.5 Structure of Timer XY mode register
A
AA
Function
Timer XY mode register
b7 b6 b5 b4 b3 b2 b1 b0
BAt reset RW
0
1
2
3
4
5
6
7
0
0
0
0
0
0
0
0
Timer XY mode register (TM)
Name
Timer X operating mode bit
CNTR0 active edge switch bit
Timer Y operating mode bit
CNTR1 active edge switch bit
0 0 : Timer mode
0 1 : Pulse output mode
1 0 : Event counter mode
1 1 : Pulse width measurement mode
0 0 : Timer mode
0 1 : Pulse output mode
1 0 : Event counter mode
1 1 : Pulse width measurement mode
It depends on the operating mode
of the Timer X (refer to Table 2.2.1).
It depends on the operating mode
of the Timer Y (refer to Table 2.2.1).
b5 b4
Timer X count stop bit
[Address : 2316]
b1 b0
Timer Y count stop bit
0 : Count start
1 : Count stop
0 : Count start
1 : Count stop
Operating mode of
Timer X/Timer Y
Timer mode
Pulse output mode
Event counter mode
Pulse width measurement mode
Table. 2.2.1 Function of CNTR0/CNTR1 edge switch bit
Function of CNTR0/CNTR1 edge switch bit (bits 2 and 6)
“0”
“1”
“0”
“1”
“0”
“1”
“0”
“1”
• Generation of CNTR0/CNTR1 interrupt request : Falling edge
(No effect on timer count)
• Generation of CNTR0/CNTR1 interrupt request : Rising edge
(No effect on timer count)
• Start of pulse output : From “H” level
• Generation of CNTR0/CNTR1 interrupt request : Falling edge
• Start of pulse output : From “L” level
• Generation of CNTR0/CNTR1 interrupt request : Rising edge
• Timer X/Timer Y : Count of rising edge
• Generation of CNTR0/CNTR1 interrupt request : Falling edge
• Timer X/Timer Y : Count of falling edge
• Generation of CNTR0/CNTR1 interrupt request : Rising edge
• Timer X/Timer Y : Measurement of “H” level width
• Generation of CNTR0/CNTR1 interrupt request : Falling edge
• Timer X/Timer Y : Measurement of “L” level width
• Generation of CNTR0/CNTR1 interrupt request : Rising edge
2-9
3802 GROUP USER’S MANUAL
APPLICATION
2.2 Timer
Fig. 2.2.7 Structure of Interrupt request register 2
Fig. 2.2.6 Structure of Interrupt request register 1
Interrupt request register 2
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
0
0
0
0
Interrupt request reigster 2 (IREQ2) [Address : 3D16]
Name
CNTR0 interrupt request bit
CNTR1 interrupt request bit
Serial I/O2 interrupt request
bit
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
INT2 interrupt request bit
5
6
7
0
0
0 : No interrupt request
1 : Interrupt request
Nothing is allocated for this bit. This is a write disabled bit.
When this bit is read out, the value is “0.”
AD conversion interrupt
request bit
INT4 interrupt request bit
0 : No interrupt request
1 : Interrupt request
“0” is set b
y
software, but not “1.”
40
0 : No interrupt request
1 : Interrupt request
INT3 interrupt request bit
0
Interrupt request register 1
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
Interrupt request reigster 1 (IREQ1) [Address : 3C16]
Name
“0” is set by software, but not “1.”
Timer Y interrupt request
bit
A
A
A
A
AA
AA
AA
AA
A
A
AA
AA
AA
AA
A
A
4
5
6
7
0
0
0
0
Timer X interrupt request
bit
Timer 1 interrupt request bit 0 : No interrupt request
1 : Interrupt request
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
Timer 2 interrupt request bit
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0
0
0
0
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
INT0 interrupt request bit
INT1 interrupt request bit
Serial I/O1 receive interrupt
request bit
Serial I/O1 transmit interrupt
request bit
0
1
2
3
APPLICATION
2.2 Timer
2-10 3802 GROUP USER’S MANUAL
Fig. 2.2.8 Structure of Interrupt control register 1
Fig. 2.2.9 Structure of Interrupt control register 2
Interrupt control register 2
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
0
0
0
0
Interrupt control reigster 2 (ICON2) [Address : 3F16]
Name
CNTR0 interrupt enable bit
CNTR1 interrupt enable bit
Serial I/O2 interrupt enable bit
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
INT2 interrupt enable bit
5
6
7
0
0
0 : Interrupt disabled
1 : Interrupt enabled
Fix this bit to “0.”
AD conversion interrupt
enable bit
INT4 interrupt enable bit
0 : Interrupt disabled
1 : Interrupt enabled
40
0 : Interrupt disabled
1 : Interrupt enabled
INT3 interrupt enable bit
0
0
Timer Y interrupt enable bit
Interrupt control register 1
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
0
0
0
0
Interrupt control register 1 (ICON1) [Address : 3E16]
Name
INT0 interrupt enable bit
INT1 interrupt enable bit
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
A
A
A
A
AA
AA
AA
AA
A
A
AA
AA
AA
AA
A
A
4
5
6
7
0
0
0
0
Timer X interrupt enable bit
Timer 1 interrupt enable bit 0 : Interrupt disabled
1 : Interrupt enabled
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
Timer 2 interrupt enable bit
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
Serial I/O1 transmit interrupt
enable bit
Serial I/O1 receive interrupt
enable bit
2-11
3802 GROUP USER’S MANUAL
APPLICATION
2.2 Timer
2.2.3 Timer application examples
(1) Basic functions and uses
[Function 1] Control of Event interval (Timer X, Timer Y, Timer 1, Timer 2)
The Timer count s top bit is s et to “0” a fter setting a count value to a timer. Then a timer interrupt
request occurs after a certain period.
[Use] • Generation of an output signal timing
• Generation of a waiting time
[Function 2] Control of Cyclic operation (Timer X, Timer Y, Timer 1, Timer 2)
The value of a timer latch is automatically written to a corresponding timer every time a timer
underflows, and each cyclic timer interrupt request occurs.
[Use] • Generation of cyclic interrupts
Clock function (measurement of 250m second) Application example 1
• Control of a main routine cycle
[Function 3] Output of Rectangular waveform (Timer X, Timer Y)
The output level of the CNTR pin is inverted every time a timer underflows (Pulse output mode).
[Use] • A piezoelectric buzzer output Application example 2
• Generation of the remote-control carrier waveforms
[Function 4] Count of External pulse (Timer X, Timer Y)
External pulses input to the CNTR pin are selected as a timer count source (Event counter
mode).
[Use] • Measurement of frequency Application example 3
Di vision of external pulses.
Gener ation of inter rupts in a cycle based on an exte rnal pulse.
(count of a reel pulse)
[Function 5] Measurement of External pulse width (Timer X, Timer Y)
The “H” or “L” level width of external pulses input to CNTR pin is measured (Pulse width
measurement mode).
[Use] • Measurement of external pulse frequency (Measurement of pulse width of FG pulse gener-
ated by motor) Application example 4
• Measurement of external pulse duty (when the frequency is fixed)
FG pulse : Pulse used for detecting the motor speed to control the motor speed.
APPLICATION
2.2 Timer
2-12 3802 GROUP USER’S MANUAL
(2) Timer application example 1 : Clock function (measurement of 250 ms)
Outline : The input clock is divided by a timer so that the clock counts up every 250 ms.
Specifications : • The clock f(XIN) = 4.19 MHz (222 Hz) is divided by a timer.
• The clock is counted at intervals of 250 ms by the Timer X interrupt.
Figure 2.2.10 shows a connection of timers and a setting of division ratios, Figures 2.2.11 show a
setting of related registers, and Figure 2.2.12 shows a control procedure.
Fig. 2.2.10 Connection of timers and setting of division ratios [Clock function]
Timer X interrupt request bit
1/16 0 or 1
1/2561/256
f(XIN) =
4.19 MHz
Fixed Prescaler X Timer X
250 ms
0 : No interrupt request
1 : Interrupt request
1/4
The clock is divided by 4 by software.
1 second
APPLICATION
2.2 Timer
2-13
3802 GROUP USER’S MANUAL
255
PREX
Prescaler X (Address : 2416)
255
TX
Timer X (Address:2516)Set “division ratio – 1”
Timer X interrupt enable bit : Interrupt enabled
ICON1
Interrupt control register 1 (Address : 3E16)
Timer X interrupt request bit
(
becomes “1” ever
y
250 ms
)
IREQ1
Interrupt request register 1 (Address : 3C16)
0
Timer X operating mode bits : Timer mode
TM
Timer XY mode register (Address : 2316)
00
1
Timer X count stop bit : Count stop
Set to “0” at starting to count.
1
b7 b0
b7 b0
b7 b0
b7 b0
b7 b0
Fig. 2.2.11 Setting of related registers [Clock function]
2-14 3802 GROUP USER’S MANUAL
APPLICATION
2.2 Timer
Control procedure :
Figure 2.2.12 shows a control procedure.
RESET
Initialization
SEI
TM
ICON1
PREX
TX
TM
CLI
.... .... .... ....
(Address : 2316)
(Address : 3E16), bit4
(Address : 2416)
(Address : 2516)
(Address : 2316), bit3
XXXX1X002
1
256 – 1
256 – 1
0
All interrupts : Disabled
X : This bit is not used in this application.
Set it to “0” or “1.” It’s value can be disregarded.
Timer X interrupt processing routine
CLT (Note 2)
CLD (Note 3)
Push register to stack
RTI
Y
N
Clock stop?
Clock count up (1/4 second-year)
Pop registers
Check if the clock has already been set.
Count up the clock.
Pop registers which is pushed to stack
Main processing
PREX
TX
IREQ1
....
(Address : 2416)
(Address : 2516)
(Address : 3C16), bit4
256 – 1
256 – 1
0
[Processing for completion of setting clock]
(Note 1)Note 1: This processing is performed only
at completing to set the clock.
When restarting the clock from zero
second after completing to set the
clock, re-set timers.
Note 2: When using the Index X mode flag (T).
Note 3: When using the Decimal mode flag (D).
Push the register used in the interrupt
processing routine into the stack.
Timer X : Timer mode
Timer X interrupt : Enabled
Set “division ratio – 1” to the Prescaler X
and Timer X.
Timer X count : Operating
Interrupts : Enabled
Fig. 2.2.12 Control procedure [Clock function]
APPLICATION
2.2 Timer
2-15
3802 GROUP USER’S MANUAL
(3) Timer application example 2 : Piezoelectric buzzer output
Outline : The rectangular waveform output function of a timer is applied for a piezoelectric buzzer
output.
Specifications : • The rectangular waveform resulting from dividing clock f(XIN) = 4.19 MHz into about
2 kHz (2048 Hz) is output from the P54/CNTR0 pin.
• The level of the P54/CNTR0 pin fixes to “H” while a piezoelectric buzzer output is
stopped.
Figure 2.2.13 shows an example of a peripheral circuit, and Figure 2.2.14 shows a connection of the
timer and setting of the division ratio.
Fig. 2.2.13 Example of a peripheral circuit
Fig. 2.2.14 Connection of the timer and setting of the division ratio [Piezoelectric buzzer output]
244 µs 244 µs
3802 group
PiPiPi....
P54/CNTR0
Set a division ratio so that the underflow output c
y
cle of the Timer X becomes this value.
The “H” level is output while a piezoelectric buzzer output is stopped.
CNTR0 output
1/16 1/2
f(XIN) = 4.19 MHz
Fixed Timer X Fixed
1/64 CNTR0
1
Prescaler X
2-16 3802 GROUP USER’S MANUAL
APPLICATION
2.2 Timer
Fig. 2.2.15 Setting of related registers [Piezoelectric buzzer output]
Control procedure :
Figure 2.2.16 shows a control procedure.
Fig. 2.2.16 Control procedure [Piezoelectric buzzer output]
(Address : 0A16), bit4
(Address : 0B16)
(Address : 3E16), bit4
(Address : 2316)
(Address : 2516)
(Address : 2416)
Initialization
P5
P5D
ICON1
TM
TX
PREX
.... .... ....
0
XXXX10012
64 – 1
1 – 1
A piezoelectric buzzer
is requested?
RESET
Y
N
Main processing
TM (Address : 2316), bit3 0
Timer X interrupts : Disabled
During stopping outputting a piezoelectric buzzer During outputting a piezoelectric buzzer
Output unit
TM (Address : 2316), bit3 1
TX (Address : 2516) 64 –1
X : This bit is not used in this application.
Set it to “0” or “1.” It’s value can be disregarded.
The piezoelectric buzzer request occured in the
main processing is processed in the output unit.
1
XXX1XXXX2
Set “division ratio – 1” to the Prescaler X and
Timer X.
The CNTR0 output is stopped at this point (stop
outputting a piezoelectric buzzer).
0
63
TX
Timer X (Address : 2516)
Set “division ratio – 1”
010
CNTR0 active edge switch bit : Output from the “H” level
Timer X count stop bit : Count Stop
Set to “0” at starting to count.
Timer X operating mode bits : Pulse output mode
TM
Timer XY mode register (Address : 2316)
b7 b0
1
b7 b0
PREX
Prescaler X (Address : 2416)
b7 b0
APPLICATION
2.2 Timer
2-17
3802 GROUP USER’S MANUAL
(4) Timer application example 3 : Measurement of frequency
Outline : The following two values are compared for judging if the frequency is within a certain range.
• A value counted a pulse which is input to P55/CNTR1 pin by a timer.
• A referance value
Specifications : • The pulse is input to the P55/CNTR1 pin and counted by the Timer Y.
• A count value is read out at the interval of about 2 ms (Timer 1 interrupt interval
: 244 µs 8). When the count value is 28 to 40, it is regarded the input pulse
as a valid.
Because the timer is a down-counter, the count value is compared with 227 to 215 .
227 to 215 = 255 (initialized value of counter) – 28 to 40 (the number of valid
value).
Figure 2.2.17 shows a method for judging if input pulse exists, and Figure 2.2.18 shows a setting of
related registers.
Input pulse
71.4 µs or more
(14 kHz or less) 71.4 µs
(14 kHz) 50 µs
(20 kHz) 50 µs or less
(20 kHz or more)
Invalid Valid Invalid
2 ms
71.4 µs = 28 counts 2 ms
50 µs = 40 counts
• • • • • • • • • • • •
Fig 2.2.17 A method for judging if input pulse exists
2-18 3802 GROUP USER’S MANUAL
APPLICATION
2.2 Timer
Fig. 2.2.18 Setting of related registers [Measurement of frequency]
0
PREY
Prescaler Y (Address : 2616)
Set “division ratio – 1”
255
TY
Timer Y (Address : 2716)
Set “255” to this register immediately before
counting pulse.
(After a certain time, this value is decreased by
the number of input pulses)
1
Timer Y interrupt enable bit : Interrupt disabled
ICON1
Interrupt control register 1 (Address : 3E16)
0
Judgment of Timer Y interrupt request bit
(When this bit is set to “1” at reading out
the count value of the Timer Y (address : 2716),
256 pulses or more are input (at setting 255 to
the Timer Y
)
.
)
IREQ1
Interrupt request register 1 (Address : 3C16)
1
CNTR1 active edge switch bit : Count at falling edge
Timer Y count stop bit : Count stop
Set to “0” at starting to count.
Timer Y operating mode bit : Event counter mode
TM
Timer XY mode register (Address : 2316)
b7 b0
01
Prescaler 12 (Address : 2016)
b7 b0
63
PRE12
7
T1
Timer 1 (Address : 2116)
b7 b0
b7 b0
b7 b0
b7 b0
0
Timer 1 interrupt enable bit : Interrupt enabled
b7 b0
1
APPLICATION
2.2 Timer
2-19
3802 GROUP USER’S MANUAL
Control procedure :
Figure 2.2.19 shows a control procedure.
Fig. 2.2.19 Control procedure [Measurement of frequency]
Timer 1 interrupt processing routine
RESET
IREQ1 (Address : 3C16), bit5?
Initialization
SEI
TM
PRE12
T1
PREY
TY
ICON1
TM
CLI
.... ........
(Address : 2316)
(Address : 2016)
(Address : 2116)
(Address : 2616)
(Address : 2716)
(Address : 3E16), bit6
(Address : 2316), bit7
1110XXXX2
64–1
8–1
1–1
256–1
1
~
~
(A) TY (Address : 2716)
TY
IREQ1 (Address : 2716)
(Address : 3C16), bit5 256 – 1
0
1
0
Fpulse 0 Fpulse 1
Processing for a result of judgment
RTI
Out of range
In range Compare the count value read with the
reference value.
Store the comparison result in flag Fpulse.
CLT (Note 1)
CLD (Note 2)
Push register to stack
Note 1: When using the Index X mode flag (T).
Note 2: When using the Decimal mode flag (D).
Push the register used in the interrupt
processing routine into the stack.
Pop registers
X:This bit is not used in this application.
Set it to “0” or “1.” It’s value can be disregarded.
0
Read the count value.
Store the count value in the accumulator (A).
Initialize the count value.
Set the Timer Y interrupt request bit to “0.”
When the count value is 256 or more, the
processing is performed as out of range.
All interrupts : Disabled
Timer Y : Event counter mode
(Count at falling edge of pulse input from CNTR1 pin)
Set the division ratio so that the Timer 1 interrupt
occurs every 2 ms.
Timer 1 interrupt : Enabled
Timer Y count : Start
Interrupts : Enabled
< <
214 (A) 228?
Pop registers which is pushed to stack.
2-20 3802 GROUP USER’S MANUAL
APPLICATION
2.2 Timer
(5) Timer application example 4 : Measurement of pulse width of FG pulse generated by motor
Outline : The “H” level width of a pulse input to the P54/CNTR0 pin is counted by Timer X. An
underflow is detected by Timer X interrupt and an end of the input pulse “H” level is
detected by CNTR0 interrupt.
Specifications : • The “H” level width of a FG pulse input to the P54/CNTR0 pin is counted by Timer
X. (Example : When the clock frequency is 4.19 MHz, the count source would be
3.8 µ s that is obtained by dividing the clock frequency by 16.
Measurement can be made up to 250 ms in the range of FFFF16
to 000016.)
Figure 2.2.20 shows a connection of the timer and a setting of the division ration, and Figure 2.2.21
shows a setting of related registers.
Fig. 2.2.20 Connection of the timer and setting of the division ratio [Measurement of pulse width]
Timer X interrupt request bit
1/16 0 or 1
1/2561/256
Fixed Prescaler X Timer X
250 ms
0 : No interrupt request
1 : Interrupt request
f(XIN) = 4.19 MHz
APPLICATION
2.2 Timer
2-21
3802 GROUP USER’S MANUAL
Fig. 2.2.21 Setting of related registers [Measurement of pulse width]
01
CNTR0 active edge switch bit : Count “H” level width
Timer X operating mode bits : Pulse width
measurement mode
Timer X count stop bit : Count stop
Set to “0” at starting to count.
TM
Timer XY mode register (Address : 2316)
b7 b0
11
255
PREX
Prescaler X (Address : 2416)
Set “division ratio – 1”
255
TX
Timer X (Address : 2516)
1
Timer X interrupt enable bit : Interrupt enabled
ICON1
Interrupt control register 1 (Address : 3E16)
b7 b0
b7 b0
b7 b0
1
CNTR0 interrupt enable bit : Interrupt enabled
ICON2
Interrupt control register 2 (Address : 3F16)
0
CNTR0 interrupt request bit
(This bit is set to “1” at completion of inputting
“H” level si
g
nal.
)
IREQ2
Interrupt request register 2 (Address : 3D16)
b7 b0
b7 b0
Timer X interrupt request bit
(This bit is set to “1” at underflow of Timer X.)
IREQ1
Interrupt request register (Address : 3C16)
0
b7 b0
2-22 3802 GROUP USER’S MANUAL
APPLICATION
2.2 Timer
Figure 2.2.22 shows a control procedure.
(Address : 2316)
(Address : 2416)
(Address : 2516)
(Address : 3E16), bit4
(Address : 3C16), bit4
(Address : 3F16), bit0
(Address : 3D16), bit0
(Address : 2316), bit3
All interrupts : Disabled
XXXX10112
256–1
256–1
1
0
1
0
0
~
~
RESET
Initialization
CNTR0 interrupt processing routine
CLT (Note 1)
CLD (Note 2)
Push register to stack
RTI
Pop registers
Timer X interrupt processing routine
Processing for error
RTI
Error occurs
A count value is read out and stored to RAM.
Set the division ratio so that the Timer X
interrupt occurs every 250 ms.
SEI
TM
PREX
TX
ICON1
IREQ1
ICON2
IREQ2
TM
CLI
....
....
....
X : This bit is not used in this application.
Set it to “0” or “1.” It’s value can be disregarded.
PREX
(A)
Result of pulse width measurement
low–order 8-bit
(A)
Result of pulse width measurement
high–order 8-bit
PREX (Address : 2416)
TX (Address : 2516)
Inversion of (A)
TX
256– 1
Inversion of (A)
256 – 1
Push the register used in the interrupt
processing routine into the stack.
Pop registers which is pushed to stack.
Timer X : Pulse width measurement mode
(Count “H” level width of pulse input from CNTR0 pin.)
Set the division ratio so that the Timer X interrupt occurs
every 250 ms.
Note 1:When using the Index X mode flag (T).
Note 2: When using the Decimal mode flag (D).
CNTR0 interrupt : Enabled
Timer X interrupt : Enabled
Timer X count : Operating
Interrupts : Enabled
Fig. 2.2.22 Control procedure [Measurement of pulse width]
2-23
3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
2.3 Serial I/O
2.3.1 Memory map of serial I/O
Fig. 2.3.1 Memory map of serial I/O related registers
001F16
001816
001916
001A16
001B16
001C16
001D16
Transmit/Receive buffer register (TB/RB)
Serial I/O1 status register (SIO1STS)
Serial I/O1 control register (SIO1CON)
UART control register (UARTCON)
Baud rate generator (BRG)
Serial I/O2 control register (SIO2CON)
Serial I/O2 register (SIO2)
003F16
003A16
003C16
003D16
003E16
Interrupt edge selection register (INTEDGE)
Interrupt request register 1 (IREQ1)
Interrupt request register 2 (IREQ2)
Interrupt control register 2 (ICON2)
Interrupt control register 1 (ICON1)
2-24 3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
2.3.2 Related registers
Transmit/Receive buffer register
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
4
6
7
Transmit/Receive buffer register (TB/RB) [Address : 1816]
A transmission data is written to or a receive data is read out
from this buffer register.
• At writing : a data is written to the Transmit buffer register.
• At reading : a content of the Receive buffer register is read out.
?
?
?
?
?
5?
?
?
Note: A content of the transmit buffer register cannot be read out.
A data cannot be written to the receive buffer register.
Fig. 2.3.2 Structure of Transmit/Receive buffer register
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
4
5
6
7
0
0
0
0
0
0
0
1
Serial I/O1 status register (SIO1STS) [Address : 1916]
Name
Transmit buffer empty flag
(TBE)
0 : (OE) (PE) (FE) = 0
1 : (OE) (PE) (FE) = 1
Overrun error flag (OE)
0 : Buffer full
1 : Buffer empty
Nothing is allocated for this bit. It is a write disabled bit.
When this bit is read out, the value is “0.”
Receive buffer full flag (RBF)
Transmit shift register shift
completion flag (TSC)
Parity error flag (PE)
Framing error flag (FE)
Summing error flag (SE)
0 : Buffer empty
1 : Buffer full
0 : Transmit shift in progress
1 : Transmit shift completed
0 : No error
1 : Overrun error
0 : No error
1 : Parity error
0 : No error
1 : Framing error
Serial I/O1 status register
Fig. 2.3.3 Structure of Serial I/O1 status register
2-25
3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
Fig. 2.3.4 Structure of Serial I/O1 control register
Fig. 2.3.5 Structure of UART control register
Serial I/O1 synchronous clock
selection bit (SCS)
SRDY1 output enable bit
(SRDY)
Transmit interrupt
source selection bit (TIC)
Serial I/O1 control register
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
0 : f(XIN)
1 : f(XIN)/4 0
0
0
0
Serial I/O1 control register (SIO1CON) [Address : 1A16]
Name
BRG count source selection
bit (CSS)
4
5
6
7
0
0
0
0
Serial I/O1 enable bit (SIOE)
0 : I/O port (P47)
1 : SRDY1 output pin
Transmit enable bit (TE)
Receive enable bit (RE)
Serial I/O1 mode
selection bit (SIOM)
0 :
Transmit buffer empty
1 :
Transmit shift operating completion
0 : Transmit disabled
1 : Transmit enabled
0 : Receive disabled
1 : Receive enabled
0 : UART
1 : Clock synchronous serial I/O
0 : Serial I/O1 disabled
(P44–P47 : I/O port)
1 : Serial I/O1 enabled
(P44–P47 : Serial I/O function pin)
At selecting clock synchronous serial I/O
0 : BRG output divided by 4
1 : External clock input
At selecting UART
0 : BRG output divided by 16
1 : External clock input divided by 16
In output mode
0 : CMOS output
1 : N-channel open-drain output
UART control register
b7 b6 b5 b4 b3 b2 b1 b0
B Function At reset RW
0
1
2
3
0
0
0
0
UART control register (UARTCON) [Address : 1B16]
Name
0
1
1
1
0 : 8 bits
1 : 7 bits
0 : Parity checking disabled
1 : Parity checking enabled
0 : 1 stop bit
1 : 2 stop bits
0 : Even parity
1 : Odd parity
Character length
selection bit (CHAS)
Parity enable bit
(PARE)
Stop bit length
selection bit (STPS)
Parity selection bit
(PARS)
P45/TxD P-channel
output disable bit (POFF)
5
6
7
4
Nothing is allocated for these bits. These are write disabled
bits. When these bits are read out, the values are “1.”
2-26 3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
A count value of Baud rate generator is set.
Function
Baud rate generator (BRG) [Address : 1C16]
Baud rate generator
b7 b6 b5 b4 b3 b2 b1 b0
BAt reset RW
0
1
2
3
4
5
6
7
?
?
?
?
?
?
?
?
Fig. 2.3.6 Structure of Baud rate generator
Fig. 2.3.7 Structure of Serial I/O2 control register
Serial I/O2 control register (SIO2CON) [Address : 1D16]
Serial I/O2 control register
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
0
0
0
0
Name
4
5
6
7
0
0
0
SRDY2 output enable bit
Internal synchronous clock
selection bits
0 : I/O port (P51, P52)
1 : SOUT2, SCLK2 output pin
0 : I/O port (P53)
1 : SRDY2 output pin
0 : LSB first
1 : MSB first
0 : External clock
1 : Internal clock
0 0 0 : f(XIN)/8
0 0 1 : f(XIN)/16
0 1 0 : f(XIN)/32
0 1 1 : f(XIN)/64
1 1 0 : f(XIN)/128
1 1 1 : f(XIN)/256
Transfer direction selection bit
Serial I/O2 port selection bit
Serial I/O2 synchronous clock
selection bit
P51/SOUT2 P-channel
output disable bit
b2 b1 b0
0 : CMOS output
1 : N-channel open-drain output
In output mode
0
2-27
3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
Fig. 2.3.9 Structure of Interrupt edge selection register
Fig. 2.3.8 Structure of Serial I/O2 register
Serial I/O2 register
b7 b6 b5 b4 b3 b2 b1 b0
Function
Serial I/O2 register (SIO2) [Address : 1F16]
A shift register for serial transmission and reception.
At transmitting : Set a transmission data.
At receiving : Store a reception data.
B
0
1
2
3
4
5
6
7
At reset RW
?
?
?
?
?
?
?
?
WR
Interrupt edge selection register
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset
0
1
2
3
0
0
0
0
Interrupt edge selection register (INTEDGE) [Address : 3A16]
Name
4
5
6
7
0
0
0
0 : Falling edge active
1 : Rising edge active
0 : Falling edge active
1 : Rising edge active
0 : Falling edge active
1 : Rising edge active
0 : Falling edge active
1 : Rising edge active
0 : Falling edge active
1 : Rising edge active
INT0 interrupt edge
selection bit
INT1 interrupt edge
selection bit
INT2 interrupt edge
selection bit
INT3 interrupt edge
selection bit
INT4 interrupt edge
selection bit
Nothing is allocated for this bit. This is a write
disabled bit.When this bit is read out, the value is “0.”
Nothing is allocated for these bits. These are write disabled
bits. When these bits are read out, the values are “0.” 0
2-28 3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
Timer X interrupt request
bit
Serial I/O1 receive interrupt
request bit
Interrupt request register 1
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
0
0
0
0
Interrupt request reigster 1 (IREQ1) [Address : 3C16]
Name
INT0 interrupt request bit
INT1 interrupt request bit
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
Serial I/O1 transmit interrupt
request bit
Timer Y interrupt request bit
4
5
6
7
0
0
0
0
Timer 1 interrupt request bit 0 : No interrupt request
1 : Interrupt request
Timer 2 interrupt request bit
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
“0” is set by software, but not “1.”
Timer X interrupt request bit
Fig. 2.3.10 Structure of Interrupt request register 1
Fig. 2.3.11 Structure of Interrupt request register 2
Interrupt request register 2
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
0
0
0
0
Interrupt request reigster 2 (IREQ2) [Address : 3D16]
Name
CNTR0 interrupt request bit
CNTR1 interrupt request bit
Serial I/O2 interrupt request bit
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
INT2 interrupt request bit
5
6
7
0
0
0 : No interrupt request
1 : Interrupt request
Nothing is allocated for this bit. This is a write disabled bit.
When this bit is read out, the value is “0.”
AD conversion interrupt
request bit
INT4 interrupt request bit
0 : No interrupt request
1 : Interrupt request
“0” is set by software, but not “1.”
40
0 : No interrupt request
1 : Interrupt request
INT3 interrupt request bit
0
2-29
3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
Fig. 2.3.12 Structure of Interrupt control register 1
Fig. 2.3.13 Structure of Interrupt control register 2
Timer Y interrupt enable bit
Interrupt control register 1
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
0
0
0
0
Interrupt control register 1 (ICON1) [Address : 3E16]
Name
INT0 interrupt enable bit
INT1 interrupt enable bit
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
4
5
6
7
0
0
0
0
Timer X interrupt enable bit
Timer 1 interrupt enable bit 0 : Interrupt disabled
1 : Interrupt enabled
Timer 2 interrupt enable bit
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
Serial I/O1 transmit interrupt
enable bit
Serial I/O1 receive interrupt
enable bit
Interrupt control register 2
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
0
0
0
0
Interrupt control reigster 2 (ICON2) [Address : 3F16]
Name
CNTR0 interrupt enable bit
CNTR1 interrupt enable bit
Serial I/O2 interrupt enable bit
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
INT2 interrupt enable bit
5
6
7
0
0
0 : Interrupt disabled
1 : Interrupt enabled
Fix this bit to “0.”
AD conversion interrupt
enable bit
INT4 interrupt enable bit
0 : Interrupt disabled
1 : Interrupt enabled
40
0 : Interrupt disabled
1 : Interrupt enabled
INT3 interrupt enable bit
0
0
2-30 3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
2.3.3 Serial I/O connection examples
(1) Control of peripheral IC equipped with CS pin
There are connection examples using a clock synchronous serial I/O mode.
Figure 2.3.14 shows connection examples of a peripheral IC equipped with the CS pin.
Fig. 2.3.14 Serial I/O connection examples (1)
Port
SCLK
TXD
RXD
Port
CS
CLK
IN
OUT
CS
CLK
IN
OUT
(4) Connecting ICs
3802 group
Peripheral IC 1
Peripheral IC 2
Port
SCLK
TXD
CS
CLK
IN
OUT
(2) Transmission and reception
3802 group Peripheral IC
(E PROM etc.)
2
(3) Transmission and reception
(Pins RXD and TXD are connected)
(Pins IN and OUT in peripheral IC
are connected)
CS
CLK
IN
OUT
3802 group Peripheral IC
(E PROM etc.)
22
“Port” is an output port controlled by software.
Use SOUT and SIN instead of TXD and RXD in the
serial I/O2.
Notes1:
2:
Port
SCLK
TXD
CS
CLK
DATA
(1) Only transmission
(using the RXD pin as an I/O port)
3802 group Peripheral IC
(OSD controller etc.)
1
1: Select an N-channel open-drain output control of TXD pin.
2: Use such OUT pin of peripheral IC as an N-channel open-
drain output in high impedance during receiving data.
Port
SCLK
TXD
RXD
RXD
2-31
3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
(2) Connection with microcomputer
Figure 2.3.15 shows connection examples of the other microcomputers.
Fig. 2.3.15 Serial I/O connection examples (2)
(4) Using UART
SCLK
TXD
RXD
CLK
IN
OUT
(2) Selecting an external clock
3802 group Microcomputer
(3) Using the SRDY siganl output function
(Selecting an external clock)
SRDY
SCLK
TXD
RXD
RDY
CLK
IN
OUT
3802 group Microcomputer
CLK
IN
OUT
(1) Selecting an internal clock
3802 group Microcomputer
: UART can not be used in the serial I/O2.
Note: Use SOUT and SIN instead of TXD and RXD in the serial I/O2.
RXD
TXD
SCLK
TXD
RXDRXD
TXD
3802 group Microcomputer
2-32 3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
2.3.4 Setting of serial I/O transfer data format
A clock synchronous or clock asynchronous (UART) is selected as a data format of the serial I/O1.
The serial I/O2 operates in a clock synchronous.
Figure 2.3.16 shows a setting of serial I/O transfer data format.
Fig. 2.3.16 Setting of Serial I/O transfer data format
1ST-8DATA-1SP
ST LSB
Serial
I/O1
UART
Clock synchronous
Serial I/O
1ST-7DATA-1SP
ST LSB
1ST-8DATA-1PAR-1SP
ST LSB
1ST-7DATA-1PAR-1SP
ST LSB
1ST-8DATA-2SP
ST LSB
1ST-7DATA-2SP
ST LSB
1ST-8DATA-1PAR-2SP
ST LSB
1ST-7DATA-1PAR-2SP
ST LSB
MSB SP
MSB SP
MSB PAR SP
MSB PAR SP
MSB 2SP
MSB 2SP
MSB PAR 2SP
MSB PAR 2SP
LSB first
Serial
I/O2 Clock synchronous
Serial I/O
LSB first
MSB first
ST : Start bit
SP : Stop bit
PAR : Parity bit
2-33
3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
2.3.5 Serial I/O application examples
(1) Communication using a clock synchronous serial I/O (transmit/receive)
_____
Outline : 2-byte data is transmitted and received through the clock synchronous serial I/O. The SRDY
signal is used for communication control.
Figure 2.3.17 shows a connection diagram, and Figure 2.3.18 shows a timing chart.
Fig. 2.3.17 Connection diagram [Communication using a clock synchronous serial I/O]
Specifications : • The Serial I/O1 is used (clock synchronous serial I/O is selected)
• Synchronous clock frequency : 125 kHz (f(XIN) = 4 MHz is divided by 32)
_____
• The SRDY1 (receivable signal) is used.
_____
• The receiving side outputs the SRDY1 signal at intervals of 2 ms (generated by
timer), and 2-byte data is transferred from the transmitting side to the receiving
side.
Fig. 2.3.18 Timing chart [Communication using a clock synchronous serial I/O]
• • • •
D0D4D2D1D6D5D7D3D0D4D2D1D6D5D7D3D0D1
• • • •
• • • •
TXD
SCLK1
SRDY1
2 ms
P41/INT0
SCLK1
TXD
3802 group
SRDY1
SCLK
RXD
3802 group
Transmitting side Receiving side
2-34 3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
Fig. 2.3.19 Setting of related registers at a transmitting side [Communication using a clock
synchronous serial I/O]
Serial I/O1 status register (Address : 1916)
SIO1STS
Transmit buffer empty flag
• Check to be transferred data from the Transmit buffer register to
Transmit shift register.
• Writable the next transmission data to the Transmit buffer register
at being set to “1.”
Transmitting side
Transmit shift register shift completion flag
Check a completion of transmitting 1-byte data with this flag
“1” : Transmit shift completed
b7 b0
Interrupt edge selection register (Address : 3A16)
INTEDGE
INT0 active edge selection bit : Select INT0 falling edge
b7 b0
Baud rate generator (Address : 1C16)
BRG Set “division ratio – 1”
7
b7 b0
Serial I/O1 control register (Address : 1A16)
SIO1CON
BRG counter source selection bit : f(XIN)
Serial I/O1 synchronous clock selection bit : BRG/4
Transmit enable bit : Transmit enabled
Receive enable bit : Receive disabled
Serial I/O1 mode selection bit : Clock synchronous serial I/O
Serial I/O1 enable bit : Serial I/O1 enabled
b7 b0
00
0
11 1
0
2-35
3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
Fig. 2.3.20 Setting of related registers at a receiving side [Communication using a clock
synchronous serial I/O]
b7 b0
b7 b0
Receiving side
Serial I/O1 control register (Address : 1A16)
SIO1CON
Serial I/O1 synchronous clock selection bit : External clock
SRDY1 output enable bit : Use the SRDY1 output
Transmit enable bit : Transmit enabled
Set this bit to “1,” using SRDY1 output.
Receive enable bit : Receive enabled
Sirial I/O1 mode selection bit : Clock synchronous serial I/O
Serial I/O1 enable bit : Serial I/O1 enabled
Serial I/O1 status register (Address : 1916)
SIO1STS
Receive buffer full flag
Check a completion of receiving 1-byte data with this flag.
“1” : At completing to receive
“0” : At reading out a receive buffer
111111
2-36 3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
Control procedure : Figure 2.3.21 shows a control procedure at a transmitting side, and Figure
2.3.22 shows a control procedure at a receiving side.
Fig. 2.3.21 Control procedure at a transmitting side [Communication using a clock synchronous
serial I/O]
RESET
Initialization
(Address : 1A16)
(Address : 1C16)
(Address : 3A16), bit0
SIO1CON
BRG
INTEDGE 8—1
0
.....
TB/RB (Address : 1816)The first byte of a
transmission data • Write a transmission data
The Transmit buffer empty flag is set to “0”
by this writing.
• Detect INT0 falling edge
IREQ1 (Address:3C16), bit0?
1
0
• Check to be transfered data from the Transmit
buffer register to the Transmit shift register.
(Transmit buffer empty flag)
SIO1STS (Address : 1916), bit0?
1
0
TB/RB (Address : 1816)• Write a transmission data
The transmit buffer empty flag is set to “0”
by this writing.
The second byte of a
transmission data
• Check to be transfered data from the Transmit
buffer register to the Transmit shift register.
(Transmit buffer empty flag)
SIO1STS (Address : 1916), bit0?
1
0
• Check a shift completion of the Transmit shift register
(Transmit shift register shift completion flag)
SIO1STS (Address : 1916), bit2?
1
0
IREQ1 (Address : 3C16), bit0 0
X : This bit is not used in this application.
Set it to “0” or “1.” It’s value can be disregarded.
1101XX002
2-37
3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
Fig. 2.3.22 Control procedure at a receiving side [Communication using a clock synchronous
serial I/O]
Pass 2 ms?
RESET
Initialization
SIO1CON (Address : 1A16)1111X11X2
.....
TB/RB (Address : 1816)Dummy data SRDY1 output
SRDY1 signal is output by writing data to
the TB/RB.
Using the SRDY1 , the transmit enabled bit
(bit4) of the SIO1CON is set to “1.”
• An interval of 2 ms is generated by a timer.
Y
N
• Check a completion of receiving
(Receive buffer full flag)
SIO1STS (Address : 1916), bit1?
1
0
Read out reception data from
TB/RB (Address : 1816)• Receive the first byte data.
A Receive buffer full flag is set to “0” by reading data.
• Check a completion of receiving
(Receive buffer full flag)
SIO1STS (Address : 1916), bit1?
1
0
Read out reception data from
TB/RB (Address : 1816)• Receive the second byte data.
A Receive buffer full flag is set to “0” by reading data.
X : This bit is not used in this application.
Set it to “0” or “1.” It’s value can be disregarded.
2-38 3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
(2) Output of serial data (control of a peripheral IC)
Outline : 4-byte data is transmitted and received through the clock synchronous serial I/O. The CS
signal is output to a peripheral IC through the port P53.
Fig. 2.3.23 Connection diagram [Output of serial data]
P53
SCLK1
TXD
CS
Peripheral IC
3802 group
(1) Example for using Serial I/O1 (2) Example for using Serial I/O2
DATA
CS
CLK
P53
SCLK2
SOUT2
Peripheral IC
3802 group
DATA
CS
CLK
CLK
DATA
CS
CLK
DATA
Specifications : • The Serial I/O is used. (clock synchronous serial I/O is selected)
• Synchronous clock frequency : 125 kHz (f(XIN) = 4 MHz is divided by 32)
• Transfer direction : LSB first
• The Serial I/O interrupt is not used.
___
• The Port P53 is connected to the CS pin (“L” active) of the peripheral IC for a
transmission control (the output level of the port P53 is controlled by software).
Figre 2.3.24 shows an output timing chart of serial data.
Fig. 2.3.24 Timing chart [Output of serial data]
CS
DO0DO1DO2DO3
CLK
DATA
Note: The SOUT2 pin is in high impedance after completing to transfer data, using the serial I/O2
2-39
3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
Figure 2.3.25 shows a setting of serial I/O1 related registers, and Figure 2.3.26 shows a setting of
serial I/O1 transmission data.
Fig. 2.3.26 Setting of serial I/O1 transmission data [Output of serial data]
Fig. 2.3.25 Setting of serial I/O1 related registers [Output of serial data]
Serial I/O1 synchronous clock selection bit : BRG/4
SRDY1 output enable bit : Not use the SRDY1 signal output function
0
Serial I/O1 transmit interrupt enable bit : Interrupt disabled
ICON1
Interrupt control register 1 (Address : 3E16)
Serial I/O1 transmit interrupt request bit
Using this bit, check the completion of
transmitting 1-byte base data.
“1” : Transmit shift completion
IREQ1
Interrupt request register 1 (Address : 3C16)
001SIO1CON
Serial I/O1 control register (Address : 1A16)
0011
BRG count source selection bit : f(XIN)
Transmit interrupt source selection bit : Transmit shift operating
completion
Transmit enable bit : Transmit enabled
1
Receive enable bit : Receive disabled
b7 b0
0
b7 b0
b7 b0
Serial I/O1 mode selection bit : Clock synchronous serial I/O
Serial I/O1 enable bit : Serial I/O1 enabled
0
P45/TXD P-channel output disable bit : CMOS output
UARTCON
UART control register (Address : 1B16)
b7 b0
7Set “division ratio – 1”
BRG
Baud rate generator (Address : 1C16)
b7 b0
Set a transmission data.
Check that transmission of the previous data is
completed before writing data (bit 3 of the
Interrupt re
q
uest re
g
ister 1 is set to “1”
)
.
TB/RB
Transmit/Receive buffer register (Address : 1816)
b7 b0
2.3 Serial I/O
2-40
APPLICATION
3802 GROUP USER’S MANUAL
Control procedure : When the registers are set as shown in Fig. 2.3.25, the Serial I/O1 can transmit
1-byte data simply by writing data to the Transmit buffer register.
Thus, after setting the CS signal to “L,” write the transmission data to the
Receive buffer register on a 1-byte base, and return the CS signal to “H” when
the desired number of bytes have been transmitted.
Figure 2.3.27 shows a control procedure of serial I/O1.
P5 (Address : 0A16), bit3 0
0
N
Y
1
IREQ1 (Address : 3C16), bit3?
Complete to transmit data?
Initialization
SIO1CON
UARTCON
BRG
ICON1
P5
P5D
.... ....
(Address : 1A16)
(Address : 1B16), bit4
(Address : 1C16)
(Address : 3E16), bit3
(Address : 0A16), bit3
(Address : 0B16)
110110002
XXXX1XXX2
IREQ1 (Address : 3C16), bit3 0
TB/RB (Address : 1816)
P5 (Address : 0A16), bit3 1
a transmission
data
X : This bit is not used in this application.
Set it to “0” or “1.” It’s value can be disregarded.
Set the Serial I/O1.
Set the CS signal output level to “L.”
Set the Serial I/O1 transmit interrupt
request bit to “0.”
Write a transmission data.
(start to transmit 1-byte data)
Check the completion of transmitting 1-
byte data.
Use any of RAM area as a counter for
counting the number of transmitted bytes.
Check that transmission of the target
number of bytes has been completed.
Return the CS signal output level to “H”
when transmission of the target number of
bytes is completed.
Serial I/O1 transmit interrupt : Disabled
Set the CS signal output port.
(“H” level output)
RESET
0
8–1
0
1
Fig. 2.3.27 Control procedure of serial I/O1 [Output of serial data]
APPLICATION
2.3 Serial I/O
2-41
3802 GROUP USER’S MANUAL
Figure 2.3.28 shows a setting of serial I/O2 related registers, and Figure 2.3.29 shows a setting of
serial I/O2 transmission data.
Serial I/O2 port selection bit : Use the Serial I/O2
SRDY2 output enable bit : Not use the SRDY2 signal output function
0
Serial I/O2 interrupt enable bit : Interrupt disabled
ICON2
Interrupt control register 2 (Address : 3F16)
Serial I/O2 interrupt request bit
Using this bit, check the completion of
transmitting 1-byte base data.
“1” : Transmit completion
IREQ2
Interrupt request register 2 (Address : 3D16)
010SIO2CON
Serial I/O2 control register (Address : 1D16)
0011
Internal synchronous clock selection bits : f(XIN)/32
Transfer direction selection bit : LSB first
Serial I/O2 synchronous clock selection bit : Internal clock
0
P51/SOUT2 P-channel output disable bit : CMOS output
b7 b0
0
b7 b0
b7 b0
Fig. 2.3.28 Setting of serial I/O2 related registers [Output of serial data]
Fig. 2.3.29 Setting of serial I/O2 transmission data [Output of serial data]
Set a transmission data.
Check that transmission of the previous data is
completed before writing data (bit 2 of the Interrupt
re
q
uest re
g
ister 2 is set to “1”
)
.
SIO2
Serial I/O2 register (Address : 1F16)
b7 b0
2.3 Serial I/O
2-42
APPLICATION
3802 GROUP USER’S MANUAL
Control procedure : When the registers are set as shown in Fig. 2.3.28, the Serial I/O2 can transmit
1-byte data simply by writing data to the Serial I/O2 register.
Thus, after setting the CS signal to “L,” write the transmission data to the Serial
I/O1 register on a 1-byte base, and return the CS signal to “H” when the desired
number of bytes have been transmitted.
Figure 2.3.30 shows a control procedure of serial I/O2.
Fig. 2.3.30 Control procedure of serial I/O2 [Output of serial data]
Complete to transmit data?
Set the Serial I/O2 control register.
Serial I/O2 interrupt : Disabled
Set the CS signal output port.
(“H” level output)
Set the CS signal output level to “L.”
Set the Serial I/O2 interrupt request bit to “0.”
Write a transmission data.
(start to transmit 1-byte data)
Check the completion of transmitting 1-
byte data.
Use any of RAM area as a counter for
counting the number of transmitted bytes.
Check that transmission of the target
number of bytes has been completed.
Return the CS signal output level to “H” when
transmission of the target number of bytes is
completed.
RESET
P5 (Address : 0A16), bit3 0
0
N
Y
1
IREQ2 (Address : 3D16), bit2?
IREQ2 (Address : 3D16), bit2 0
SIO2 (Address : 1F16)
P5 (Address : 0A16), bit3 1
a transmission
data
X : This bit is not used in this application.
Set it to “0” or “1.” It’s value can be disregarded.
Initialization
SIO2CON
ICON2
P5
P5D
.... ....
(Address : 1D16)
(Address : 3F16), bit2
(Address : 0A16), bit3
(Address : 0B16)
010010102
XXXX1XXX2
0
1
APPLICATION
2.3 Serial I/O
2-43
3802 GROUP USER’S MANUAL
(3) Cyclic transmission or reception of block data (data of a specified number of bytes)
between microcomputers
[without using an automatic transfer]
Outline : When a clock synchronous serial I/O is used for communication, synchronization of the clock
and the data between the transmitting and receiving sides may be lost because of noise
included in the synchronizing clock. Thus, it is necessary to be corrected constantly. This
“heading adjustment” is carried out by using the interval between blocks in this example.
Fig. 2.3.31 Connection diagram [Cyclic transmission or reception of block data between
microcomputers]
SCLK
Master unit
SCLK
Slave unit
Note: Use SOUT and SIN instead of TXD and RXD in the serial I/O2.
TXD
RXDTXD
RXD
Specifications : • The serial I/O1 is used (clock synchronous serial I/O is selected).
• Synchronous clock frequency : 131 kHz (f(XIN) = 4.19 MHz is divided by 32)
• Byte cycle: 488 µ s
• Number of bytes for transmission or reception : 8 byte/block
• Block transfer cycle : 16 ms
• Block transfer period : 3.5 ms
• Interval between blocks : 12.5 ms
• Heading adjustive time : 8 ms
Limitations of the specifications
1. Reading of the reception data and setting of the next transmission data must be completed
within the time obtained from “byte cycle – time for transferring 1-byte data” (in this example,
the time taken from generating of the Serial I/O1 receive interrupt request to generating of the
next synchronizing clock is 431 µ s).
2. “Heading adjustive time < interval between blocks” must be satisfied.
2.3 Serial I/O
2-44
APPLICATION
3802 GROUP USER’S MANUAL
The communication is performed according to the timing shown below. In the slave unit, when a
synchronizing clock is not input within a certain time (heading adjustive time), the next clock input is
processed as the beginning (heading) of a block.
When a clock is input again after one block (8 byte) is received, the clock is ignored.
Figure 2.3.33 shows a setting of related registers.
Fig. 2.3.32 Timing chart [Cyclic transmission or reception of block data between microcomputers]
D0
Byte cycle
Block transfer period
Block transfer cycle
D1D2D7D0
Interval between blocks
Processing for heading adjustment
Heading adjustive time
Fig. 2.3.33 Setting of related registers [Cyclic transmission or reception of block data between
microcomputers]
Master unit
Transmit enabled
SIO1CON
Serial I/O1 control register (Address : 1A
16
)
Synchronous
clock : BRG/4
Transmit interrupt source :
Transmit shift operating completion
Receive enabled
Clock synchronous serial I/O
01111001
Serial I/O1 enabled
BRG count source : f(X
IN
)
Not use the
S
RDY1
output
Not be effected by
external clock
Transmit enabled
SIO1CON
Serial I/O1 control register (Address : 1A
16
)
Not use the serial I/O1 transmit interrupt
Receive enabled
Clock synchronous serial I/O
11
11
Slave unit
1
Serial I/O1 enabled
0
Synchronous clock : External clock
Not use the
S
RDY1
output
UARTCON
UART control register (Address : 1B
16
)
P4
5
/T
X
D pin : CMOS output
0
Both of units
b7 b0
7
BRG
b7 b0
Baud rate generator (Address : 1C
16
)
Set “division ratio – 1”
b7 b0 b7 b0
APPLICATION
2.3 Serial I/O
2-45
3802 GROUP USER’S MANUAL
Control procedure :
Control in the master unit
After a setting of the related registers is completed as shown in Figure 2.3.33, in the master unit
transmission or reception of 1-byte data is started simply by writing transmission data to the
Transmit buffer register.
To perform the communication in the timing shown in Figure 2.3.32, therefore, take the timing into
account and write transmission data. Read out the reception data when the Serial I/O1 transmit
interrupt request bit is set to “1,” or before the next transmission data is written to the Transmit
buffer register.
A processing example in the master unit using timer interrupts is shown below.
Interrupt processing routine
executed every 488 µs
Write a transmission data
Read a reception data
N
Within a block transfer period?
Y
Y
Complete to transfer a block?
N
RTI
Write the first transmission data
(first byte) in a block
Count a block interval counter
N
Start a block transfer?
Y
Generate a certain block interval by
using a timer or other functions.
Check the block interval counter and
determine to start of a block transfer.
CLT (Note 1)
CLD (Note 2)
Push register to stack
Note 1: When using the Index X mode flag (T).
Note 2: When using the Decimal mode flag (D).
Push the register used in the interrupt
processing routine into the stack.
Pop registers Pop registers which is pushed to stack.
Fig. 2.3.34 Control in the master unit
2.3 Serial I/O
2-46
APPLICATION
3802 GROUP USER’S MANUAL
Control in the slave unit
After a setting of the related registers is completed as shown in Figure 2.3.33, the slave unit becomes the
state which is received a synchronizing clock at all times, and the Serial I/O1 receive interrupt request bit
is set to “1” every time an 8-bit synchronous clock is received.
By the serial I/O1 receive interrupt processing routine, the data to be transmitted next is written to the
Transmit buffer register after received data is read out.
However, if no serial I/O1 receive interrupt occurs for more than a certain time (head adjustive time), the
following processing will be performed.
1. The first 1 byte data of the transmission data in the block is written into the Transmit buffer register.
2. The data to be received next is processed as the first 1 byte of the received data in the block.
Figure 2.3.35 shows the control in the slave unit using a serial I/O1 receive interrupt and any timer interrupt
(for head adjustive).
Fig. 2.3.35 Control in the slave unit
Write a transmission data
Read a reception data
N
Within a block transfer period?
Y
Y
A received byte counter
8?
N
RTI
Write any data (FF
16
)
A received byte counter +1
Heading adjustive
counter Initialized
value (Note 3)
Serial I/O1 receive interrupt
processing routine Timer interrupt processing
routine
Heading adjustive counter – 1
N
Heading adjustive
counter = 0?
Y
RTI
Write the first transmission data
(first byte) in a block
A received byte counter 0
Check the received byte
counter to judge if a block
has been transfered.
In this example, set the value which is equal to the
heading adjustive time divided by the timer interrupt
cycle as the initialized value of the heading adjustive
counter.
For example: When the heading adjustive time is 8 ms
and the timer interrupt cycle is 1 ms, set
8 as the initialized value.
3:
CLT (Note 1)
CLD (Note 2)
Push register to stack Push the register used in
the interrupt processing
routine into the stack.
CLT (Note 1)
CLD (Note 2)
Push register to stack Push the register used in
the interrupt processing
routine into the stack.
Pop registers Pop registers which is
pushed to stack.
Pop registers Pop registers which is
pushed to stack.
Notes 1: When using the Index X mode flag (T).
2: When using the Decimal mode flag (D).
APPLICATION
2.3 Serial I/O
2-47
3802 GROUP USER’S MANUAL
(4) Communication (transmit/receive) using an asynchronous serial I/O (UART)
Point : 2-byte data is transmitted and received through an asynchronous serial I/O.
The port P40 is used for communication control.
Figure 2.3.36 shows a connection diagram, and Figure 2.3.37 shows a timing chart.
Fig. 2.3.36 Connection diagram [Communication using UART]
Transmitting side
P40
3802
g
roup
P40
3802 group
Receiving side
TXDXDR
Specifications : • The Serial I/O1 is used (UART is selected).
• Transfer bit rate : 9600 bps (f(XIN) = 4.9152 MHz is divided by 512)
• Communication control using port P40
(The output level of the port P40 is controlled by softoware.)
• 2-byte data is transferred from the transmitting side to the receiving side at inter-
vals of 10 ms (generated by timer).
Fig. 2.3.37 Timing chart [Communication using UART]
P4
0
T
X
D
10 ms
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
ST SP(2) D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
ST SP(2) D
0
ST
2.3 Serial I/O
2-48
APPLICATION
3802 GROUP USER’S MANUAL
Notes 1: Equation of transfer bit rate
m: when bit 0 of the Serial I/O1 control register (Address : 1A16) is set to “0,” a value of
m is 1.
when bit 0 of the Serial I/O1 control register (Address : 1A16) is set to “1,” a value of
m is 4.
2: A BRG count source is selected by bit 0 of the Serial I/O1 control register (Address : 1A16).
Table 2.3.1 shows setting examples of Baud rate generator (BRG) values and transfer bit rate values,
Figure 2.3.38 shows a setting of related registers at a transmitting side, and Figure 2.3.39 shows a
setting of related registers at a receiving side.
Table 2.3.1 Setting examples of Baud rate generator values and transfer bit rate values
BRG setting value
Actual time (bps)
BRG setting value
at f(XIN) = 4.9152 MHZ
600
1200
2400
4800
9600
19200
38400
76800
31250
62500
600.96
1201.92
2403.85
4807.69
9615.38
20833.33
41666.67
83333.33
31250.00
62500.00
207(CF16)
103(6716)
51(3316)
25(1916)
12(0C16)
5(0516)
2(0216)
5(0516)
15(0F16)
7(0716)
600.00
1200.00
2400.00
4800.00
9600.00
19200.00
38400.00
76800.00
191(BF16)
95(5F16)
47(2F16)
23(1716)
11(0B16)
5(0516)
2(0216)
5(0516)
600.00
1200.00
2400.00
4800.00
9600.00
19200.00
38400.00
76800.00
127(7F16)
63(3F16)
31(1F16)
15(0F16)
7(0716)
3(0316)
1(0116)
3(0316)
at f(XIN) = 8 MHZat f(XIN) = 7.3728 MHZ
Transfer bit
rate (bps)
(Note 1)
BRG count
source
(Note 2)
Actual time (bps) Actual time (bps)
BRG setting value
f(XIN)/4
f(XIN)/4
f(XIN)/4
f(XIN)/4
f(XIN)/4
f(XIN)/4
f(XIN)/4
f(XIN)
f(XIN)
f(XIN)
Transfer bit rate (bps) = (BRG setting value + 1) 16 m
f(XIN)
APPLICATION
2.3 Serial I/O
2-49
3802 GROUP USER’S MANUAL
Fig. 2.3.38 Setting of related registers at a transmitting side [Communication using UART]
Serial I/O1 status register (Address : 1916)
SIO1STS
Transmitting side
Baud rate generator (Address : 1C16)
BRG 7
SIO1CON 1001 010
UART control register (Address : 1B16)
UARTCON 001 0
f(XIN)
Transfer bit rate 16 m 1
b7 b0
Serial I/O1 control register (Address : 1A16)
b7 b0
b7 b0
b7 b0
Set
when bit 0 of the Serial I/O1 control register (Address : 1A16) is set to “0,”
a value of m is 1.
when bit 0 of the Serial I/O1 control register (Address : 1A16) is set to “1,”
a value of m is 4.
BRG count source selection bit : f(XIN)/4
Serial I/O1 synchronous clock selection bit : BRG/16
Transmit enable bit : Transmit enabled
Receive enable bit : Receive disabled
Serial I/O1 mode selection bit : Asynchronous serial I/O(UART)
Serial I/O1 enable bit : Serial I/O1 enabled
SRDY1 output enable bit : Not use SRDY1 out
Character length selection bit : 8 bits
Parity enable bit : Parity checking disabled
P45/TXD P-channel output disable bit : CMOS output
Stop bit length selection bit : 2 stop bits
Transmit buffer empty flag
Check to be transferred data from the Transmit buffer
register to the Transmit shift register.
Writable the next transmission data to the Transmit buffer
register at being set to “1.”
Transmit shift register shift completion flag
Check a completion of transmitting 1-byte data with this flag.
“1” : Transmit shift completed
2.3 Serial I/O
2-50
APPLICATION
3802 GROUP USER’S MANUAL
Receiving side
Serial I/O1 status register (Address : 1916)
SIO1STS
BRG 7
Serial I/O1 control register (Address : 1A16)
SIO1CON 10 01010
UARTCON 010
b7 b0
Receive buffer full flag
Check a completion of receiving 1-byte data with this flag.
“1” : at completing to receive
“0” : at reading out a content of the Receive buffer register
Overrun error flag
“1” : when data are ready to be transferred to the Receive shift register
in the state of storing data into the Receive buffer register.
Parity error flag
“1” : when parity error occurs at enabled parity.
Framing error flag
“1” : when data can not be received at the timing of setting a stop bit.
Summing error flag
“1” : when even one of the following errors occurs.
• Overrun error
• Parity error
• Framing error
b7 b0
UART control register (Address : 1B16)
b7 b0
Character length selection bit : 8 bits
Parity enable bit : Parity checking disabled
Stop bit length selection bit : 2 stop bits
Baud rate generator (Address : 1C16)
b7 b0 f(XIN)
Transfer bit rate 16 m 1
Set
when bit 0 of the Serial I/O1 control register (Address : 1A16) is set to “0,”
a value of m is 1.
when bit 0 of the Serial I/O1 control register (Address : 1A16) is set to “1,”
a value of m is 4.
BRG count source selection bit : f(XIN)/4
Serial I/O1 synchronous clock selection bit : BRG/16
Transmit enable bit : Transmit disabled
Receive enable bit : Receive enabled
Serial I/O1 mode selection bit : Asynchronous serial I/O(UART)
Serial I/O1 enable bit : Serial I/O1 enabled
SRDY1 output enable bit : Not use SRDY1 out
Fig. 2.3.39 Setting of related registers at a receiving side [Communication using UART]
APPLICATION
2.3 Serial I/O
2-51
3802 GROUP USER’S MANUAL
Control procedure : Figure 2.3.40 shows a control procedure at a transmitting side, and Figure 2.3.41
shows a control procedure at a receiving side.
Fig. 2.3.40 Control procedure at a transmitting side [Communication using UART]
SIO1STS (Address : 1916), bit0?
RESET
• End of communication
(Address : 1A16)
(Address : 1B16)
(Address : 1C16)
(Address : 0816), bit0
(Address : 0916)
P4 (Address : 0816), bit0 1
Pass 10 ms?
Y
N
TB/RB
(
Address : 1816
)The second byte of
a transmission data
1
0
SIO1STS (Address : 1916), bit2?
1
0
Initialization
SIO1CON
UARTCON
BRG
P4
P4D
1001X0012
000010002
8–1
.....
TB/RB
(
Address : 1816
)The first byte of a
transmission data
P4 (Address : 0816), bit0 0
1
0
X : This bit is not used in this application.
Set it to “0” or “1.” It’s value can be disregarded.
• Set port P40 for a communication control.
• An interval of 10 ms is generated by a timer.
• Start of communication.
• Write a transmission data
The Transmit buffer empty flag is set to “0”
by this writing.
• Write a transmission data
The Transmit buffer empty flag is set to “0”
by this writing.
• Check to be transferred data from the Transmit
buffer register to the Transmit shift register.
(Transmit buffer empty flag)
• Check to be transferred data from the Transmit
buffer register to the Transmit shift register.
(Transmit buffer empty flag)
• Check a shift completion of the Transmit shift register.
(Transmit shift register shift completion flag)
SIO1STS (Address : 1916), bit0?
0
XXXXXXX12
2.3 Serial I/O
2-52
APPLICATION
3802 GROUP USER’S MANUAL
Fig. 2.3.41 Control procedure at a receiving side [Communication using UART]
(Address : 1A16)
(Address : 1B16)
(Address : 1C16)
(Address : 0916)
RESET
• Check a completion of receiving.
(Receive buffer full flag)
SIO1STS (Address : 1916), bit1?
1
0
Read out a reception data
from RB (Address : 1816)
SIO1STS (Address : 1916), bit6?
0
1
Initialization
SIO1CON
UARTCON
BRG
P4D
1010X0012
000010002
8–1
XXXXXXX02
.....
SIO1STS (Address : 1916), bit1?
1
0
• Check an error flag.
SIO1STS (Address : 19
16
), bit6?
0
1
P4 (Address : 08
16
), bit0?
0
1
SIO1CON (Address : 1A16)
SIO1CON (Address : 1A16)0000X0012
1010X0012
Processing for error
Read out a reception data
from RB (Address : 18
16
)
• Receive the first 1 byte data
A Receive buffer full flag is set
to “0” by reading data.
• Check a completion of receiving.
(Receive buffer full flag)
• Receive the second byte data
A Receive buffer full flag is set
to “0” by reading data.
• Check an error flag.
• Countermeasure for a bit slippage
X : This bit is not used in this application.
Set it to “0” or “1.” It’s value can be disregarded.
2-53
3802 GROUP USER’S MANUAL
APPLICATION
2.4 PWM
2.4 PWM
2.4.1 Memory map of PWM
Fig. 2.4.1 Memory map of PWM related registers
002B16
002C16
002D16
PWM control register (PWMCON)
PWM prescaler (PREPWM)
PWM register (PWM)
APPLICATION
2.4 PWM
2-54 3802 GROUP USER’S MANUAL
2.4.2 Related registers
PWM control register
b7 b6 b5 b4 b3 b2 b1 b0
BAt reset RW
0
1
2
3
4
5
6
7
0
0
0
0
0
0
0
0
PWM control register (PWMCON) [Address:2B16]
FunctionName
Nothing is arranged for these bits. These are write disabled bits.
When these bits are read out, the contents are "0".
PWM function enable bit 0 : PWM disabled
1 : PWM enabled
Count source selection bit 0 : f(XIN)
1 : f(XIN)/2
Fig. 2.4.2 Structure of PWM control register
PWM prescaler
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
4
5
6
7
?
?
?
?
?
?
?
?
PWM prescaler (PREPWM) [Address : 2C16]
PWM cycle is set.
The values set in this register is written to both the PWM
prescaler pre-latch and the PWM prescaler latch at the same
time.
When data is written during outputting PWM, the pulses
corresponding to the changed contents are output starting with
the next cycle.
When this register is read out, the content of the PWM prescaler
latch is read out.
Fig. 2.4.3 Structure of PWM prescaler
2-55
3802 GROUP USER’S MANUAL
APPLICATION
2.4 PWM
PWM register
b7 b6 b5 b4 b3 b2 b1 b0
bAt reset RW
0
1
2
3
4
5
6
7
?
?
?
?
?
?
?
?
PWM register (PWM) [Address : 2D16]
Function
“H” level output period of PWM is set.
The values set in this register is written both the PWM register
pre-latch and the PWM register latch at the same time.
When data is written during outputting PWM, the pulses
corresponding to the changed contents are output starting with
the next cycle.
When this register is read out, the content of the PWM register
latch is read out.
Fig. 2.4.4 Structure of PWM register
APPLICATION
2.4 PWM
2-56 3802 GROUP USER’S MANUAL
Specifications : • Motor is controlled by using the 8-bit-resolution PWM output function.
• Clock f(XIN) = 5.0 MHz
• “T,” PWM cycle : 102 µ s
• “t,” “H” level width of output pulse : 40 µs (Fixed speed)
A motor speed can be changed by changing the “H” level width of output pluse.
2.4.3 PWM output circuit application example
(1) Control of motor
Outline : The rotation speed of the motor is controlled by using PWM (pulse width modulation) output.
Figure 2.4.5 shows a connection diagram, Figures 2.4.6 shows PWM output timing, and Figure 2.4.7 shows
a setting of the related registers.
Fig. 2.4.5 Connection diagram
Fig. 2.4.6 PWM output timing
PWM output
t = 40 µs
T = 102 µs
P56/PWM
3802 group
D-A converter Motor driver
M
2-57
3802 GROUP USER’S MANUAL
APPLICATION
2.4 PWM
Fig. 2.4.7 Setting of related registers
[About PWM output]
1. Set the PWM function enable bit to “1” : The P56/PWM pin is used as the PWM pin.
“H” level pulse is output first.
2. Set the PWM function enable bit to “0” : The P56/PWM pin is used as the port P56.
Thus, when fixing the output level, make sure the following.
• First, write an output value to bit 6 of the Port P5 register.
• Then write “X1XXXXXX2” to the Port P5 direction register.
(X : This bit is not used in this application. Set it to “0” or “1.” It’s value can be disregarded.)
3. After data is set to the PWM prescaler and the PWM register, the PWM waveforms corresponding to new data
will be output from the next repetitive cycle.
1
PWM function enable bit : PWM enabled (Note)
PWMCON
PWM control register (Address : 2B16)
255 (n + 1)
Set “T”, PWM cycle
n = 1
PREPWM
PWM prescaler (Address : 2C16)
Note : The PWM output function is given priority
even when the corresponding bit to P56 pin
of Port P5 direction register is set to “0”
(input mode).
b7 b0
0
Count source selection bit : f(XIN)
b7 b0
n[Equation]
T =
Set “t”, “H” level width of PWM
m = 100
PWM
PWM register (Address : 2D16)
b7 b0
m[Equation]
t =
f(XIN)
T m
255
Fig. 2.4.8 PWM output
PWM output
Change PWM
output data From the next repetitive cycle,
output modified data
APPLICATION
2.4 PWM
2-58 3802 GROUP USER’S MANUAL
Control procedure : By setting the related registers as shown to Figure 2.4.7, PWM waveforms are output to the
externalunit. This PWM output is integrated through the low pass filter and converted into DC
signals for control of the motor.
Figure 2.4.9 shows control procedure.
Fig. 2.4.9 Control procedure
P5 (Address : 0A16), bit6
P5D (Address : 0B16)
~
~
PREPWM (Address : 2C16)
PWM (Address : 2D16)
PWMCON (Address : 2B16)
• Output “L” level from P56/PWM pin.
0
X1XXXXXX2
1
100
000000012
• Set the PWM cycle
• Set the “H” level width of PWM
• Select the PWM count source, and enable the PWM output.
X : This bit is not used in this application.
Set it to “0” or “1.” It’s value can be disregarded.
~
~
2-59
3802 GROUP USER’S MANUAL
APPLICATION
2.5 A-D converter
2.5 A-D converter
2.5.1 Memory map of A-D conversion
Fig. 2.5.1 Memory map of A-D conversion related registers
003F16
003416
003516
003D16 Interrupt request register 2 (IREQ2)
Interrupt control register 2 (ICON2)
AD/DA control register (ADCON)
A-D conversion register (AD)
APPLICATION
2.5 A-D converter
2-60 3802 GROUP USER’S MANUAL
2.5.2 Related registers
When these bits are read out, the values are “0.”
Nothing is allocated for these bits. These are write disabled bits.
AD/DA control register
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
Name
Analog input pin selection bits
AD/DA control register (ADCON) [Address : 3416]
0 0 0 : P60/AN0
0 0 1 : P61/AN1
0 1 0 : P62/AN2
0 1 1 : P63/AN3
1 0 0 : P64/AN4
1 0 1 : P65/AN5
1 1 0 : P66/AN6
1 1 1 : P67/AN7
b2 b1 b0
1
0 : Conversion in progress
1 : Conversion completed
AD conversion completion bit
3
1
0
2
0
0
0 : DA1 output disable
1 : DA1 output enable
DA1 output enable bit
6
0
7
0
4
0 : DA2 output disabled
1 : DA2 output enabled
DA2 output enable bit
0
0
5 0
Fig. 2.5.3 Structure of A-D conversion register
A-D conversion register
b7 b6 b5 b4 b3 b2 b1 b0
B Function At reset RW
A-D conversion register (AD) [Address : 3516]
The read-only register which A-D conversion results are stored.
0
1
2
3
4
5
6
7
?
?
?
?
?
?
?
?
Fig. 2.5.2 Structure of AD/DA control register
2-61
3802 GROUP USER’S MANUAL
APPLICATION
2.5 A-D converter
Fig. 2.5.4 Structure of Interrupt request register 2
Fig. 2.5.5 Structure of Interrupt control register 2
Interrupt request register 2
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
0
0
0
0
Interrupt request reigster 2 (IREQ2) [Address : 3D16]
Name
CNTR0 interrupt request bit
CNTR1 interrupt request
bit
Serial I/O2 interrupt request
bit
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
INT2 interrupt request bit
5
6
7
0
0
0 : No interrupt request
1 : Interrupt request
Nothing is allocated for this bit. This is a write disabled bit.
When this bit is read out, the value is “0.”
AD conversion interrupt
request bit
INT4 interrupt request bit
0 : No interrupt request
1 : Interrupt request
“0” is set by software, but not “1.”
40
0 : No interrupt request
1 : Interrupt request
INT3 interrupt request bit
0
AA
AA
AA
AA
AA
AA
AA
AA
AAAAAAA
AAAAAAA
Interrupt control register 2
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
0
0
0
0
Interrupt control reigster 2 (ICON2) [Address : 3F16]
Name
CNTR0 interrupt enable bit
CNTR1 interrupt enable bit
Serial I/O2 interrupt enable
bit
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
INT2 interrupt enable bit
5
6
7
0
0
0 : Interrupt disabled
1 : Interrupt enabled
Fix this bit to “0.”
AD conversion interrupt
enable bit
INT4 interrupt enable bit
0 : Interrupt disabled
1 : Interrupt enabled
40
0 : Interrupt disabled
1 : Interrupt enabled
INT3 interrupt enable bit
0
0
APPLICATION
2.5 A-D converter
2-62 3802 GROUP USER’S MANUAL
2.5.3 A-D conversion application example
Conversion of Analog input voltage
Outline : The analog input voltage input from the sensor is converted into digital values.
Figure 2.5.6 shows a connection diagram, and Figure 2.5.7 shows a setting of related registers.
Fig. 2.5.6 Connection diagram [Conversion of Analog input voltage]
Specifications : • The analog input voltage input from the sensor is converted into digital values.
• The P60/AN0 pin is used as an analog input pin.
Fig. 2.5.7 Setting of related registers [Conversion of Analog input voltage]
P60/AN0
3802 group
Sensor
AA
A
0
Analog input pin selection bits : Select the P6
0
/AN
0
pin
ADCON
AD/DA control register (Address : 34
16
)
000
AD conversion completion bit : Conversion in progress
Store a result of A-D conversion (Note)
AD
A-D conversion register (Address : 35
16
)
(read-only)
Note: Read out a result of A-D conversion after bit 3 of the
AD/DA control re
g
ister (ADCON) is set to “1.”
b7 b0
b7 b0
2-63
3802 GROUP USER’S MANUAL
APPLICATION
2.5 A-D converter
Control procedure : By setting the related registers as shown in Figure 2.5.7, the analog input
voltage input from the sensor are converted into digital values.
Fig. 2.5.8 Control procedure [Conversion of Analog input voltage]
~
~
Read out AD (Address : 3516)
ADCON (Address : 3416), bit0 – bit2
ADCON (Address : 3416), bit3
0
ADCON (Address : 3416), bit3?
1
Select the P60/AN0 pin as an analog input pin.
Start A-D conversion.
Check the completion of A-D conversion.
Read out the conversion result.
~
~
0002
0
APPLICATION
2.6 Processor mode
2-64 3802 GROUP USER’S MANUAL
2.6 Processor mode
2.6.1 Memory map of processor mode
Fig. 2.6.1 Memory map of processor mode related register
2.6.2 Related register
Fig. 2.6.2 Structure of CPU mode register
003B16 CPU mode register (CPUM)
Nothing is allocated for these bits. These are write disabled bits.
When these bits are read out, the values are “0.”
CPU mode register (CPUM) [Adress : 3B16]
CPU mode register
b7 b6 b5 b4 b3 b2 b1 b0
Function At reset RW
0
1
2
3
0
0
0
B Name
Processor mode bits 00 : Single-chip mode
01 : Memory expansion mode
10 : Microprocessor mode
11 : Not available
Stack page selection bit 0 : 0 page
1 : 1 page
An initial value of bit 1 is determined by a level of the CNVSS pin.
0
0
0
0
4
5
6
7
APPLICATION
2.6 Processor mode
2-65
3802 GROUP USER’S MANUAL
2.6.3 Processor mode application examples
____
(1) Application example of memory expansion in the case where the ONW (One-Wait)
function is not used
Outline : The external memory is accessed in the microprocessor mode.
At f(XIN) = 8 MHz, an available RAM is given by the following :
___
OE access time : ta (OE) 50 ns
• Setup time for writing data : tsu (D) 65 ns
For example, the M5M5256BP-10 whose address access is 100 ns is available.
Figure 2.6.3 shows an expansion example of a 32K byte ROM and a 32K byte RAM.
Fig. 2.6.3 Expansion example of ROM and RAM
3802 group
CNVSS
ONW
AD15
8P4
8P5
8P6
AD14
AD0
DB0
DB7
RD
WR
M5M27C256AK-10 M5M5256BP-10
CE
A0–A14
D0–D7
OE
A0–A14
DQ1–DQ8
OE W
8MHz VCC = 5.0V±10 %
000016
800016
044016
004016
000816
FFFF16
External RAM area
(M5M5256BP)
SFR area
Internal RAM area
External RAM area
(M5M5256BP)
External ROM area
(M5M27C256AK)
Memory map
74F04 S
15
8
2P30, P31
EPROM SRAM
APPLICATION
2.6 Processor mode
2-66 3802 GROUP USER’S MANUAL
Figure 2.6.4, Figure 2.6.5 and Figure 2.6.6 show a standard timing at 8 MHz (No-Wait).
Fig. 2.6.4 Read-cycle (OE access, SRAM)
Fig. 2.6.5 Read-cycle (OE access, EPROM)
Output enabled access time of M5M5256BP
Data bus setup time before RD of 3802
td(AH RD) RD pulse width of 3802
RD delay time after outputting address of 3802
50 ns (max)
65 ns (min)
Address (low-order)
A0–A7
(Port P0)
Address (high-order)
A8–A14
(Port P1)
,,,,,,,
,,,,,,,
Data
DQ1–DQ8
(Port P2)
S
(A15)
WR “H”
“”
level
125 ns - 10 ns (min)
125 ns - 35 ns (min)
OE
(RD of 3802) td(AH RD) tWL(RD)
ta(OE)
tsu(DB RD)
:
:
tWL(RD) :
ta(OE) :
:
tsu(DB RD)
:RD delay time after outputting address of 3802
:Output enabled access time of M5M27C256AK
:Data bus setup time before RD of 3802
50 ns (max)
65 ns (min)
Address (low-order)
A0–A7
(Port P0)
Address (high-order)
A8–A14
(Port P1)
,,,,,,,
,,,,,,,
Data
D0–D7
(Port P2)
WR H level
CE
5.8 ns (max)
tPHL
125 ns - 10ns (min)
125 ns - 35 ns (min)
OE
(RD of 3802) td(AH RD) tWL(RD)
ta(OE)
tsu(DB RD)
:RD pulse width of 3802
ta(OE)
td(AH RD)
tWL(RD)
tsu(DB RD)
tPHL Output delay time of 74F04
APPLICATION
2.6 Processor mode
2-67
3802 GROUP USER’S MANUAL
Fig. 2.6.6 Write-cycle (W control, SRAM)
td(AH WR)
W
(WR of 3802)
65 ns (max)
35 ns (min)
Address (low-order)
Address (high-order)
,,,,,,,
,,,,,,,
Data
DQ1–DQ8
(Port P2)
S
(A15)
OE
(RD of 3802) H level
125 ns - 10 ns (min)
125 ns - 35 ns (min)
td(AH WR) tWL(WR)
td(WR DB)
tsu(D)
:WR delay time after outputting address of 3802
:WR pulse width of 3802
tWL(WR) :Data bus delay time after WR of 3802
td(WR DB) :Data setup time of M5M5256BP
tsu(D)
A0–A7
(Port P0)
A8–A14
(Port P1)
APPLICATION
2.6 Processor mode
2-68 3802 GROUP USER’S MANUAL
_____
(2) Application example of memory expansion in the case where the ONW (One-Wait)
function is used
____
Outline : ONW function is used when the external memory access is slow.
____
If “L” level signal is input to the P32/ONW pin while the CPU is in the read or write status,
the read or write cycle corresponding to 1 cycle of is extended. In the extended period,
___ ___
____
the RD or WR signal is kept at the “L” level. The ONW function operates only when data is
read from or written into addresses 000016 to 000716 and addresses 044016 to FFFF16.
____
Figure 2.6.7 shows an application example of the ONW function.
____
Fig. 2.6.7 Application example of the ONW function
3802 group
CNVSS AD15
8P5
8P6
ONW
AD14
AD0
DB0
DB7
RD
WR
M5M27C256AK-10 M5M5256BP-10
CE
A0–A14
D0–D7
OE
A0–A14
DQ1–DQ8
OE W
8MHz VCC = 5.0V±10 %
External RAM area
(M5M5256BP)
SFR area
Internal RAM area
External RAM area
(M5M5256BP)
External ROM area
(M5M27C256AK)
000016
800016
044016
004016
000816
FFFF16
Memory map
74F04
S
15
8
8P4
2P30, P31
EPROM SRAM
APPLICATION
2.7 Reset
2-69
3802 GROUP USER’S MANUAL
2.7 Reset
2.7.1 Connection example of reset IC
Figure 2.7.2 shows the system example which switch to the RAM backup mode by detecting a drop of the
system power source voltage with the INT interrupt.
Fig. 2.7.1 Example of Poweron reset circuit
Fig. 2.7.2 RAM back-up system
System power
source voltage
+5
M62009L, M62009P, M62009FP
7
5
4
91
35
3
6
2
1
VCC1
RESET
INT
GND Cd
V1
VCC2
3802 group
VCC
INT
RESET
+
40 VSS
M62022L
3802
g
roup
RESET
1
5
3
91
35
40
0.1 µF
Power source
GND
Delay capacity
4
Output
VSS
VCC
CHAPTER 3CHAPTER 3
APPENDIX
3.1
Electrical characteristics
3.2
Standard characteristics
3.3 Notes on use
3.4
Countermeasures against noise
3.5 List of registers
3.6
Mask ROM ordering method
3.7 Mark specification form
3.8 Package outline
3.9
List of instruction codes
3.10 Machine instructions
3.11 SFR memory map
3.12 Pin configuration
3802 GROUP USER'S MANUAL
3-2
APPENDIX
3.1 Electrical characteristics
3.1.1 ABSOLUTE MAXIMUM RATINGS
Power source voltage
Input voltage P00–P07, P10–P17, P20–P27,
P30–P37, P40–P47, P50–P57,
P60–P67,
VREF
Input voltage RESET, XIN
Input voltage CNVSS
Output voltage P00–P07, P10–P17, P20–P27,
P30–P37, P40–P47, P50–P57,
P60–P67,
XOUT
Power dissipation
Operating temperature
Storage temperature
VCC
VI
VI
VI
VO
Pd
Topr
Tstg
Symbol Parameter Conditions Ratings
–0.3 to 7.0
–0.3 to V CC +0.3
–0.3 to VCC +0.3
–0.3 to 13
–0.3 to VCC +0.3
1000 (Note)
–20 to 85
–40 to 125
V
V
V
V
V
mW
°C
°C
Unit
Ta = 25 °C
All voltages are based on VSS.
Output transistors are cut off.
Table 3.1.2 RECOMMENDED OPERATING CONDITIONS (Vcc = 3.0 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)
Note 1:
5.5
5.5
VCC
VCC
VCC
VCC
VCC
0.2 VCC
0.2 VCC
0.16 V
CC
–80
–80
80
80
–40
–40
40
40
–10
10
–5
5
8
6 V
CC
–16
Power source voltage (f(XIN) < 2 MHz) (Note 1)
Power source voltage (f(XIN) = 8 MHz) (Note 1)
Power source voltage
Analog reference voltage (when A-D converter is used)
Analog reference voltage (when D-A converter is used)
Analog power source voltage
Analog input voltage AN0–AN7
“H” input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67
“H” input voltage RESET, XIN, CNVSS
“L” input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67
“L” input voltage RESET, CNVSS
“L” input voltage XIN
“H” total peak output current
P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
, P3
0
–P3
7
(Note 2)
“H” total peak output current P40–P47,P50–P57, P60–P67 (Note 2)
“L” total peak output current
P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
, P3
0
–P3
7
(Note 2)
“L” total peak output current P40–P47,P50–P57, P60–P67 (Note 2)
“H” total average output current
P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
, P3
0
–P3
7
(Note 2)
“H” total average output current P40–P47,P50–P57, P60–P67 (Note 2)
“L” total average output current
P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
, P3
0
–P3
7
(Note 2)
“L” total average output current P40–P47,P50–P57, P60–P67 (Note 2)
“H” peak output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67 (Note 3)
“L” peak output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67 (Note 3)
“H” average output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67 (Note 4)
“L” average output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67 (Note 4)
Internal clock oscillation frequency (VCC = 4.0 to 5.5 V)
Internal clock oscillation frequency (VCC = 3.0 to 4.0 V)
VCC
VSS
VREF
AVSS
VIA
VIH
VIH
VIL
VIL
VIL
ΣIOH(peak)
ΣIOH(peak)
ΣIOL(peak)
ΣIOL(peak)
ΣIOH(avg)
ΣIOH(avg)
ΣIOL(avg)
ΣIOL(avg)
IOH(peak)
IOL(peak)
IOH(avg)
IOL(avg)
f(XIN)
Symbol Parameter Limits
Min.
V
V
V
V
V
V
V
V
V
V
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
MHz
Unit
3.0
4.0
2.0
3.0
AVSS
0.8 VCC
0.8 VCC
0
0
0
5.0
5.0
0
0
Typ. Max.
Note: 300 mW in case of the flat package.
3.1Electrical characteristics
Table 3.1.1 Absolute maximum ratings
3.1.2 Recommended operating conditions
The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is
an average value measured over 100 ms. The total peak current is the peak value of all the currents.
2: The peak output current is the peak current flowing in each port.
3: The average output current I OL(avg), IOH(avg) in an average value measured over 100 ms.
3802 GROUP USER'S MANUAL 3-3
APPENDIX
3.1 Electrical characteristics
When STP instruction
is executed with clock
stopped, output
transistors isolated.
Note 1: P45 is measured when the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
P51 is measured when the P51/SOUT2 P-channel output disable bit of the serial I/O2 control register (bit 7 of address 001D16) is “0”.
2: With output transistors isolated and A-D converter having completed conversion, and not including current flowing through VREF pin.
2.0
1.0
5.0
5.0
–5.0
–5.0
5.5
13
8
2.0
1
10
“H” output voltage P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
,
P3
0
–P3
7
, P4
0
–P4
7
, P5
0
–P5
7
,
P6
0
–P6
7
(Note 1)
“L” output voltage P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
,
P3
0
–P3
7
, P4
0
–P4
7
,P5
0
–P5
7
,
P6
0
–P6
7
Hysteresis CNTR
0
, CNTR
1
, INT
0
–INT
4
Hysteresis R
X
D, S
CLK1
, S
IN2
, S
CLK2
Hysteresis RESET
“H” input current P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
,
P3
0
–P3
7
, P4
0
–P4
7
, P5
0
–P5
7
,
P6
0
–P6
7
“H” input current RESET, CNV
SS
“H” input current X
IN
“L” input current P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
,
P3
0
–P3
7
, P4
0
–P4
7
, P5
0
–P5
7
,
P6
0
–P6
7
, RESET, CNV
SS
“L” input current RESET, CNV
SS
“L” input current X
IN
RAM hold voltage
Symbol Parameter Limits
Min.
V
Unit
V
CC
–2.0
V
CC
–1.0
0.4
0.5
0.5
4
–4
6.4
4
0.8
1.5
1
0.2
0.1
Typ. Max.
IOH = –10 mA
VCC = 4.0 to 5.5 V
IOH = –1.0 mA
VCC = 3.0 to 5.5 V
IOL = 10 mA
VCC = 4.0 to 5.5 V
IOL = 1.0 mA
VCC = 3.0 to 5.5 V
VI = VCC
VI = VCC
VI = VCC
VI = VSS
VI = VSS
VI = VSS
When clock stopped
f(XIN) = 8 MHz, VCC = 5 V
f(XIN) = 5 MHz, VCC = 5 V
f(XIN) = 2 MHz, VCC = 3 V
Ta = 25 °C
(Note 2)
Ta = 85 °C
(Note 2)
2.0
Test conditions
VT+ – VT–
VT+ – VT–
VT+ – VT–
IIH
IIH
IIH
IIL
IIL
IIL
VRAM
VOH
VOL
ICC
V
V
V
V
µA
µA
µA
µA
µA
µA
V
mA
µA
Power source current
When WIT instruction is executed with
f(Xin) = 8MHz,VCC=5V
When WIT instruction is executed with
f(Xin) = 5MHz,VCC=5V
When WIT instruction is executed with
f(Xin) = 2MHz,VCC=3V
8
±2.5
50
200
5.0
Limits
Min. Bits
LSB
tC(φ)
k
µA
µA
Typ. Max.
±1
35
150
0.5
Note: When D-A conversion registers (addresses 003616 and 003716) contain “0016”.
Resolution
Absolute accuracy (excluding quantization error)
Conversion time
Ladder resistor
Reference power source input current (Note)
A-D port input current
tCONV
RLADDER
IVREF
II(AD)
Symbol Parameter Unit
VREF = 5.0 V 50
Table 3.1.3 ELECTRICAL CHARACTERISTICS (VCC = 3.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Test conditions
Table 3.1.4 A–D CONVERTER CHARACTERISTICS
(VCC = 3.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.0 V to VCC, Ta = –20 to 85 °C, unless otherwise noted)
3.1.3 Electrical characteristics
3.1.4 A-D converter characteristics
3802 GROUP USER'S MANUAL
3-4
APPENDIX
3.1 Electrical characteristics
Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being “0016”, and excluding cur-
rents flowing through the A-D resistance ladder.
8
1.0
2.5
3
4
3.2
Resolution
Absolute accuracy V
CC
= 4.0 to 5.5 V
V
CC
= 3.0 to 4.0 V
Setting time
Output resistor
Reference power source input current (Note)
tsu
RO
IVREF
Symbol Parameter Limits
Min. Bits
%
µs
k
mA
Unit
1
Typ. Max.
Test conditions
2.5
Table 3.1.5 D-A CONVERTER CHARACTERISTICS
(VCC = 3.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 3.0 V to VCC, Ta = –20 to 85 °C, unless otherwise noted)
3.1.5 D-A CONVERTER CHARACTERISTICS
3802 GROUP USER'S MANUAL 3-5
APPENDIX
3.1 Electrical characteristics
Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1”. Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0”.
Reset input “L” pulse width
External clock input cycle time
External clock input “H” pulse width
External clock input “L” pulse width
CNTR0, CNTR1 input cycle time
CNTR0, CNTR1 input “H” pulse width
INT0 to INT4 input “H” pulse width
CNTR0, CNTR1 input “L” pulse width
INT0 to INT4 input “L” pulse width
Serial I/O1 clock input cycle time (Note)
Serial I/O2 clock input cycle time
Serial I/O1 clock input “H” pulse width (Note)
Serial I/O2 clock input “H” pulse width
Serial I/O1 clock input “L” pulse width (Note)
Serial I/O2 clock input “L” pulse width
Serial I/O1 input set up time
Serial I/O2 input set up time
Serial I/O1 input hold time
Serial I/O2 input hold time
tw(RESET)
tc(XIN)
twH(XIN)
twL(XIN)
tc(CNTR)
twH(CNTR)
twH(INT)
twL(CNTR)
twL(INT)
tc(SCLK1)
tc(SCLK2)
twH(SCLK1)
twH(SCLK2)
twL(SCLK1)
twL(SCLK2)
t
su(R
X
D–S
CLK1
)
t
su(S
IN2
–S
CLK2
)
t
h(S
CLK1
–R
X
D)
t
h(S
CLK2
–S
IN2
)
Symbol Parameter Limits
Min. µs
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
Table 3.1.6 TIMING REQUIREMENTS (1) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
2
125
50
50
200
80
80
80
80
800
1000
370
400
370
400
220
200
100
200
Typ. Max.
Reset input “L” pulse width
External clock input cycle time
External clock input “H” pulse width
External clock input “L” pulse width
CNTR0, CNTR1 input cycle time
CNTR0, CNTR1 input “H” pulse width
INT0 to INT4 input “H” pulse width
CNTR0, CNTR1 input “L” pulse width
INT0 to INT4 input “L” pulse width
Serial I/O1 clock input cycle time (Note)
Serial I/O2 clock input cycle time
Serial I/O1 clock input “H” pulse width (Note)
Serial I/O2 clock input “H” pulse width
Serial I/O1 clock input “L” pulse width (Note)
Serial I/O2 clock input “L” pulse width
Serial I/O1 input set up time
Serial I/O2 input set up time
Serial I/O1 input hold time
Serial I/O2 input hold time
tw(RESET)
tc(XIN)
twH(XIN)
twL(XIN)
tc(CNTR)
twH(CNTR)
twH(INT)
twL(CNTR)
twL(INT)
tc(SCLK1)
tc(SCLK2)
twH(SCLK1)
twH(SCLK2)
twL(SCLK1)
twL(SCLK2)
t
su(R
X
D–S
CLK1
)
t
su(S
IN2
–S
CLK2
)
t
h(S
CLK1
–R
X
D)
t
h(S
CLK2
–S
IN2
)
Symbol Parameter Limits
Min. µs
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
Table 3.1.7 TIMING REQUIREMENTS (2) (VCC = 3.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
2
500/
(3 V
CC
–8)
200/
(3 V
CC
–8)
200/
(3 V
CC
–8)
500
230
230
230
230
2000
2000
950
950
950
950
400
400
200
300
Typ. Max.
Note: When f(XIN) = 2 MHz and bit 6 of address 001A16 is “1”. Divide this value by four when f(XIN) = 2 MHz and bit 6 of address 001A16 is “0”.
3.1.6 Timing requirements and Switching characteristics
3802 GROUP USER'S MANUAL
3-6
APPENDIX
3.1 Electrical characteristics
Serial I/O1 clock output “H” pulse width
Serial I/O2 clock output “H” pulse width
Serial I/O1 clock output “L” pulse width
Serial I/O2 clock output “L” pulse width
Serial I/O1 output delay time (Note 1)
Serial I/O2 output delay time (Note 2)
Serial I/O1 output valid time (Note 1)
Serial I/O2 output valid time (Note 2)
Serial I/O1 clock output rising time
Serial I/O1 clock output falling time
Serial I/O2 clock output rising time
Serial I/O2 clock output falling time
CMOS output rising time (Note 3)
CMOS output falling time (Note 3)
140
200
30
30
30
40
30
30
Symbol Parameter Limits
Min. ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
Table 3.1.8 SWITCHING CHARACTERISTICS (1) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
t
c(S
CLK1
)/2–30
t
c(S
CLK2
)/2–160
t
c(S
CLK1
)/2–30
t
c(S
CLK2
)/2–160
–30
0
10
10
Typ. Max.
twH(SCLK1)
twH(SCLK2)
twL(SCLK1)
twL(SCLK2)
t
d(S
CLK1
–T
X
D)
t
d(S
CLK2
–S
OUT2
)
t
v(S
CLK1
–T
X
D)
t
v(S
CLK2
–S
OUT2
)
tr(SCLK1)
tf(SCLK1)
tr(SCLK2)
tf(SCLK2)
tr(CMOS)
tf(CMOS)
Test conditions
Fig. 3.1.1
Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: When the P51/SOUT2 P-channel output disable bit of the serial I/O2 control register (bit 7 of address 001D16) is “0”.
3: XOUT pin is excluded.
Table 3.1.9 SWITCHING CHARACTERISTICS (2) (VCC = 3.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Serial I/O1 clock output “H” pulse width
Serial I/O2 clock output “H” pulse width
Serial I/O1 clock output “L” pulse width
Serial I/O2 clock output “L” pulse width
Serial I/O1 output delay time (Note 1)
Serial I/O2 output delay time (Note 2)
Serial I/O1 output valid time (Note 1)
Serial I/O2 output valid time (Note 2)
Serial I/O1 clock output rising time
Serial I/O1 clock output falling time
Serial I/O2 clock output rising time
Serial I/O2 clock output falling time
CMOS output rising time (Note 3)
CMOS output falling time (Note 3)
350
400
50
50
50
50
50
50
Symbol Parameter Limits
Min. ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
t
c(S
CLK1
)/2–50
t
c(S
CLK2
)/2–240
t
c(S
CLK1
)/2–50
t
c(S
CLK2
)/2–240
–30
0
20
20
Typ. Max.
twH(SCLK1)
twH(SCLK2)
twL(SCLK1)
twL(SCLK2)
t
d(S
CLK1
–T
X
D)
t
d(S
CLK2
–S
OUT2
)
t
v(S
CLK1
–T
X
D)
t
v(S
CLK2
–S
OUT2
)
tr(SCLK1)
tf(SCLK1)
tr(SCLK2)
tf(SCLK2)
tr(CMOS)
tf(CMOS)
Test conditions
Fig. 3.1.1
Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: When the P51/SOUT2 P-channel output disable bit of the serial I/O2 control register (bit 7 of address 001D16) is “0”.
3: XOUT pin is excluded.
3802 GROUP USER'S MANUAL 3-7
APPENDIX
3.1 Electrical characteristics
Note 1: The RESET OUT output goes “H” in sync with the rise of the φ clock that is anywhere between about 8 cycle and 13 cycles after
the RESET input goes “H”.
Before φ ONW input set up time
After φ ONW input hold time
Before φ data bus set up time
After φ data bus hold time
Before RD ONW input set up time
Before WR ONW input set up time
After RD ONW input hold time
After WR ONW input hold time
Before RD data bus set up time
After RD data bus hold time
tsu(ONW–φ)
th(φ–ONW)
tsu(DB–φ)
th(φ–DB)
tsu
(ONW–RD)
tsu
(ONW–WR)
th(RD–ONW)
th(WR–ONW)
tsu(DB–RD)
th(RD–DB)
Symbol Parameter Limits
Min. ns
ns
ns
ns
ns
ns
ns
ns
Unit
–20
–20
60
0
–20
–20
65
0
Typ. Max.
φ clock cycle time
φ clock “H” pulse width
φ clock “L” pulse width
After φ AD15–AD8 delay time
After φ AD15–AD8 valid time
After φ AD7–AD0 delay time
After φ AD7–AD0 valid time
SYNC delay time
SYNC valid time
RD and WR delay time
RD and WR valid time
After φ data bus delay time
After φ data bus valid time
RD pulse width, WR pulse width
RD pulse width, WR pulse width
(When one-wait is valid)
After AD 15–AD8 RD delay time
After AD15–AD8 WR delay time
After AD7–AD0 RD delay time
After AD7–AD0 WR delay time
After RD AD15–AD8 valid time
After WR AD15–AD8 valid time
After RD AD7–AD0 valid time
After WR AD7–AD0 valid time
After WR data bus delay time
After WR data bus valid time
RESETOUT output delay time (Note 1)
RESETOUT output valid time (Note 1)
40
45
20
10
70
65
200
200
Symbol Parameter Limits
Min. ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
tc(XIN)–10
tc(XIN)–10
6
6
3
15
tc(XIN)–10
3tc(XIN)–10
tc(XIN)–35
tc(XIN)–40
0
0
10
0
2tc(XIN)
20
10
25
10
20
10
10
5
20
t
c(X
IN
)
–15
t
c(X
IN
)
–20
5
5
15
Typ. Max.
tc(φ)
twH(φ)
twL(φ)
td(φ–AH)
tv(φ–AH)
td(φ–AL)
tv(φ–AL)
td(φ–SYNC)
tv(φ–SYNC)
td(φ–WR)
tv(φ–WR)
td(φ–DB)
tv(φ–DB)
twL(RD)
twL(WR)
td(AH–RD)
td(AH–WR)
td(AL–RD)
td(AL–WR)
tv(RD–AH)
tv(WR–AH)
tv(RD–AL)
tv(WR–AL)
td(WR–DB)
tv(WR–DB)
t
d
(RESET–RESET
OUT
)
tv(φ–RESET)
Test conditions
Fig. 3.1.1
Table 3.1.10 TIMING REQUIREMENTS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (1)
(VCC = 4.0 to 5.5 V, VSS = 0 V , Ta = –20 to 85 °C, unless otherwise noted)
Table 3.1.11 SWITCHING CHARATERISTICS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (1)
(VCC = 4.0 to 5.5 V, VSS = 0 V , Ta = –20 to 85 °C, unless otherwise noted)
3802 GROUP USER'S MANUAL
3-8
APPENDIX
3.1 Electrical characteristics
Before φ ONW input set up time
After φ ONW input hold time
Before φ data bus set up time
After φ data bus hold time
Before RD ONW input set up time
Before WR ONW input set up time
After RD ONW input hold time
After WR ONW input hold time
Before RD data bus set up time
After RD data bus hold time
tsu(ONW–φ)
th(φ–ONW)
tsu(DB–φ)
th(φ–DB)
tsu
(ONW–RD)
tsu
(ONW–WR)
th(RD–ONW)
th(WR–ONW)
tsu(DB–RD)
th(RD–DB)
Symbol Parameter Limits
Min. ns
ns
ns
ns
Unit
–20
–20
180
0
–20
–20
185
0
Typ. Max.
φ clock cycle time
φ clock “H” pulse width
φ clock “L” pulse width
After φ AD15–AD8 delay time
After φ AD15–AD8 valid time
After φ AD7–AD0 delay time
After φ AD7–AD0 valid time
SYNC delay time
SYNC valid time
RD and WR delay time
RD and WR valid time
After φ data bus delay time
After φ data bus valid time
RD pulse width, WR pulse width
RD pulse width, WR pulse width
(when one-wait is valid)
After AD15–AD8 RD delay time
After AD15–AD8 WR delay time
After AD7–AD0 RD delay time
After AD7–AD0 WR delay time
After RD AD15–AD8 valid time
After WR AD15–AD8 valid time
After RD AD7–AD0 valid time
After WR AD7–AD0 valid time
After WR data bus delay time
After WR data bus valid time
RESETOUT output delay time (Note 1)
RESETOUT output valid time (Note 1)
Symbol Parameter Limits
Min. ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
tc(XIN)–20
tc(XIN)–20
10
10
3
15
tc(XIN)–20
3tc(XIN)–20
tc(XIN)–145
tc(XIN)–145
5
5
10
0
2tc(XIN)
15
15
40
20
15
7
10
10
Typ. Max.
tc(φ)
twH(φ)
twL(φ)
td(φ–AH)
tv(φ–AH)
td(φ–AL)
tv(φ–AL)
td(φ–SYNC)
tv(φ–SYNC)
td(φ–WR)
tv(φ–WR)
td(φ–DB)
tv(φ–DB)
twL(RD)
twL(WR)
td(AH–RD)
td(AH–WR)
td(AL–RD)
td(AL–WR)
tv(RD–AH)
tv(WR–AH)
tv(RD–AL)
tv(WR–AL)
td(WR–DB)
tv(WR–DB)
t
d
(RESET–RESET
OUT
)
tv(φ–RESET)
Test conditions
Fig. 3.1.1
Note1: The RESETOUT output goes “H” in sync with the fall of the φ clock that is anywhere between about 8 cycle and 13 cycles after
the RESET input goes “H”.
Table 3.1.12 TIMING REQUIREMENTS IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (2)
(VCC = 3.0 V, VSS = 0 V , Ta = –20 to 85 °C, unless otherwise noted)
Table 3.1.13 SWITCHING CHARACTERISTICS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (2)
(VCC = 3.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
ns
ns
ns
ns
ns
150
150
25
15
200
195
300
300
3802 GROUP USER'S MANUAL 3-9
APPENDIX
3.1 Electrical characteristics
Power source voltage
Input voltage P00–P07, P10–P17, P20–P27,
P30–P37, P40–P47, P50–P57,
P60–P67,
VREF
Input voltage RESET, XIN
Input voltage CNVSS
Output voltage P00–P07, P10–P17, P20–P27,
P30–P37, P40–P47, P50–P57,
P60–P67,
XOUT
Power dissipation
Operating temperature
Storage temperature
VCC
VI
VI
VI
VO
Pd
Topr
Tstg
Symbol Parameter Conditions Ratings
–0.3 to 7.0
–0.3 to VCC +0.3
–0.3 to V CC +0.3
–0.3 to 13
–0.3 to V CC +0.3
1000 (Note)
–40 to 85
–65 to 150
V
V
V
V
V
mW
°C
°C
Unit
Ta = 25 °C
All voltage are based on VSS.
Output transistors are cut off.
Note 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an aver-
age value measured over 100 ms. The total peak current is the peak value of all the currents.
2: The peak output current is the peak current flowing in each port.
3: The average output current IOL(avg), IOH(avg) in an average value measured over 100 ms.
5.5
VCC
VCC
VCC
VCC
VCC
0.2 VCC
0.2 VCC
0.16 V
CC
–80
–80
80
80
–40
–40
40
40
–10
10
–5
5
8
Power source voltage (f(XIN) 2 MHz)
Power source voltage
Analog reference voltage (when A-D converter is used)
Analog reference voltage (when D-A converter is used)
Analog power source voltage
Analog input voltage AN 0–AN7
“H” input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P6 0–P67
“H” input voltage RESET, XIN, CNVSS
“L” input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P6 0–P67
“L” input voltage RESET, CNVSS
“L” input voltage XIN
“H” total peak output current
P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
, P3
0
–P3
7
(Note 1)
“H” total peak output current P4 0–P47,P50–P57, P60–P67 (Note 1)
“L” total peak output current
P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
, P3
0
–P3
7
(Note 1)
“L” total peak output current P40–P47,P50–P57, P60–P67 (Note 1)
“H” total average output current
P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
, P3
0
–P3
7
(Note 1)
“H” total average output current P40–P47,P50–P57, P6 0–P67 (Note 1)
“L” total average output current
P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
, P3
0
–P3
7
(Note 1)
“L” total average output current P40–P47,P50–P57, P60–P67 (Note 1)
“H” peak output current P00–P07, P1 0–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67 (Note 2)
“L” peak output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67 (Note 2)
“H” average output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67 (Note 3)
“L” average output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67 (Note 3)
Internal clock oscillation frequency (VCC = 4.0 to 5.5 V)
VCC
VSS
VREF
AVSS
VIA
VIH
VIH
VIL
VIL
VIL
ΣIOH(peak)
ΣIOH(peak)
ΣIOL(peak)
ΣIOL(peak)
ΣIOH(avg)
ΣIOH(avg)
ΣIOL(avg)
ΣIOL(avg)
IOH(peak)
IOL(peak)
IOH(avg)
IOL(avg)
f(XIN)
Symbol Parameter Limits
Min. V
V
V
V
V
V
V
V
V
V
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
MHz
Unit
4.0
2.0
4.0
AVSS
0.8 VCC
0.8 VCC
0
0
0
5.0
0
0
Typ. Max.
Table 3.1.14 Absolute maximum ratings (Extended operating temperature version)
Table 3.1.15 Recommended operating conditions (Extended operating temperature version)
(VCC = 4.0 to 5.5 V, Ta = –40 to 85 °C, unless otherwise noted)
3.1.7 Absolute maximum ratings (Extended operating temperature version)
Note: 300mW in case of the flat package
3.1.8 Recommended operatinmg conditions (Extended operating temperature version)
3802 GROUP USER'S MANUAL
3-10
APPENDIX
3.1 Electrical characteristics
When STP instruction
is executed with clock
stopped, output
transistors isolated.
Note 1: P45 is measured when the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
P51 is measured when the P51/SOUT2 P-channel output disable bit of the serial I/O2 control register (bit 7 of address 001D16) is “0”.
2: With output transistors isolated and A-D converter having completed conversion, and not including current flowing through VREF pin.
2.0
5.0
5.0
–5.0
5.5
13
8
1
10
“H” output voltage P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
,
P3
0
–P3
7
, P4
0
–P4
7
, P5
0
–P5
7
,
P6
0
–P6
7
(Note 1)
“L” output voltage P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
,
P3
0
–P3
7
, P4
0
–P4
7
,P5
0
–P5
7
,
P6
0
–P6
7
Hysteresis CNTR
0
, CNTR
1
, INT
0
–INT
4
Hysteresis R
X
D, S
CLK1
, S
IN2
, S
CLK2
Hysteresis RESET
“H” input current P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
,
P3
0
–P3
7
, P4
0
–P4
7
, P5
0
–P5
7
,
P6
0
–P6
7
“H” input current
RESET
, CNV
SS
“H” input current X
IN
“L” input current P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
,
P3
0
–P3
7
, P4
0
–P4
7
, P5
0
–P5
7
,
P6
0
–P6
7
, RESET, CNV
SS
“L” input current X
IN
RAM hold voltage
Symbol Parameter Limits
Min. Unit
VCC–2.0
0.4
0.5
0.5
4
–4
6.4
4
1.5
1
0.1
Typ. Max.
IOH = –10 mA
IOL = 10 mA
VI = VCC
VI = VCC
VI = VCC
VI = VSS
VI = VSS
When clock stopped
f(XIN) = 8 MHz
f(XIN) = 5 MHz
When WIT instruction is executed
with f(XIN) = 8 MHz
When WIT instruction is executed
with f(XIN) = 5 MHz Ta = 25 °C
(Note 2)
Ta = 85 °C
(Note 2)
2.0
Test conditions
Note: When D-A conversion registers (addresses 003616 and 003716) contain “0016”.
8
±2.5
50
200
5.0
Resolution
Absolute accuracy (excluding quantization error)
Conversion time
Ladder resistor
Reference power source input current (Note)
A-D port input current
tCONV
RLADDER
IVREF
II(AD)
Symbol Parameter Limits
Min. Bits
LSB
tC(φ)
k
µA
µA
Unit
50
Typ. Max.
VREF = 5.0 V
Test conditions
±1
35
150
0.5
Table 3.1.17 A-D CONVERTER CHARACTERISTICS (Extended operating temperature version)
(VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.0 V to VCC, Ta = –40 to 85 °C, unless otherwise noted)
VT+ – VT–
VT+ – VT–
VT+ – VT–
IIH
IIH
IIH
IIL
IIL
VRAM
VOH
VOL
V
V
V
V
V
µA
µA
µA
µA
µA
V
Power source current
mA
Table 3.1.16 Electrical characteristics (Extended operating temperature version)
(VCC = 4.0 to 5.5 V,
VSS = 0 V,
Ta = –40 to 85 °C, unless otherwise noted)
ICC
µA
3.1.9 Electrical characteristics (Extended operating temperature version)
3.1.10 A-D converter characteristics (Extended operating temperature version)
3802 GROUP USER'S MANUAL 3-11
APPENDIX
3.1 Electrical characteristics
Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being “0016”, and excluding cur-
rents flowing through the A-D resistance ladder.
8
1.0
3
4
3.2
Resolution
Absolute accuracy
Setting time
Output resistor
Reference power source input current (Note)
tsu
RO
IVREF
Symbol Parameter Limits
Min. Bits
%
µs
k
mA
Unit
1
Typ. Max.
Test conditions
2.5
Table 3.1.18 D-A CONVERTER CHARACTERISTICS (Extended operating temperature version)
(VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 4.0 V to VCC, Ta = –40 to 85 °C, unless otherwise noted)
3.1.11 D-A converter characteristics (Extended operating temperature version)
3802 GROUP USER'S MANUAL
3-12
APPENDIX
3.1 Electrical characteristics
Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1”. Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0”.
Reset input “L” pulse width
External clock input cycle time
External clock input “H” pulse width
External clock input “L” pulse width
CNTR0, CNTR1 input cycle time
CNTR0, CNTR1 input “H” pulse width
INT0 to INT4 input “H” pulse width
CNTR0, CNTR1 input “L” pulse width
INT0 to INT4 input “L” pulse width
Serial I/O1 clock input cycle time (Note)
Serial I/O2 clock input cycle time
Serial I/O1 clock input “H” pulse width (Note)
Serial I/O2 clock input “H” pulse width
Serial I/O1 clock input “L” pulse width (Note)
Serial I/O2 clock input “L” pulse width
Serial I/O1 input set up time
Serial I/O2 input set up time
Serial I/O1 input hold time
Serial I/O2 input hold time
tw(RESET)
tc(XIN)
twH(XIN)
twL(XIN)
tc(CNTR)
twH(CNTR)
twH(INT)
twL(CNTR)
twL(INT)
tc(SCLK1)
tc(SCLK2)
twH(SCLK1)
twH(SCLK2)
twL(SCLK1)
twL(SCLK2)
t
su(R
X
D–S
CLK1
)
t
su(S
IN2
–S
CLK2
)
t
h(S
CLK1
–R
X
D)
t
h(S
CLK2
–S
IN2
)
Symbol Parameter Limits
Min. µs
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
2
125
50
50
200
80
80
80
80
800
1000
370
400
370
400
220
200
100
200
Typ. Max.
Table 3.1.20 Switching characteristics
(Extended operating temperature version)
(VCC = 4.0 to 5.5 V, VSS = 0 V , Ta = –40 to 85 °C, unless otherwise noted)
Table 3.1.19 Timing requirements (Extended operating temperature version)
(VCC = 4.0 to 5.5 V, VSS = 0 V , Ta = –40 to 85 °C, unless otherwise noted)
Serial I/O1 clock output “H” pulse width
Serial I/O2 clock output “H” pulse width
Serial I/O1 clock output “L” pulse width
Serial I/O2 clock output “L” pulse width
Serial I/O1 output delay time (Note 1)
Serial I/O2 output delay time (Note 2)
Serial I/O1 output valid time (Note 1)
Serial I/O2 output valid time (Note 2)
Serial I/O1 clock output rising time
Serial I/O1 clock output falling time
Serial I/O2 clock output rising time
Serial I/O2 clock output falling time
CMOS output rising time (Note 3)
CMOS output falling time (Note 3)
140
200
30
30
30
40
30
30
Symbol Parameter Limits
Min. ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
t
c(S
CLK1
)/2–30
t
c(S
CLK2
)/2–160
t
c(S
CLK1
)/2–30
t
c(S
CLK2
)/2–160
–30
0
10
10
Typ. Max.
twH(SCLK1)
twH(SCLK2)
twL(SCLK1)
twL(SCLK2)
t
d(S
CLK1
–T
X
D)
t
d(S
CLK2
–S
OUT2
)
t
v(S
CLK1
–T
X
D)
t
v(S
CLK2
–S
OUT2
)
tr(SCLK1)
tf(SCLK1)
tr(SCLK2)
tf(SCLK2)
tr(CMOS)
tf(CMOS)
Test conditions
Fig. 3.1.1
Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: When the P51/SOUT2 P-channel output disable bit of the serial I/O2 control register (bit 7 of address 001D16) is “0”.
3: XOUT pin excluded.
3.1.12 Timing requirements and Switching characteristics (Extended operating temperature version)
3802 GROUP USER'S MANUAL 3-13
APPENDIX
3.1 Electrical characteristics
Note 1: The RESETOUT output goes “H” in sync with the rise of the φ clock that is anywhere between about 8 cycle and 13 cycles after
the RESET input goes “H”.
Table 3.1.21 Timing requirements in memory expansion mode and microprocessor mode
(Extended operating temperature version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)
Before φ ONW input set up time
After φ ONW input hold time
Before φ data bus set up time
After φ data bus hold time
Before RD ONW input set up time
Before WR ONW input set up time
After RD ONW input hold time
After WR ONW input hold time
Before RD data bus set up time
After RD data bus hold time
tsu(ONW–φ)
th(φ–ONW)
tsu(DB–φ)
th(φ–DB)
tsu
(ONW–RD)
tsu
(ONW–WR)
th(RD–ONW)
th(WR–ONW)
tsu(DB–RD)
th(RD–DB)
Symbol Parameter Limits
Min. ns
ns
ns
ns
ns
ns
ns
ns
Unit
–20
–20
60
0
–20
–20
65
0
Typ. Max.
φ clock cycle time
φ clock “H” pulse width
φ clock “L” pulse width
After φ AD15–AD8 delay time
After φ AD15–AD8 valid time
After φ AD7–AD0 delay time
After φ AD7–AD0 valid time
SYNC delay time
SYNC valid time
RD and WR delay time
RD and WR valid time
After φ data bus delay time
After φ data bus valid time
RD pulse width, WR pulse width
RD pulse width, WR pulse width
(when one wait is valid)
40
45
20
10
70
Symbol Parameter Min. ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
tc(XIN)–10
tc(XIN)–10
6
6
3
15
2tc(XIN)
20
10
25
10
20
10
10
5
20
Typ. Max.
tc(φ)
twH(φ)
twL(φ)
td(φ–AH)
tv(φ–AH)
td(φ–AL)
tv(φ–AL)
td(φ–SYNC)
tv(φ–SYNC)
td(φ–WR)
tv(φ–WR)
td(φ–DB)
tv(φ–DB)
twL(RD)
twL(WR)
td(AH–RD)
td(AH–WR)
td(AL–RD)
td(AL–WR)
tv(RD–AH)
tv(WR–AH)
tv(RD–AL)
tv(WR–AL)
td(WR–DB)
tv(WR–DB)
t
d
(RESET–RESET
OUT
)
tv(φ–RESET)
Test conditions
Fig. 3.1.1
Table 3.1.22 Switching characteristics in memory expansion mode and microprocessor mode
(Extended operating temperature version)
Fig. 3.1.1 Circuit for measuring output switching
characteristics
(VCC = 4.0 to 5.5 V, VSS = 0 V , Ta = –40 to 85 °C, unless otherwise noted)
After AD15–AD8 RD delay time
After AD15–AD8 WR delay time
After AD7–AD0 RD delay time
After AD7–AD0 WR delay time
After RD AD15–AD8 valid time
After WR AD15–AD8 valid time
After RD AD7–AD0 valid time
After WR AD7–AD0 valid time
After WR data bus delay time
After WR data bus valid time
RESETOUT output delay time
RESETOUT output valid time (Note 1)
tc(X
IN
)–10
3tc(X
IN
)–10
tc(X
IN
)–35
tc(XIN)–40
0
0
10
0
t
c(X
IN
)
–15
t
c(X
IN
)
–20
5
5
15 65
200
200
ns
ns
ns
ns
ns
ns
ns
ns
ns
Measurement output pin
100pF
CMOS output
Limits
3802 GROUP USER'S MANUAL
3-14
APPENDIX
3.1 Electrical characteristics
3.1.13 Timing diagram
Timing Diagram
0.2 V
CC
t
WL(INT)
0.8 V
CC
t
WH(INT)
0.2 V
CC
0.2 V
CC
0.8 V
CC
0.8 V
CC
0.2 V
CC
t
WL(X
IN
)
0.8 V
CC
t
WH(X
IN)
t
C(X
IN
)
X
IN
0.2 V
CC
0.8 V
CC
t
W(RESET)
RESET
t
f
t
r
0.2 V
CC
t
WL(CNTR)
0.8 V
CC
t
WH(CNTR)
t
C(CNTR)
t
d(S
CLK1
-T
X
D)
,t
d(S
CLK2-
S
OUT2
)
t
v(S
CLK1
-T
X
D),
t
v(S
CLK2-
S
OUT2
)
t
C(S
CLK1
),
t
C(S
CLK2
)
t
WL(S
CLK1
),
t
WL(S
CLK2
)
t
WH(S
CLK1
),
t
WH(S
CLK2
)
th
(S
CLK1-
R
X
D),
t
h
(S
CLK2-
S
IN2
)
t
su(R
X
D
-
S
CLK1
),
t
su(S
IN2-
S
CLK2
)
T
X
D
S
OUT2
R
X
D
S
IN2
S
CLK1
S
CLK2
INT
0–
INT
4
CNTR
0
, CNTR
1
Fig. 3.1.2 Timing diagram (in single-chip mode)
3802 GROUP USER'S MANUAL 3-15
APPENDIX
3.1 Electrical characteristics
Timing Diagram in Memory Expansion Mode and Microprocessor Mode (1)
Timing Diagram in Microprocessor Mode
t
WL(φ)
t
WH(φ)
t
C(φ)
φ
t
d(φ-AH)
t
d(φ-AL)
t
d(φ-SYNC)
t
v(φ-AH)
t
v(φ-AL)
t
v(φ-SYNC)
t
d(φ-WR)
t
v(φ-WR)
t
SU(ONW-φ)
t
h(φ-ONW)
t
SU(DB-φ)
t
h(φ-DB)
t
d(φ-DB)
t
v(φ-DB)
t
d(RESET- RESET
OUT
)
AD
15
–AD
8
AD
7
–AD
0
SYNC
RD,WR
ONW
DB
0
–DB
7
DB
0
–DB
7
RESET
φ
RESET
OUT
t
v(φ- RESET
OUT
)
0.5 V
CC
0.8 V
CC
0.2 V
CC
(At CPU reading)
(At CPU writing)
0.5 V
CC
0.5 V
CC
0.8 V
CC
0.2 V
CC
0.8 V
CC
0.2 V
CC
0.5 V
CC
0.5 V
CC
0.5 V
CC
0.5 V
CC
0.5 V
CC
Fig. 3.1.3 Timing diagram (in memory expansion mode and microprocessor mode) (1)
3802 GROUP USER'S MANUAL
3-16
APPENDIX
3.1 Electrical characteristics
Timing Diagram in Memory Expansion Mode and Microprocessor Mode (2)
0.5 VCC
RD,WR
0.5 VCC
AD15–AD8
td(AH-WR) tv(WR-AH)
0.5 VCC
AD7–AD0
td(AL-WR) tv(WR-AL)
0.8 VCC
0.2 VCC
DB0–DB7
0.5 VCC
RD
tSU(DB-RD) th(RD-DB)
0.5 VCC
DB0–DB7
0.5 VCC
WR
td(WR-DB) tv(WR-DB)
th(WR-ONW)
ONW
tsu(ONW-WR)
tv(RD-AH)
td(AH-RD)
td(AL-RD) tv(RD-AL)
th(RD-ONW)
tsu(ONW-RD)
tWL(RD)
tWL(WR)
(At CPU reading)
(At CPU writing)
tWL(RD)
tWL(WR)
0.8 VCC
0.2 VCC
Fig. 3.1.4 Timing diagram (in memory expansion mode and microprocessor mode) (2)
APPENDIX
3.2 Standard characteristics
3-17
3802 GROUP USER’S MANUAL
3.2 Standard characteristics
3.2.1 Power source current characteristic examples
Figures 3.2.1 and Figure 3.2.2 show power source current characteristic examples.
Fig. 3.2.1 Power source current characteristic example
[Measuring condition : 25 °C, A-D conversion stopped]
Fig. 3.2.2 Power source current characteristic example (in wait mode)
[Measuring condition : 25 °C, A-D conversion stopped]
V cc = 5. 5V,
Ta = 25
V cc = 4. 0V,
Ta = 25
0
0
8
4
3
2
1
84321 567
5
6
7
Frequenc
y
f(X
IN
) (MH
z
)
Power source current
(mA)
Rectangular waveform
V cc = 5. 5V,
Ta = 25
V cc = 4. 0V,
Ta = 25
0
0
8
4
3
2
1
84321 567
5
6
7
Frequency f(X
IN
) (MH
z
)
Power source current
(mA)
Rectangular waveform
°c
°c
°c
°c
APPENDIX
3.2 Standard characteristics
3-18 3802 GROUP USER’S MANUAL
3.2.2 Port standard characteristic examples
Figures 3.2.3, Figure 3.2.4, Figure 3.2.5 and Figure 3.2.6 show port standard characteristic examples.
Fig. 3.2.3 Standard characteristic example of CMOS output port at P-channel drive (1)
Fig. 3.2.4 Standard characteristic example of CMOS output port at P-channel drive (2)
0
V
OH
(V)
I
OH
(mA)
0.5
01.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
–5
–10
–15
–20
–25
–30
–35
–40
–45
–50
–5
–10
–15
–20
–25
–30
–35
–40
–45
–50
Vcc = 5.0V
Ta = 90
5.5
Vcc = 5.5V
Ta = 90
Vcc = 3.0V
Ta = 90
0VOH (V
)
IOH
(mA)
0.5
01.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Vcc = 5.0V
Ta = 25
5.5
Vcc = 3.0V
Ta = 25
Vcc = 5.5V
Ta = 25
[Port 60 IOH–VOH characteristic (P-channel drive)]
(Pins with same characteristic : P0, P1, P2, P3, P4, P5, P6)
[Port 60 IOH–VOH characteristic (P-channel drive)]
(Pins with same characteristic : P0, P1, P2, P3, P4, P5, P6)
°c
°c
°c
°c
°c
°c
APPENDIX
3.2 Standard characteristics
3-19
3802 GROUP USER’S MANUAL
Fig. 3.2.5 Standard characteristic example of CMOS output port at N-channel drive (1)
0
V
OL
(V)
I
OL
(mA)
0.5
01.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
5
10
15
20
25
30
35
40
45
50
Vcc = 3.0V
Ta = 90
Vcc = 5.5V
Ta = 90 Vcc = 5.0V
Ta = 90
Fig. 3.2.6 Standard characteristic example of CMOS output port at N-channel drive (2)
0
V
OL
(V)
I
OL
(mA)
0.5
0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
5
10
15
20
25
30
35
40
45
50
Vcc = 5.0V
Ta = 25
55
60
Vcc = 5.5V
Ta = 25
Vcc = 3.0V
Ta = 25
[Port 60 IOL–VOL characteristic (N-channel drive)]
(Pins with same characteristic : P0, P1, P2, P3, P4, P5, P6)
[Port 60 IOL–VOL characteristic (N-channel drive)]
(Pins with same characteristic : P0, P1, P2, P3, P4, P5, P6)
°c
°c
°c
°c
°c
°c
APPENDIX
3.2 Standard characteristics
3-20 3802 GROUP USER’S MANUAL
3.2.3 A-D conversion standard characteristics
Figure 3.2.7 shows the A-D conversion standard characteristics.
The lower-side line on the graph indicates the absolute precision error. It represents the deviation from the
ideal value. For example, the conversion of output code from 127 to 128 occurs ideally at the point of AN0
= 2550 mV, but the measured value is –5 mV. Accordingly, the measured point of conversion is repre-
sented as “2550 – 5 = 2545 mV.”
The upper-side line on the graph indicates the width of input voltages equivalent to output codes. For
example, the measured width of the input voltage for output code 170 is 23 mV, so the differential nonlinear
error is represented as “23 – 20 = 3 mV” (0.15 LSB).
Fig. 3.2.7 A-D conversion standard characteristics
M38027E8SS A-D CONVERTER STEP WIDTH MEASUREMENT
Measured when a power source voltage is stable in the single-chip mode
APPENDIX
3.2 Standard characteristics
3-21
3802 GROUP USER’S MANUAL
3.2.4 D-A conversion standard characteristics
Figure 3.2.8 shows the D-A conversion standard characteristics. The lower-side line on the graph indicates
the absolute precision error. In this case, it represents the difference between the ideal analog output value
for an input code and the measured value.
The upper-side line on the graph indicates the change width of output analog value to a one-bit change
of input code.
Fig. 3.2.8 D-A conversion standard characteristics
Measured when a power source voltage is stable in the single-chip mode
M38027E8SS D-A CONVERTER STEP WIDTH MEASUREMENT
3802 GROUP USER’S MANUAL
3-22
APPENDIX
3.3 Notes on use
(1) Sequence for switching an external interrupt
detection edge Clear an interrupt enable bit to “0” (interrupt disabled)
Switch the detection edge
Clear an interrupt request bit to “0” (no interrupt requ-
est issued)
Set the interrupt enable bit to “1” ( interrupt enabled )
3.3 Notes on use
3.3.1 Notes on interrupts
When the external interrupt detection edge must be
switched, make sure the following sequence.
Reason
The interrupt circuit recognizes the switching of the
detection edge as the change of external input
signals. This may cause an unnecessary interrupt.
(2) Bit 7 of the interrupt control register 2
Fix the bit 7 of the interrupt control register 2
(Address:003F16) to “0”.
Figure 3.3.1 shows the structure of the interrupt
control register 2.
Fig. 3.3.1 Structure of interrupt control register 2
3.3.2 Notes on the serial I/O1
(1) Stop of data transmission
As for the serial I/O1 that can be used as either a clock synchronous or an asynchronous (UART) serial I/O, clear
the transmit enable bit to “0” (transmit disabled), and clear the serial I/O enable bit to “0” (serial I/O1 disabled)in
the following cases :
when stopping data transmission during transmitting data in the clock synchronous serial I/O mode
when stopping data transmission during transmitting data in the UART mode
when stopping only data transmission during transmitting and receiving data in the UART mode
Reason
Since transmission is not stopped and the transmission circuit is not initialized even if the serial I/O1 enable bit
is cleared to “0” (serial I/O1 disabled), the internal transmission is running (in this case, since pins TxD, RxD, SCLK1,
______
and SRDY1 function as I/O ports, the transmission data is not output). When data is written to the transmit buffer
register in this state, the data is transferred to the transmit shift register and start to be shifted. When the serial
I/O1 enable bit is set to “1” at this time, the data during internally shifting is output to the TxD pin and ti may cause
an operation failure to a microcomputer.
(2) Stop of data reception
As for the serial I/O1 that can be used as either a clock synchronous or an asynchronous (UART) serial I/O, clear
the receive enable bit to “0” (receive disabled), or clear the serial I/O enable bit to “0” (serial I/O disabled) in the
following case :
when stopping data reception during receiving data in the clock synchronous serial I/O mode
Clear the receive enable bit to “0” (receive disabled) in the following cases :
when stopping data reception during receiving data in the UART mode
when stopping only data reception during transmitting and receiving data in the UART mode
b7 b0 Interrupt control register 2
Address 003F16
Interrupt enable bits
Not used
Fix this bit to “0”
0
3802 GROUP USER’S MANUAL 3-23
APPENDIX
3.3 Notes on use
(3) Stop of data transmission and reception in a clock synchronous serial I/O mode
As for the serial I/O1 that can be used as either a clock synchronous or an asynchronous (UART) serial I/O, clear
both the transmit enable bit and receive enable bit to “0” (transmit and receive disabled) at the same time in the
following case:
when stopping data transmission and reception during transmitting and receiving data in the clock synchronous
mode (when data is transmitted and received in the clock synchronous serial I/O mode, any one of data
transmission and reception cannot be stopped.)
Reason
In the clock synchronous serial I/O mode, the same clock is used for transmission and reception. If any one of
transmission and reception is disabled, a bit error occurs because transmission and reception cannot be
synchronized.
In this mode, the clock circuit of the transmission circuit also operates for data reception. Accordingly, the
transmission circuit does not stop by clearing only the transmit enable bit to “0” (transmit disabled). Also, the
transmission circuit is not initialized by clearing the serial I/O1 enable bit to “0” (serial I/O1 disabled) (refer to (1)).
_____
(4) The SRDY pin on a receiving side
_____
When signals are output from the SRDY pin on the reception side by using an external clock in the clock
_____
synchronous serial I/O mode, set all of the receive enable bit, the SRDY output enable bit, and the transmit enable
bit to “1” (transmit enabled).
(5) Stop of data reception in a clock synchronous
serial I/O mode
Set the serial I/O1 control register again after the
transmission and the reception circuits are reset by
clearing both the transmit enable bit and the receive
enable bit to “0.”
Clear both the transmit
enable bit (TE) and the
receive enable bit (RE) to “0”
Set the bits 0 to 3 and bit 6 of
the serial I/O1 control
register
Set both the transmit enable
bit (TE) and the receive
enable bit (RE) to “1”
Can be set with the
LDM instruction at
the same time
(6) Control of data transmission using the transmit shift completion flag
The transmit shift completion flag changes from “1” to “0” with a delay of 0.5 to 1.5 shift clocks. When checking
the transmit shift completion flag after writing a data to the transmit buffer register for controlling a data
transmission, note this delay.
(7) Control of data transmission using an external clock
When an external clock is used as the synchronous clock for data transmission, set the transmit enable bit to “1”
at “H” level of the SCLK input signal. Also, write data to the transmit buffer register at “H” level of the SCLK input
signal.
3.3.3 Notes on the A-D converter
(1) Input of signals from signal source with high impedance to an analog input pin
Make the signal source impedance for analog input low, or equip an analog input pin with an external capacitor
of 0.01
µ
F to 1
µ
F. Further, maek sure to check the operation of application products on the user side.
Reason
The A-D converter builds in the capacitor for analog voltage comparison. Accordingly, when signals from signal
source with high impedance are input to an analog input pin, a charge and discharge noise generates. This may
cause the A-D conversion precision to be worse.
3802 GROUP USER’S MANUAL
3-24
APPENDIX
3.3 Notes on use
(2) AVSS pin
Connect a power source for the A-D converter, AVSS pin to the VSS line of the analog circuit.
(3) A clock frequency during an A-D conversion
The comparator consists of a capacity coupling, and a charge of the capacity will be lost if the clock frequency is
too low. Thus, make sure the following during an A-D conversion.
f(XIN) is 500 kHz or more .
(When the ONW pin is "L", f(XIN) is 1 MHz or more.)
Do not execute the STP instruction and WIT instruction.
3.3.4 Notes on the RESET pin
When a rising time of the reset signal is long, connect a ceramic capacitor or others across the RESET pin and
the VSS pin. And use a 1000 pF or more capacitor for high frequency use. When connecting the capacitor, make
sure the following :
Make the length of the wiring which is connected to a capacitor the shortest possible.
Make sure to check the operation of application products on the user side.
Reason
If the several nanosecond or several ten nanosecond impulse noise enters the RESET pin, a microcomputer may
malfunction.
3.3.5 Notes on input and output pins
(1) Fix of a port input level in stand-by state
Fix input levels of an input and an I/O port for getting effect of low-power dissipation in stand-by state, especially
for the I/O ports of the N-channel open-drain.
Pull-up (connect the port to VCC) or pull-down (connect the port to VSS) these ports through a resistor.
When determining a resistance value, make sure the following:
External circuit
Variation of output levels during the ordinary operation
* stand-by state : the stop mode by executing the STP instruction
the wait mode by executing the WIT instruction
Reason
Even when setting as an output port with its direction register, in the following state :
N-channel......when the content of the port latch is “1”
the transistor becomes the OFF state, which causes the ports to be the high-impedance state. Make sure that the
level becomes “undefined” depending on external circuits.
Accordingly, the potential which is input to the input buffer in a microcomputer is unstable in the state that input
levels of an input and an I/O port are “undefined.” This may cause power source current.
(2) Modify of the content of I/O port latch
When the content of the port latch of an I/O port is modified with the bit managing instruction*, the value of the
unspecified bit may be changed.
Reason
The bit managing instruction is read-modify-write instruction for reading and writing data by a byte unit.
Accordingly, when this instruction is executed on one bit of the port latch of an I/O port, the following is executed
to all bits of the port latch.
As for a bit which is set as an input port : The pin state is read in the CPU, and is written to this bit after bit
managing.
As for a bit which is set as an output port : The bit value is read in the CPU, and is written to this bit after bit
managing.
3802 GROUP USER’S MANUAL 3-25
APPENDIX
3.3 Notes on use
Make sure the following :
Even when a port which is set as an output port is changed for an input port, its port latch holds the output data.
Even when a bit of a port latch which is set as an input port is not speccified with a bit managing instruction,
its value may be changed in case where content of the pin differs from a content of the port latch.
* bit managing instructions : SEB and CLB instruction
(3) The AVSS pin when not using the A-D converter
When not using the A-D converter, handle a power source pin for the A-D converter, AVSS pin as follows :
AVSS : Connect to the VSS pin
Reason
If the AVSS pin is opened, the microcomputer may malfunction by effect of noise or others.
3.3.6 Notes on memory expansion mode and microprocessor mode
(1) Writing data to the port latch of port P3
In the memory expansion or the microprocessor mode, ports P30 and P31 can be used as the output port. Use the
LDM or STA instruction for writing data to the port latch (address 000616) of port P3.
When using a read-modify-write instruction (the SEB or the CLB instruction), allocate the read and the write
enabled memory at address 000616.
Reason
In the memory expansion or microprocessor mode, address 000616 is allocated in the external area.
Accordingly,
Data is read from the external memory.
Data is written to both the port latch of the port P3 and the external memory.
Accordingly, when executing a read-modify-write instruction for address 000616, external memory data is read and
modified, and the result is written in both the port latch of the port P3 and the external memory. If the read enabled
memory is not allocated at address 000616, the read data is undefined. The undefined data is modifie d and written
to the port latch of the port P3. The port latch data of port P3 becomes “undefined.”
(2) Overlap of an internal memory and an external memory
When the internal and the external memory are overlapped in the memory expansion mode, the internal memory
is valid in this overlapped area. When the CPU writes or reads to this area, the following is performed :
When reading data
Only the data in the internal memory is read into the CPU and the data in the external memory is not read into
the CPU. However, as the read signal and address are still valid, the external memory data of the
corresponding address is output to the external data bus.
When writing data
Data is written in both the internal and the external memory.
3802 GROUP USER’S MANUAL
3-26
APPENDIX
3.3 Notes on use
3.3.7 Notes on built-in PROM
(1) Programming adapter
To write or read data into/from the internal PROM, use the dedicated programming adapter and general-purpose
PROM programmer as shown in Table 3.3.1.
Table 3.3.1 Programming adapter
Microcomputer
M38027E8SS
M38027E8SP
(one-time blank)
M38027E8DSP
(one-time blank)
M38027E8FS
M38027E8FP
(one-time blank)
M38027E8DFP
(one-time blank)
Programming adapter
PCA4738S-64A
PCA4738L-64A
PCA4738F-64A
(2) Write and read
In PROM mode, operation is the same as that of the M5M27C256AK and the M5M27C101, but programming
conditions of PROM programmer are not set automatically because there are no internal device ID codes.
Accurately set the following conditions for data write/read. Take care not to apply 21 V to Vpp pin (is also used as
the CNVSS pin), or the product may be permanently damaged.
Programming voltage : 12.5 V
Setting of programming adapter switch : refer to table 3.3.2
Setting of PROM programmer address : refer to table 3.3.3
Table 3.3.2 Setting of programming adapter switch SW 1
CMOS
SW 2
CMOS
SW 3
OFF
Programming adapter
PCA4738S-64A
PCA4738L-64A
PCA4738F-64A
3802 GROUP USER’S MANUAL 3-27
APPENDIX
3.3 Notes on use
Table 3.3.3 Setting of PROM programmer address
PROM programmer completion address
Address : 7FFD16 (Note 1)
Address : 7FFD16 (Note 2)
PROM programmer start address
Address : 408016 (Note 1)
Address : 008016 (Note 2)
Note1 : Addresses C08016 to FFFD16 in the internal PROM correspond to addresses 408016 to 7FFD16 in the
ROM programmer.
2 : Addresses 808016 to FFFD16 in the internal PROM correspond to addresses 008016 to 7FFD16 in the
ROM programmer.
(3) Erasing
Contents of the windowed EPROM are erased through an ultraviolet light source of the wavelength 2537-
Angstrom . At least 15 W-sec/cm are required to erase EPROM contents.
2
Microcomputer
M38022E4SS
M38022E4SP
M38022E4FS
M38022E4FP
M38022E4DSP
M38022E4DFP
M38027E8SS
M38027E8SP
M38027E8FS
M38027E8FP
M38027E8DSP
M38027E8DFP
3802 GROUP USER’S MANUAL
3-28
APPENDIX
3.4 Countermeasures against noise
3.4 Countermeasures against noise
Countermeasures against noise are described below. The following countermeasures are effective against noise in
theory, however, it is necessary not only to take measures as follows but to evaluate before actual use.
3.4.1 Shortest wiring length
The wiring on a printed circuit board can be as an antenna which feeds noise into the microcomputer.
The shorter the total wiring length (by mm unit), the less the possibility of noise insertion into a microcomputer.
(1) Wiring for the RESET pin
Make the length of wiring which is connected to the RESET pin as short as possible. Especially, connect a capacitor
across the RESET pin and the VSS pin with the shortest possible wiring (within 20mm).
Reason
The reset works to initialize a microcomputer.
The width of a pulse input into the RESET pin is determined by the timing necessary conditions. If noise having
a shorter pulse width than the standard is input to the RESET pin, the reset is released before the internal state
of the microcomputer is completely initialized. This may cause a program runaway.
Fig. 3.4.1 Wiring for the RESET pin
(2) Wiring for clock input/output pins
Make the length of wiring which is connected to clock I/O pins as short as possible.
Make the length of wiring (within 20mm) across the grounding lead of a capacitor which is connected to an
oscillatorand the VSS pin of a microcomputer as short as possible.
Separate the VSS pattern only for oscillation from other VSS patterns.
Reason
A microcomputer's operation synchronizes with a clock generated by the oscillator (circuit). If noise enters clock
I/O pins, clock waveforms may be deformed. This may cause a malfunction or program runaway.
Also, if a potential difference is caused by the noise between the VSS level of a microcomputer and the VSS level
of an oscillator, the correct clock will not be input in the microcomputer.
RESET
Reset
circuit
Noise
VSSVSS
Reset
circuit
VSS
RESET
VSS
3802 group 3802 group
N.G. O.K.
3802 GROUP USER’S MANUAL 3-29
APPENDIX
3.4 Countermeasures against noise
Fig. 3.4.2 Wiring for clock I/O pins
(3) Wiring for the VPP pin of the One Time PROM
version and the EPROM version
(In this microcomputer the VPP pin is also used
as the CNVSS pin)
Connect an approximately 5 kresistor to theVPP
pin the shortest possible in series and also to the VSS
pin. When not connecting the resistor, make the
length of wiring between the VPP pin and the VSS pin
the shortest possible.
Note:Even when a circuit which inclued an
approximately 5 kresistor is used in the Mask ROM
version, the maicrocomputer operates correctly.
Reason
The VPP pin of the One Time PROM and the EPROM
version is the power source input pin for the built-in
PROM. When programming in the built-in PROM,
the impedance of the VPP pin is low to allow the
electric current for wiring flow into the PROM. Be-
cause of this, noise can enter easily. If noise enters
the VPP pin, abnormal in struction codes or data are
read from the built-in PROM, which may cause a
program runaway.
3.4.2 Connection of a bypass capacitor across the
Vss line and the Vcc line
Connect an approximately 0.1
µ
F bypass capacitor
across the VSS line and the VCC line as follows:
Connect a bypass capacitor across the V SS pin
and the VCC pin at equal length .
Connect a bypass capacitor across the VSS pin
and the VCC pin with the shortest possible wiring.
Use lines with a larger diameter than other signal
lines for VSS line and VCC line.
Fig. 3.4.3 Wiring for the VPP pin of the One Time PROM
and the EPROM version
Fig. 3.4.4 Bypass capacitor across the VSS line and
the VCC line
VSS
VCC
VSS
VCC
Chip
XIN
XOUT
VSS
An example of VSS patterns on the
underside of a printed circuit board
Oscillator wiring
pattern example
Separate the VSS line for oscillation from other VSS lines
Noise
XIN
XOUT
VSS
XIN
XOUT
VSS
N.G. O.K.
CNVSS/VPP
Approximately
5k
3802 group
VSS
Make it the shortest possible
3802 GROUP USER’S MANUAL
3-30
APPENDIX
3.4 Countermeasures against noise
3.4.3 Wiring to analog input pins
Connect an approximately 100 to 1 kresistor to an
analog signal line which is connected to an analog
input pin in series. Besides, connect the resistor to
the microcomputer as close as possible.
Connect an approximately 1000 pF capacitor across
the VSS pin and the analog input pin. Besides,
connect the capacitor to the VSS pin as close as
possible. Also, connect the capacitor across the
analog input pin and the VSS pin at equal length.
Reason
Signals which is input in an analog input pin (such as
an A-D converter input pin) are usually output signals
from sensor. The sensor which detects a change of
event is installed far from the printed circuit board
with a microcomputer, the wiring to an analog input
pin is longer necessarily. This long wiring functions
as an antenna which feeds noise into the
microcomputer, which causes noise to an analog
input pin.
3.4.4. Consideration for oscillator
Take care to prevent an oscillator that generates
clocks for a microcomputer operation from being
affected by other signals.
(1) Keeping an oscillator away from large current
signal lines
Install a microcomputer (and especially an oscillator)
as far as possible from signal lines where a current
larger than the tolerance of current value flows.
Reason
In the system using a microcomputer, there are
signal lines for controlling motors, LEDs, and thermal
heads or others. When a large current flows through
those signal lines, strong noise occurs because of
mutual inductance.
(2) Keeping an oscillator away from signal lines
where potential levels change frequently
Install an oscillator and a connecting pattern of an
osillator away from signal lines where potential levels
change frequently. Also, do not cross such signal
lines over the clock lines or the signal lines which are
sensitive to noise.
Reason
Signal lines where potential levels change frequently
(such as the CNTR pin line) may affect other lines at
signal rising or falling edge. If such lines cross over
a clock line, clock waveforms may be deformed,
which causes a microcomputer failure or a program
runaway.
Fig.3.4.6 Wiring for a large current signal line
Fig.3.4.7 Wiring to a signal line where potential levels
change frequently
XIN
XOUT
VSS
M
Microcomputer
Mutual inductance
Large
current
GND
XIN
XOUT
VSS
CNTR
Do not cross
Fig.3.4.5 Analog signal line and a resistor and a
capacitor
N.G. O.K.
VSS
Analog
input pin
Microcomputer
(Note)
Thermistor
Noise
Note:The resistor is for dividing resistance
with a thermister.
3802 GROUP USER’S MANUAL 3-31
APPENDIX
3.4 Countermeasures against noise
3.4.5 Setup for I/O ports
Setup I/O ports using hardware and software as follows:
<Hardware>
Connect a resistor of 100 or more to an I/O port
inseries.
<Software>
As for an input port, read data several times by a
program for checking whether input levels are
equal or not.
As for an output port, since the output data may
reverse because of noise, rewrite data to its port
latch at fixed periods.
Rewirte data to direction registers and pull-up
control registers (only the product having it) at fixed
periods.
Fig. 3.4.8 Setup for I/O ports
When a direction register is set for input port again at fixed periods, a several-nanosecond short pulse may be
output from this port. If this is undesirable, connect a capacitor to this port to remove the noise pulse.
3.4.6 Providing of watchdog timer function by
software
If a microcomputer runs away because of noise or
others, it can be detected by a software watchdog
timer and the microcomputer can be reset to normal
operation. This is equal to or more effective than
program runaway detection by a hardware watchdog
timer. The following shows an example of a watchdog
timer provided by software.
In the following example, to reset a microcomputer to
normal operation, the main routine detects errors of
the interrupt processing routine and the interrupt
processing routine detects errors of the main routine.
This example assumes that interrupt processing is
repeated multiple times in a single main routine
processing.
<The main routine>
Assigns a single byte of RAM to a software watchdog
timer (SWDT) and writes the initial value N in the
SWDT once at each execution of the main routine.
The initial value N should satisfy the following
condition: Fig. 3.4.9 Watchdog timer by software
N+1 (Counts of interrupt processing executed in each main routine)
As the main routine execution cycle may change because of an interrupt processing or others, the initial value N
should have a margin.
Watches the operation of the interrupt processing routine by comparing the SWDT contents with counts of
interrupt processing count after the initial value N has been set.
Detects that the interrupt processing routine has failed and determines to branch to the program initialization
routine for recovery processing in the following cases:
If the SWDT contents do not change after interrupt processing
Direction register
Port latch
Data bus
I/O port
pins
Noise
Noise
N.G.
O.K.
Main routine
(SWDT) N
CLI
Main processing
(SWDT)
Interrupt processing
routine errors
N
=N
Interrupt processing routine
(SWDT) (SWDT)—1
Interrupt processing
(SWDT)
Main routine
errors
>0
0RTI
Return
=N?
0?
3802 GROUP USER’S MANUAL
3-32
APPENDIX
3.4 Countermeasures against noise
<The interrupt processing routine>
Decrements the SWDT contents by 1 at each interrupt processing.
Determins that the main routine operates normally when the SWDT contents are reset to the initial value N at
almost fixed cycles (at the fixed interrupt processing count).
Detects that the main routine has failed and determines to branch to the program initialization routine for recovery
processing in the following case:
When the contents of the SWDT reach 0 or less by continuative decrement without initializing to the initial value
N .
3802 GROUP USER’S MANUAL 3-33
APPENDIX
3.5 List of registers
3.5 List of registers
Fig. 3.5.2 Structure of Port Pi direction register (i = 0, 1, 2, 3, 4, 5, 6)
Fig. 3.5.1 Structure of Port Pi (i = 0, 1, 2, 3, 4, 5, 6)
Port Pi direction register
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
4
5
6
7
Name
Port Pi direction register 0
0
0
0
0
0
0
0
Port Pi direction register (PiD) (i = 0, 1, 2, 3, 4, 5, 6)
[Address : 0116, 0316, 0516, 0716, 0916, 0B16, 0D16]
0 : Port Pi0 input mode
1 : Port Pi0 output mode
0 : Port Pi1 input mode
1 : Port Pi1 output mode
0 : Port Pi2 input mode
1 : Port Pi2 output mode
0 : Port Pi3 input mode
1 : Port Pi3 output mode
0 : Port Pi4 input mode
1 : Port Pi4 output mode
0 : Port Pi5 input mode
1 : Port Pi5 output mode
0 : Port Pi6 input mode
1 : Port Pi6 output mode
0 : Port Pi7 input mode
1 : Port Pi7 output mode
Port Pi
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
4
5
6
7
Name
Port Pi0
Port Pi1
Port Pi2
Port Pi3
Port Pi4
Port Pi5
Port Pi6
Port Pi7
In output mode
Write
Read
Port latch
In input mode
Write : Port latch
Read : Value of pins
?
Port Pi (Pi) (i = 0, 1, 2, 3, 4, 5, 6)
[Address : 0016, 0216, 0416, 0616, 0816, 0A16, 0C16]
?
?
?
?
?
?
?
3802 GROUP USER’S MANUAL
3-34
APPENDIX
3.5 List of registers
Fig. 3.5.3 Structure of Transmit/Receive buffer register
Transmit/Receive buffer register
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
4
6
7
Transmit/Receive buffer register (TB/RB) [Address : 1816]
A transmission data is written to or a receive data is read out
from this buffer register.
• At writing : a data is written to the Transmit buffer register.
• At reading : a content of the Receive buffer register is read out.
?
?
?
?
?
5?
?
?
Fig. 3.5.4 Structure of Serial I/O1 status register
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
4
5
6
7
0
0
0
0
0
0
0
1
Serial I/O1 status register (SIO1STS) [Address : 1916]
Name
Transmit buffer empty flag
(TBE)
0 : (OE) (PE) (FE) = 0
1 : (OE) (PE) (FE) = 1
Overrun error flag (OE)
0 : Buffer full
1 : Buffer empty
Nothing is allocated for this bit. It is a write disabled bit.
When this bit is read out, the value is “0.”
Receive buffer full flag (RBF)
Transmit shift register shift
completion flag (TSC)
Parity error flag (PE)
Framing error flag (FE)
Summing error flag (SE)
0 : Buffer empty
1 : Buffer full
0 : Transmit shift in progress
1 : Transmit shift completed
0 : No error
1 : Overrun error
0 : No error
1 : Parity error
0 : No error
1 : Framing error
Serial I/O1 status register
3802 GROUP USER’S MANUAL 3-35
APPENDIX
3.5 List of registers
Fig. 3.5.5 Structure of Serial I/O1 control register
Serial I/O1 synchronous clock
selection bit (SCS)
SRDY1 output enable bit
(SRDY)
Transmit interrupt
source selection bit (TIC)
Serial I/O1 control register
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
0 : f(XIN)
1 : f(XIN)/4 0
0
0
0
Serial I/O1 control register (SIO1CON) [Address : 1A16]
Name
BRG count source selection
bit (CSS)
4
5
6
7
0
0
0
0
Serial I/O1 enable bit (SIOE)
0 : I/O port (P47)
1 : SRDY1 output pin
Transmit enable bit (TE)
Receive enable bit (RE)
Serial I/O1 mode
selection bit (SIOM)
0 :
Transmit buffer empty
1 :
Transmit shift operating completion
0 : Transmit disabled
1 : Transmit enabled
0 : Receive disabled
1 : Receive enabled
0 : UART
1 : Clock synchronous serial I/O
0 : Serial I/O1 disabled
(P44–P47 : I/O port)
1 : Serial I/O1 enabled
(P44–P47 : Serial I/O function pin)
At selecting clock synchronous serial I/O
0 : BRG output divided by 4
1 : External clock input
At selecting UART
0 : BRG output divided by 16
1 : External clock input divided by 16
Fig. 3.5.6 Structure of UART control register
In output mode
0 : CMOS output
1 : N-channel open-drain output
UART control register
b7 b6 b5 b4 b3 b2 b1 b0
B Function At reset RW
0
1
2
3
0
0
0
0
UART control register (UARTCON) [Address : 1B16]
Name
0
1
1
1
0 : 8 bits
1 : 7 bits
0 : Parity checking disabled
1 : Parity checking enabled
0 : 1 stop bit
1 : 2 stop bits
0 : Even parity
1 : Odd parity
Character length
selection bit (CHAS)
Parity enable bit
(PARE)
Stop bit length
selection bit (STPS)
Parity selection bit
(PARS)
P45/TxD P-channel
output disable bit (POFF)
5
6
7
4
Nothing is allocated for these bits. These are write disabled
bits. When these bits are read out, the values are “1.”
3802 GROUP USER’S MANUAL
3-36
APPENDIX
3.5 List of registers
Fig. 3.5.7 Structure of Baud rate generator
A count value of Baud rate generator is set.
Function
Baud rate generator (BRG) [Address : 1C16]
Baud rate generator
b7 b6 b5 b4 b3 b2 b1 b0
BAt reset RW
0
1
2
3
4
5
6
7
?
?
?
?
?
?
?
?
Fig. 3.5.8 Structure of Serial I/O2 control register
Serial I/O2 control register (SIO2CON) [Address : 1D16]
Serial I/O2 control register
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
0
0
0
0
Name
4
5
6
7
0
0
0
SRDY2 output enable bit
Internal synchronous clock
selection bits
0 : I/O port (P51, P52)
1 : SOUT2, SCLK2 output pin
0 : I/O port (P53)
1 : SRDY2 output pin
0 : LSB first
1 : MSB first
0 : External clock
1 : Internal clock
0 0 0 : f(XIN)/8
0 0 1 : f(XIN)/16
0 1 0 : f(XIN)/32
0 1 1 : f(XIN)/64
1 1 0 : f(XIN)/128
1 1 1 : f(XIN)/256
Transfer direction selection bit
Serial I/O2 port selection bit
Serial I/O2 synchronous clock
selection bit
P51/SOUT2 P-channel
output disable bit
b2 b1 b0
0 : CMOS output
1 : N-channel open-drain output
In output mode
0
3802 GROUP USER’S MANUAL 3-37
APPENDIX
3.5 List of registers
Fig. 3.5.9 Structure of Serial I/O2 register
Serial I/O2 register
b7 b6 b5 b4 b3 b2 b1 b0
Function
Serial I/O2 register (SIO2) [Address : 1F16]
A shift register for serial transmission and reception.
At transmitting : Set a transmission data.
At receiving : Store a reception data.
B
0
1
2
3
4
5
6
7
At reset RW
?
?
?
?
?
?
?
?
Fig. 3.5.10 Structure of Prescaler 12, Prescaler X, Prescaler Y
Prescaler 12, Prescaler X, Prescaler Y
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
4
5
6
7
1
1
1
1
1
1
1
1
Prescaler 12 (PRE12), Prescaler X (PREX), Prescaler Y (PREY)
[Address : 2016, 2416, 2616]
The count value of each prescaler is set.
The value set in this register is written to both the prescaler and
the prescaler latch at the same time.
When the prescaler is read out, the value (count value) of the
prescaler is read out.
3802 GROUP USER’S MANUAL
3-38
APPENDIX
3.5 List of registers
Fig. 3.5.11 Structure of Timer 1
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
4
5
6
7
1
0
0
0
0
0
0
0
Timer 1 (T1) [Address : 2116]
The count value of the Timer 1 is set.
The value set in this register is written to both the Timer 1 and
the Timer 1 latch at the same time.
When the Timer 1 is read out, the value (count value) of the
Timer 1 is read out.
Timer 1
Fig. 3.5.12 Structure of Timer 2, Timer X, Timer Y
Timer 2, Timer X, Timer Y
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
4
5
6
7
1
1
1
1
1
1
1
1
Timer 2 (T2), Timer X (TX), Timer Y (TY)
[Address : 2216, 2516, 2716]
The count value of each timer is set.
The value set in this register is written to both the Timer and the
Timer latch at the same time.
When the Timer is read out, the value (count value) of the Timer
is read out.
3802 GROUP USER’S MANUAL 3-39
APPENDIX
3.5 List of registers
Operating mode of
Timer X/Timer Y
Timer mode
Pulse output mode
Event counter mode
Pulse width measurement mode
Table. 3.5.1 Function of CNTR0/CNTR1 edge switch bit
Fig. 3.5.13 Structure of Timer XY mode register
Function of CNTR0/CNTR1 edge switch bit (bits 2 and 6)
“0”
“1”
“0”
“1”
“0”
“1”
“0”
“1”
• Generation of CNTR0/CNTR1 interrupt request : Falling edge
(No effect on timer count)
• Generation of CNTR0/CNTR1 interrupt request : Rising edge
(No effect on timer count)
• Start of pulse output : From “H” level
• Generation of CNTR0/CNTR1 interrupt request : Falling edge
• Start of pulse output : From “L” level
• Generation of CNTR0/CNTR1 interrupt request : Rising edge
• Timer X/Timer Y : Count of rising edge
• Generation of CNTR0/CNTR1 interrupt request : Falling edge
• Timer X/Timer Y : Count of falling edge
• Generation of CNTR0/CNTR1 interrupt request : Rising edge
• Timer X/Timer Y : Measurement of “H” level width
• Generation of CNTR0/CNTR1 interrupt request : Falling edge
• Timer X/Timer Y : Measurement of “L” level width
• Generation of CNTR0/CNTR1 interrupt request : Rising edge
A
AA
Function
Timer XY mode register
b7 b6 b5 b4 b3 b2 b1 b0
BAt reset RW
0
1
2
3
4
5
6
7
0
0
0
0
0
0
0
0
Timer XY mode register (TM)
Name
Timer X operating mode
CNTR0 active edge switch
bit
Timer Y operating mode
CNTR1 active edge switch
bit
0 0 : Timer mode
0 1 : Pulse output mode
1 0 : Event counter mode
1 1 : Pulse width measurement mode
0 0 : Timer mode
0 1 : Pulse output mode
1 0 : Event counter mode
1 1 : Pulse width measurement mode
It depends on the operating mode
of the Timer X (refer to Table 3.5.1).
It depends on the operating mode
of the Timer Y (refer to Table 3.5.1 ).
b5 b4
Timer X count stop bit
[Address : 2316]
b1 b0
Timer Y count stop bit
0 : Count start
1 : Count stop
0 : Count start
1 : Count stop
3802 GROUP USER’S MANUAL
3-40
APPENDIX
3.5 List of registers
Fig. 3.5.14 Structure of PWM control register
Fig. 3.5.15 Structure of PWM prescaler
PWM control register
b7 b6 b5 b4 b3 b2 b1 b0
BAt reset RW
0
1
2
3
4
5
6
7
0
0
0
0
0
0
0
0
PWM control register (PWMCON) [Address:2B16]
FunctionName
Nothing is arranged for these bits. These are write disabled bits.
When these bits are read out, the contents are "0".
PWM function enable bit 0 : PWM disabled
1 : PWM enabled
Count source selection bit 0 : f(XIN)
1 : f(XIN)/2
PWM prescaler
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
4
5
6
7
?
?
?
?
?
?
?
?
PWM prescaler (PREPWM) [Address : 2C16]
PWM cycle is set.
The values set in this register is written to both the PWM
prescaler pre-latch and the PWM prescaler latch at the same
time.
When data is written during outputting PWM, the pulses
corresponding to the changed contents are output starting with
the next cycle.
When this register is read out, the content of the PWM prescaler
latch is read out.
3802 GROUP USER’S MANUAL 3-41
APPENDIX
3.5 List of registers
Fig. 3.5.16 Structure of PWM register
PWM register
b7 b6 b5 b4 b3 b2 b1 b0
bAt reset RW
0
1
2
3
4
5
6
7
?
?
?
?
?
?
?
?
PWM register (PWM) [Address : 2D16]
Function
“H” level output period of PWM is set.
The values set in this register is written both the PWM register
pre-latch and the PWM register latch at the same time.
When data is written during outputting PWM, the pulses
corresponding to the changed contents are output starting with
the next cycle.
When this register is read out, the content of the PWM register
latch is read out.
3802 GROUP USER’S MANUAL
3-42
APPENDIX
3.5 List of registers
Fig. 3.5.18 Structure of A-D conversion register
Fig. 3.5.17 Structure of AD/DA control register
A-D conversion register
b7 b6 b5 b4 b3 b2 b1 b0
B Function At reset RW
A-D conversion register (AD) [Address : 3516]
The read-only register which A-D conversion results are stored.
0
1
2
3
4
5
6
7
?
?
?
?
?
?
?
?
AD/DA control register
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
Name
Analog input pin selection bits
AD/DA control register (ADCON) [Address : 3416]
0 0 0 : P60/AN0
0 0 1 : P61/AN1
0 1 0 : P62/AN2
0 1 1 : P63/AN3
1 0 0 : P64/AN4
1 0 1 : P65/AN5
1 1 0 : P66/AN6
1 1 1 : P67/AN7
b2 b1 b0
1
3
1
0
0
0
0
0
0 : DA1 output disable
1 : DA1 output enable
DA1 output enable bit
6
0
7
0
Nothing is allocated for these bits. These are write disabled bits.
4When these bits are read out, the values are “0.”
0 : DA2 output disabled
1 : DA2 output enabled
DA2 output enable bit
2
50
AD conversion completion bit 0 : Conversion in progress
1 : Conversion completed
3802 GROUP USER’S MANUAL 3-43
APPENDIX
3.5 List of registers
Fig. 3.5.19 Structure of D-A 1 conversion, D-A 2 conversion register
Fig. 3.5.20 Structure of Interrupt edge selection register
D-A1 conversion register, D-A2 conversion register
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
4
5
6
7
0
0
0
0
0
0
0
0
D-A1 conversion register (DA1), D-A2 conversion register (DA2)
[Address : 3616, 3716]
An output value of each D-A converter is set.
WR
Interrupt edge selection register
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset
0
1
2
3
0
0
0
0
Interrupt edge selection register (INTEDGE) [Address : 3A16]
Name
4
5
6
7
0
0
0
0 : Falling edge active
1 : Rising edge active
0 : Falling edge active
1 : Rising edge active
0 : Falling edge active
1 : Rising edge active
0 : Falling edge active
1 : Rising edge active
0 : Falling edge active
1 : Rising edge active
INT0 interrupt edge
selection bit
INT1 interrupt edge
selection bit
INT2 interrupt edge
selection bit
INT3 interrupt edge
selection bit
INT4 interrupt edge
selection bit
Nothing is allocated for this bit. This is a write
disabled bit.When this bit is read out, the value is “0.”
Nothing is allocated for these bits. These are write disabled
bits. When these bits are read out, the values are “0.” 0
3802 GROUP USER’S MANUAL
3-44
APPENDIX
3.5 List of registers
Fig. 3.5.21 Structure of CPU mode register
Nothing is allocated for these bits. These are write disabled bits.
When these bits are read out, the values are “0.”
CPU mode register (CPUM) [Adress : 3B16]
CPU mode register
b7 b6 b5 b4 b3 b2 b1 b0
Function At reset RW
0
1
2
3
0
0
0
B Name
Processor mode bits 00 : Single-chip mode
01 : Memory expansion mode
10 : Microprocessor mode
11 : Not available
Stack page selection bit 0 : 0 page
1 : 1 page
An initial value of bit 1 is determined by a level of the CNVSS pin.
0
0
0
0
4
5
6
7
3802 GROUP USER’S MANUAL 3-45
APPENDIX
3.5 List of registers
Fig. 3.5.22 Structure of Interrupt request register 1
Fig. 3.5.23 Structure of Interrupt request register 2
Interrupt request register 2
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
0
0
0
0
Interrupt request reigster 2 (IREQ2) [Address : 3D16]
Name
CNTR0 interrupt request bit
CNTR1 interrupt request bit
Serial I/O2 interrupt request
bit
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
INT2 interrupt request bit
5
6
7
0
0
0 : No interrupt request
1 : Interrupt request
Nothing is allocated for this bit. This is a write disabled bit.
When this bit is read out, the value is “0.”
AD conversion interrupt
request bit
INT4 interrupt request bit
0 : No interrupt request
1 : Interrupt request
“0” is set b
y
software, but not “1.”
40
0 : No interrupt request
1 : Interrupt request
INT3 interrupt request bit
0
Timer X interrupt request bit
Serial I/O1 receive interrupt
request bit
Interrupt request register 1
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
0
0
0
0
Interrupt request reigster 1 (IREQ1) [Address : 3C16]
Name
INT0 interrupt request bit
INT1 interrupt request bit
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
Serial I/O1 transmit interrupt
request bit
Timer Y interrupt request bit
4
5
6
7
0
0
0
0
Timer 1 interrupt request bit 0 : No interrupt request
1 : Interrupt request
Timer 2 interrupt request bit
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
“0” is set b
y
software, but not “1.”
3802 GROUP USER’S MANUAL
3-46
APPENDIX
3.5 List of registers
Fig. 3.5.24 Structure of Interrupt control register 1
Fig. 3.5.25 Structure of Interrupt control register 2
Interrupt control register 2
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
0
0
0
0
Interrupt control reigster 2 (ICON2) [Address : 3F16]
Name
CNTR0 interrupt enable bit
CNTR1 interrupt enable bit
Serial I/O2 interrupt enable bit
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
INT2 interrupt enable bit
5
6
7
0
0
0 : Interrupt disabled
1 : Interrupt enabled
Fix this bit to “0.”
AD conversion interrupt
enable bit
INT4 interrupt enable bit
0 : Interrupt disabled
1 : Interrupt enabled
40
0 : Interrupt disabled
1 : Interrupt enabled
INT3 interrupt enable bit
0
0
Timer Y interrupt enable bit
Interrupt control register 1
b7 b6 b5 b4 b3 b2 b1 b0
BFunction At reset RW
0
1
2
3
0
0
0
0
Interrupt control register 1 (ICON1) [Address : 3E16]
Name
INT0 interrupt enable bit
INT1 interrupt enable bit
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
4
5
6
7
0
0
0
0
Timer X interrupt enable bit
Timer 1 interrupt enable bit 0 : Interrupt disabled
1 : Interrupt enabled
Timer 2 interrupt enable bit
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
Serial I/O1 transmit interrupt
enable bit
Serial I/O1 receive interrupt
enable bit
APPENDIX
3.6 Mask ROM ordering method
3-47
3802 GROUP USER’S MANUAL
3.6 Mask ROM ordering method
APPENDIX
3.6 Mask ROM ordering method
3-48 3802 GROUP USER’S MANUAL
APPENDIX
3.6 Mask ROM ordering method
3-49
3802 GROUP USER’S MANUAL
APPENDIX
3.6 Mask ROM ordering method
3-50 3802 GROUP USER’S MANUAL
APPENDIX
3.6 Mask ROM ordering method
3-51
3802 GROUP USER’S MANUAL
APPENDIX
3.6 Mask ROM ordering method
3-52 3802 GROUP USER’S MANUAL
APPENDIX
3.6 Mask ROM ordering method
3-53
3802 GROUP USER’S MANUAL
APPENDIX
3.6 Mask ROM ordering method
3-54 3802 GROUP USER’S MANUAL
APPENDIX
3.6 Mask ROM ordering method
3-55
3802 GROUP USER’S MANUAL
APPENDIX
3.6 Mask ROM ordering method
3-56 3802 GROUP USER’S MANUAL
APPENDIX
3.6 Mask ROM ordering method
3-57
3802 GROUP USER’S MANUAL
APPENDIX
3.6 Mask ROM ordering method
3-58 3802 GROUP USER’S MANUAL
APPENDIX
3.6 Mask ROM ordering method
3-59
3802 GROUP USER’S MANUAL
APPENDIX
3.6 Mask ROM ordering method
3-60 3802 GROUP USER’S MANUAL
APPENDIX
3.7 Mark specification form
3-61
3802 GROUP USER’S MANUAL
3.7 Mark specification form
APPENDIX
3.7 Mark specification form
3-62 3802 GROUP USER’S MANUAL
APPENDIX
3.8 Package outline
3-63
3802 GROUP USER’S MANUAL
3.8 Package outline
APPENDIX
3.8 Package outline
3-64 3802 GROUP USER’S MANUAL
3802 GROUP USER’S MANUAL
APPENDIX
3.4 List of instruction codes
3-65
3.9 List of instruction codes
3-byte instruction
2-byte instruction
1-byte instruction
D7 – D4
D3 – D 0
Hexadecimal
notation
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0000
0
BRK
BPL
JSR
ABS
BMI
RTI
BVC
RTS
BVS
BRA
BCC
LDY
IMM
BCS
CPY
IMM
BNE
CPX
IMM
BEQ
0001
1
ORA
IND, X
ORA
IND, Y
AND
IND, X
AND
IND, Y
EOR
IND, X
EOR
IND, Y
ADC
IND, X
ADC
IND, Y
STA
IND, X
STA
IND, Y
LDA
IND, X
LDA
IND, Y
CMP
IND, X
CMP
IND, Y
SBC
IND, X
ZP, X
SBC
IND, Y
0010
2
JSR
ZP, IND
CLT
JSR
SP
SET
STP
MUL
ZP, X
RRF
ZP
LDX
IMM
JMP
ZP, IND
0011
3
BBS
0, A
BBC
0, A
BBS
1, A
BBC
1, A
BBS
2, A
BBC
2, A
BBS
3, A
BBC
3, A
BBS
4, A
BBC
4, A
BBS
5, A
BBC
5, A
BBS
6, A
BBC
6, A
BBS
7, A
BBC
7, A
0100
4
BIT
ZP
COM
ZP
TST
ZP
STY
ZP
STY
ZP, X
LDY
ZP
LDY
ZP, X
CPY
ZP
CPX
ZP
0101
5
ORA
ZP
ORA
ZP, X
AND
ZP
AND
ZP, X
EOR
ZP
EOR
ZP, X
ADC
ZP
ADC
ZP, X
STA
ZP
STA
ZP, X
LDA
ZP
LDA
ZP, X
CMP
ZP
CMP
ZP, X
SBC
ZP
SBC
ZP, X
0110
6
ASL
ZP
ASL
ZP, X
ROL
ZP
ROL
ZP, X
LSR
ZP
LSR
ZP, X
ROR
ZP
ROR
ZP, X
STX
ZP
STX
ZP, Y
LDX
ZP
LDX
ZP, Y
DEC
ZP
DEC
ZP, X
INC
ZP
INC
ZP, X
0111
7
BBS
0, ZP
BBC
0, ZP
BBS
1, ZP
BBC
1, ZP
BBS
2, ZP
BBC
2, ZP
BBS
3, ZP
BBC
3, ZP
BBS
4, ZP
BBC
4, ZP
BBS
5, ZP
BBC
5, ZP
BBS
6, ZP
BBC
6, ZP
BBS
7, ZP
BBC
7, ZP
1000
8
PHP
CLC
PLP
SEC
PHA
CLI
PLA
SEI
DEY
TYA
TAY
CLV
INY
CLD
INX
SED
1001
9
ORA
IMM
ORA
ABS, Y
AND
IMM
AND
ABS, Y
EOR
IMM
EOR
ABS, Y
ADC
IMM
ADC
ABS, Y
STA
ABS, Y
LDA
IMM
LDA
ABS, Y
CMP
IMM
CMP
ABS, Y
SBC
IMM
SBC
ABS, Y
1010
A
ASL
A
DEC
A
ROL
A
INC
A
LSR
A
ROR
A
TXA
TXS
TAX
TSX
DEX
NOP
1011
B
SEB
0, A
CLB
0, A
SEB
1, A
CLB
1, A
SEB
2, A
CLB
2, A
SEB
3, A
CLB
3, A
SEB
4, A
CLB
4, A
SEB
5, A
CLB
5, A
SEB
6, A
CLB
6, A
SEB
7, A
CLB
7, A
1100
C
BIT
ABS
LDM
ZP
JMP
ABS
JMP
IND
STY
ABS
LDY
ABS
LDY
ABS, X
CPY
ABS
CPX
ABS
1101
D
ORA
ABS
ORA
ABS, X
AND
ABS
AND
ABS, X
EOR
ABS
EOR
ABS, X
ADC
ABS
ADC
ABS, X
STA
ABS
STA
ABS, X
LDA
ABS
LDA
ABS, X
CMP
ABS
CMP
ABS, X
SBC
ABS
SBC
ABS, X
1110
E
ASL
ABS
ASL
ABS, X
ROL
ABS
ROL
ABS, X
LSR
ABS
LSR
ABS, X
ROR
ABS
ROR
ABS, X
STX
ABS
LDX
ABS
LDX
ABS, Y
DEC
ABS
DEC
ABS, X
INC
ABS
INC
ABS, X
1111
F
SEB
0, ZP
CLB
0, ZP
SEB
1, ZP
CLB
1, ZP
SEB
2, ZP
CLB
2, ZP
SEB
3, ZP
CLB
3, ZP
SEB
4, ZP
CLB
4, ZP
SEB
5, ZP
CLB
5, ZP
SEB
6, ZP
CLB
6, ZP
SEB
7, ZP
CLB
7, ZP
WIT
DIV
Addressing mode
Symbol Function Details IMP IMM A BIT, A ZP BIT, ZP
OP n # OP n # OP n # OP n # OP n #OP n #
APPENDIX
3.10 Machine instructions
3-66 3802 GROUP USER'S MANUAL
3.10 Machine instructions
Adds the carry, accumulator and memory con-
tents. The results are entered into the
accumulator.
Adds the contents of the memory in the ad-
dress indicated by index register X, the
contents of the memory specified by the ad-
dressing mode and the carry. The results are
entered into the memory at the address indi-
cated by index register X.
“AND’s” the accumulator and memory con-
tents.
The results are entered into the accumulator.
“AND’s” the contents of the memory of the ad-
dress indicated by index register X and the
contents of the memory specified by the ad-
dressing mode. The results are entered into
the memory at the address indicated by index
register X.
Shifts the contents of accumulator or contents
of memory one bit to the left. The low order bit
of the accumulator or memory is cleared and
the high order bit is shifted into the carry flag.
Branches when the contents of the bit speci-
fied in the accumulator or memory is “0”.
Branches when the contents of the bit speci-
fied in the accumulator or memory is “1”.
Branches when the contents of carry flag is
“0”.
Branches when the contents of carry flag is
“1”.
Branches when the contents of zero flag is “1”.
“AND’s” the contents of accumulator and
memory. The results are not entered any-
where.
Branches when the contents of negative flag is
“1”.
Branches when the contents of zero flag is “0”.
Branches when the contents of negative flag is
“0”.
Jumps to address specified by adding offset to
the program counter.
Executes a software interrupt.
ADC
(Note 1)
(Note 5)
AND
(Note 1)
ASL
BBC
(Note 4)
BBS
(Note 4)
BCC
(Note 4)
BCS
(Note 4)
BEQ
(Note 4)
BIT
BMI
(Note 4)
BNE
(Note 4)
BPL
(Note 4)
BRA
BRK 00
7 0
C
0
71
29 2 2
0A 2 1
03
+
2i
17
+
2i
07
+
2i
06 5 2
25 3 2
3
65 3 269 2 2
4
4
2
2
13
+
2i 5
5
3
3
24
When T = 0
A A + M + C
When T = 1
M(X) M(X) + M + C
When T = 0
A A M
When T = 1
M(X) M(X) M
Ab or Mb = 0?
Ab or Mb = 1?
C = 0?
C = 1?
Z = 1?
A M
N = 1?
Z = 0?
N = 0?
PC PC ± offset
B 1
M(S) PCH
S S – 1
M(S) PCL
S S – 1
M(S) PS
S S – 1
PCL ADL
PCH ADH
V
V
V
2
Addressing mode
ZP, X ZP, Y ABS ABS, X ABS, Y IND ZP, IND IND, X IND, Y REL SP 7 6 5 4 3 2 1 0
Processor status register
NVTBDI ZC
OP n # OP n # OP n # OP n # OP n # OP n # OP n # OP n #OP n # OP n # OP n #
3-67
3802 GROUP USER’S MANUAL
APPENDIX
3.10 Machine instructions
75
35
16
4
4
6
2
2
2
6D
2D
0E
2C
4
4
6
4
3
3
3
3
7D
3D
1E
5
5
7
3
3
3
79
39
5
5
3
3
61
21
6
6
2
2
90
B0
F0
30
D0
10
80
2
2
2
2
2
2
4
2
2
2
2
2
2
2
71
31
6
6
2
2
N
N
N
M7
V
M6
1
1
Z
Z
Z
Z
C
C
Addressing mode
Symbol Function Details IMP IMM A BIT, A ZP BIT, ZP
OP n # OP n # OP n # OP n # OP n #OP n #
APPENDIX
3.10 Machine instructions
3-68 3802 GROUP USER'S MANUAL
Branches when the contents of overflow flag is
“0”.
Branches when the contents of overflow flag is
“1”.
Clears the contents of the bit specified in the
accumulator or memory to “0”.
Clears the contents of the carry flag to “0”.
Clears the contents of decimal mode flag to
“0”.
Clears the contents of interrupt disable flag to
“0”.
Clears the contents of index X mode flag to
“0”.
Clears the contents of overflow flag to “0”.
Compares the contents of accumulator and
memory.
Compares the contents of the memory speci-
fied by the addressing mode with the contents
of the address indicated by index register X.
Forms a one’s complement of the contents of
memory, and stores it into memory.
Compares the contents of index register X and
memory.
Compares the contents of index register Y and
memory.
Decrements the contents of the accumulator
or memory by 1.
Decrements the contents of index register X
by 1.
Decrements the contents of index register Y
by 1.
Divides the 16-bit data that is the contents of
M (zz + x + 1) for high byte and the contents of
M (zz + x) for low byte by the accumulator.
Stores the quotient in the accumulator and the
1’s complement of the remainder on the stack.
“Exclusive-ORs” the contents of accumulator
and memory. The results are stored in the ac-
cumulator.
“Exclusive-ORs” the contents of the memory
specified by the addressing mode and the
contents of the memory at the address indi-
cated by index register X. The results are
stored into the memory at the address indi-
cated by index register X.
Connects oscillator output to the XOUT pin.
Increments the contents of accumulator or
memory by 1.
Increments the contents of index register X by
1.
Increments the contents of index register Y by
1.
BVC
(Note 4)
BVS
(Note 4)
CLB
CLC
CLD
CLI
CLT
CLV
CMP
(Note 3)
COM
CPX
CPY
DEC
DEX
DEY
DIV
EOR
(Note 1)
FST
INC
INX
INY
V = 0?
V = 1?
Ab or Mb 0
C 0
D 0
I 0
T 0
V 0
When T = 0
A – M
When T = 1
M(X) – M
M M
X – M
Y – M
A A – 1 or
M M – 1
X X – 1
Y Y – 1
A (M(zz + X + 1),
M(zz + X)) / A
M(S) 1’s complememt
of Remainder
S S – 1
When T = 0
A A V
M
When T = 1
M(X) M(X) V
M
A A + 1 or
M M + 1
X X + 1
Y Y + 1
18
D8
58
12
B8
CA
88
E2
E8
C8
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
C9
E0
C0
49
2
2
2
2
2
2
2
2
1A
3A
2
2
1
1
1B
+
2i
C5
44
E4
C4
C6
45
E6
3
5
3
3
5
3
5
2
2
2
2
2
2
2
1F
+
2i
21 52
Addressing mode
ZP, X ZP, Y ABS ABS, X ABS, Y IND ZP, IND IND, X IND, Y REL SP 7 6 5 4 3 2 1 0
Processor status register
NVTBDI ZC
OP n # OP n # OP n # OP n # OP n # OP n # OP n # OP n #OP n # OP n # OP n #
3-69
3802 GROUP USER’S MANUAL
APPENDIX
3.10 Machine instructions
D5
D6
E2
55
F6
CD
EC
CC
CE
4D
EE
50
70
2
2
2
2
N
N
N
N
N
N
N
N
N
N
N
0
4
6
16
4
6
4
4
4
6
4
6
3
3
3
3
3
3
DD
DE
5D
FE
5
7
5
7
3
3
3
3
D9
59
5
5
3
3
C1
41
6
6
2
2
D1
51
6
6
2
2
0
0
0
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
0
C
C
C
2
2
2
2
2
Addressing mode
Symbol Function Details IMP IMM A BIT, A ZP BIT, ZP
OP n # OP n # OP n # OP n # OP n #OP n #
APPENDIX
3.10 Machine instructions
3-70 3802 GROUP USER'S MANUAL
Jumps to the specified address.
After storing contents of program counter in
stack, and jumps to the specified address.
Load accumulator with contents of memory.
Load memory indicated by index register X
with contents of memory specified by the ad-
dressing mode.
Load memory with immediate value.
Load index register X with contents of
memory.
Load index register Y with contents of
memory.
Shift the contents of accumulator or memory
to the right by one bit.
The low order bit of accumulator or memory is
stored in carry, 7th bit is cleared.
Multiplies the accumulator with the contents of
memory specified by the zero page X address-
ing mode and stores the high byte of the result
on the stack and the low byte in the accumula-
tor.
No operation.
“Logical OR’s” the contents of memory and ac-
cumulator. The result is stored in the
accumulator.
“Logical OR’s” the contents of memory indi-
cated by index register X and contents of
memory specified by the addressing mode.
The result is stored in the memory specified by
index register X.
JMP
JSR
LDA
(Note 2)
LDM
LDX
LDY
LSR
MUL
(Note 5)
NOP
ORA
(Note 1)
If addressing mode is ABS
PCL ADL
PCH ADH
If addressing mode is IND
PCL M (ADH, ADL)
PC
H
M (AD
H
, AD
L
+ 1)
If addressing mode is ZP, IND
PCL M(00, ADL)
PCH M(00, ADL + 1)
M(S) PCH
S S – 1
M(S) PCL
S S – 1
After executing the above,
if addressing mode is ABS,
PCL ADL
PCH ADH
if addressing mode is SP,
PCL ADL
PCH FF
If addressing mode is ZP, IND,
PCL M(00, ADL)
PCH M(00, ADL + 1)
When T = 0
A M
When T = 1
M(X) M
M nn
X M
Y M
M(S) · A A M(zz + X)
S S – 1
PC PC + 1
When T = 0
A A V M
When T = 1
M(X) M(X) V M
A9
A2
A0
09
4A 2 1
A5
3C
A6
A4
46
05
3
4
3
3
5
3
2
3
2
2
2
2
EA 2 1
2
2
2
2
2
2
2
2
7 0
0
C
Addressing mode
ZP, X ZP, Y ABS ABS, X ABS, Y IND ZP, IND IND, X IND, Y REL SP 7 6 5 4 3 2 1 0
Processor status register
NVTBDI ZC
OP n # OP n # OP n # OP n # OP n # OP n # OP n # OP n #OP n # OP n # OP n #
3-71
3802 GROUP USER’S MANUAL
APPENDIX
3.10 Machine instructions
B5
B4
56
62
15
4C
20
AD
AE
AC
4E
0D
6C
A1
01
N
N
N
0
N
Z
Z
Z
Z
Z
C
4
4
6
15
4
2
2
2
2
2
B6 4 2
3
6
4
4
4
6
4
3
3
3
3
3
3
3
BD
BC
5E
1D
5
5
7
5
B9
BE
19
5
5
5
3
3
3
3
3
3
3
53B2
02
4
7
2
2
6
6
2
2
B1
11
6
6
2
2
22 5 2
Addressing mode
Symbol Function Details IMP IMM A BIT, A ZP BIT, ZP
OP n # OP n # OP n # OP n # OP n #OP n #
APPENDIX
3.10 Machine instructions
3-72 3802 GROUP USER'S MANUAL
Saves the contents of the accumulator in
memory at the address indicated by the stack
pointer and decrements the contents of stack
pointer by 1.
Saves the contents of the processor status
register in memory at the address indicated by
the stack pointer and decrements the contents
of the stack pointer by 1.
Increments the contents of the stack pointer
by 1 and restores the accumulator from the
memory at the address indicated by the stack
pointer.
Increments the contents of stack pointer by 1
and restores the processor status register
from the memory at the address indicated by
the stack pointer.
Shifts the contents of the memory or accumu-
lator to the left by one bit. The high order bit is
shifted into the carry flag and the carry flag is
shifted into the low order bit.
Shifts the contents of the memory or accumu-
lator to the right by one bit. The low order bit is
shifted into the carry flag and the carry flag is
shifted into the high order bit.
Rotates the contents of memory to the right by
4 bits.
Returns from an interrupt routine to the main
routine.
Returns from a subroutine to the main routine.
Subtracts the contents of memory and
complement of carry flag from the contents of
accumulator. The results are stored into the
accumulator.
Subtracts contents of complement of carry flag
and contents of the memory indicated by the
addressing mode from the memory at the ad-
dress indicated by index register X. The
results are stored into the memory of the ad-
dress indicated by index register X.
Sets the specified bit in the accumulator or
memory to “1”.
Sets the contents of the carry flag to “1”.
Sets the contents of the decimal mode flag to
“1”.
Sets the contents of the interrupt disable flag
to “1”.
Sets the contents of the index X mode flag to
“1”.
Disconnects the oscillator output from the
XOUT pin.
PHA
PHP
PLA
PLP
ROL
ROR
RRF
RTI
RTS
SBC
(Note 1)
(Note 5)
SEB
SEC
SED
SEI
SET
SLW
M(S) A
S S – 1
M(S) PS
S S – 1
S S + 1
A M(S)
S S + 1
PS M(S)
S S + 1
PS M(S)
S S + 1
PCL M(S)
S S + 1
PCH M(S)
S S + 1
PCL M(S)
S S + 1
PCH M(S)
When T = 0
A A – M – C
When T = 1
M(X) M(X) – M – C
Ab or Mb 1
C 1
D 1
I 1
T 1
E9
2A
6A
26
66
82
E5
48
08
68
28
40
60
38
F8
78
32
C2
7 0
C
7 0
3
3
4
4
6
6
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
22
2
2
1
1
0B
+
2i
5
5
8
3
2
2
2
2
0F
+
2i
21 52
7 0
C
Addressing mode
ZP, X ZP, Y ABS ABS, X ABS, Y IND ZP, IND IND, X IND, Y REL SP 7 6 5 4 3 2 1 0
Processor status register
NVTBDI ZC
OP n # OP n # OP n # OP n # OP n # OP n # OP n # OP n #OP n # OP n # OP n #
3-73
3802 GROUP USER’S MANUAL
APPENDIX
3.10 Machine instructions
36
76
F5
2E
6E
ED
N
N
N
N
V
1
1
1
Z
Z
Z
Z
C
C
C
1
6
6
4
2
2
2
6
6
4
3
3
3
3E
7E
FD
7
7
5
3
3
3F95 3 E16 2F16 2
(Value saved in stack)
(Value saved in stack)
Addressing mode
Symbol Function Details IMP IMM A BIT, A ZP BIT, ZP
OP n # OP n # OP n # OP n # OP n #OP n #
APPENDIX
3.10 Machine instructions
3-74 3802 GROUP USER'S MANUAL
Stores the contents of accumulator in memory.
Stops the oscillator.
Stores the contents of index register X in
memory.
Stores the contents of index register Y in
memory.
Transfers the contents of the accumulator to
index register X.
Transfers the contents of the accumulator to
index register Y.
Tests whether the contents of memory are “0”
or not.
Transfers the contents of the stack pointer to
index register X.
Transfers the contents of index register X to
the accumulator.
Transfers the contents of index register X to
the stack pointer.
Transfers the contents of index register Y to
the accumulator.
Stops the internal clock.
STA
STP
STX
STY
TAX
TAY
TST
TSX
TXA
TXS
TYA
WIT
M A
M X
M Y
X A
Y A
M = 0?
X S
A X
S X
A Y
42
AA
A8
BA
8A
9A
98
C2
85
86
84
64
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
4
4
4
3
2
2
2
2
Notes 1 : The number of cycles “n” is increased by 3 when T is 1.
2 : The number of cycles “n” is increased by 2 when T is 1.
3 : The number of cycles “n” is increased by 1 when T is 1.
4 : The number of cycles “n” is increased by 2 when branching has occurred.
5 : N, V, and Z flags are invalid in decimal operation mode.
Addressing mode
ZP, X ZP, Y ABS ABS, X ABS, Y IND ZP, IND IND, X IND, Y REL SP 7 6 5 4 3 2 1 0
Processor status register
NVTBDI ZC
OP n # OP n # OP n # OP n # OP n # OP n # OP n # OP n #OP n # OP n # OP n #
3-75
3802 GROUP USER’S MANUAL
APPENDIX
3.10 Machine instructions
95
94
N
N
N
N
N
N
Z
Z
Z
Z
Z
Z
5
5
2
2
96 5 2
8D
8E
8C
5
5
5
3
3
3
9D639963 81729172
Symbol Contents Symbol Contents
Addition
Subtraction
Logical OR
Logical AND
Logical exclusive OR
Negation
Shows direction of data flow
Index register X
Index register Y
Stack pointer
Program counter
Processor status register
8 high-order bits of program counter
8 low-order bits of program counter
8 high-order bits of address
8 low-order bits of address
FF in Hexadecimal notation
Immediate value
Memory specified by address designation of any ad-
dressing mode
Memory of address indicated by contents of index
register X
Memory of address indicated by contents of stack
pointer
Contents of memory at address indicated by ADH and
ADL, in ADH is 8 high-order bits and ADL is 8 low-or-
der bits.
Contents of address indicated by zero page ADL
1 bit of accumulator
1 bit of memory
Opcode
Number of cycles
Number of bytes
Implied addressing mode
Immediate addressing mode
Accumulator or Accumulator addressing mode
Accumulator bit relative addressing mode
Zero page addressing mode
Zero page bit relative addressing mode
Zero page X addressing mode
Zero page Y addressing mode
Absolute addressing mode
Absolute X addressing mode
Absolute Y addressing mode
Indirect absolute addressing mode
Zero page indirect absolute addressing mode
Indirect X addressing mode
Indirect Y addressing mode
Relative addressing mode
Special page addressing mode
Carry flag
Zero flag
Interrupt disable flag
Decimal mode flag
Break flag
X-modified arithmetic mode flag
Overflow flag
Negative flag
IMP
IMM
A
BIT, A
ZP
BIT, ZP
ZP, X
ZP, Y
ABS
ABS, X
ABS, Y
IND
ZP, IND
IND, X
IND, Y
REL
SP
C
Z
I
D
B
T
V
N
+
V
V
X
Y
S
PC
PS
PCH
PCL
ADH
ADL
FF
nn
M
M(X)
M(S)
M(ADH, ADL)
M(00, ADL)
Ab
Mb
OP
n
#
V
APPENDIX
3.11 SFR memory map
3-76 3802 GROUP USER’S MANUAL
3.11 SFR memory map
0020
16
0021
16
0022
16
0023
16
0024
16
0025
16
0026
16
0027
16
0028
16
0029
16
002A
16
002B
16
002C
16
002D
16
002E
16
002F
16
0030
16
0031
16
0032
16
0033
16
0034
16
0035
16
0036
16
0037
16
0038
16
0039
16
003A
16
003B
16
003C
16
003D
16
003E
16
003F
16
0000
16
0001
16
0002
16
0003
16
0004
16
0005
16
0006
16
0007
16
0008
16
0009
16
000A
16
000B
16
000C
16
000D
16
000E
16
000F
16
0010
16
0011
16
0012
16
0013
16
0014
16
0015
16
0016
16
0017
16
0018
16
0019
16
001A
16
001B
16
001C
16
001D
16
001E
16
001F
16
Serial I/O2 register (SIO2)
Port P0 (P0)
Port P0 direction register (P0D)
Port P1 (P1)
Port P1 direction register (P1D)
Port P2 (P2)
Port P2 direction register (P2D)
Port P3 (P3)
Port P3 direction register (P3D)
Port P4 (P4)
Port P4 direction register (P4D)
Port P5 (P5)
Port P5 direction register (P5D)
Port P6 (P6)
Port P6 direction register (P6D)
Transmit/Receive buffer register (TB/RB)
Serial I/O1 status register (SIO1STS)
Serial I/O1 control register (SIO1CON)
UART control register (UARTCON)
Baud rate generator (BRG)
Serial I/O2 control register (SIO2CON)
Interrupt control register 2(ICON2)
A-D conversion register (AD)
Prescaler Y (PREY)
Timer Y (TY)
AD/DA control register (ADCON)
D-A1 conversion register (DA1)
D-A2 conversion register (DA2)
Interrupt edge selection register
(INTEDGE)
CPU mode register (CPUM)
Interrupt request register 1(IREQ1)
Interrupt request register 2(IREQ2)
Interrupt control register 1(ICON1)
Prescaler 12 (PRE12)
Timer 2 (T2)
Prescaler X (PREX)
Timer X (TX)
Timer 1 (T1)
Timer XY mode register (TM)
PWM control register (PWMCON)
PWM prescaler (PREPWM)
PWM register (PWM)
APPENDIX
3.12 Pin configuration
3-77
3802 GROUP USER’S MANUAL
3.12 Pin configuration
PIN CONFIGURATION (TOP VIEW)
Package type : 64P6N-A
64-pin plastic-molded QFP
P4
1
/INT
0
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
P0
0
/AD
0
P0
3
/AD
3
P0
4
/AD
4
P0
5
/AD
5
P0
6
/AD
6
P0
7
/AD
7
P1
1
/AD
9
P1
2
/AD
10
P1
3
/AD
11
P1
4
/AD
12
P1
5
/AD
13
P1
6
/AD
14
P1
7
/AD
15
P6
2
/AN
2
P6
1
/AN
1
P6
0
/AN
0
P5
7
/INT
3
M38022M4-XXXFP
P5
6
/PWM
P5
5
/CNTR
1
P5
4
/CNTR
0
P5
2
/S
CLK2
P5
1
/S
OUT2
P5
0
/S
IN2
P4
7
/S
RDY1
P4
5
/T
X
D
P4
4
/R
X
D
P4
3
/INT
2
P6
3
/AN
3
P6
4
/AN
4
P6
5
/AN
5
AV
SS
V
REF
V
CC
P3
0
/DA
1
P3
1
/DA
2
P3
2
/ONW
P3
3
/RESET
OUT
P3
4
/φ
P3
5
/SYNC
P3
6
/WR
P3
7
/RD
P4
2
/INT
1
CNV
SS
X
IN
X
OUT
V
SS
P2
7
/DB
7
P2
6
/DB
6
P2
5
/DB
5
P2
4
/DB
4
P2
3
/DB
3
P2
2
/DB
2
P2
1
/DB
1
P2
0
/DB
0
RESET
P5
3
/S
RDY2
P4
6
/S
CLK1
P1
0
/AD
8
P0
1
/AD
1
P0
2
/AD
2
P4
0
/INT
4
P6
7
/AN
7
P6
6
/AN
6
41
42
43
44
45
46
47
APPENDIX
3.12 Pin configuration
3-78 3802 GROUP USER’S MANUAL
PIN CONFIGURATION (TOP VIEW)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
P6
4
/AN
4
P6
6
/AN
6
P6
7
/AN
7
AV
SS
V
REF
V
CC
P6
3
/AN
3
P6
5
/AN
5
P6
2
/AN
2
P6
1
/AN
1
P6
0
/AN
0
P5
7
/INT
3
P5
6
/PWM
P5
5
/CNTR
1
P5
4
/CNTR
0
P5
3
/S
RDY2
P5
2
/S
CLK2
P5
1
/S
OUT2
P5
0
/S
IN2
P4
7
/S
RDY1
P4
6
/S
CLK1
P4
3
/INT
2
P4
4
/R
X
D
P4
5
/T
X
D
CNV
SS
P4
1
/INT
0
P4
0
/INT
4
X
IN
X
OUT
V
SS
P4
2
/INT
1
RESET
P2
4
/DB
4
P2
3
/DB
3
P2
2
/DB
2
P2
0
/DB
0
P2
1
/DB
1
P2
5
/DB
5
P2
7
/DB
7
P2
6
/DB
6
P3
3
/RESET
OUT
P3
4
/φ
P3
5
/SYNC
P3
7
/RD
P3
6
/WR
P3
2
/ONW
P3
0
/DA
1
P3
1
/DA
2
P0
0
/AD
0
P0
1
/AD
1
P0
2
/AD
2
P0
3
/AD
3
P0
4
/AD
4
P0
5
/AD
5
P0
6
/AD
6
P0
7
/AD
7
P1
0
/AD
8
P1
1
/AD
9
P1
2
/AD
10
P1
3
/AD
11
P1
4
/AD
12
P1
7
/AD
15
P1
6
/AD
14
P1
5
/AD
13
M38022M4-XXXSP
Package type : 64P4B
64-pin shrink plastic-molded DIP
MITSUBISHI SEMICONDUCTORS
USER’S MANUAL
3802Group
Mar. First Edition 1996
Editioned by
Committee of editing of Mitsubishi Semiconductor USER’S MANUAL
Published by
Mitsubishi Electric Corp., Semiconductor Marketing Division
This book, or parts thereof, may not be reproduced in any form without permission
of Mitsubishi Electric Corporation.
©1996 MITSUBISHI ELECTRIC CORPORATION
MITSUBISHI ELECTRIC CORPORATION
HEAD OFFICE: MITSUBISHI DENKI BLDG., MARUNOUCHI, TOKYO 100. TELEX: J24532 CABLE: MELCO TOKYO
User’s Manual
3802 Group
H-EE417-A KI-9603 Printed in Japan (ROD)
© 1996 MITSUBISHI ELECTRIC CORPORATION New publication, effective Mar. 1996.
Specifications subject to change without notice.
Rev. Rev.
No. date
1.0 First Edition 980110
REVISION DESCRIPTION LIST 3802 GROUP USER’S MANUAL
(1/1)
Revision Description