EZ-USB FX2LP™ USB Microc ont roll er
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Cypress Semiconductor Corporation 3901 North First Street San Jose, CA 95134 408-943-2600
Document #: 38-08032 Rev. *G Revised February 1, 2005
1.0 Featur es (CY7C68013A/ 14A/15A/16A)
USB 2.0–USB-I F high speed certif ied (TID # 4044011 1)
Singl e-chip integr ate d USB 2.0 transcei ver, smart SIE,
and enhanced 8051 microprocessor
Fit, form and function compatib le with the FX2
Pin-compatible
Object-code-compatible
Functi onally-compati ble (FX2LP is a superset)
Ultr a Low power: ICC no more than 85 mA in any mode
Ideal for bus and battery powered applications
Softwa re: 8051 code runs from:
Internal RAM, which is downloaded via USB
Internal RAM, which is loaded from EEPROM
External memory device (128 pin package)
16 KBytes of on-chip Code/Data RAM
Four progr ammable BULK/ INTERRUPT/ ISOCHRO-
NOUS endpoints
Buffering options: double, triple, and quad
Addit iona l progr ammab le (BULK/INT ERRUPT ) 64-byte
endpoint
8- or 16- bit external data interface
Smart Media Standard ECC generation
GPIF (General Programmable Interface)
Allows direc t connection to most p arallel interface
Programmable waveform descriptors and configu-
ration registers to define waveforms
Supports multi ple Ready (RDY) inputs and Control
(CTL) out puts
Integr ated, industr y-standard enh anced 8051
48-MHz, 24- MHz , or 12-MHz CPU operation
Four clocks per inst ruction cycl e
Tw o USARTS
Three counter/timers
Expanded interrupt system
Tw o data pointers
3.3V operation with 5V tolerant inputs
Vectored USB interrupts and GPIF/FIFO interrupts
Separ ate da ta buf fe rs for the Set-u p a nd Dat a portions
of a CONTROL transfer
Integrated I2C controller, runs at 100 or 400 kHz
Four integ rat ed FIFOs
Integrated glue logic and FIFOs lower system cost
Automatic conversion to and from 16-bit buses
Master or slave operation
Uses external clock or asynchronous strobes
Easy interface to ASIC and DSP IC s
1.1 Features (CY7C68013A/14A only)
C Y7C68014A: Ideal f or battery powered applicat ions
Suspend current: 100 µA (typ)
C Y7C68013A: Ideal for non-battery powe red applica-
tions
Suspend current: 300 µA (typ)
Available in four lead-free packages with up to 40 GPIOs
128-pin TQFP (40 GPI Os), 1 00-pin TQFP (40 GPIOs),
56-pin QFN (24 GPIO s) and 56 -pin SSOP ( 24 GPIOs )
Address (16)
x20
PLL
/0.5
/1.0
/2.0
8051 Core
12/24/48 MHz,
four clocks/cycle
I2C
VCC
1.5k
D+
D–
Address (16) / Data Bus (8)
FX2LP
GPIF
CY
Smart
USB
1.1/2.0
Engine
USB
2.0
XCVR
16 KB
RAM
4 kB
FIFO
Integrated
full- an d high-speed
XCVR
Additional I/Os ( 2 4)
ADDR (9)
CTL (6)
RDY (6)
8/16
Data (8)
24 MHz
Ex t. XTAL
Enhanced USB core
Simplifies 8051 code “Soft C onfi gur ati on”
Eas y firmwa re c hanges FIF O and en dpoint mem ory
(m aster or slav e o peration)
Up to 96 MBytes/s
burst rat e
General
programm able I/F
to ASIC/DSP or bus
standards such as
ATAPI , EP P, etc.
Abundant I/O
inclu ding two US AR T S
High -perform ance mic ro
using standard tools
with lower-power options
Master
Figure 1-1. Block Diagram
conn ec ted for
full speed
ECC
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 2 of 55
1.2 Fea tures (CY7C68015A/16A only)
CY7C6 8016A: Ideal for battery powered applications
Suspend current: 100 µA (typ)
CY7C68015A: Ideal for non-battery powered applica-
tions
Suspend current: 300 µA (typ)
Avai labl e in lead-free 56-pin QFN package (26 GPIOs)
2 more GPI Os tha n CY7C68013A/ 14A enab ling add i-
tional features in same footprin t
Cypress Semiconductor Corporation’s (Cypress’s) EZ-USB
FX2LP (CY7C68013A/14A) is a low-power version of the
EZ-USB FX2 (CY7C68013), which is a highly integrated,
low-power USB 2.0 microcontroller . By integrating the USB 2.0
transceiver, serial interface engine (SIE), enhanced 8051
microcontroller, and a programmable peripheral interface in a
sing le chi p, Cyp ress has c rea ted a ver y cost- eff ect ive sol utio n
that provides superior time-to-market advantages with low
power to enable bus power ed applicat ions.
The ingenious architecture of FX2LP results in data transfer
rates of over 53 Mbytes per second, the maximum-allowable
USB 2.0 bandwidt h, while still u sin g a low-cost 8051 microcon-
tro ller i n a p ackage as s mall as a 56 Q FN. Becau se it i ncorpo-
rat es the USB 2. 0 tra nsceive r , the FX2 LP i s more e conomi cal,
providing a smaller footprint solution than USB 2.0 SIE or
external transceiver implementations. With EZ-USB FX2LP,
the Cypress Smart SIE handles most of the USB 1.1 and 2.0
protocol in hardware, freeing the embedded microcontroller for
application-specific functions and decreasing development
time to ensure USB compatibility.
The General Programmable Interface (GPIF) and
Master/Slave Endpoint FIFO (8- or 16-bit data bus) provides
an easy and glueless interface to popular interfaces such as
ATA, UTOPIA, EPP, PCMCIA, and most DSP/processors.
The FX2LP draws considerably less current than the FX2
(CY7C68013), has double the on-chip code/data RAM and is
fit, form and function compatible with the 56-, 100-, and 128-
pin FX2.
Four packages are defined for the family: 56 SSOP, 56 Q FN,
100 TQFP, and 128 TQFP.
2.0 Applications
Portable video recorder
MPEG/TV convers ion
DSL modems
•ATA interface
Memory card reader s
Legacy conversion devices
Cameras
Scanners
Home PNA
Wireless LAN
MP3 players
•Networking
The “Reference Designs” section of the Cypress web site
provides additional tools for typical USB 2.0 applications. Each
reference design comes complete with firmware source and
object code, schematics, and documentation. Please visit
http://www.cypress.com for more information.
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 3 of 55
3.0 Functional Overview
3.1 USB Signal ing Speed
FX2LP operates at two of the three rates defined in the USB
Specification Revision 2.0, dated April 27, 2000:
Full speed, with a signaling bit rate of 12 Mbps
High speed, with a signaling bit rat e of 480 Mbps.
FX2LP does not support the low-speed signaling mode of
1.5 Mbps.
3.2 8051 Microproces sor
The 8051 mic roprocessor em bedded in the FX2LP famil y has
256 bytes of register RAM, an expanded interrupt system,
three timer/counters, and two USARTs.
3.2.1 8051 Clock Frequency
FX2LP has an on-chip oscillator circuit that uses an external
24-MHz (±100-ppm) cr ystal with the foll owing characteristics:
Parall el r esonant
Fundamental mode
•500-µW drive lev el
12-pF (5% tole rance) load cap acitors.
An on-chip PLL multiplies the 24-MHz oscillator up to
480 MHz, as required by the transceiver/PHY, and internal
counters div ide it down for use as the 8051 clock. The defaul t
8051 clock frequency is 12 M Hz. The clock frequency of the
8051 can be changed by the 8051 through the CPUCS
register, dynamical ly.
The CLKOUT pin, which can be three-stated and inverted
using internal control bits, outputs the 50% duty cycle 8051
clock, at the selected 8051 clock frequency—48, 24, or 12
MHz.
3.2.2 USARTS
FX2LP contains two standard 8051 USARTs, addressed via
Special Function Register (SFR) bits. The USART interface
pins are available on separate I/O pins, and are not multi-
plexed wi th port pins.
UART0 and UART1 can operate using an internal clock at
230 KBaud with no more than 1% baud rate err or . 230- KBaud
operation is achieved by an internally derived clock source that
generates overflow pulses at the appropriate time. The
inter nal clock adjust s for the 8051 clock rate (48, 24 , 12 MHz)
such that it always presents the correct frequency for 230-
KBaud operation.[1]
3.2.3 Special Function Registers
Certain 8051 SFR addresses are populated to provide fast
access to critical FX2LP functions. These SFR additions are
shown in Table 3-1. Bold type indicates non-standard,
enhanced 8051 register s. The two SFR rows that end with “0
and “8” contain bit-addressable registers. The four I/O ports
A–D use the SFR addresses used in the standard 8051 for
ports 0–3, which are not implemented in FX2LP. Because of
the faster and more efficient SFR addressing, the FX2LP I/O
ports are not addressable in external RAM space (using the
MOVX instruction).
3.3 I2C Bus
FX2LP supports the I2C bus as a master only at 100-/400-KHz.
SCL and SDA pins have open-drain outputs and hysteresis
input s. Thes e si gnals must be pull ed up to 3 .3V, even i f no I 2C
device i s connecte d.
3.4 Buses
All pac kages: 8- or 16-bit “FIFO ” bid ir ectional data bus, multi -
plexed on I/O ports B and D. 128-pin package: adds 16-bit
output-only 805 1 address bus, 8-bi t bidir ectional data bus.
Figure 3-1. Crystal Confi guration
12 pf
12 pf
24 M Hz
20 × PLL
C1 C2
1 2-p F ca pac it or va lu es a ssu m e s a tr ac e ca pac i ta nc e
of 3 pF pe r sid e on a f ou r- la y er F R4 P CA
Note:
1. 115-KBaud operation is also poss ible by programming the 8051 SMOD0 or SMOD1 bits to a “1” for UART0 and/or UART1, respectively.
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 4 of 55
3.5 USB Boot Methods
During the power-up sequence, internal logic checks the I2C
port for the connection of an EEPROM whose first byte is
either 0xC0 or 0xC2. If found, it uses the VID/PID/DID values
in th e EEPROM in pl ace of the internally stor ed values (0xC0 ),
or it boot-loads the EEPROM contents into internal RAM
(0xC2). If no EEPROM is detected , FX2LP enumerates us ing
internally stored descriptors. The default ID values for FX2LP
are VID/PID/DID (0x04B4, 0x8613, 0xAxxx where xxx = Chip
revision).[2]
3.6 ReNumeration™
Because the FX2LP’s configuration is soft, one chip can take
on the identities of multiple distinct USB devices.
When first plugged into USB, the FX2LP enumerates automat-
ically and downloads fir mware and USB descr iptor tabl es over
the USB cable. Next, the FX2LP enumerates again, this time
as a device defined by the downloaded information. This
patented two-step process, called ReNumeration, happens
instantly when the device is plugged in, with no hint that the
ini tial download step has occurred.
Two control bits in the USBCS (USB Control and Status)
register control the ReNumeration process: DISCON and
RENUM. To simulate a USB disconnect, the firmware sets
DISCON to 1. To r econnect , t he f irmwar e clear s DISCON t o 0 .
Before reconnecting, the firmware sets or clears the RENUM
bit to i ndicat e whe ther t he fi rmware or the Def ault USB Device
will hand le device request s over end point zero: if RENUM = 0 ,
the Default USB Device will handle device requests; if RENUM
= 1, the firmwa re w ill.
3.7 Bus-po were d Applications
The FX2LP fully supports bus-powered designs by enumer-
ating with less t han 100 mA as requ ired by t he USB 2.0 spe ci-
fication.
3.8 Interrupt System
3.8.1 INT2 Interrupt Request and Enable Registers
FX2LP implements an autovector feature for INT2 and INT4.
There are 27 INT2 (USB) vectors, and 14 INT4 (FIFO /GPIF)
vectors. See EZUSB Technical Reference Manual (TRM) for
more details.
3.8.2 USB-Interrupt Autovectors
The main USB interrupt is shared by 27 interrupt sources. To
save the code and processing time that normally would be
required to identify the individual USB interrupt source, the
FX2LP provides a second level of interrupt vectoring, called
Autovectoring. When a USB interrupt is asserted, the FX2LP
pushes the program counter onto its stack then jumps to
address 0x0043, where it expects to find a “jump” instruction
to the USB Interrupt service routine.
Table 3-1 . Special Function Registers
x8x 9x Ax Bx CxDxExFx
0IOA IOB IOC IOD SCON1 PSW ACC B
1SP EXIF INT2CLR IOE SBUF1
2DPL0 MPAGE INT4CLR OEA
3DPH0 OEB
4DPL1 OEC
5DPH1 OED
6DPS OEE
7PCON
8 TCON SCON0 IE IP T2CON EICON EIE EIP
9 TMOD SBUF0
ATL0AUTOPTRH1 EP2468STAT EP01STAT RCAP2L
BTL1AUTOPTRL1 EP24FIFOFLGS GPIFTRIG RCAP2H
CTH0reserved EP68FIFOFLGS TL2
DTH1AUTOPTRH2 GPIFSGLDATH TH2
ECKCON AUTOPTRL2 GPIFSGLDATLX
Freserved AUTOPTRSET-UP GPIFSGLDATLNOX
Table 3-2. Default ID Values for FX2LP
Default VID/PID/DID
Vendor ID 0x04B4 Cypress Semiconductor
Product ID 0x8613 EZ-USB FX2LP
Device release 0xAnnn Depends chip revision
(nnn = chip re vision where fir st
silicon = 001)
Note:
2. The I2C bus SCL and SDA pins must be pulled up, even if an EEPROM is not connected. Otherwise this detection method does not work properly.
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 5 of 55
The FX2LP jump instruction is encoded as follows.
If Autovectoring is enabled (AV2EN = 1 in the INTSET-UP
register), the FX2LP substit utes its INT2VEC byt e. Therefor e,
if the high byte (“page”) of a jump-table address is preloaded
at location 0x0044, the autom atically-inserted INT2VEC byte
at 0x0045 will d irect t he jump to the correct address out of the
27 addresses within the page.
3.8.3 FIFO/GPIF Interrupt (INT4)
Just as t he USB Interrupt is shar ed among 27 i ndivi dual USB-
interrupt sour ces, the FI FO/GPIF inte rr upt is shared among 14
individual FIFO/GPIF sources. The FIFO/GPIF Interrupt, like
the USB Interrupt, can employ auto vectoring . Table 3-4 shows
the priority and INT4VEC values for the 14 FIFO/GPIF
interrupt sources.
Table 3-3. INT2 USB Interrupts
USB INTERRUPT TABLE FOR INT2
Priority INT2VEC Value Source Notes
1 00 SUDAV Set- up Data Available
2 04 SOF St art of Frame (or microframe )
3 08 SUT OK Set-up Token Received
4 0C SUSPEND USB Suspend request
5 10 USB RESET Bus reset
6 14 HISPEED Entered high speed operation
7 18 EP0ACK FX2LP ACK’d the CONTROL Handshake
8 1C reserved
9 20 EP0-IN EP0-IN ready to be loaded with data
10 24 EP0-OUT EP0-OUT has USB data
11 28 EP1-IN EP1-IN ready to be loaded with data
12 2C EP1-OUT EP1-OUT has USB data
13 30 EP2 IN: buffer avail able. OUT: buffer has dat a
14 34 EP4 IN: buffer avail able. OUT: buffer has dat a
15 38 EP6 IN: buffer avail able. OUT: buffer has dat a
16 3C EP8 IN: buffer available. OUT: buffer has data
17 40 IBN IN-Bulk-NAK (any IN endpoint)
18 44 reserved
19 48 EP0PING EP0 OUT was Pinged and it NAK’d
20 4C EP1PING EP1 OUT was Pinged and it NAK’d
21 50 EP2PING EP2 OUT was Pinged and it NAK’d
22 54 EP4PING EP4 OUT was Pinged and it NAK’d
23 58 EP6PING EP6 OUT was Pinged and it NAK’d
24 5C EP8PING EP8 OUT was Pinged and it NAK’d
25 60 ERRLIMIT Bus errors exceeded the programmed limit
26 64
27 68 reserved
28 6C reserved
29 70 EP2ISOERR ISO EP2 OUT PID sequence error
30 74 EP4ISOERR ISO EP4 OUT PID sequence error
31 78 EP6ISOERR ISO EP6 OUT PID sequence error
32 7C EP8ISOERR ISO EP8 OUT PID sequence error
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 6 of 55
If Autovectoring is enabled (AV4EN = 1 in the INTSET-UP
regi ster) , the FX 2L P substi tute s it s INT4VEC b yte . There fore,
if the high byte (“page”) of a jump-table address is preloaded
at location 0x0054, the autom atically-inserted INT4VEC byte
at 0x0055 will d irect t he jump to the correct address out of the
14 addresses within the page. When the ISR occurs, the
FX2LP pushes the progr am counter onto its s tack then jumps
to address 0x0053, where it expects to find a “jump” instruction
to the ISR Interrupt service routine.
3.9 Reset and Wakeup
3.9.1 Reset Pi n
The input pin, RESET#, will reset the FX2LP when asserted.
This pin has hysteresis and is active LOW. When a crystal is
used wi th the CY7C680 xxA the reset per iod mus t all ow for the
stabilization of the crystal and the PLL. This reset period
should be approximat ely 5 ms after VCC has reached 3. 0V. If
the cry stal input pin i s dr iven by a clock s ig nal the inter nal PLL
stabilizes in 200 µs after VCC has reached 3.0V[3]. Figure 3-2
shows a power-on reset condition and a reset applied during
operation. A power-on reset is defined as the time reset is
assert ed while power is bei ng applied to the circuit. A powered
reset is defined to be when the FX2LP has previously been
powered on and operating and the RESET# pi n is ass erted.
Cypress provides an application note which describes and
recommends power on reset implementation and can be found
on the Cypr ess we b si te. For m ore infor mati on on rese t imple -
mentation for the FX2 family of products visit the
http://www.cypress.com.
Table 3-4 . Individual FIFO/GPIF Int errupt Sources
Priority INT4VEC Value Source Notes
1 80 EP2PF End point 2 Programmable Flag
2 84 EP4PF Endpoint 4 Programmable Flag
3 88 EP6PF End point 6 Programmable Flag
4 8C EP8PF Endpoint 8 Programmable Flag
5 90 EP2EF Endpoint 2 Empty Flag
6 94 EP4EF Endpoint 4 Empty Flag
7 98 EP6EF Endpoint 6 Empty Flag
8 9C EP8EF Endpoint 8 Empty Flag
9 A0 EP2FF Endpoint 2 Full Flag
10 A4 EP4FF Endpoint 4 Full Flag
11 A8 EP6FF Endpoint 6 Full Flag
12 AC EP8FF Endpoint 8 Full Flag
13 B0 GPIFDONE GPIF Operation Complete
14 B4 GPIFWF GPIF Waveform
Note:
3. If the external clock is powered at the same time as the CY7C680xxA and has a stabilization wait period, it must be added to the 200 µs.
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 7 of 55
3.9.2 Wakeup Pins
The 805 1 puts itsel f and t he rest of t he chip i nto a power-do wn
mode by setting PCON.0 = 1. This stops the oscillator and
PLL. When WAKEUP is asserted by external logic, the oscil-
lator restarts, after the PLL stabilizes, and then the 8051
receives a wakeup interrupt. This applies whether or not
FX2LP is connected to the USB.
The FX2LP exits the power-down (USB suspend) state using
one of the following methods:
USB bus ac ti vity (if D+/D– l ines are left floating, noise on
these li nes may indicat e activi ty to th e FX2LP and initiate a
wakeup).
External logic assert s the WAKEUP pin
External logic asserts the PA3/WU2 pin.
The second wakeup pin, WU2, can also be configured as a
general purpose I/O pin. This allows a simple external R-C
network to be used as a periodic wakeup source. Note that
W AKEUP is by default act ive LOW.
3.10 Program/Data RAM
3.10.1 Size
The FX2LP has 16 KBytes of internal program/data RAM,
where PSEN#/RD# signals are internally ORed to allow the
8051 to access it as bot h program and data memory. No USB
control registers appear i n this space.
Two memo ry maps are shown in the f ollowing di agrams:
Figure 3-3 In te rn a l C o de Me m o ry, EA = 0
Figure 3-4 External Code Memory, EA = 1.
3.10.2 Internal Code Memory, EA = 0
This mode implements the internal 16-KByte block of RAM
(starting at 0) as combined code and data memory. When
external RAM or ROM is added, the external read and write
strobes are suppressed for memory spaces that exist inside
the chip. This allows the user to connect a 64-KByte memory
without requiring address decodes to keep clear of internal
memory spaces.
Only t he internal 16 KBytes and scr atc h p ad 0.5 KBytes RAM
spaces have the following access:
USB download
USB upload
Set-up dat a pointer
•I
2C interface boot load.
3.10.3 Externa l Code Memory, EA = 1
The bottom 16 KBytes of program memory is external, and
therefore the bottom 16 KBytes of internal RAM is accessible
only as data memory.
Figure 3-2. Reset Tim ing Plots
VIL
0V
3.3V
3.0V
TRESET
VCC
RESET#
Po wer on Reset
TRESET
VCC
RESET# VIL
Powered Reset
3.3V
0V
Table 3-5 . Reset T iming Values
Condition TRESET
Power-on Reset with cryst al 5 ms
Power-on Reset with external
clock 200 µs + Cloc k st abil ity t ime
Powered Reset 200 µs
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 8 of 55
Figure 3-3 . Internal Code Memory, EA = 0
Inside FX2LP Outside FX2LP
7.5 KBytes
USB regs and
4K FIFO buffers
(RD#,WR#)
0.5 KBytes RAM
Data (RD#,WR#)*
(OK to populate
data memory
here—RD#/WR#
strobes are not
active)
40 KBytes
External
Data
Memory
(RD#,WR#)
(Ok to populate
data memory
here—RD#/WR#
strobes are not
active)
16 KBytes RAM
Code and Data
(PSEN#,RD#,WR#)*
48 KBytes
External
Code
Memory
(PSEN#)
(OK to populate
program
memory here—
PSEN# strobe
is not activ e)
*SUDPTR, USB upload/download, I2C interface boot access
FFFF
E200
E1FF
E000
3FFF
0000 Data Code
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 9 of 55
3.11 Register Add ress es
Figure 3- 4. External Code Memory, EA = 1
Inside FX2LP Outside FX2LP
7.5 KBytes
USB regs and
4K FIFO buffers
(RD#,WR#)
0.5 KBytes RAM
Data (RD#,WR#)*
(OK to populate
data memory
here—RD#/WR#
strobes are not
active)
40 KBytes
External
Data
Memory
(RD#,WR#)
(Ok to populate
data memory
here—RD#/WR#
strobes are not
active)
16 KBytes
RAM
Data
(RD#,WR#)*
64 KBytes
External
Code
Memory
(PSEN#)
*SUDPTR, USB upload/download, I2C interface boot access
FFFF
E200
E1FF
E000
3FFF
0000 Data Code
FFFF
E800
E7BF
E740
E73F
E700
E6FF
E500
E4FF
E480
E47F
E400
E200
E1FF
E000
E3FF
EFFF 2 KBytes RESERVED
64 Bytes EP0 IN/OUT
64 Bytes RESERVED
8051 Addressable Registers
Res erved (128)
128 bytes GPIF Waveforms
512 bytes
8051 xdata RA M
F000
(512)
Reserved (512)
E780 64 Bytes EP1OUT
E77F
64 Bytes EP1IN
E7FF
E7C0
4 KBytes EP2-EP8
buffers
(8 x 512)
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 10 of 55
3.1 2 Endpoi nt R A M
3.12.1 Size
3× 64 bytes (Endpoints 0 and 1)
8 × 512 bytes ( Endpoints 2, 4, 6, 8)
3.12.2 Organization
EP0
Bidire cti onal endpoint zero, 64-byte buffer
EP1IN, EP1OUT
64-byte buffers, bulk or interrupt
EP2,4,6,8
Eight 512- byte buf fe rs, bulk, interrupt, or isochr onous. EP4
and EP8 can be double buffered, while EP2 and 6 can be
eit her doubl e, tripl e, or quad buf fered. For high- spe ed end-
point confi guration options, see Figure 3-5.
3.12.3 Set-up Dat a Buffer
A separat e 8-byte buf fer at 0xE6B8-0 xE6BF holds the Set-up
data from a CONTROL tr ansfer.
3.12.4 Endpoint Configurations (High-speed Mode)
Endpoints 0 and 1 are the same for every configuration.
Endpoint 0 is the only CONTROL endpoint, and endpoint 1 can
be either BULK or INTERRUPT. The endpoint buffers can be
configured in any 1 of the 12 configurations shown in the
vertical columns. When operating in full-speed BULK mode
only the first 64 bytes of each buffer are used. For example in
high-s peed, the max pa cket size is 512 bytes but in full -speed
it is 64 bytes. Even though a buffer is configured to be a 512
byte buffer, in full-speed only the first 64 bytes are used. The
unused endpo int buffer s pace is not avai lable for othe r opera-
tions . An example endpoint configuration would be:
EP2—1024 double buffered; EP6—512 quad buffered
( co lumn 8 ).
64
64
64
512
512
1024
1024
1024
1024
1024
1024
1024
512
512
512
512
512
512
512
512
512
512
EP2 EP2 EP2
EP6
EP6
EP8 EP8
EP0 IN&OUT
EP1 IN
EP1 OUT
Figure 3- 5. Endpoint Configuration
1024
1024
EP6 1024
512
512
EP8
512
512
EP6
512
512
512
512
EP2
512
512
EP4
512
512
EP2
512
512
EP4
512
512
EP2
512
512
EP4
512
512
EP2
512
512
512
512
EP2
512
512
512
512
EP2
512
512
1024
EP2
1024
1024
EP2
1024
1024
EP2
1024
512
512
EP6
1024
1024
EP6
512
512
EP8
512
512
EP6
512
512
512
512
EP6
1024
1024
EP6
512
512
EP8
512
512
EP6
512
512
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
12345678910 11 12
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 11 of 55
3.12.5 Default Full-Speed Alternate Settings
3.12.6 Default High-Speed Alternate Set ti ngs
3.13 External FIFO Interface
3.13.1 Architecture
The FX2LP s lav e FIFO arc hitec ture has eight 512- byte bl ocks
in the endpoint RAM that directly serve as FIFO memories,
and are controlled by FIFO control signals (such as IFCLK,
SLCS#, SLRD, SLWR, SLOE, PKTEND, and flags).
In operation, some of the eight RAM blocks fill or empty from
the SIE, while the others are connected to the I/O transfer
logic. The transfer logic takes two forms, the GPIF for internally
generated control signals, or the slave FIFO interface for
externally controlled transfer s.
3.13.2 Master/Slave Control Signals
The FX2LP endpoint FIFOS are implemented as eight physi-
cally distinct 256x16 RAM blocks. The 8051/SIE can switch
any of the RAM blocks between two domains, the USB (SIE)
domain and the 8051-I/O Unit domain. This switching is done
virtually instantaneously, giving essentially zero transfer time
between “USB FIFOS” and “Slave FIFOS.” Since they are
physi cal ly t he sam e memory, no byt es are act ually trans ferre d
between buffers.
At any given time, some RAM blocks are filling/emptying with
USB data under SIE control, while other RAM blocks are
available to the 8051 and/or the I/O control unit. The RAM
blocks operate as single-port in the USB domain, and dual-
port i n the 8051-I/O domain. The blocks can be configured as
single, double, triple, or quad buffered as previously shown.
The I/O control unit implements either an internal-master (M
for master) or external-mast er (S for Slave) interfac e.
In Master (M) mode, the GPIF internally controls
FIFOADR[1. .0] to sel ect a FIFO. The RDY pins (two i n the 56-
pin package, six in the 100-pin and 128-pin packages) can be
used as flag inputs from an external FIFO or other logic if
desir ed. The G PIF can be r un fro m either an internal ly der ived
clock or externally supplied clock (IFCLK), at a rate that
transfers data up to 96 Megabytes/s (48-MHz IFCLK with 16-
bi t interface).
In Slave (S) mode, the FX2LP accepts either an internally
derived clock or externally supplied clock (IFCLK, max.
frequency 48 MHz) and SLCS#, SLRD, SLWR, SLOE,
PKTEND signals from external logic. When using an external
IFCLK, the ext ernal cl ock must be present before switching to
the external clock with the IFCLKSRC bit. Each endpoint can
individually be selected for byte or word operation by an
internal configuration bit, and a Slave FIFO Output Enable
signal SLOE enables da ta of the sel ected widt h. Exter nal l ogic
must insure that the output enable signal is inactive when
writing data to a slave FIFO. The slave interface can also
operate asynchronously, where the SLRD and SLWR signals
act directly as strobes, rather than a clock qualifier as in
synchronous mode. The signals SLRD, SLWR, SLOE and
PKTEND are gated by the signal SLCS#.
Table 3-6. Default Full-S peed Alt ernate Settings[4, 5]
Alternate Setting 0 1 2 3
ep0 64 64 64 64
ep1out 0 64 bulk 64 int 64 int
ep1in 0 64 bulk 64 int 64 int
ep2 0 64 bulk out (2×) 64 int out (2×) 64 iso out (2×)
ep4 0 64 bulk out (2×) 64 bul k out (2×) 64 bulk out (2×)
ep6 0 64 bulk in (2×) 64 int in (2×) 64 iso in (2×)
ep8 0 64 bulk in (2×) 64 bulk in (2×) 64 bulk in (2×)
Notes:
4. “0” means “not implemented.”
5. “2×” means “double buffered.”
6. Even though these buffers are 64 bytes, they are reported as 512 for USB 2.0 compliance. The user must never transfer packets larger than 64 bytes to EP1.
Table 3-7. Default High-Speed Alternate Settings[4, 5]
Alternate Setting 0 1 2 3
ep0 64 64 64 64
ep1out 0 512 bulk[6] 64 int 64 int
ep1in 0 512 bulk[6] 64 int 64 int
ep2 0 512 bulk out (2×) 512 int out (2×) 512 iso out (2×)
ep4 0 512 bulk out (2×) 5 12 bulk out (2×) 512 bulk out (2×)
ep6 0 512 bulk in (2×) 512 int in (2×) 512 iso in (2×)
ep8 0 512 bulk in (2×) 5 12 bulk in (2×) 512 bulk in (2×)
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 12 of 55
3.13.3 GPIF and FIFO Clock Rates
An 8051 register bit selects one of two frequencies for the
int ernall y suppl ied int erface clock: 30 MH z and 48 MHz. Alte r-
natively, an externally supplied clock of 5 MHz–48 MHz
feeding the IFCLK pin can be used as the interface clock.
IFCLK can be configured to function as an output clock when
the GPIF and FIFOs are internally clocked. An output enable
bit in the IFCONFIG register turns this clock output off, if
desired. Another bit within the IFCONFIG register will invert
the IFCLK signal whether internally or externally sourced.
3.14 GPIF
The GPIF is a flex ible 8- or 16-bi t par alle l int erface driven by a
user-programmable finite state machine. It allows the
CY7C68013A/15A to perform local bus mastering, and can
implement a wide variety of protocols such as ATA i nterface,
printer parallel port , and Utopia.
The GPIF has six programmable control outputs (CTL), nine
address outputs (GPIFADRx), and six general-purpose ready
inputs (RDY). The data bus width can be 8 or 16 bits. Each
GPIF vector def ines the st ate of the cont rol outputs, and deter-
mines what state a ready input (or multiple inputs) must be
before proceeding. The GPIF vector can be programmed to
advance a FIFO to the next data value, advance an address,
etc. A sequence of the GPIF vectors make up a single
waveform that will be executed to perform the desired data
move between the FX2LP and the ext ernal devic e.
3.14.1 Six Control OU T Signals
The 100- and 128-pin packages bring out all six Control Output
pins (CTL0- CTL5). The 8051 pr ograms the GPI F unit to defin e
the CTL waveforms. The 56-pin package brings out three of
these signals, CTL0–CTL2. CTLx waveform edges can be
programmed to make transitions as fast as once per clock
(20.8 ns using a 48-MHz cl ock).
3.14.2 Six Ready IN Signals
The 100- and 1 28-pin packages bring out a ll six Ready inputs
(RDY0–RDY5). The 8051 program s the GPIF unit to test the
RDY pins for GPI F branching. The 56-pin package bri ngs out
two of t hese signals, RDY0 –1.
3.14.3 Nine GPIF Address OUT Signals
Nine GPIF addre ss line s are avai lable in th e 100- an d 128- pin
packages, GPIFADR[8..0]. The GPIF address lines allow
indexing through up to a 512-byte block of RAM. If more
address lines are needed, I/O port pins can be used.
3.14.4 Long Transfer Mode
In mast er mod e, t he 8051 app ropr iate ly set s GPIF tr ans actio n
count registers (GPIFTCB3, GPIFTCB2, GPIFTCB1, or
GPIFTCB0) f or unat tended t ransf ers of up to 232 trans act ions.
The G P IF automatical ly thr ottles data flo w to p revent under or
overflow until the full number of requested transactions
complete. The GPIF decrements the value in these registers
to repr esent the current st atus of the transaction.
3.15 ECC Gen erati on[7]
The EZ-USB c an ca lcula te ECCs (E rror- Correct ing Cod es) on
data that passes across its GPIF or Slave FIFO interfaces.
There are two ECC configurations: Two ECCs, each calcu-
lated over 256 bytes (SmartMedi a™ Standard); and one ECC
calcul ated over 512 bytes.
The ECC can correct any one-bit error or detect any two-bit
error.
3.15 .1 EC C Im p lement a t ion
The two ECC confi gurations are selected by the ECCM bit:
3.15.1.1 ECCM=0
Two 3-byte ECCs, each calculated over a 256-byte block of
data. This configuration conforms to the SmartMedia
Standard.
Write any value to ECCRESET, then pass data across the
GPIF or Slave FI FO interface. The ECC for th e first 256 bytes
of data will be calculated and st ored in ECC1. The ECC for the
next 256 bytes will be stored in ECC2. After the second ECC
is cal culated, the values in the ECCx regist ers wil l not change
until ECCRESET is written again, even i f more data is subse-
quently passed across the interface.
3.15.1.2 ECCM=1
One 3-byte ECC cal culated over a 512-byte block of dat a.
Write any value to ECCRESET then pass data across the
GPIF or Slave FI FO interface. The ECC for th e first 512 bytes
of data will be calculated and stored in ECC1; ECC2 is unused.
Afte r the ECC i s calculat ed, th e value i n ECC1 will not cha nge
until ECCRESET is written again, even i f more data is subse-
quently passed across the in ter face
3.16 USB Upload s and Down loads
The core ha s t he abil ity to di rec tly ed it the dat a content s o f the
internal 16-KByte RAM and of the internal 512-byte scratch
pad RAM via a vendor-specific command. This capability is
normally used when “soft” downloading user code and is
available only to and from internal RAM, only when the 8051
is held in reset. The available RAM space s are 16 KBytes from
0x0000–0x3FFF (code/data) and 512 bytes from
0xE000–0xE1FF (scratch pad data RAM).[8]
3.17 Au topointer Acces s
FX2LP provi des two ident ical autop oin ters. They are similar to
the internal 8051 data pointers, but with an additiona l f eature:
they c an optionally increment after every memory a ccess. Thi s
capability is available to and from both internal and external
RAM. The autopointers are available in external FX2LP
registers, under control of a mode bit (AUTOPTRSET-UP.0).
Using the external FX2LP autopointer access (at 0xE67B –
0xE67C) allows the autopointer to access all RAM, internal
and ext ernal to the part. Also, t he autopoin ter s can point to any
FX2LP register or endpoint buffer space. When autopointer
access to external memory is enabled, location 0xE67B and
0xE67C in XDATA and code spac e cannot be used.
Notes:
7. To use the ECC logic, the GPIF or Sl ave FIFO interface must be configured for byte-wide operation.
8. After the data has been downloaded from the host, a “loader” can execute from internal RAM in order to transfer downloaded data to external memory.
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 13 of 55
3.18 I2C Controller
FX2LP has one I2C port that is driven by two internal
controllers, one that automatically operates at boot time to
load VID/PID/DID and configuration information, and another
that the 8051, once running, uses to control external I2C
devices. The I2C port operat es in master mode onl y.
3.18.1 I2C Port Pin s
The I2C- pins SCL and SDA must have external 2.2-k pu ll-
up resistors even if no EEPROM is connected to the FX2LP.
External EEPROM device address pins must be configured
properly. See Table 3-8 for configuring the device address
pins.
3.18.2 I2C Interface Boot Load Access
At power-on reset the I2C interface boot loader will load the
VID/PID/DID configuration bytes and up to 16 KBytes of
program/data. The avail able RAM spaces are 16 KBytes fr om
0x0000–0x3FFF and 512 bytes from 0xE000–0xE1FF. The
8051 will be in reset. I2C interface boot loads only occur after
power-on reset.
3.18.3 I2C Interface General-Purpose Access
The 8051 can control peripherals connected to the I2C bus
using the I2CTL and I2DAT registers. FX2LP provides I2C
master control only, it is never an I2C slave.
3.19 Compatible with Previous Generation
EZ-U SB FX2
The EZ-USB FX2LP is form/fit and with minor exceptions
funct ionally compatibl e wit h it s predeces sor , the EZ-USB FX2.
This makes for an easy transition for designers wanting to
upgrade their syst em s fr om the FX2 to the FX2LP. The pinout
and package selection are identical, and the vast majority of
firmware previously developed for the FX2 will function in the
FX2LP.
For designers mi grating from the FX2 to the FX2LP a change
in t he bil l of mat erial and revi ew of t he memor y allo cation (due
to in creased in ternal memor y) is requi red fo r mor e inf orma tion
about migrating from EZ-USB FX2 to EZ-USB FX2LP, please
see further details in the application note titled Migrating from
EZ-USB FX2 to EZ-USB FX2LP, which is available on the
Cypress W ebsite.
3.20 CY7C6 8013A/ 14A and CY7C68015A/ 16A
Differences
CY7C68013A is identical to CY7C68014A in form, fit, and
functionality. CY7C68015A is identical to CY7C68016A in
form, fit, and functionality. CY7C68014A and CY7C68016A
have a lower suspend current than CY7C68013A and
CY7C68015A respectively. CY7C68014A and CY7C68016A
have a lower suspend current than CY7C68013A and
CY7C68015A respectively: hence are ideal for power-
sensit ive batter y applicat ions.
CY7C68015A and CY7C68016A are available in 56-pin QFN
package only. Two additional GPIO signals are available on
the CY7C68015A and CY7C6801 6A to pro vide mor e fl exibility
when neither IFCLK or CLKOUT are needed in the 56-pin
package. The USB developers who want to convert their FX2
56-pin application to a bus-powered system will directly benefit
from these additional signals. The two GPIOs will give these
develop ers the s ignals t hey need for t he power control circui tr y
of their bus-powered application without pushing them to a
high-pincount version of FX2LP. The CY7C68015A is only
avail able in the 56-pin QFN package
Table 3-8. Strap Boot EEPROM Address Lines to These
Values
Bytes Example EEPROM A2 A1 A0
16 24LC00[9] N/A N/A N/A
128 24LC01 0 0 0
256 24LC02 0 0 0
4K 24LC32 0 0 1
8K 24LC64 0 0 1
16K 24LC128 0 0 1
Note:
9. This EEPROM does not have address pins.
Table 3-9. Part Number Conversion Table
EZ-USB FX2
Part Number EZ-USB FX2LP
Part Number Package
Description
CY7C68013-
56PVC CY7C68013A-56PVXC or
CY7C68014A-56PVXC 56-pin SSOP
CY7C68013-
56PVCT CY7C68013A-56PVXCT or
CY7C68014A-56PVXCT 56-pin SSOP
– Tape and
Reel
CY7C68013-
56LFC CY7C68013A-56LFXC or
CY7C68014A-56LFXC 56-pin QFN
CY7C68013-
100AC CY7C68013A-100AXC or
CY7C68014A-100AXC 100-pin TQFP
CY7C68013-
128AC CY7C68013A-128AXC or
CY7C68014A-128AXC 128-pin TQFP
Table 3-10. CY7C68013A/14A and CY7C68015A/16A pin
differences
CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A
IFCLK PE0/T0OUT
CLKOUT PE1/T1OUT
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 14 of 55
4.0 Pin Assignments
Figure 4-1 iden tifies all signals for th e four package type s. The
following pages illustrate the individual pin diagrams, plus a
combination diagram showing which of the full set of signals
are available in the 128-, 100-, and 56-pin packages.
The signals on the left edge of the 56-pin package in
Figure 4-1 are common to all ve rsi ons in t he FX2LP fami ly with
the noted differences between the CY7C68013A and the
CY7C68015A. Three modes are available in all package
versions: Port, GPIF master, and Slave FIFO. These modes
define the signals on the right edge of the diagram. The 8051
selects the interface mode using the IFCONFIG[1:0] register
bits. Port mode is t he power-on defaul t configu ration.
The 100-p in p ackage adds functi onali ty to the 56 -pin pa ckag e
by adding these pins:
PORTC or alternat e GPIFADR[7: 0] addr ess signals
PORTE or alternate GPIF ADR[8] address signal and seven
additional 8051 signals
Three GPIF Control signals
Four GPIF Ready signals
Nine 8051 signals (two USARTs, three timer inputs,
INT4,and INT5#)
BKPT, RD#, WR#.
The 128-pin package adds the 8051 address and data buses
plus cont rol signals. Note that t wo of the required signals, RD#
and WR#, are present in the 100-pin version. In the 100-pin
and 128-pin versions, an 8051 control bit can be set to pulse
the RD# and WR# pins when the 8051 reads from/writes to
PORTC.
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 15 of 55
RDY0
RDY1
CTL0
CTL1
CTL2
INT0#/PA0
INT1#/PA1
PA2
WU2/PA3
PA4
PA5
PA6
PA7
56
BKPT
PORTC7/GPIFADR7
PORTC6/GPIFADR6
PORTC5/GPIFADR5
PORTC4/GPIFADR4
PORTC3/GPIFADR3
PORTC2/GPIFADR2
PORTC1/GPIFADR1
PORTC0/GPIFADR0
PE7/GPIFADR8
PE6/T2EX
PE5/INT6
PE4/RxD1OUT
PE3/RxD0OUT
PE2/T2OUT
PE1/T1OUT
PE0/T0OUT
RxD0
TxD0
RxD1
TxD1
INT4
INT5#
T2
T1
T0
100
D7
D6
D5
D4
D3
D2
D1
D0
EA
128
RD#
WR#
CS#
OE#
PSEN#
A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
XTALIN
XTALOUT
RESET#
WAKEUP#
SCL
SDA
**PE0/T0OUT
**PE1/T1OUT
IFCLK
CLKOUT
DPLUS
DMINUS
FD[15]
FD[14]
FD[13]
FD[12]
FD[11]
FD[10]
FD[9]
FD[8]
FD[7]
FD[6]
FD[5]
FD[4]
FD[3]
FD[2]
FD[1]
FD[0]
SLRD
SLWR
FLAGA
FLAGB
FLAGC
INT0#/ PA0
INT1#/ PA1
SLOE
WU2/PA3
FIFOADR0
FIFOADR1
PKTEND
PA7/FLAGD/SLCS#
FD[15]
FD[14]
FD[13]
FD[12]
FD[11]
FD[10]
FD[9]
FD[8]
FD[7]
FD[6]
FD[5]
FD[4]
FD[3]
FD[2]
FD[1]
FD[0]
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0
INT0#/PA0
INT1#/PA1
PA2
WU2/PA3
PA4
PA5
PA6
PA7
Port GPIF Master Slave FIFO
CTL3
CTL4
CTL5
RDY2
RDY3
RDY4
RDY5
Figure 4-1. Signals
** pin out for CY7C68015A/C Y7C68016A only
**PE0 replaces IFCLK
on CY7C68015A
& PE1 replaces CLKOUT
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 16 of 55
CLKOUT
VCC
GND
RDY0/*SLRD
RDY1/*SLWR
RDY2
RDY3
RDY4
RDY5
AVCC
XTALOUT
XTALIN
AGND
NC
NC
NC
AVCC
DPLUS
DMINUS
AGND
A11
A12
A13
A14
A15
VCC
GND
INT4
T0
T1
T2
*IFCLK
RESERVED
BKPT
EA
SCL
SDA
OE#
PD0/FD8
*WAKEUP
VCC
RESET#
CTL5
A3
A2
A1
A0
GND
PA7/*FLAGD/SLCS#
PA6/*PKTEND
PA5/FIFOADR1
PA4/FIFOADR0
D7
D6
D5
PA3/*WU2
PA2/*SLOE
PA1/INT1#
PA0/INT0#
VCC
GND
PC7/GPIFADR7
PC6/GPIFADR6
PC5/GPIFADR5
PC4/GPIFADR4
PC3/GPIFADR3
PC2/GPIFADR2
PC1/GPIFADR1
PC0/GPIFADR0
CTL2/*FLAGC
CTL1/*FLAGB
CTL0/*FLAGA
VCC
CTL4
CTL3
GND
PD1/FD9
PD2/FD10
PD3/FD11
INT5#
VCC
PE0/T0OUT
PE1/T1OUT
PE2/T2OUT
PE3/RXD0OUT
PE4/RXD1OUT
PE5/INT6
PE6/T2EX
PE7/GPIFADR8
GND
A4
A5
A6
A7
PD4/FD12
PD5/FD13
PD6/FD14
PD7/FD15
GND
A8
A9
A10
CY7C68013A/CY7C68014A
128-pin TQFP
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
VCC
D4
D3
D2
D1
D0
GND
PB7/FD7
PB6/FD6
PB5/FD5
PB4/FD4
RXD1
TXD1
RXD0
TXD0
GND
VCC
PB3/FD3
PB2/FD2
PB1/FD1
PB0/FD0
VCC
CS#
WR#
RD#
PSEN#
Figure 4-2 . CY7C68013A/CY7C68014A 128- pin TQFP Pin Assignment
* denotes programmable polar it y
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 17 of 55
PD0/FD8
*WAKEUP
VCC
RESET#
CTL5
GND
PA7/*FLAGD/SLCS#
PA6/*PKTEND
PA5/FIFOADR1
PA4/FIFOADR0
PA3/*WU2
PA2/*SLOE
PA1/INT1#
PA0/INT0#
VCC
GND
PC7/GPIFADR7
PC6/GPIFADR6
PC5/GPIFADR5
PC4/GPIFADR4
PC3/GPIFADR3
PC2/GPIFADR2
PC1/GPIFADR1
PC0/GPIFADR0
CTL2/*FLAGC
CTL1/*FLAGB
CTL0/*FLAGA
VCC
CTL4
CTL3
PD1/FD9
PD2/FD10
PD3/FD11
INT5#
VCC
PE0/T0OUT
PE1/T1OUT
PE2/T2OUT
PE3/RXD0OUT
PE4/RXD1OUT
PE5/INT6
PE6/T2EX
PE7/GPIFADR8
GND
PD4/FD12
PD5/FD13
PD6/FD14
PD7/FD15
GND
CLKOUT
CY7C68013A/CY7C68014A
100-pin TQFP
GND
VCC
GND
PB7/FD7
PB6/FD6
PB5/FD5
PB4/FD4
RXD1
TXD1
RXD0
TXD0
GND
VCC
PB3/FD3
PB2/FD2
PB1/FD1
PB0/FD0
VCC
WR#
RD#
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
VCC
GND
RDY0/*SLRD
RDY1/*SLWR
RDY2
RDY3
RDY4
RDY5
AVCC
XTALOUT
XTALIN
AGND
NC
NC
NC
AVCC
DPLUS
DMINUS
AGND
VCC
GND
INT4
T0
T1
T2
*IFCLK
RESERVED
BKPT
SCL
SDA
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Figure 4-3. CY7C6801 3A/CY7C68014A 100-pi n TQFP Pin Assignment
* denotes programmab le pol arity
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 18 of 55
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
PD5/FD13
PD6/FD14
PD7/FD15
GND
CLKOUT/T1OUT
VCC
GND
RDY0/*SLRD
RDY1/*SLWR
AVCC
XTALOUT
XTALIN
AGND
AVCC
DPLUS
DMINUS
AGND
VCC
GND
*IFCLK/T0OUT
RESERVED
SCL
SDA
VCC
PB0/FD0
PB1/FD1
PB2/FD2
PB3/FD3
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
PD4/FD12
PD3/FD11
PD2/FD10
PD1/FD9
PD0/FD8
*WAKEUP
VCC
RESET#
GND
PA7/*FLAGD/SLCS#
PA6/PKTEND
PA5/FIFOADR1
PA4/FIFOADR0
PA3/*WU2
PA2/*SLOE
PA1/INT1#
PA0/INT0#
VCC
CTL2/*FLAGC
CTL1/*FLAGB
CTL0/*FLAGA
GND
VCC
GND
PB7/FD7
PB6/FD6
PB5/FD5
PB4/FD4
CY7C68013A/CY7C68014A
56-pin SSOP
Figure 4-4. CY7C68013A/C Y7C68014A 56-pin SSOP Pin Assignment
* denotes programm able polarity
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 19 of 55
28
27
26
25
24
23
22
21
20
19
18
17
16
15
43
44
45
46
47
48
49
50
51
52
53
54
55
56
1
2
3
4
5
6
7
8
9
10
11
12
13
14
42
41
40
39
38
37
36
35
34
33
32
31
30
29
Figure 4-5. CY7C68013A/14A/15A/16A 56-pin QFN Pin Assignment
* denotes programma ble polari ty
RESET#
GND
PA7/*FLAGD/SLCS#
PA6/*PKTEND
PA5/FIFOADR1
PA4/FIFOADR0
PA3/*WU2
PA2/*SLOE
PA1/INT1#
PA0/INT0#
VCC
CTL2/*FLAGC
CTL1/*FLAGB
CTL0/*FLAGA
RDY0/*SLRD
RDY1/*SLWR
AVCC
XTALOUT
XTALIN
AGND
AVCC
DPLUS
DMINUS
AGND
VCC
GND
*IFCLK/**PE0/T0OUT
RESERVED
VCC
*WAKEUP
PD0/FD8
PD1/FD9
PD2/FD10
PD3/FD11
PD4/FD12
PD5/FD13
PD6/FD14
PD7/FD15
GND
CLKOUT/**PE1/T1OUT
VCC
GND
GND
VCC
GND
PB7/FD7
PB6/FD6
PB5/FD5
PB4/FD4
PB3/FD3
PB2/FD2
PB1/FD1
PB0/FD0
VCC
SDA
SCL
CY7C68013A/CY7C68014A
&
CY7C68015A/CY7C68016A
56-pin QFN
** denot es CY7C68015A/CY7C68016A pinout
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 20 of 55
4.1 CY7C68013A/15A Pin Descriptions
Table 4-1 . FX2LP Pin Descr ipt ions [10]
128
TQFP 100
TQFP 56
SSOP 56
QFN Name Type Default Description
10 9 10 3 AVCC Power N/A Analog VCC. Connect this pin to 3.3V power source.
This si gnal pro vides power to the anal og secti on of the
chip.
17 16 14 7 AVCC Power N/A Analog VCC. Connect this pin to 3.3V power source.
This si gnal pro vides power to the anal og secti on of the
chip.
13 12 13 6 AGND Ground N/A Analog Ground. Connect to ground with as short a path
as possible.
20 19 17 10 AGND Ground N/A Analog Ground. Connect to ground with as short a path
as possible.
19 18 16 9 DMINUS I/O/Z Z USB D– Signal. Connect to the USB D– signal.
18 17 15 8 DPLUS I/O/Z Z USB D+ Signal. Connect to the USB D+ signal.
94 A0 Output L 8051 Address Bus. This bus is driven at all tim es.
When the 8051 is addressi ng internal RAM it reflects
the internal address.
95 A1 Output L
96 A2 Output L
97 A3 Output L
117 A4 Output L
118 A5 Output L
119 A6 Output L
120 A7 Output L
126 A8 Output L
127 A9 Output L
128 A10 Output L
21 A11 Output L
22 A12 Output L
23 A13 Output L
24 A14 Output L
25 A15 Output L
59 D0 I/O/Z Z 8051 Data Bus. This bi directional bus is high-
impedance when inacti ve, input for bus reads, and
output for bus writes . The data bus is used for ext ernal
8051 prog ram and data memory. The data bus is active
only for external bus accesses, and is driven LO W in
suspend.
60 D1 I/O/Z Z
61 D2 I/O/Z Z
62 D3 I/O/Z Z
63 D4 I/O/Z Z
86 D5 I/O/Z Z
87 D6 I/O/Z Z
88 D7 I/O/Z Z
39 PSEN# Output H Program Store Enable. This active-LOW signal
indi cates an 8051 cod e fet ch from external memory. It
is active for program memory fetches from
0x4000–0xFFFF when the EA pin is LOW, or f rom
0x0000–0xFFFF when the EA pin is HIGH.
Note:
10. Unused inputs should not be left floating. Ti e either HIGH or LOW as appropriate. Outputs should only be pulled up or down to ensure signals at power-up and
in standby. Note also that no pins should be driven while the device is powered down.
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 21 of 55
34 28 BKPT Output L Breakpoint. This pin goes active (HIGH) when the 8051
address bus matches the BPADDRH/L registers and
breakpoints are enabled in the BREAKPT register
(BPEN = 1). If the BPPULSE bit in the BREAKPT
regis ter is HIGH, this signal pulses HIGH for eight 12-
/24-/ 48-MHz clocks. If the BPPULSE bit is LOW, the
signal remains HIGH unti l t he 8051 clears the BREAK
bit (by wri ti ng 1 to i t) i n the BREAKPT regis ter.
99 77 49 42 RESET# Input N/A Active LOW Reset. Resets the entire chip. See section
3.9 ”Reset and Wakeup” on page 6 for more details.
35 EA Input N/A External Access. Thi s pin determi nes wher e t he 8051
fetch es code bet ween ad dres ses 0x0000 and 0x3 FFF.
If EA = 0 the 8051 fetches this code from its internal
RAM. IF EA = 1 the 8051 fetches this code from external
memory.
12 11 12 5 XTALIN Input N/A Crystal Input. Connect this si gnal to a 24- MHz para llel-
resonan t, fundamental mode crysta l a nd load cap acitor
to GND.
It is also correct to drive XTALIN with an external
24-MHz square wave derived from another clock
source. When drivi ng from an external source, the
driving signal should be a 3.3V square wave.
11 10 11 4 XTALOUT Output N/A Crystal Output. Connect this signal to a 24-MHz
parallel -r esonant, fundamental mode crystal and load
cap acitor to GND.
If an ext ernal clock is used to drive XTALIN, leave this
pin open.
1 100 5 54 CLKOUT on
CY7C68013A
------------------
PE1 or
T1OUT on
CY7C68015A
O/Z
-----------
I/O/Z
12 MHz
----------
I
(PE1)
CLKOUT: 12-, 24- or 48-MHz clock, phase locked to the
24-MH z input clock. The 8051 defaults to 12-MHz
operation. The 805 1 may three-st ate this outp ut by
setting CPUCS.1 = 1.
------------------------------------------------------------------------
Multi plexed pin whose function is selected by the
POR TE CFG.0 bit.
PE1 is a bidirectional I/O port pin.
T1OUT is an active-HIGH signal from 8051 T imer-
counter 1. T 1OUT o utput s a high level for one CL KOUT
clock cycle when Timer1 overflows. If Timer1 is
operated in Mode 3 (two sep arate timer /counter s),
T1OUT is acti ve when the low byte timer/counter
overflows.
Port A
82 67 40 33 PA0 or
INT0# I/O/Z I
(PA0) Multiplexed pin whose f unction is se lected by
PORTACFG.0
PA0 is a bidirectional IO port pin.
INT0# is the active-LOW 8051 INT0 interrupt input
signal , which is either edge trigger ed (IT0 = 1) or level
tri ggered (IT0 = 0).
83 68 41 34 PA1 or
INT1# I/O/Z I
(PA1) Multiplexed pin whose f unction is se lected by:
PORTACFG.1
PA1 is a bidirectional IO port pin.
INT1# is the active-LOW 8051 INT1 interrupt input
signal , which is either edge trigger ed (IT1 = 1) or level
tri ggered (IT1 = 0).
Table 4-1 . FX2LP Pin Descr ipt ions (continued)[10]
128
TQFP 100
TQFP 56
SSOP 56
QFN Name Type Default Description
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 22 of 55
84 69 42 35 PA2 or
SLOE or I/O/Z I
(PA2) Multiplexed pin whose funct ion is sele cted by two bits:
IFCONFIG[1:0].
PA2 is a bidirectional IO port pin.
SLOE is an input-only outpu t enabl e with progra m-
mable pol arit y (FI FOPINPOLAR. 4) fo r the s lave FI FOs
connected to FD[7..0] or FD[15..0].
85 70 43 36 PA3 or
WU2 I/O/Z I
(PA3) Multiplexed pin whose f unction is se lected by:
WAKEUP. 7 and OEA.3
PA3 is a bidirectional I/O port pin.
WU2 i s an alte rnate sou rce for USB W akeup , enabled
by WU2EN bit (WAKEUP.1) and polari ty set by
WU2POL (WAKEUP.4). If the 8051 is in suspend and
WU2EN = 1, a transit ion on this pin start s up the oscil-
lator and interru pts the 8051 to allo w it to exi t th e
suspend m ode. As serti ng thi s pin i nhibi ts th e chip f rom
suspending, if WU2EN=1.
89 71 44 37 PA4 or
FIFOADR0 I/O/Z I
(PA4) Multiplexed pin whose f unction is se lected by:
IFCONFIG[1..0].
PA4 is a bidirectional I/O port pin.
FIFOADR0 is an inp ut-only a ddress select fo r the sla ve
FIFOs connected to FD[7..0] or FD[15..0].
90 72 45 38 PA5 or
FIFOADR1 I/O/Z I
(PA5) Multiplexed pin whose f unction is se lected by:
IFCONFIG[1..0].
PA5 is a bidirectional I/O port pin.
FIFOADR1 is an inp ut-only a ddress select fo r the sla ve
FIFOs connected to FD[7..0] or FD[15..0].
91 73 46 39 PA6 or
PKTEND I/O/Z I
(PA6) Multiplexed pin whose f unction is se lected by the
IFCONFIG[1:0] bits.
PA6 is a bidirectional I/O port pin.
PKTEND is an input used to commit t he FIFO packet
data to the endpoi nt and whose polarity is progr am -
mable via FIFOPINPOLAR.5.
92 74 47 40 PA7 or
FLAGD or
SLCS#
I/O/Z I
(PA7) Multiplexed pin whose f unction is se lected by the
IFCONFIG[ 1:0] and PORTACFG.7 bit s.
PA7 is a bidirectional I/O port pin.
FLAGD is a programmable slave-FIFO output stat us
flag si gnal.
SLCS# gates al l other slave FIFO enable/strobes
Port B
44 34 25 18 PB0 or
FD[0] I/O/Z I
(PB0) Mul ti plexed pin whose function is selected by the
following bits: IFCONFIG[1..0].
PB0 is a bidirectional I/ O port pin.
FD[0] is the bi directional FIFO/GPIF data bus.
45 35 26 19 PB1 or
FD[1] I/O/Z I
(PB1) Mul ti plexed pin whose function is selected by the
following bits: IFCONFIG[1..0].
PB1 is a bidirectional I/ O port pin.
FD[1] is the bi directional FIFO/GPIF data bus.
46 36 27 20 PB2 or
FD[2] I/O/Z I
(PB2) Mul ti plexed pin whose function is selected by the
following bits: IFCONFIG[1..0].
PB2 is a bidirectional I/O port pin.
FD[2] is the bi directional FIFO/GPIF data bus.
47 37 28 21 PB3 or
FD[3] I/O/Z I
(PB3) Mul ti plexed pin whose function is selected by the
following bits: IFCONFIG[1..0].
PB3 is a bidirectional I/O port pin.
FD[3] is the bi directional FIFO/GPIF data bus.
Table 4-1 . FX2LP Pin Descr ipt ions (continued)[10]
128
TQFP 100
TQFP 56
SSOP 56
QFN Name Type Default Description
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 23 of 55
54 44 29 22 PB4 or
FD[4] I/O/Z I
(PB4) Mul ti plexed pin whose function is selected by the
following bits: IFCONFIG[1..0].
PB4 is a bidirectional I/O port pin.
FD[4] is the bi directional FIFO/GPIF data bus.
55 45 30 23 PB5 or
FD[5] I/O/Z I
(PB5) Mul ti plexed pin whose function is selected by the
following bits: IFCONFIG[1..0].
PB5 is a bidirectional I/O port pin.
FD[5] is the bi directional FIFO/GPIF data bus.
56 46 31 24 PB6 or
FD[6] I/O/Z I
(PB6) Mul ti plexed pin whose function is selected by the
following bits: IFCONFIG[1..0].
PB6 is a bidirectional I/O port pin.
FD[6] is the bi directional FIFO/GPIF data bus.
57 47 32 25 PB7 or
FD[7] I/O/Z I
(PB7) Mul ti plexed pin whose function is selected by the
following bits: IFCONFIG[1..0].
PB7 is a bidirectional I/O port pin.
FD[7] is the bi directional FIFO/GPIF data bus.
PORT C
72 57 PC0 or
GPIFADR0 I/O/Z I
(PC0) Multi plexed pin whose f unction is se lected by
PORTCCFG.0
PC0 is a bidirectional I/O port pin.
GPIFADR0 is a GPIF address output pin .
73 58 PC1 or
GPIFADR1 I/O/Z I
(PC1) Multi plexed pin whose f unction is se lected by
PORTCCFG.1
PC1 is a bidirectional I/O port pin.
GPIFADR1 i s a GPIF address output pin.
74 59 PC2 or
GPIFADR2 I/O/Z I
(PC2) Multi plexed pin whose f unction is se lected by
PORTCCFG.2
PC2 is a bidirectional I/O port pin.
GPIFADR2 i s a GPIF address output pin.
75 60 PC3 or
GPIFADR3 I/O/Z I
(PC3) Multi plexed pin whose f unction is se lected by
PORTCCFG.3
PC3 is a bidirectional I/O port pin.
GPIFADR3 i s a GPIF address output pin.
76 61 PC4 or
GPIFADR4 I/O/Z I
(PC4) Multi plexed pin whose f unction is se lected by
PORTCCFG.4
PC4 is a bidirectional I/O port pin.
GPIFADR4 i s a GPIF address output pin.
77 62 PC5 or
GPIFADR5 I/O/Z I
(PC5) Multi plexed pin whose f unction is se lected by
PORTCCFG.5
PC5 is a bidirectional I/O port pin.
GPIFADR5 i s a GPIF address output pin.
78 63 PC6 or
GPIFADR6 I/O/Z I
(PC6) Multi plexed pin whose f unction is se lected by
PORTCCFG.6
PC6 is a bidirectional I/O port pin.
GPIFADR6 i s a GPIF address output pin.
79 64 PC7 or
GPIFADR7 I/O/Z I
(PC7) Multi plexed pin whose f unction is se lected by
PORTCCFG.7
PC7 is a bidirectional I/O port pin.
GPIFADR7 i s a GPIF address output pin.
PORT D
102 80 52 45 PD0 or
FD[8] I/O/Z I
(PD0) Multi plexed pin whose f unction is se lected by the
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[8] is the bi directional FIFO/GPIF data bus.
Table 4-1 . FX2LP Pin Descr ipt ions (continued)[10]
128
TQFP 100
TQFP 56
SSOP 56
QFN Name Type Default Description
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 24 of 55
103 81 53 46 PD1 or
FD[9] I/O/Z I
(PD1) Multi plexed pin whose f unction is se lected by the
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[9] is the bi directional FIFO/GPIF data bus.
104 82 54 47 PD2 or
FD[10] I/O/Z I
(PD2) Multi plexed pin whose f unction is se lected by the
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[10] i s the bidirectional FIFO/GPIF data bus.
105 83 55 48 PD3 or
FD[11] I/O/Z I
(PD3) Multi plexed pin whose f unction is se lected by the
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[11] is the bidirectiona l FI FO/GPIF data bus.
121 95 56 49 PD4 or
FD[12] I/O/Z I
(PD4) Multi plexed pin whose f unction is se lected by the
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[12] i s the bidirectional FIFO/GPIF data bus.
122 96 1 50 PD5 or
FD[13] I/O/Z I
(PD5) Multi plexed pin whose f unction is se lected by the
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[13] i s the bidirectional FIFO/GPIF data bus.
123 97 2 51 PD6 or
FD[14] I/O/Z I
(PD6) Multi plexed pin whose f unction is se lected by the
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[14] i s the bidirectional FIFO/GPIF data bus.
124 98 3 52 PD7 or
FD[15] I/O/Z I
(PD7) Multi plexed pin whose f unction is se lected by the
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[15] i s the bidirectional FIFO/GPIF data bus.
Port E
108 86 PE0 or
T0OUT I/O/Z I
(PE0) Mul ti plexed pin whose function is selected by the
POR TE CFG.0 bit.
PE0 is a bidirectional I/O port pin.
T0OUT is an active-HIGH signal from 8051 T imer-
counter 0. T 0OUT o utput s a high level for one CL KOUT
clock cycle when Timer0 overflows. If Timer0 is
operated in Mode 3 (two sep arate timer /counter s),
T0OUT is acti ve when the low byte timer/counter
overflows.
109 87 PE1 or
T1OUT I/O/Z I
(PE1) Mul ti plexed pin whose function is selected by the
POR TE CFG.1 bit.
PE1 is a bidirectional I/O port pin.
T1OUT is an active-HIGH signal from 8051 T imer-
counter 1. T 1OUT o utput s a high level for one CL KOUT
clock cycle when Timer1 overflows. If Timer1 is
operated in Mode 3 (two sep arate timer /counter s),
T1OUT is acti ve when the low byte timer/counter
overflows.
110 88 PE2 or
T2OUT I/O/Z I
(PE2) Mul ti plexed pin whose function is selected by the
POR TE CFG.2 bit.
PE2 is a bidirectional I/O port pin.
T2OUT is the active-HIGH outp ut signal from 8051
Tim e r2. T2 O UT is acti v e (HIG H) for o n e cl o ck cyc le
when Timer/Counter 2 overfl ows.
111 89 PE3 or
RXD0OUT I/O/Z I
(PE3) Mul ti plexed pin whose function is selected by the
POR TE CFG.3 bit.
PE3 is a bidirectional I/O port pin.
RXD0OUT is an active-HIGH signal from 8051 UART0.
If RXD0OUT is selected and UART0 is in Mode 0, this
pin provides the output dat a for UART0 only when it is
in sync mode. Otherwise it is a 1.
Table 4-1 . FX2LP Pin Descr ipt ions (continued)[10]
128
TQFP 100
TQFP 56
SSOP 56
QFN Name Type Default Description
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 25 of 55
112 90 PE4 or
RXD1OUT I/O/Z I
(PE4) Mul ti plexed pin whose function is selected by the
POR TE CFG.4 bit.
PE4 is a bidirectional I/O port pin.
RXD1OUT is an active-HIGH output from 8051 UART1.
When RXD1OUT is selec ted and UAR T1 is in Mode 0,
this pin provid es the output data for UART1 only when
it is in sync mode. In Modes 1, 2, and 3, this pin is HIGH.
113 91 PE5 or
INT6 I/O/Z I
(PE5) Mul ti plexed pin whose function is selected by the
POR TE CFG.5 bit.
PE5 is a bidirectional I/O port pin.
INT6 is the 8051 INT6 interrupt request input signal. The
INT6 pin is edge-sensitive, active HIGH.
114 92 PE6 or
T2EX I/O/Z I
(PE6) Mul ti plexed pin whose function is selected by the
POR TE CFG.6 bit.
PE6 is a bidirectional I/O port pin.
T2EX is an active-HIGH input signal to the 8051 Timer2.
T2EX rel oad s ti mer 2 o n i ts fall ing e dge. T2 EX i s act ive
only if the EXEN2 bi t i s set i n T2CON.
115 93 PE7 or
GPIFADR8 I/O/Z I
(PE7) Mul ti plexed pin whose function is selected by the
POR TE CFG.7 bit.
PE7 is a bidirectional I/O port pin.
GPIFADR8 i s a GPIF address output pin.
4 3 8 1 RDY0 or
SLRD Input N/A Multipl exed pin whose function is selected by the
following bit s:
IFCONFIG[1..0].
RDY0 is a GPIF input signal.
SLRD is th e input -only r ead str obe wit h programmabl e
polarity (FIFOPINPOLAR.3) for the sl ave FIFOs
connected to FD[7..0] or FD[15..0].
5 4 9 2 RDY1 or
SLWR Input N/A Multi plexed pin whose f unction is selected by the
following bit s:
IFCONFIG[1..0].
RDY1 is a GPIF input signal.
SLWR is the i nput-only write strobe with programmable
polarity (FIFOPINPOLAR.2) for the sl ave FIFOs
connected to FD[7..0] or FD[15..0].
6 5 RDY2 Input N/A RDY2 is a GPIF input signal .
7 6 RDY3 Input N/A RDY3 is a GPIF input signal .
8 7 RDY4 Input N/A RDY4 is a GPIF input signal .
9 8 RDY5 Input N/A RDY5 is a GPIF input signal .
69 54 36 29 CTL0 or
FLAGA O/Z H Multiplexed pin whose f unction is se lected by the
following bit s:
IFCONFIG[1..0].
CTL0 is a GPIF control output.
FLAGA is a programmable slave-FIFO output stat us
flag si gnal.
Defaul ts t o progra mmable f or the FIFO sele cted by t he
FIFOADR[1:0] pins.
Table 4-1 . FX2LP Pin Descr ipt ions (conti nued)[10]
128
TQFP 100
TQFP 56
SSOP 56
QFN Name Type Default Description
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 26 of 55
70 55 37 30 CTL1 or
FLAGB O/Z H Multiplexed pin whose f unction is se lected by the
following bit s:
IFCONFIG[1..0].
CTL1 is a GPIF control output.
FLAGB is a programmable slave-FIFO output stat us
flag si gnal.
Defaults to FULL for th e FIFO selected by th e
FIFOADR[1:0] pins.
71 56 38 31 CTL2 or
FLAGC O/Z H Multiplexed pin whose f unction is se lected by the
following bit s:
IFCONFIG[1..0].
CTL2 is a GPIF control output.
FLAGC is a programmable slave-FIFO output stat us
flag si gnal.
Defaul ts to EMPTY for the FIFO sel ected by the
FIFOADR[1:0] pins.
66 51 CTL3 O/Z H CTL3 is a GPIF control output.
67 52 CTL4 Output H CTL4 is a GPIF control output.
98 76 CTL5 Output H CTL5 is a GPIF control output.
32 26 20 13 IFCLK on
CY7C68013A
------------------
PE0 or T0OUT
on
CY7C68015A
I/O/Z
-----------
I/O/Z
Z
----------
I
(PE0)
Inter face Clock, used for sync hronously clocking data
into or out of the slave FIFOs. IFCLK als o serves as a
timi ng reference f or all slave FIFO control signals and
GPIF. When internal clocking is used (IFCONFIG.7 = 1)
the IFCLK pin can be configured to output 30/48 MHz
by bits IFCONFIG.5 and IFCONFIG.6. IFCLK may be
inverted, whether intern all y or externally sourced, by
setting th e b it IFCONFIG.4 =1.
-----------------------------------------------------------------------
Multi plexed pin whose function is selected by the
POR TE CFG.0 bit.
PE0 is a bidirectional I/O port pin.
T0OUT is an active-HIGH signal from 8051 T imer-
counter 0. T 0OUT o utput s a high level for one CL KOUT
clock cycle when Timer0 overflows. If Timer0 is
operated in Mode 3 (two sep arate timer /counter s),
T0OUT is acti ve when the low byte timer/counter
overflows.
28 22 INT4 Input N/A INT4 is the 8051 INT4 interrupt request input signal. The
INT4 pin is edge-sensitive, active HIGH.
106 84 INT5# Input N/A INT5# is t he 8051 INT5 interrupt request input signal.
The INT5 pin i s edge-sensit ive, active LO W.
31 25 T2 Input N/A T2 is the active-HIGH T2 inpu t si gnal to 8051 Timer2,
which pro vides the inpu t to Timer2 when C/T2 = 1.
When C/T2 = 0, Timer2 does not use this pin.
30 24 T1 Input N/A T1 is the active-HIGH T1 signal for 8051 T imer1, which
provides the input to Timer1 when C/T1 is 1. When C/T1
is 0, Timer1 does not use this bit.
29 23 T0 Input N/A T0 is the active-HIGH T0 signal for 8051 T imer0, which
provides the input to Timer0 when C/T0 is 1. When C/T0
is 0, Timer0 does not use this bit.
53 43 RXD1 Input N/A RXD1is an active-HIGH input signal for 8051 UART1,
which pro vides data t o the UART in all modes.
52 42 TXD1 Output H TXD1is an active-HIGH output pin from 8051 UART1,
which provides the output clock in sync mode, and the
output data in async mode.
Table 4-1 . FX2LP Pin Descr ipt ions (continued)[10]
128
TQFP 100
TQFP 56
SSOP 56
QFN Name Type Default Description
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 27 of 55
51 41 RXD0 Input N/A RXD0 is the active -HI GH RXD0 input to 8051 UART0,
which pro vides data t o the UART in all modes.
50 40 TXD0 Output H TXD0 is the acti ve-HIGH TXD0 output from 8051
UART0, whi ch prov ides t he out put cl ock in s ync mod e,
and the output data in async mode.
42 CS# Output H CS# is the active-LOW chip select for external memory .
41 32 WR# Output H WR# is the act ive-L OW write st r obe output for e xterna l
memory.
40 31 RD# Output H RD# is the acti ve-LOW read st robe output for external
memory.
38 OE# Output H OE# is the activ e-LOW output enable f or external
memory.
33 27 21 14 Reserved Input N/A Reserved. Connect to ground.
101 79 51 44 WAKEUP Input N/A USB Wakeup. If the 8051 is in s uspend, assertin g this
pin st arts up the oscillator and interrupts t he 8051 to
allow it to exit the suspend mode. Holding WAKEUP
assert ed inhibits the EZ-USB chip from suspending.
This pi n has programmable polari ty (WAKEUP. 4).
36 29 22 15 SCL OD Z Clock for the I2C interface. Connect to VCC with a 2.2K
resistor, even if no I2C peripheral is attached .
37 30 23 16 SDA OD Z Data for I2C-compatible interface. Connec t to VCC
with a 2.2 K resi stor, even if no I2C-compatible
peripheral is attached.
21655VCC PowerN/AVCC. Connect t o 3.3V power source.
26 20 18 11 VCC Power N/A VCC. Connect t o 3.3V power source.
43 33 24 17 VCC Power N/A VCC. Connect to 3.3V power source.
48 38 VCC Power N/A VCC. Connect to 3.3V power source.
64 49 34 27 VCC Power N/A VCC. Connect to 3.3V power source.
68 53 VCC Power N/A VCC. Connect to 3.3V power source.
81 66 39 32 VCC Power N/A VCC. Connect to 3.3V power source.
100 78 50 43 VCC Power N/A VCC. Connect to 3.3V powe r sour ce.
107 85 VCC Power N/A VCC. Conne ct to 3.3V power sour ce.
3 2 7 56 GND Ground N/A Ground.
27 21 19 12 GND Ground N/A Ground.
49 39 GND Ground N/A Ground.
58 48 33 26 GND Ground N/A Ground.
65 50 35 28 GND Ground N/A Ground.
80 65 GND Ground N/A Ground.
93 75 48 41 GND Ground N/A Ground.
116 94 GND Ground N/A Ground.
125 99 4 53 GND Ground N/A Ground.
14 13 NC N/A N/A No Connect. This pin must be le ft open.
15 14 NC N/A N/A No Connect. This pin must be le ft open.
16 15 NC N/A N/A No Connect. This pin must be le ft open.
Table 4-1 . FX2LP Pin Descr ipt ions (continued)[10]
128
TQFP 100
TQFP 56
SSOP 56
QFN Name Type Default Description
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 28 of 55
5.0 Register Summary
FX2LP reg ister bit d efinition s are descri bed in the FX2 LP TRM
in greater detail.
Table 5-1. FX2LP Register Summary
Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access
GPIF Waveform Memories
E400 128 WAVEDATA GPIF Waveform
Descriptor 0, 1, 2, 3 data D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
E480 128 reserved
GENERAL CONFIGURATION
E600 1CPUCS CPU Control & Status 0 0 PORTCSTB CLKSPD1 CLKSPD0 CLKINV CLKOE 8051RES 00000010 rrbbbbbr
E601 1 IFCONFIG Interface Configuration
(Ports , GPIF, slave FIFO s)IFCLKSRC 3048MHZ IFCLKOE IFCLKPOL ASYNC GSTATE IFCFG1 IFCFG0 10000000 RW
E602 1PINFLAGSAB[11]
Slave FIFO FLAGA and
FLAGB Pin Configuration FLAGB3 FLAGB2 FLAGB1 FLAGB0 FLAGA3 FLAGA2 FLAGA1 FLAGA0 00000000 RW
E603 1PINFLAGSCD[11] Slave FIFO FLAGC and
FLAGD Pin Configuration FLAGD3 FLAGD2 FLAGD1 FLAGD0 FLAGC3 FLAGC2 FLAGC1 FLAGC0 00000000 RW
E604 1FIFORESET[11]
Restore FIFOS to default
state NAKALL 0 0 0 EP3 EP2 EP1 EP0 xxxxxxxx W
E605 1BREAKPT Breakpoint Control 0 0 0 0 BREAK BPPULSE BPEN 000000000 rrrrbbbr
E606 1BPADDRH Breakpoint Address H A15 A14 A13 A12 A11 A10 A9 A8 xxxxxxxx RW
E607 1BPADDRL Breakpoint Address L A7 A6 A5 A4 A3 A2 A1 A0 xxxxxxxx RW
E608 1UART230 230 Kbaud internally
generated ref. c lock 0 0 0 0 0 0 230UART1 230UART0 00000000 rrrrrrbb
E609 1FIFOPINPOLAR[11]
Slave FIFO Interface pi ns
polarity 0 0 PKTEND SLOE SLRD SLWR EF FF 00000000 rrbbbbbb
E60A 1REVID Chip Revision rv7 rv6 rv5 rv4 rv3 rv2 rv1 rv0 RevA
00000001 R
E60B 1REVCTL[11] Chip Revision Control 0 0 0 0 0 0 dyn_out enh_pkt 00000000 rrrrrrbb
UDMA
E60C 1GPIFHOLDAMOUNT MSTB Hold Time
(for U DMA) 0 0 0 0 0 0 HOLDTIME1 HOLDTIME0 00000000 rrrrrrbb
3reserved
ENDPOINT CONFIGURATION
E610 1EP1OUTCFG Endpoint 1-OUT
Configuration VALID 0TYPE1 TYPE0 0 0 0 0 10100000 brbbrrrr
E611 1EP1INCFG Endpoint 1-IN
Configuration VALID 0TYPE1 TYPE0 0 0 0 0 10100000 brbbrrrr
E612 1EP2CFG Endpoint 2 Configuration VALID DIR TYPE1 TYPE0 SIZE 0BUF1 BUF0 10100010 bbbbbrbb
E613 1EP4CFG Endpoint 4 Configuration VALID DIR TYPE1 TYPE0 0 0 0 0 10100000 bbbbrrrr
E614 1EP6CFG Endpoint 6 Configuration VALID DIR TYPE1 TYPE0 SIZE 0BUF1 BUF0 11100010 bbbbbrbb
E615 1EP8CFG Endpoint 8 Configuration VALID DIR TYPE1 TYPE0 0 0 0 0 11100000 bbbbrrrr
2reserved
E618 1EP2FIFOCFG[11]
Endpoint 2 / slave FIFO
configuration 0 INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0WORDWIDE 00000101 rbbbbbrb
E619 1EP4FIFOCFG[11]
Endpoint 4 / slave FIFO
configuration 0 INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0WORDWIDE 00000101 rbbbbbrb
E61A 1EP6FIFOCFG[11]
Endpoint 6 / slave FIFO
configuration 0 INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0WORDWIDE 00000101 rbbbbbrb
E61B 1EP8FIFOCFG[11]
Endpoint 8 / slave FIFO
configuration 0 INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0WORDWIDE 00000101 rbbbbbrb
E61C 4reserved
E620 1EP2AUTOINLENH[11 Endpoint 2 AUTOIN
Packet Length H 0 0 0 0 0 PL10 PL9 PL8 00000010 rrrrrbbb
E621 1EP2AUTOINLENL[11] Endpoint 2 AUTOIN
Packet Length L PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW
E622 1EP4AUTOINLENH[11
]Endpoint 4 AUTOIN
Packet Length H 0 0 0 0 0 0 PL9 PL8 00000010 rrrrrrbb
E623 1EP4AUTOINLENL[11] Endpoint 4 AUTOIN
Packet Length L PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW
E624 1EP6AUTOINLENH[11
]Endpoint 6 AUTOIN
Packet Length H 0 0 0 0 0 PL10 PL9 PL8 00000010 rrrrrbbb
E625 1EP6AUTOINLENL[11] Endpoint 6 AUTOIN
Packet Length L PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW
E626 1EP8AUTOINLENH[11
]Endpoint 8 AUTOIN
Packet Length H 0 0 0 0 0 0 PL9 PL8 00000010 rrrrrrbb
E627 1EP8AUTOINLENL[11] Endpoint 8 AUTOIN
Packet Length L PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW
E628 1ECCCFG ECC Configuration 0 0 0 0 0 0 0 ECCM 00000000 rrrrrrrb
E629 1ECCRESET ECC Reset x x x x x x x x 00000000 W
E62A 1ECC1B0 ECC1 Byte 0 Address LINE15 LINE14 LINE13 LINE12 LINE11 LINE10 LINE9 LINE8 00000000 R
E62B 1ECC1B1 ECC1 Byte 1 Address LINE7 LINE6 LINE5 LINE4 LINE3 LINE2 LINE1 LINE0 00000000 R
E62C 1ECC1B2 ECC1 Byte 2 Address COL5 COL4 COL3 COL2 COL1 COL0 LINE17 LINE16 00000000 R
E62D 1ECC2B0 ECC2 Byte 0 Address LINE15 LINE14 LINE13 LINE12 LINE11 LINE10 LINE9 LINE8 00000000 R
Note:
11. Read and writes to these regi sters may r equire synchronization delay, see Technical Reference Manual for “Synchronization Delay.”
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 29 of 55
E62E 1ECC2B1 ECC2 Byte 1 Address LINE7 LINE6 LINE5 LINE4 LINE3 LINE2 LINE1 LINE0 00000000 R
E62F 1ECC2B2 ECC2 Byte 2 Address COL5 COL4 COL3 COL2 COL1 COL0 0 0 00000000 R
E630
H.S. 1EP2FIFOPFH[11]
Endpoint 2 / slave FIFO
Programmable Flag H DECIS PKTSTAT IN:PKTS[2]
OUT:PFC12 IN:PKTS[1]
OUT:PFC11 IN:PKTS[0]
OUT:PFC10 0PFC9 PFC8 10001000 bbbbbrbb
E630
F.S. 1EP2FIFOPFH[11]
Endpoint 2 / slave FIFO
Programmable Flag H DECIS PKTSTAT OUT:PFC12 OUT:PFC11 OUT:PFC10 0PFC9 IN:PKTS[2]
OUT:PFC8 10001000 bbbbbrbb
E631
H.S. 1EP2FIFOPFL[11]
Endpoint 2 / slave FIFO
Programmable Flag L PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW
E631
F.S 1EP2FIFOPFL[11]
Endpoint 2 / slave FIFO
Programmable Flag L IN:PKTS[1]
OUT:PFC7 IN:PKTS[0]
OUT:PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW
E632
H.S. 1EP4FIFOPFH[11]
Endpoint 4 / slave FIFO
Programmable Flag H DECIS PKTSTAT 0IN: PKTS[1]
OUT:PFC10 IN: PKTS[0]
OUT:PFC9 0 0 PFC8 10001000 bbrbbrrb
E632
F.S 1EP4FIFOPFH[11]
Endpoint 4 / slave FIFO
Programmable Flag H DECIS PKTSTAT 0OUT:PFC10 OUT:PFC9 0 0 PFC8 10001000 bbrbbrrb
E633
H.S. 1EP4FIFOPFL[11]
Endpoint 4 / slave FIFO
Programmable Flag L PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW
E633
F.S 1EP4FIFOPFL[11]
Endpoint 4 / slave FIFO
Programmable Flag L IN: PKTS[1]
OUT:PFC7 IN: PKTS[0]
OUT:PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW
E634
H.S. 1EP6FIFOPFH[11]
Endpoint 6 / slave FIFO
Programmable Flag H DECIS PKTSTAT IN:PKTS[2]
OUT:PFC12 IN:PKTS[1]
OUT:PFC11 IN:PKTS[0]
OUT:PFC10 0PFC9 PFC8 00001000 bbbbbrbb
E634
F.S 1EP6FIFOPFH[11]
Endpoint 6 / slave FIFO
Programmable Flag H DECIS PKTSTAT OUT:PFC12 OUT:PFC11 OUT:PFC10 0PFC9 IN:PKTS[2]
OUT:PFC8 00001000 bbbbbrbb
E635
H.S. 1EP6FIFOPFL[11]
Endpoint 6 / slave FIFO
Programmable Flag L PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW
E635
F.S 1EP6FIFOPFL[11]
Endpoint 6 / slave FIFO
Programmable Flag L IN:PKTS[1]
OUT:PFC7 IN:PKTS[0]
OUT:PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW
E636
H.S. 1EP8FIFOPFH[11]
Endpoint 8 / slave FIFO
Programmable Flag H DECIS PKTSTAT 0IN: PKTS[1]
OUT:PFC10 IN: PKTS[0]
OUT:PFC9 0 0 PFC8 00001000 bbrbbrrb
E636
F.S 1EP8FIFOPFH[11]
Endpoint 8 / slave FIFO
Programmable Flag H DECIS PKTSTAT 0OUT:PFC10 OUT:PFC9 0 0 PFC8 00001000 bbrbbrrb
E637
H.S. 1EP8FIFOPFL[11]
Endpoint 8 / slave FIFO
Programmable Flag L PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW
E637
F.S 1EP8FIFOPFL[11]
Endpoint 8 / slave FIFO
Programmable Flag L IN: PKTS[1]
OUT:PFC7 IN: PKTS[0]
OUT:PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW
8reserved
E640 1EP2ISOINPKTS EP2 (if ISO) IN Packets
per frame (1-3) AADJ 0 0 0 0 0 INPPF1 INPPF0 00000001 brrrrrbb
E641 1EP4ISOINPKTS EP4 (if ISO) IN Packets
per frame (1-3) AADJ 0 0 0 0 0 INPPF1 INPPF0 00000001 brrrrrrr
E642 1EP6ISOINPKTS EP6 (if ISO) IN Packets
per frame (1-3) AADJ 0 0 0 0 0 INPPF1 INPPF0 00000001 brrrrrbb
E643 1EP8ISOINPKTS EP8 (if ISO) IN Packets
per frame (1-3) AADJ 0 0 0 0 0 INPPF1 INPPF0 00000001 brrrrrrr
E644 4reserved
E648 1INPKTEND[11] Force IN Packet End Skip 0 0 0 EP3 EP2 EP1 EP0 xxxxxxxx W
E649 7OUTPKTEND[11] Force OUT Packet End Skip 0 0 0 EP3 EP2 EP1 EP0 xxxxxxxx W
INTERRUPTS
E650 1EP2FIFOIE[11]
Endpoint 2 slave FIFO
Flag Interrupt Enable 0 0 0 0 EDGEPF PF EF FF 00000000 RW
E651 1EP2FIFOIRQ[11,12] Endpoint 2 slave FIFO
Flag Interrupt Request 0 0 0 0 0 PF EF FF 00000000 rrrrrbbb
E652 1EP4FIFOIE[11]
Endpoint 4 slave FIFO
Flag Interrupt Enable 0 0 0 0 EDGEPF PF EF FF 00000000 RW
E653 1EP4FIFOIRQ[11,12] Endpoint 4 slave FIFO
Flag Interrupt Request 0 0 0 0 0 PF EF FF 00000000 rrrrrbbb
E654 1EP6FIFOIE[11]
Endpoint 6 slave FIFO
Flag Interrupt Enable 0 0 0 0 EDGEPF PF EF FF 00000000 RW
E655 1EP6FIFOIRQ[11,12] Endpoint 6 slave FIFO
Flag Interrupt Request 0 0 0 0 0 PF EF FF 00000000 rrrrrbbb
E656 1EP8FIFOIE[11]
Endpoint 8 slave FIFO
Flag Interrupt Enable 0 0 0 0 EDGEPF PF EF FF 00000000 RW
E657 1EP8FIFOIRQ[11,12] Endpoint 8 slave FIFO
Flag Interrupt Request 0 0 0 0 0 PF EF FF 00000000 rrrrrbbb
E658 1IBNIE IN-BULK-NAK Interrupt
Enable 0 0 EP8 EP6 EP4 EP2 EP1 EP0 00000000 RW
E659 1 IBNIRQ[12] IN-BULK-NAK interrupt
Request 0 0 EP8 EP6 EP4 EP2 EP1 EP0 00xxxxxx rrbbbbbb
E65A 1NAKIE Endpoint Ping-NAK / IBN
Interrupt Enable EP8 EP6 EP4 EP2 EP1 EP0 0IBN 00000000 RW
E65B 1NAKIRQ[12] Endpoint Ping-NAK / IBN
Interrupt Request EP8 EP6 EP4 EP2 EP1 EP0 0IBN xxxxxx0x bbbbbbrb
E65C 1USBIE USB Int Enables 0EP0ACK HSGRANT URES SUSP SUTOK SOF SUDAV 00000000 RW
E65D 1USBIRQ[12] USB Interrupt Requests 0EP0ACK HSGRANT URES SUSP SUTOK SOF SUDAV 0xxxxxxx rbbbbbbb
E65E 1EPIE Endpoint Interrupt
Enables EP8 EP6 EP4 EP2 EP1OUT EP1IN EP0OUT EP0IN 00000000 RW
E65F 1EPIRQ[12] Endpoint Interrupt
Requests EP8 EP6 EP4 EP2 EP1OUT EP1IN EP0OUT EP0IN 0RW
E660 1GPIFIE[11] GPIF Interrupt Enable 0 0 0 0 0 0 GPIFWF GPIFDONE 00000000 RW
Note:
12. The register can only be reset, it cannot be set.
Table 5-1. FX2LP Register Summary (continu ed)
Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 30 of 55
E661 1GPIFIRQ[11] GPIF Interrupt Request 0 0 0 0 0 0 GPIFWF GPIFDONE 000000xx RW
E662 1USBERRIE USB Error Interrupt
Enables ISOEP8 ISOEP6 ISOEP4 ISOEP2 0 0 0 ERRLIMIT 00000000 RW
E663 1USBERRIRQ[12] USB Error Interrupt
Requests ISOEP8 ISOEP6 ISOEP4 ISOEP2 0 0 0 ERRLIMIT 0000000x bbbbrrrb
E664 1ERRCNTLIM USB Error counter and
limit EC3 EC2 EC1 EC0 LIMIT3 LIMIT2 LIMIT1 LIMIT0 xxxx0100 rrrrbbbb
E665 1CLRERRCNT Clear Error Counter EC3 :0x x x x x x x x xxxxxxxx W
E666 1INT2IVEC Interrupt 2 (USB)
Autovector 0I2V4 I2V3 I2V2 I2V1 I2V0 0 0 00000000 R
E667 1INT4IVEC Interrupt 4 (slave FIFO &
GPIF) Autovector 1 0 I4V3 I4V2 I4V1 I4V0 0 0 10000000 R
E668 1 INTSET-UP Interrupt 2&4 set-up 0 0 0 0 AV2EN 0INT4SRC AV4EN 00000000 RW
E669 7reserved
INPUT / OUTPUT
E670 1PORTACFG I/O PORTA Alternate
Configuration FLAGD SLCS 0 0 0 0 INT1 INT0 00000000 RW
E671 1PORTCCFG I/O PORTC Alternate
Configuration GPIFA7 GPIFA6 GPIFA5 GPIFA4 GPIFA3 GPIFA2 GPIFA1 GPIFA0 00000000 RW
E672 1PORTECFG I/O PORTE Alternate
Configuration GPIFA8 T2EX INT6 RXD1OUT RXD0OUT T2OUT T1OUT T0OUT 00000000 RW
E673 4XTALINSRC XTALIN Clock Source 0 0 0 0 0 0 0 EXTCLK 00000000 rrrrrrrb
E677 1reserved
E678 1I2CS I²C Bus
Control & S t atus START STOP LASTRD ID1 ID0 BERR ACK DONE 000xx000 bbbrrrrr
E679 1I2DAT I²C Bus
Data d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW
E67A 1I2CTL I²C Bus
Control 0 0 0 0 0 0 STOPIE 400KHZ 00000000 RW
E67B 1XAUTODAT1 Autoptr1 MOVX access,
when APTREN=1 D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
E67C 1XAUTODAT2 Autoptr2 MOVX access,
when APTREN=1 D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
UDMA CRC
E67D 1UDMACRCH[11] UDMA CRC MSB CRC15 CRC14 CRC13 CRC12 CRC11 CRC10 CRC9 CRC8 01001010 RW
E67E 1UDMACRCL[11] UDMA CRC LSB CRC7 CRC6 CRC5 CRC4 CRC3 CRC2 CRC1 CRC0 10111010 RW
E67F 1UDMACRC-
QUALIFIER UDMA CRC Qualifier QENABLE 0 0 0 QSTATE QSIGNAL2 QSIGNAL1 QSIGNAL0 00000000 brrrbbbb
USB CONTROL
E680 1USBCS USB Control & Status HSM 0 0 0 DISCON NOSYNSOF RENUM SIGRSUME x0000000 rrrrbbbb
E681 1SUSPEND Put chip into suspend x x x x x x x x xxxxxxxx W
E682 1WAKEUPCS Wakeup Control & Status WU2 WU WU2POL WUPOL 0DPEN WU2EN WUEN xx000101 bbbbrbbb
E683 1TOGCTL Toggle Control Q S R IO EP3 EP2 EP1 EP0 x0000000 rrrbbbbb
E684 1USBFRAMEH USB Frame count H 0 0 0 0 0 FC10 FC9 FC8 00000xxx R
E685 1USBFRAMEL USB Frame count L FC7 FC6 FC5 FC4 FC3 FC2 FC1 FC0 xxxxxxxx R
E686 1MICROFRAME Microframe count, 0-7 0 0 0 0 0 MF2 MF1 MF0 00000xxx R
E687 1FNADDR USB Function address 0FA6 FA5 FA4 FA3 FA2 FA1 FA0 0xxxxxxx R
E688 2reserved
ENDPOINTS
E68A 1EP0BCH[11] Endpoint 0 Byte Count H (BC15) (BC14) (BC13) (BC12) (BC11) (BC10) (BC9) (BC8) xxxxxxxx RW
E68B 1EP0BCL[11] Endpoint 0 Byte Count L (BC7) BC6 BC5 BC4 BC3 BC2 BC1 BC0 xxxxxxxx RW
E68C 1reserved
E68D 1EP1OUTBC Endpoint 1 OUT Byte
Count 0BC6 BC5 BC4 BC3 BC2 BC1 BC0 0xxxxxxx RW
E68E 1reserved
E68F 1EP1INBC Endpoint 1 IN Byte Count 0BC6 BC5 BC4 BC3 BC2 BC1 BC0 0xxxxxxx RW
E690 1EP2BCH[11] Endpoint 2 Byte Count H 0 0 0 0 0 BC10 BC9 BC8 00000xxx RW
E691 1EP2BCL[11] Endpoint 2 Byte Count L BC7/SKIP BC6 BC5 BC4 BC3 BC2 BC1 BC0 xxxxxxxx RW
E692 2reserved
E694 1EP4BCH[11] Endpoint 4 Byte Count H 0 0 0 0 0 0 BC9 BC8 000000xx RW
E695 1EP4BCL[11] Endpoint 4 Byte Count L BC7/SKIP BC6 BC5 BC4 BC3 BC2 BC1 BC0 xxxxxxxx RW
E696 2reserved
E698 1EP6BCH[11] Endpoint 6 Byte Count H 0 0 0 0 0 BC10 BC9 BC8 00000xxx RW
E699 1EP6BCL[11] Endpoint 6 Byte Count L BC7/SKIP BC6 BC5 BC4 BC3 BC2 BC1 BC0 xxxxxxxx RW
E69A 2reserved
E69C 1EP8BCH[11] Endpoint 8 Byte Count H 0 0 0 0 0 0 BC9 BC8 000000xx RW
E69D 1EP8BCL[11] Endpoint 8 Byte Count L BC7/SKIP BC6 BC5 BC4 BC3 BC2 BC1 BC0 xxxxxxxx RW
E69E 2reserved
E6A0 1EP0CS Endpoint 0 Control and
Status HSNAK 0 0 0 0 0 BUSY STALL 10000000 bbbbbbrb
E6A1 1EP1OUTCS Endpoint 1 OUT Control
and Status 0 0 0 0 0 0 BUSY STALL 00000000 bbbbbbrb
E6A2 1EP1INCS Endpoint 1 IN Co ntrol and
Status 0 0 0 0 0 0 BUSY STALL 00000000 bbbbbbrb
Table 5-1. FX2LP Register Summary (continu ed)
Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 31 of 55
E6A3 1EP2CS Endpoint 2 Control and
Status 0NPAK2 NPAK1 NPAK0 FULL EMPTY 0STALL 00101000 rrrrrrrb
E6A4 1EP4CS Endpoint 4 Control and
Status 0 0 NPAK1 NPAK0 FULL EMPTY 0STALL 00101000 rrrrrrrb
E6A5 1EP6CS Endpoint 6 Control and
Status 0NPAK2 NPAK1 NPAK0 FULL EMPTY 0STALL 00000100 rrrrrrrb
E6A6 1EP8CS Endpoint 8 Control and
Status 0 0 NPAK1 NPAK0 FULL EMPTY 0STALL 00000100 rrrrrrrb
E6A7 1EP2FIFOFLGS Endpoint 2 slave FIFO
Flags 0 0 0 0 0 PF EF FF 00000010 R
E6A8 1EP4FIFOFLGS Endpoint 4 slave FIFO
Flags 0 0 0 0 0 PF EF FF 00000010 R
E6A9 1EP6FIFOFLGS Endpoint 6 slave FIFO
Flags 0 0 0 0 0 PF EF FF 00000110 R
E6AA 1EP8FIFOFLGS Endpoint 8 slave FIFO
Flags 0 0 0 0 0 PF EF FF 00000110 R
E6AB 1EP2FIFOBCH Endpoint 2 slave FIFO
total byte count H 0 0 0 BC12 BC11 BC10 BC9 BC8 00000000 R
E6AC 1EP2FIFOBCL Endpoint 2 slave FIFO
total byte count L BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000 R
E6AD 1EP4FIFOBCH Endpoint 4 slave FIFO
total byte count H 0 0 0 0 0 BC10 BC9 BC8 00000000 R
E6AE 1EP4FIFOBCL Endpoint 4 slave FIFO
total byte count L BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000 R
E6AF 1EP6FIFOBCH Endpoint 6 slave FIFO
total byte count H 0 0 0 0 BC11 BC10 BC9 BC8 00000000 R
E6B0 1EP6FIFOBCL Endpoint 6 slave FIFO
total byte count L BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000 R
E6B1 1EP8FIFOBCH Endpoint 8 slave FIFO
total byte count H 0 0 0 0 0 BC10 BC9 BC8 00000000 R
E6B2 1EP8FIFOBCL Endpoint 8 slave FIFO
total byte count L BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000 R
E6B3 1SUDPTRH Set-up Data Pointer high
address byte A15 A14 A13 A12 A11 A10 A9 A8 xxxxxxxx RW
E6B4 1SUDPTRL Set-up Data Pointer low
address byte A7 A6 A5 A4 A3 A2 A1 0xxxxxxx0 bbbbbbbr
E6B5 1SUDPTRCTL Set-up Data Pointer Auto
Mode 0 0 0 0 0 0 0 SDPAUTO 00000001 RW
2reserved
E6B8 8SET-UPDAT 8 bytes of set-up data D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx R
SET-UPDAT[0] =
bmRequestType
SET-UPDAT[1] =
bmRequest
SET-UPDAT[2:3] = wVal-
ue
SET-UPDAT[4:5] = wInd-
ex
SET-UPDAT[6:7] =
wLength
GPIF
E6C0 1GPIFWFSELECT Wavefor m Selector SINGLEWR1 SINGLEWR0SINGLERD1 SINGLERD0 FIFOWR1 FIFOWR0 FIFORD1 FIFORD0 11100100 RW
E6C1 1GPIFIDLECS GPIF Done, GPIF IDLE
drive mode DONE 0 0 0 0 0 0 IDLEDRV 10000000 RW
E6C2 1GPIFIDLECTL Inactive Bus, CTL states 0 0 CTL5 CTL4 CTL3 CTL2 CTL1 CTL0 11111111 RW
E6C3 1GPIFCTLCFG CTL Drive Type TRICTL 0CTL5 CTL4 CTL3 CTL2 CTL1 CTL0 00000000 RW
E6C4 1GPIFADRH[11] GPIF Address H 0 0 0 0 0 0 0 GPIFA8 00000000 RW
E6C5 1GPIFADRL[11] GPIF Address L GPIFA7 GPIFA6 GPIFA5 GPIFA4 GPIFA3 GPIFA2 GPIFA1 GPIFA0 00000000 RW
FLOWSTATE
E6C6 1 FLOWSTATE Flowstate Enable and
Selector FSE 0 0 0 0 FS2 FS1 FS0 00000000 brrrrbbb
E6C7 1FLOWLOGIC Flowstate Logic LFUNC1 LFUNC0 TERMA2 TERMA1 TERMA0 TERMB2 TERMB1 TERMB0 00000000 RW
E6C8 1FLOWEQ0CTL CTL-Pin States in
Flowstate
(when Logic = 0)
CTL0E3 CTL0E2 CTL0E1/
CTL5 CTL0E0/
CTL4 CTL3 CTL2 CTL1 CTL0 00000000 RW
E6C9 1FLOWEQ1CTL CTL-Pin States in Flow-
state (when Logic = 1) CTL0E3 CTL0E2 CTL0E1/
CTL5 CTL0E0/
CTL4 CTL3 CTL2 CTL1 CTL0 00000000 RW
E6CA 1FLOWHOLDOFF Holdoff Configuration HOPERIOD3 HOPERIOD2HOPERIOD1 HOPERIOD
0HOSTATE HOCTL2 HOCTL1 HOCTL0 00010010 RW
E6CB 1FLOWSTB Flowstate Strobe
Configuration SLAVE RDYASYNC CTLTOGL SUSTAIN 0MSTB2 MSTB1 MSTB0 00100000 RW
E6CC 1FLOWSTBEDGE Flowstate Rising/Falling
Edge Configuration 0 0 0 0 0 0 FALLING RISING 00000001 rrrrrrbb
E6CD 1FLOWSTBPERIOD Master -S trobe H alf-Perio dD7 D6 D5 D4 D3 D2 D1 D0 00000010 RW
E6CE 1GPIFTCB3[11] GPIF Transaction Count
Byte 3 TC31 TC30 TC29 TC28 TC27 TC26 TC25 TC24 00000000 RW
E6CF 1GPIFTCB2[11] GPIF Transaction Count
Byte 2 TC23 TC22 TC21 TC20 TC19 TC18 TC17 TC16 00000000 RW
E6D0 1GPIFTCB1[11] GPIF Transaction Count
Byte 1 TC15 TC14 TC13 TC12 TC11 TC10 TC9 TC8 00000000 RW
Table 5-1. FX2LP Register Summary (continu ed)
Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 32 of 55
E6D1 1GPIFTCB0[11] GPIF Transaction Count
Byte 0 TC7 TC6 TC5 TC4 TC3 TC2 TC1 TC0 00000001 RW
2reserved 00000000 RW
reserved
reserved
E6D2 1EP2GPIFFLGSEL[11] Endpoint 2 GPIF Flag
select 0 0 0 0 0 0 FS1 FS0 00000000 RW
E6D3 1EP2GPIFPFSTOP Endpoint 2 GPIF stop
transaction on prog. flag 0 0 0 0 0 0 0 FIFO2FLAG 00000000 RW
E6D4 1EP2GPIFTRIG[11] Endpoint 2 GPIF Trigger x x x x x x x x xxxxxxxx W
3reserved
reserved
reserved
E6DA 1EP4GPIFFLGSEL[11] Endpoint 4 GPIF Flag
select 0 0 0 0 0 0 FS1 FS0 00000000 RW
E6DB 1EP4GPIFPFSTOP Endpoint 4 GPIF stop
transaction on GPIF Flag 0 0 0 0 0 0 0 FIFO4FLAG 00000000 RW
E6DC 1EP4GPIFTRIG[11] Endpoint 4 GPIF Trigger x x x x x x x x xxxxxxxx W
3reserved
reserved
reserved
E6E2 1EP6GPIFFLGSEL[11] Endpoint 6 GPIF Flag
select 0 0 0 0 0 0 FS1 FS0 00000000 RW
E6E3 1EP6GPIFPFSTOP Endpoint 6 GPIF stop
transaction on prog. flag 0 0 0 0 0 0 0 FIFO6FLAG 00000000 RW
E6E4 1EP6GPIFTRIG[11] Endpoint 6 G PIF Trigger x x x x x x x x xxxxxxxx W
3reserved
reserved
reserved
E6EA 1EP8GPIFFLGSEL[11] Endpoint 8 GPIF Flag
select 0 0 0 0 0 0 FS1 FS0 00000000 RW
E6EB 1EP8GPIFPFSTOP Endpoint 8 GPIF stop
transaction on prog. flag 0 0 0 0 0 0 0 FIFO8FLAG 00000000 RW
E6EC 1EP8GPIFTRIG[11] Endpoint 8 G PIF Trigger x x x x x x x x xxxxxxxx W
3reserved
E6F0 1 XGPIFSGLDATH GPIF Data H
(16-bit mode only) D15 D14 D13 D12 D11 D10 D9 D8 xxxxxxxx RW
E6F1 1XGPIFSGLDATLX Read/W rite G PIF Data L &
trigger transaction D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
E6F2 1XGPIFSGLDATL-
NOX Read GPIF Data L, no
transaction trigger D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx R
E6F3 1GPIFREADYCFG Internal RDY , Sync/Async,
RDY pin states INTRDY SAS TCXRDY5 0 0 0 0 0 00000000 bbbrrrrr
E6F4 1GPIFREADYSTAT GPIF Ready Status 0 0 RDY5 RDY4 RDY3 RDY2 RDY1 RDY0 00xxxxxx R
E6F5 1GPIFABORT Abort GPIF Waveforms x x x x x x x x xxxxxxxx W
E6F6 2reserved
ENDPOIN T BUFFERS
E740 64 EP0BUF EP0-IN/-OUT buffer D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
E780 64 EP10UTBUF EP1-OUT buffer D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
E7C0 64 EP1INBUF EP 1-IN buffer D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
2048reserved RW
F000 1024EP2FIFOBUF 512/1024-byte EP 2 /
slave FIF O buffer (IN or
OUT)
D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
F400 512 EP4FIFOBUF 512 byte EP 4 / slave FIFO
buffer (IN or OUT) D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
F600 512 reserved
F800 1024EP6FIFOBUF 512/1024-byte EP 6 /
slave FIF O buffer (IN or
OUT)
D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
FC00 512 EP8FIFOBUF 512 byte EP 8 / slave FIFO
buffer (IN or OUT) D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
FE00 512 reserved
xxxx I²C Configuration Byte 0 DISCON 0 0 0 0 0 400KHZ xxxxxxxx
[14] n/a
Special Function Registers (SFRs)
80 1IOA[13] Port A ( bit addressable) D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
81 1SP Stack Pointer D7 D6 D5 D4 D3 D2 D1 D0 00000111 RW
82 1DPL0 Data Pointer 0 L A7 A6 A5 A4 A3 A2 A1 A0 00000000 RW
83 1DPH0 Data Pointer 0 H A15 A14 A13 A12 A11 A10 A9 A8 00000000 RW
84 1DPL1[13] Data Pointer 1 L A7 A6 A5 A4 A3 A2 A1 A0 00000000 RW
85 1DPH1[13] Data Pointer 1 H A15 A14 A13 A12 A11 A10 A9 A8 00000000 RW
Notes:
13. SFRs not part of the standard 8051 architecture.
14. If no EEPROM is detected by the SIE then the default is 00000000.
Table 5-1. FX2LP Register Summary (continu ed)
Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 33 of 55
86 1DPS[13] Data Pointer 0/1 select 0 0 0 0 0 0 0 SEL 00000000 RW
87 1PCON Po wer Control SMOD0 x 1 1 x x x IDLE 00110000 RW
88 1TCON Timer/Counter Control
(bit addressable) TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 00000000 RW
89 1TMOD Timer/Counter Mode
Control GATE CT M1 M0 GATE CT M1 M0 00000000 RW
8A 1TL0 Timer 0 reload L D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
8B 1TL1 Timer 1 reload L D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
8C 1TH0 Timer 0 reload H D15 D14 D13 D12 D11 D10 D9 D8 00000000 RW
8D 1TH1 Timer 1 reload H D15 D14 D13 D12 D11 D10 D9 D8 00000000 RW
8E 1CKCON[13] Clock Control x x T2M T1M T0M MD2 MD1 MD0 00000001 RW
8F 1reserved
90 1IOB[13] Port B ( bit addressable) D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
91 1EXIF[13] E xternal Interrupt Flag(s) IE5 IE4 I²CINT USBNT 1 0 0 0 00001000 RW
92 1MPAGE[13] Upper Addr Byte of MO VX
using @R0 / @R1 A15 A14 A13 A12 A11 A10 A9 A8 00000000 RW
93 5reserved
98 1SCON0 Serial Port 0 Control
(bit addressable) SM0_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 00000000 RW
99 1SBUF0 Serial Port 0 Data Buffer D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
9A 1AUTOPTRH1[13] Autopointer 1 Address H A15 A14 A13 A12 A11 A10 A9 A8 00000000 RW
9B 1AUTOPTRL1[13] Autopointer 1 Address L A7 A6 A5 A4 A3 A2 A1 A0 00000000 RW
9C 1reserved
9D 1AUTOPTRH2[13] Autopointer 2 Address H A15 A14 A13 A12 A11 A10 A9 A8 00000000 RW
9E 1AUTOPTRL2[13] Autopointer 2 Address L A7 A6 A5 A4 A3 A2 A1 A0 00000000 RW
9F 1reserved
A0 1IOC[13] Port C (bit addressable) D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
A1 1INT2CLR[13] Interrupt 2 clear x x x x x x x x xxxxxxxx W
A2 1INT4CLR[13] Interrupt 4 clear x x x x x x x x xxxxxxxx W
A3 5reserved
A8 1IE Interrupt Enable
(bit addressable) EA ES1 ET2 ES0 ET1 EX1 ET0 EX0 00000000 RW
A9 1reserved
AA 1EP2468STAT[13] Endpoint 2,4,6,8 status
flags EP8F EP8E EP6F EP6E EP4F EP4E EP2F EP2E 01011010 R
AB 1EP24FIFOFLGS
[13] Endpoint 2,4 slave FIFO
status flags 0EP4PF EP4EF EP4FF 0EP2PF EP2EF EP2FF 00100010 R
AC 1EP68FIFOFLGS
[13] Endpoint 6,8 slave FIFO
status flags 0EP8PF EP8EF EP8FF 0EP6PF EP6EF EP6FF 01100110 R
AD 2reserved
AF 1AUTOPTRSET-
UP[13] Autopointer 1&2 set-up 0 0 0 0 0 APTR2INC APTR1INC APTREN 00000110 RW
B0 1IOD[13] Port D (bit addressable) D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
B1 1IOE[13] Port E
(NOT bit addressable) D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
B2 1OEA[13] Port A Output Enable D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
B3 1OEB[13] Port B Output Enable D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
B4 1OEC[13] Port C Output Enable D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
B5 1OED[13] Port D Output Enable D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
B6 1OEE[13] Port E Output Enable D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
B7 1reserved
B8 1IP Interrupt Priority (bit ad-
dressable) 1PS1 PT2 PS0 PT1 PX1 PT0 PX0 10000000 RW
B9 1reserved
BA 1EP01STAT[13] Endpoint 0&1 Status 0 0 0 0 0 EP1INBSY EP1OUTBS
YEP0BSY 00000000 R
BB 1GPIFTRIG[13, 11] Endpoint 2,4,6,8 GPIF
slave FIF O Trigger DONE 0 0 0 0 RW EP1 EP0 10000xxx brrrrbbb
BC 1reserved
BD 1GPIFSGLDATH[13] G PIF Dat a H ( 16-bi t m ode
only) D15 D14 D13 D12 D11 D10 D9 D8 xxxxxxxx RW
BE 1GPIFSGLDATLX[13] GPIF Data L w/ Trigger D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
BF 1GPIFSGLDAT
LNOX[13] GPIF Data L w/ No T ri ggerD7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx R
C0 1SCON1[13] Serial Port 1 Control (bit
addressable) SM0_1 SM1_1 SM2_1 REN_1 TB8_1 RB8_1 TI_1 RI_1 00000000 RW
C1 1SBUF1[13] Serial Port 1 Data Buffer D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
C2 6reserved
C8 1T2CON Timer/Counter 2 Control
(bit addressable) TF2 EXF2 RCLK TCLK EXEN2 TR2 CT2 CPRL2 00000000 RW
C9 1reserved
CA 1RCAP2L Capture for Timer 2, auto-
reload, up-counter D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
Table 5-1. FX2LP Register Summary (continu ed)
Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 34 of 55
CB 1RCAP2H Capture for Timer 2, auto-
reload, up-counter D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
CC 1TL2 Timer 2 reload L D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
CD 1TH2 Timer 2 reload H D15 D14 D13 D12 D11 D10 D9 D8 00000000 RW
CE 2reserved
D0 1PSW Program Status Word (bit
addressable) CY AC F0 RS1 RS0 OV F1 P00000000 RW
D1 7reserved
D8 1EICON[13] External Interrupt Control SMOD1 1ERESI RESI INT6 0 0 0 01000000 RW
D9 7reserved
E0 1ACC Accumulator (bit address-
able) D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
E1 7reserved
E8 1EIE[13] External Interrupt En-
able(s) 1 1 1 EX6 EX5 EX4 EI²C EUSB 11100000 RW
E9 7reserved
F0 1 B B (bit addressable) D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
F1 7reserved
F8 1EIP[13] External Interrupt Priority
Control 1 1 1 PX6 PX5 PX4 PI²C PUSB 11100000 RW
F9 7reserved
Table 5-1. FX2LP Register Summary (continu ed)
Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access
r = read-only bit
w = write-only bit
b = both read/write bit
R = all bits read-only
W = all bits write-only
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 35 of 55
6.0 Ab so l u te M axim um R atings
Storage Te mp e ra ture ....... ... .. ..... .. ... ..... .. ... .... ... .. ..... ... .. ..... .. ... ..... .. .. .......... ... .. ..... .. ... ..... .. ... ...................................–65°C to +150°C
Ambient Temperatu re with Power Supplied............................................................................................ ... ..... .. ... .... ...0 °C to +7 0 °C
Supply Voltage to Ground Potential.........................................................................................................................–0.5V to +4.0V
DC Input Voltage to Any Input Pin .................................................................................................................................... 5.25V[15]
DC Voltage Appli ed to Outputs in High Z State. ....... .................. .. .. .. ........... .. ....... .. ...... ....... .. .. ....................... –0.5V to VCC + 0.5V
Power Dissipation.................................................................................................................................... ........... ....... ....... 300 mW
Static Dis ch a rg e Vol tag e............ .. ... ..... .. ... .... ... .. ..... ... .. ..... .. ... ..... .. .. .......... ... .. ..... .. ... ..... .. ... ............................................... > 2000V
Max Output Current, per I/O port..................................................................................................... ... .. .......... .. ... .... ... .. ..... .. 10 m A
Max Out put Current, all five I/O por ts (128- and 100-pin packages) ..... .. ....... ............ ............ ................. ............ .. .. ..... ... .. .. 50 m A
7.0 Operating Conditions
TA (Am b i en t Te m p er a tu re Un de r Bia s ) .. ... ......... ... .. ..... .. ... .......... .. .. ..... ... .. ..... .. ... ..... .. ... ..... .. .. ..... ... .. ...........................0°C to +70°C
Su pply Vol tage... .. ............... .. .. ..... ... .. ..... ... .. ..... .. ... ..... .. .. ..... ... .. ..... .. ... ..... .. ... .... ... .. .......... .....................................+3.15V to +3.45V
Ground Volt age............... ....... ....... ................. ........... ....... ....... ....... ....... ............ .......................................................................... 0V
FOSC (Oscillator or Crystal Frequency)...................................................................................................... .. ... .. 24 M Hz ± 100 ppm
............................................................................................................................................................................ Parallel Resonant
8.0 DC Characteristics
8.1 USB Transceiver
USB 2.0-compliant in full- and high-speed modes.
Notes:
15. It is recommended to not power I/O with chip power is off.
16. Measured at Max VCC, 25°C.
Table 8-1 . DC Charact eristics
Parameter Description Conditions Min. Typ. Max. Unit
VCC Supply Voltage 3.15 3.3 3.45 V
VCC Ramp Up 0 t o 3.3 V 200 µs
VIH Input HIGH Volt age 2 5.25 V
VIL Input LOW Volt age –0.5 0.8 V
VIH_X Crystal input HIGH Vol tage 2 5.25 V
VIL_X Cryst al i nput LOW Volt age -0.5 0. 8 V
IIInput Leakage Curr ent 0< VIN < VCC ±10 µA
VOH Ou tput Voltage HIGH IOUT = 4 mA 2.4 V
VOL Ou tput LOW Voltage IOUT = –4 mA 0.4 V
IOH Ou tput Curr ent HIGH 4mA
IOL Ou tput Current LOW 4mA
CIN Input Pin Capac it ance Except D+/ D– 10 pF
D+/D– 15 pF
ISUSP Suspend Current Connected 300 380[16] µA
CY7C68014/CY7C68016 Disconnected 100 150[16] µA
Suspend Current Connected 0.5 1.2[16] mA
CY7C68013/CY7C68015 Disconnected 0.3 1.0[16] mA
ICC Supply Current 8051 running, connected to USB HS 50 85 mA
8051 running, connected to USB FS 35 65 mA
TRESET Reset Time after Valid Power VCC min = 3.0V 5.0 mS
P in Reset after powered on 200 µS
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 36 of 55
9.0 AC Electrical Character istics
9.1 USB Transceiver
USB 2.0-compliant in full- and high-speed modes.
9.2 Prog ram Memo ry Read
Notes:
17. CLKOUT is s hown with positive polarity.
18. tACC1 is computed from the above parameters as follows:
tACC1(24 MHz) = 3*tCL – tAV –tDSU = 106 ns
tACC1(48 MHz) = 3*tCL – tAV – tDSU = 43 ns.
tCL
tDH
tSOEL
tSCSL
PSEN#
D[7..0]
OE#
A[15..0]
CS#
tSTBL
data in
tACC1
tAV
tSTBH
tAV
Figure 9-1. Program Memory Read Timing Diagram
CLKOUT[17]
[18]
Table 9-1 . Progr am Memory Read Parameters
Parameter Description Min. Typ. Max. Unit Notes
tCL 1/CLKOUT Frequency 20.83 ns 48 MHz
41.66 ns 24 MHz
83.2 ns 12 MHz
tAV Delay from Clock to Valid Address 0 10.7 ns
tSTBL Clock to PSEN Low 0 8 ns
tSTBH Clock to PSEN High 0 8 ns
tSOEL Clock to OE Low 11.1 ns
tSCSL Clock to CS Low 13 ns
tDSU Data Set-up to Clock 9.6 ns
tDH Data Hold Time 0 ns
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 37 of 55
9.3 Data Memory Read
data in
tCL
A[15..0]
tAV tAV
RD# tSTBL tSTBH
tDH
D[7..0] data in
tACC1
[19 tDSU
Stretc h = 0
Stretc h = 1
tCL
A[15..0]
tAV
RD#
tDH
D[7..0] tACC1[19] tDSU
CS#
CS#
tSCSL
OE# tSOEL
Figure 9-2. Data Memory Read Timing Diagram
CLKOUT[17]
CLKOUT[17]
Table 9-2 . Dat a M em ory Read Parameters
Parameter Description Min. Typ. Max. Unit Notes
tCL 1/CLKOUT Frequency 20.83 ns 48 MHz
41.66 ns 24 MHz
83.2 ns 12 MHz
tAV Delay from Clock to Valid Address 10.7 ns
tSTBL Clock to RD LOW 11 ns
tSTBH Clock to RD HIGH 11 ns
tSCSL Clock to CS LOW 13 ns
tSOEL Clock to OE LOW 11.1 ns
tDSU Data Set-up to Clock 9.6 ns
tDH Data Hold Time 0 ns
Note:
19. tACC2 and tACC3 are computed from the above parameters as follows:
tACC2(24 MHz) = 3*tCL – tAV –tDSU = 106 ns
tACC2(48 MHz) = 3*tCL – tAV – tDSU = 43 ns
tACC3(24 MHz) = 5*tCL – tAV –tDSU = 190 ns
tACC3(48 MHz) = 5*tCL – tAV – tDSU = 86 ns.
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 38 of 55
9.4 Data Memory Write
tOFF1
CLKOUT
A[15..0]
WR#
tAV
D[7..0]
tCL
tSTBL tSTBH
data out
tOFF1
CLKOUT
A[15..0]
WR#
tAV
D[7..0]
tCL
data out
Stret ch = 1
tON1
tSCSL
tAV
CS#
tON1
CS#
Figure 9-3. Data M em o ry W rite Timing Diagra m
Table 9-3 . Data Memory Write Parameters
Parameter Description Min. Max. Unit Notes
tAV Dela y fro m Cl ock to Va lid A d dre ss 0 10 .7 ns
tSTBL Clock to WR Pulse LOW 0 11.2 ns
tSTBH Clock to WR Pulse HIGH 0 11.2 ns
tSCSL Clock to CS Pulse LOW 13.0 ns
tON1 Clock to Data Turn-on 0 13.1 ns
tOFF1 Clock to Data Hold Time 0 13.1 ns
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 39 of 55
9.5 GPI F Synch ron ous Signals
DATA(output)
tXGD
IFCLK
RDYX
DATA(input) valid
tSRY
tRYH
tIFCLK
tSGD
CTL
X
t
XCTL
tDAH
NN+1
GPIFADR[8:0]
tSGA
Figure 9-4. GPIF Synchronous Signals Timing Diagram[19]
Table 9-4. GPIF Synchronous Signals Paramet ers with Int ernally Sourced IFCLK[20, 21]
Parameter Description Min. Max. Unit
tIFCLK IFCLK Period 20.83 ns
tSRY RDYX to Clock Set-up Time 8.9 ns
tRYH Clock to RDYX 0ns
tSGD GPIF Data to Clock Set-up Time 9.2 ns
tDAH GPIF Dat a Hold Time 0 ns
tSGA Clock to GPIF Address Prop agation Del ay 7.5 ns
tXGD Clock to GPIF Data Output Propagation Delay 11 ns
tXCTL Clock to CTLX Output Propagation Delay 6.7 ns
Table 9-5. GPIF Synchr onous Signals Parameters with Externally Sourced IFCLK[21]
Parameter Description Min. Max. Unit
tIFCLK IFCLK Period[22] 20.83 200 ns
tSRY RDYX to Clock Set-up Time 2.9 ns
tRYH Clock to RDYX 3.7 ns
tSGD GPIF Data to Clock Set-up Time 3.2 ns
tDAH GPIF Data Hold Time 4.5 ns
tSGA Clock to GPIF Address Prop agation Del ay 11.5 ns
tXGD Clock to GPIF Data Output Propagation Delay 15 ns
tXCTL Clock to CTLX Output Propagation Delay 10.7 ns
Notes:
20. Dashed lines denote signals with programmable polarity.
21. GPIF asynchronous RDYx signals have a minimum Set-up time of 50 ns when using internal 48-MHz IFCLK.
22. IFCLK must not exceed 48 MHz.
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 40 of 55
9.6 Slave FIFO Synchronous Read
IFCLK
SLRD
FLAGS
SLOE
tSRD tRDH
tOEon tXFD
tXFLG
DATA
tIFCLK
N+1
tOEoff
N
Figure 9-5. Slave FIFO Synchronous Read Timing Diagram[19]
Table 9-6. Slave FIFO Synchronous Read Parameters with Internally Sourced IFCLK[21]
Parameter Description Min. Max. Unit
tIFCLK IFCLK Period 20.83 ns
tSRD SLRD to Clock Set-up Time 18.7 ns
tRDH Clock to SLRD Hol d Time 0 ns
tOEon SLOE Turn-on to FIFO Data Valid 10.5 ns
tOEoff SLOE Turn-off to FIFO Data Hold 10.5 ns
tXFLG Clock to FLAG S Output Propagation Delay 9.5 ns
tXFD Clock to FI FO Data Output Propagation Del ay TBD 11 ns
Table 9-7. Slave FIFO Synchronous Read Parameters with Externally Sourced IFCLK[21]
Parameter Description Min. Max. Unit
tIFCLK IFCLK Period 20.83 200 ns
tSRD SLRD to Clock Set-up Time 12.7 ns
tRDH Clock to SLRD Hol d Time 3.7 ns
tOEon SLOE Turn-on to FIFO Data Valid 10.5 ns
tOEoff SLOE Turn-off to FIFO Data Hold 10.5 ns
tXFLG Clock to FLAG S Output Propagation Delay 13.5 ns
tXFD Clock to FI FO Data Output Propagation Del ay TBD 15 ns
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 41 of 55
9.7 Slave FIFO Async hrono us Read
SLRD
FLAGS
tRDpwl
tRDpwh
SLOE
tXFLG
tXFD
DATA
tOEon tOEoff
N+1
N
Figure 9- 6. Sl ave FIFO Asynchronous Read Timing Diagram [19]
Table 9-8. Slave FIFO Asynchronous Read Parameter s[23]
Parameter Description Min. Max. Unit
tRDpwl SLRD Pulse Wid th LOW 50 ns
tRDpwh SLRD Pulse Wid th HIGH 50 ns
tXFLG SLRD to FLAGS Output Propa gation Delay 70 ns
tXFD SLRD to FIFO Data Output Propagation Delay 15 ns
tOEon SLOE Turn-on to FIFO Data Valid 10.5 ns
tOEoff SLOE Turn-off to FIFO Data Hold 10.5 ns
Note:
23. Slave FIFO asynchr o nous parameter values use internal IFCLK setting at 48 MHz.
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 42 of 55
9.8 Slave FIFO S ynchronous Write
Z
Z
tSFD tFDH
DATA
IFCLK
SLWR
FLAGS
tWRH
tXFLG
tIFCLK
tSWR
N
Figure 9-7. Slave FIFO Synchronous Wri te Timing Diagr am[19]
Table 9-9. Slave FIFO Synchronous Writ e Parameters with Internall y Sourced IFCLK[21]
Parameter Description Min. Max. Unit
tIFCLK IFCLK Period 20.83 ns
tSWR SLWR to Clock Set-up Time 18.1 ns
tWRH Clock to SLWR Hold Time 0 ns
tSFD FIFO Data t o Clock Set-up T ime 9.2 ns
tFDH Clock to FIFO Data Hold Time 0 ns
tXFLG Clock to FLAG S Output Propagation Time 9.5 ns
Table 9-10. Slav e FIFO Synchronous Writ e Parameters with Externally Sourced IFCLK[21]
Parameter Description Min. Max. Unit
tIFCLK IFCLK Period 20.83 200 ns
tSWR SLWR to Clock Set-up Time 12.1 ns
tWRH Clock to SLWR Hold Time 3.6 ns
tSFD FIFO Data t o Clock Set-up T ime 3.2 ns
tFDH Clock to FIFO Data Hold Time 4.5 ns
tXFLG Clock to FLAG S Output Propagation Time 13.5 ns
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 43 of 55
9.9 Slave FIFO Async hro no us Write
9.10 Sl ave FIFO Synchronous Packet End Strobe
There is no specific timing requirement that needs to be met
for asserting PKTEND pin with regards to asserting SLWR.
PKTEND can be asse rted wi th the last data v alu e clock ed int o
the FIFOs or thereafter. The only consideration is the set-up
time tSPE and the hold time tPEH must be met.
Although there are no specific timing requirement for the
PKTEND assertion, there is a specific corner case condition
DATA
tSFD tFDH
FLAGS tXFD
SLWR/SLCS#
tWRpwh
tWRpwl
Figure 9-8. Slave FIFO Asynchr onous W rite Ti m ing Diagram[19]
Table 9-11. Slave FIFO Asynchronous Write Para meters wi th Internally Sourced IFCLK [23]
Parameter Description Min. Max. Unit
tWRpwl SLWR Pulse LOW 50 ns
tWRpwh SLWR Pulse HIGH 70 ns
tSFD SLWR to FIFO DA TA Set-up Time 10 ns
tFDH FIFO DATA to SLWR Hold Time 10 ns
tXFD SLWR to FLAGS Output Propagation Delay 70 ns
FLAGS
tXFLG
IFCLK
PKTEND tSPE
tPEH
Figure 9-9 . Sla ve FIFO Synchr onous Packet End Strobe Timing Dia gram[19]
Table 9-1 2. Slave FIFO Synchronous Packet End Strobe Paramete rs wit h Int ernally Sourced IFCLK [21]
Parameter Description Min. Max. Unit
tIFCLK IFCLK Period 20.83 ns
tSPE PKTEND to Clock Set-up Time 14.6 ns
tPEH Clock to PKTEND Hol d Time 0 ns
tXFLG Clock to FLAG S Output Propagation Delay 9.5 ns
Table 9-1 3. Slave FIFO Synchronous Packet End Strobe Paramete rs wit h Exter nally Sourced IFCLK [21]
Parameter Description Min. Max. Unit
tIFCLK IFCLK Period 20.83 200 ns
tSPE PKTEND to Clock Set-up Time 8.6 ns
tPEH Clock to PKTEND Hol d Time 2.5 ns
tXFLG Clock to FLAG S Output Propagation Delay 13.5 ns
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 44 of 55
that needs att enti on while using t he PKTEND to comm it a on e
byte/word packet. There is an additional timing requirement
that need to be met when the FIFO is configur ed to operate i n
auto mode and it is desir ed to send two packet s back to ba ck:
a full packet (full defined as the number of bytes in the FIFO
meeting the level set in AUTOINLEN register) committed
automatically followed by a short one byte/word packet
committed manually using the PKTEND pin. In this particular
scenari o, user must make sur e to assert PKTEND atl east one
clock cyc le after the risi ng edge th at caused the l ast b yte/word
to be clocked into the pr evious auto com m it ted p acket. Fi gure
9-10 below shows this scenario. X is the value the
AUTOINLEN register is set to when the IN endpoint is
configured to be in auto mode.
The above figure shows a scenario where two packets are
being committed. The first packet gets comitted automat ically
when the numbe r of bytes in the FIFO reaches X ( value set in
AUTOINLEN register) and the second one byte/word short
packet being committed manually using PKTEND. Note that
there i s atleast one IFCLK cycle timing between the assertion
of PKTEND an d clockin g of the l ast byte of the pr evious p acket
(causing the packet t o be com m itted automati cally). Failing to
adhere to this timing, will r esult i n the F X2 fa iling to sen d the
one byte/word short packet.
9.11 Slave FIFO Async hrono us P acket End Strobe
IFCLK
SLWR
DATA
Figure 9-10. Slave FIFO Synchronous Wr ite Sequence and Timing Diagram
tIFCLK
>= tSWR >= tWRH
X-2
PKTEND
X-3
tFAH
tSPE tPEH
FIFOADR
tSFD tSFD tSFD
X-4
tFDH
tFDH
tFDH
tSFA
1
X
tSFD tSFD tSFD
X-1
tFDH
tFDH
tFDH
At least one IFCLK cycle
Table 9-1 4. Slave FIFO Asynchronous Packet End St robe Parameters[23]
Parameter Description Min. Max. Unit
tPEpwl PKTEND Pulse Wid th LOW 50 ns
tPWpwh PKTEND Pulse Width HIGH 50 ns
tXFLG PKTEND to FLAGS Output Propa gati on Delay 115 ns
FLAGS tXFLG
PKTEND tPEpwl
tPEpwh
Figure 9-11. Slave FIFO Asynchronou s Packet End Strobe Ti m ing Diagram[19]
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 45 of 55
9.12 S lave FIFO Outp ut Enable
9.13 S lave FIFO Address to Flags/Data
Table 9-1 5. Slav e FIFO Ou tput E nable Parameters
Parameter Description Min. Max. Unit
tOEon SLOE Assert to FIFO DATA Output 10.5 ns
tOEoff SLOE Deassert to FIFO DATA Hold 10.5 ns
Table 9-1 6. Slav e FIFO Address to Flags/Da ta Parameter s
Parameter Description Min. Max. Unit
tXFLG FIFOADR[1: 0] t o FLAG S Output Propaga ti on Delay 10.7 ns
tXFD FIFOADR[1:0] to FIFODATA Output Propagation Delay 14.3 ns
SLOE
DATA tOEon tOEoff
Figure 9-12. Slave FIFO Output Enable Timing Diagram[19]
FIFOADR [1.0]
DATA
tXFLG
tXFD
FLAGS
NN+1
Figure 9-13. Slave FIFO Address to Flags/Data T iming Diagram[19]
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 46 of 55
9.14 Sl ave FIFO Synchronous Address
9.15 S lave FIFO Async hro no us Address
Table 9-1 7. Slav e FIFO Synchronous Address Paramet ers [21]
Parameter Description Min. Max. Unit
tIFCLK Interface Clock Period 20.83 200 ns
tSFA FIFO ADR[1: 0] to Clock Set-up Time 25 ns
tFAH Clock to FIFOADR[1:0] Hold Time 10 ns
Slave FIFO Asynchronous Address Parameters[23]
Parameter Description Min. Max. Unit
tSFA FIFOADR[1:0] to SLRD/SLWR/PKTEND Set-up Time 10 ns
tFAH RD/WR/PKTEND to FIFOADR[1:0] Hold Time 10 ns
IFCLK
SLCS/FIFOADR [1:0]
tSFA tFAH
Figure 9-14. Slave FIFO Synchronous Address Timing Diagram
SLRD/SLWR/PKTEND
SLCS/FIF OADR [1:0]
tSFA tFAH
Figure 9-15. Slave FIFO Asynchronous Address Timing Diagr am[19]
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 47 of 55
9.16 S equence Diagr am
9.16.1 Single and Burst Synchr onous Read Example
Figure 9-16 shows the timing relationship of the SLAVE FIFO
signals during a synchronous FIFO read using IFCLK as the
synchronizing clock. The diagram illustrates a single read
followed by a burst read.
At t = 0 the FIFO address is stable and the signal SLCS is
asserted (SLCS may be tied low in some applications).
Note: tSFA has a minimum of 25 ns. This means when IFCLK
is r unning at 48 MHz, the FIFO addr ess set-up time is more
than one IFCLK cycle.
At = 1, SLOE is asserted. SLOE is an output enable only,
whose sole funct ion is t o drive the d ata bus. The data that
is driven on the bus is the data that the internal FIFO pointer
is currently pointing to. I n this example i t is the fi rst dat a
value in the FIFO. Note: the data is pre-fetched and is driven
on the bus when SLOE is asserted.
At t = 2, SLRD is asserted. SLRD must meet the set-up time
of tSRD (time from asse rting the SLRD signal to the rising
edge of the I FCLK) and maintain a minimum hold time of
tRDH (time from the IFCLK edge to t he deasserti on of the
SLRD signal). If the SLCS signal is used, it must be asserted
with SLRD, or before SLRD is asserted (i.e., the SLCS and
SLRD signal s mus t bot h be asserted to st art a valid read
condition).
The FIFO pointer is updated on the rising edge of the IFCLK,
while SLRD is ass erted. This start s th e propagation of data
from the newly add ressed location to the data bus. After a
propagation delay of tXFD (meas ured from the rising edge
of IFCLK) the new data value is present . N is the fi rst dat a
value read from the FIFO. In order to have data on the FIFO
data bus, SLOE MUST also be asserted.
The sam e sequen ce of events are shown for a burst read and
are marked with the time indicators of T = 0 through 5. Note:
For the burst mode, the SLRD and SLOE are left asserted
during t he entire dur ation of th e read. In the burst read mode,
when SLOE is asserted, data indexed by the FIFO pointer is
on the data bus. Dur ing the firs t read cycle , on t he risi ng e dge
of the clock the FIFO pointer is updated and increments to
point to address N+1. For each subsequent rising edge of
IFCLK, while the SLRD is asserted, the FIFO pointer is incre-
mented and the next data value is placed on the data bus.
IFCLK
SLRD
FLAGS
SLOE
DATA
Figure 9-16. Slave FIFO Synchronous Read Sequence and Timing Diagram
tSRD tRDH
tOEon
tXFD
tXFLG
tIFCLK
N+1
Data Driven: N
>= tSRD
tOEon
tXFD
N+2
tXFD tXFD
>= tRDH
tOEoff
N+4
N+3
tOEoff
tSFA tFAH
FIFOADR
SLCS
t=0
N+1
t=1
t=2 t=3
t=4
tFAH
T=0
tSFA
T=1
T=2 T=3
T=4
NNN+1 N+2
FIFO POINTER N+3
FIFO DATA BUS
N+4
Not Driven Driven: N
SLOE SLRD
N+1 N+2 N+3 Not Driven
SLRD
SLOE
IFCLK
Figure 9- 17. Sl ave FIFO Synchronous Sequence of Events Diagram
IFCLK IFCLK IFCLK IFCLK N+4
N+4
IFCLK IFCLKIFCLK IFCLK
SLRD
N+1 SLRD
N+1
N+1
SLOE
Not Driven
N+4
N+4
IFCLK
SLOE
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 48 of 55
9.16.2 Single and Burst Synchr onous Write
The Figure 9-18 shows the timing relationship of the SLAVE
FIFO signals during a synchronous write using IFCLK as the
synchronizing clock. The diagram illustrates a single write
fol lowed b y burst writ e o f 3 b ytes and commit ting all 4 by tes as
a short packet using the PKTEND pin.
At t = 0 the FIFO address is stable and the signal SLCS is
asserted. (SL CS may be tied low in some applications)
Note: tSFA has a minimum of 25 ns. This means when IFCLK
is r unning at 48 MHz, the FIFO addr ess set-up time is more
than one IFCLK cycle.
At t = 1, the external master/perip heral must outputs the
dat a value onto the dat a bus with a minimum set up time of
tSFD before the r ising edge of IFCLK.
At t = 2, SLWR is asserted. The SLWR must meet the set-
up t ime of t SWR (time from as serting the SL WR signal to t he
ris ing e dge of I FCLK) and main tai n a m ini mum ho ld t ime of
tWRH (t ime from the IFCLK edge to the deassertion of the
SLWR signal). If SLCS signal is used, it must be asserted
with SL WR or b efo re SLWR is asserte d. (i.e. the SL CS and
SLWR signals must both be asserted to start a valid write
condition).
While the SL WR is asserted, data is written to the FIFO and
on the ri sing edge of the IFCLK, t he FIFO pointer is incre-
mented. Th e FIFO f lag wi ll also b e upd ate d aft er a delay of
tXFLG f rom the risi ng edge of the clock.
The sa me sequ ence of event s a re al so shown f or a bur st wri te
and are marked with the time indicators of T = 0 through 5.
Note: For the burst mode, SLWR and SLCS are left asserted
for the enti re dur ation o f writi ng all t he requi red dat a values. In
thi s burst wr ite mode, o nce t he SLWR is assert ed, the data on
the FIFO data bus is written to the FIFO on every rising edge
of IFCLK. The FIFO pointer is updated on each rising edge of
IFCLK. In Figure 9-18, once the four bytes are written to the
FIFO, SLWR is deasserted. The short 4-byte packet can be
committed to the host by asserting the PKTEND signal.
There is no specific timing requirement that needs to be met
for asserting PKTEND signal with regards to asserting the
SLWR signal. PKTEND can be asserted with the last data
value or ther eafter. The o nly requirement i s that the se t-up time
tSPE and the hold time tPEH must be met. In the scenario of
Figure 9-18, the number of data values committed includes the
last value written to the FIFO. In this example, both the data
value and the PKTEND signal are cl ocked on the sam e ri sing
edge of IFCLK. PKTEND can also be asserted in subsequent
clock cycles. The FIFOADDR lines should be held constant
during the PKTEND assertion.
Although there are no specific timing requirement for the
PKTEND assertion, there is a specific corner case condition
that ne eds atte ntion wh ile us ing the PKT END t o co mmit a one
byte/w ord packet. Additional timing requirements exists when
the FI FO is co nfigured to operate i n auto mode an d it i s desir ed
to send two packets: a full packet (full defined as the number
of bytes in the FIFO meeting the level set in AUTOINLEN
register) committed automatically followed by a short one
byte/ word pack et c ommitted man ual ly using th e PKTEND pin.
In this case, the external master must make sure to assert the
PKTEND pin atleast one clock cycle after the rising edge that
caused the last byt e/w ord to be clock ed in to the pr evious aut o
committed packet (the packet with the number of bytes equal
to w hat is se t in the A UTOINLE N regist er). Refe r to Figure 9-
10 for further details on this timing.
IFCLK
SLWR
FLAGS
DATA
Figure 9-18. Slave FIFO Synchronous Wri te Sequence and Timing Diagram[19]
tSWR tWRH
tSFD
tXFLG
tIFCLK
N
>= tSWR >= tWRH
N+3
PKTEND
N+2
tXFLG
tSFA tFAH
tSPE tPEH
FIFOADR
SLCS
tSFD tSFD tSFD
N+1
tFDH
tFDH
tFDH tFDH
t=0
t=1
t=2 t=3
tSFA
tFAH
T=1
T=0
T=2 T=5
T=3 T=4
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 49 of 55
9.16.3 Sequence Diagram of a Single and Burst Asynchronous Read
Figure 9-19 diagrams the timing relationship of the SLAVE
FIFO signals during an asynchronous FIFO read. It shows a
single read foll owed by a burst read.
At t = 0 th e FIFO address is stable and t he SLCS signal is
asserted.
At t = 1, SLOE is asserted. This results in the data bus being
driven. The data that is driven on to the bus is previous data,
it data that was in the FIFO from a prior read cycle.
At t = 2, SLRD is asserted. The SLRD must meet the
minimum active pulse of tRDpwl and minimum de-active
puls e widt h o f tRDpwh. If SLC S is used then, S LCS must be
in as sert ed with SLRD or before SLRD is a sserted (i.e ., the
SLCS and SLRD signal s m ust both be assert ed to start a
vali d read condit ion.)
The data that will be driven, after asserting SLRD, i s the
updated data from the FIFO. This data is valid after a propa-
gation delay of tXFD from the activating edge of SLRD. In
Figure 9-19, data N is the first valid data read from the FIFO.
For data to appear on the data bus during the read cycle
(i.e. ,SLRD is a s serted), SLOE M U S T be i n a n as s e rted
state. SLRD and SLOE can also be tied together.
The same sequence of events is also shown for a burst read
marked wi th T = 0 t hrough 5. Note: In b urst read mode, du ring
SLOE is as sertion, th e data bus is in a driven s tate and o utputs
the previous data. Once SLRD is asserted, the data from the
FIFO is dr iven on the data bus (SLOE must also be asserted)
and then the FI FO pointer is incr em ented.
SLRD
FLAGS
SLOE
DATA
Figure 9-19. Slave FIFO Asynchronous Read Sequence and Timing Diagram
tRDpwh
tRDpwl
tOEon
tXFD
tXFLG
N
Da ta (X)
tXFD
N+1
tXFD
tOEoff
N+3
N+2
tOEoff
tXFLG
tSFA tFAH
FIFOADR
SLCS
Driven
tXFD
tOEon
tRDpwh
tRDpwl tRDpwh
tRDpwl tRDpwh
tRDpwl
tFAH tSFA
N
t=0 T=0
T=1 T=7
T=2 T=3 T=4 T=5 T=6
t=1
t=2 t=3
t=4
NN
SLOE SLRD
FIFO POINTER
N+3
FIFO DATA BUS Not Driven Driven: X N Not Driven
SLOE
N
N+2
N+3
Figure 9- 20. Slave FIFO Asynchronous Read Sequence of Events Diagram
SLRD
N
N+1
SLRD
N+1
SLRD
N+1
N+2
SLRD
N+2
SLRD
N+2
N+1
SLOE
Not Driven
SLOE
N
N+1
N+1
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 50 of 55
9.16.4 Sequence Diagram of a Single and Burst Asynchronous W rite
Figure 9-21 diagrams the timing relationship of the SLAVE
FIFO write in an asynchronous mode. The diagram shows a
sing le wr it e fo ll owed by a burst writ e of 3 by tes and committin g
the 4-byte-short packet usi ng PKTEND.
·At t = 0 t he FIFO addr ess is appli ed, i nsuri ng t hat i t meet s the
set-up time of tSFA. If SLCS is used, it must also be asserted
(SLCS may be tied low in some applications).
·..At t = 1 SLWR is as ser ted. SLWR mu st meet the minim um
active pulse of tWRpwl and minimum de-active pulse width of
tWRpwh. If the SLCS is used, it must be in asser ted with SL W R
or before SLWR i s asserted.
·At t = 2, data must be present on the bus t SFD before the de-
asserting edge of SLWR.
·At t = 3, de-a sserting SLWR will cause the data to be written
from the data bus to the FIFO and then increments the FIFO
pointer. The FIFO flag is also updated aft er tXFLG from the de-
asserting edge of SLWR.
The same se quence of ev ents ar e shown for a burs t write and
is indicated by the timing marks of T = 0 through 5. Note: In
the burst write mode, once SLWR is deasserted, the data is
written to the FIFO and then the FIFO pointer is incremented
to the next byte in the FIFO. The FIFO pointer is post incre-
mented.
In Figure 9-21 once the four byt es are written to the FIFO and
SLWR is deasserted, the short 4-byte packet can be
committ ed to th e host using the PKTEND. The exter nal d evice
should be designed to not assert SLWR and the PKTEND
signal at the same time. It should be designed to assert the
PKTEND aft er SLWR is de-asserted and met the mi nimum de-
asserted pulse width. The FIFOADDR lines are to be held
constant during the PKTEND assertion.
PKTEND
SLWR
FLAGS
DATA
Figure 9-21. Slave FIFO Asynchronous Write Sequence and Timing Diagram[19]
tWRpwh
tWRpwl
tXFLG
N
tSFD
N+1
tXFLG
tSFA tFAH
FIFOADR
SLCS
tWRpwh
tWRpwl tWRpwh
tWRpwl tWRpwh
tWRpwl
tFAH tSFA
tFDH tSFD
N+2
tFDH tSFD
N+3
tFDH
tSFD tFDH
tPEpwh
tPEpwl
t=0
t=2
t =1 t=3
T=0
T=2
T=1 T=3 T=6 T=9
T=5 T=8
T=4 T=7
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 51 of 55
10.0 Ordering Information
11. 0 Package Diagr ams
The FX2LP is available in four packages:
56-pi n SSO P
56-pin QFN
100-pin TQFP
128-pin TQFP
Table 10- 1. Ordering Information
Ordering Code Package Type RAM Size # Prog I/Os 8051 Addre ss
/Data Busses
Ideal for batter y pow ered applications
CY7C68014A-128AXC 128 TQFP – Le ad-Free 16K 40 16/8 bit
CY7C68014A-100AXC 100 TQFP – Lead-Free 16K 40
CY7C68014A-56PVXC 56 SSOP – Lead-Free 16K 24
CY7C68014A-56LFXC 56 QFN – Lead-Free 16K 24
CY7C68015A-56LFXC 56 QFN – Lead-Free 16K 26
Ideal for non-battery powered applications
CY7C68013A-128AXC 128 TQFP – Le ad-Free 16K 40 16/8 bit
CY7C68013A-100AXC 100 TQFP – Lead-Free 16K 40
CY7C68013A-56PVXC 56 SSOP – Lead-Free 16K 24
CY7C68013A-56LFXC 56 QFN – Lead-Free 16K 24
CY7C68015A-56LFXC 56 QFN – Lead-Free 16K 26
CY3684 EZ-USB FX2LP Deve lopment Kit
Package Diagrams
51-85062-*C
Figure 11-1. 56-l ead Shrunk Small Outline Package O56
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 52 of 55
Package Diagrams (continued)
51-85144-*D
Figure 11-2. 56-lead Qua d Flatpack No Lead Package (8 – 8 mm ) LF56
Dimensions in millimeters
E-Pad size 4.3 mm x 5.0 mm (typ).
51-85050-*A
Figure 11-3. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 53 of 55
12.0 PCB Layout Recommendations[24]
The following recommendations should be fol lowed to ensure
reliable high-performance operation.
At l east a four- layer impedance controlled boards are re-
quired to maint ain signal quality.
S pecify i mpe dance targets (ask your board vendor what
they can achieve).
T o control impedance, maintain trace widths and trace spac-
ing.
Minimize stubs to minimize reflected signals.
Con nections bet ween the USB connector shell and si gnal
ground must be done near the USB connector.
Bypass/flyback caps on VBus, near connector, are recom-
mended.
DPLUS and DMINUS trace lengths should be kept to within
2 mm of each other in length , with preferr ed length of 20-
30 mm.
Maintain a solid ground plane under the DPLUS and DMI-
NUS traces. Do not allow the plane to be split under these
traces.
It is preferred is to have no vi as placed on the DPLUS or
DMINUS trace routi ng.
Isolate the DPLUS and DMINUS traces from all other signal
traces by no less than 10 mm.
13. 0 Quad Fla t Packag e No Le ad s (QFN )
Package Design Notes
Electri cal c ontact of the p art to the Print ed Circuit Board (PCB)
is made by soldering the leads on the bottom surface of the
package to the PCB. Hence, speci al att ention is required to the
heat transfer area below the package to provide a good
thermal bond to the circuit board. A Copper (Cu) fill is to be
designed into the PCB as a thermal pad under the package.
Heat is trans ferr ed from t he FX2LP thr ough the device’s metal
paddle on the bottom side of the package. Heat from here, is
conducted to the PCB at the thermal pad. It i s then conducted
from t he ther mal pad to the PCB i nner gr ound plane by a 5 x 5
array of via. A via is a plated through hole in the PCB with a
finished diameter of 13 mil. The QFN’s metal die paddle must
be soldered to the PCB’s thermal pad. Solder m ask is placed
on the board top side over each via to resist solder flow into
the via. The mask on the top side also minimizes outgassing
during the solder reflow process.
Note:
24. Source for recommendations: EZ-USB FX2™PCB Design Recommendations, http://www.cypress.com/cfuploads/support/app_notes/FX2_PCB.pdf and High
Speed USB Platform Design Guidelines, http://www.usb.org/developers/docs/hs_usb_pdg_r1_0.pdf.
Package Diagrams (continued)
51-85101-*B
Figure 11-4. 128-Lead Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A128
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Documen t #: 38- 08032 Rev. *G Page 54 of 55
© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypr ess does not authorize its
products for use as critical components in life-s upport systems where a malfunction or failure may reasonably be expected to result in significant injur y to the user. The inclusion of Cypress
For fur ther inf ormation on this packa ge design please refer t o
the application note Surface Mount Assembly of AMKOR’s
Micr oLeadFrame ( MLF) T echnology . This ap plication not e can
be downloaded from AMKOR’s website from the following
URL
http://www.amkor.com/products/notes_papers/MLF_AppNote
_0902.pdf. The application note pro vides detai led info rmation
on boar d moun ting gui deline s, sol derin g flow, r ework pr oce ss,
etc.
Figure 13-1 belo w displ ays a cr oss-sec ti onal a rea under neat h
the package. The cross section is of only one via. The solder
paste template needs to be designed to allow at least 50%
solder coverage. The thickness of the solder paste template
should be 5 mil. It is recommended that “No Clean” type 3
solder paste is used for mounting the part. Nitrogen purge is
recomme nded during ref low.
Figure 13-2 is a pl ot of t he s older mas k pat tern an d Figure 13-
3 displays an X-Ray image of the assembly (darker areas
i nd icate solder).
Purcha se o f I2C compo nent s f rom Cypress, or o ne o f its subli censed Asso ciated Comp anies, c onveys a l icense unde r the Phili ps
I2C Patent Rights to use th ese components in an I2C sy ste m, provided that the syst em conforms to t he I2C Sta ndard S peci fica tion
as defined by Philips. EZ- USB FX2LP, EZ-USB FX2 and ReNum erat ion are trademarks, and EZ-USB is a regist ered trad em ark,
of Cypr ess Semi conduct or Corpora tion. All prod uct and comp any names ment i oned in this docu ment ar e the trad emarks of t heir
respective holders.
0.017” dia
Solder Mask Cu Fill
Cu Fill
PCB Material
PCB Material 0.013” dia
Via hole for thermally connecting the
QFN to the circuit board ground plane. This figure only shows the top three layers of the
circuit board: Top Solder, PCB Dielectric, and
the Ground Plane
Figure 13-1. Cross-section of the Area Underneath the QFN Package
Figure 13-2. Plot of the Solder Mask (White Area)
Figure 13-3. X-ray Imag e of the Assembly
CY7C68013A/CY7C68014A
CY7C68015A/CY7C68016A
Docum ent #: 38-08032 Rev. *G Page 55 of 55
Document History Page
Document Title: CY7C68013A EZ-USB FX2LP™ USB Microcontroller High-Speed USB Peripheral Controller
Document Number: 38-08032
REV. ECN NO. Is sue Date Orig. of
Change Descr iption of Change
** 124316 03/17/ 03 VCS New data sheet
*A 128461 09/02/03 VCS Added PN CY7C68015A throughout data sheet
Modified Figure 1-1 to add ECC block and fix errors
Removed word “co mp atible ” wher e associated wi th I2C
Corrected grammar and f ormatting in various loc ations
Updated Sections 3. 2.1, 3.9, 3.11, Table 3-9, Sect io n 5 .0
Added Sections 3.15, 3.18.4, 3.20
Modified Figure 3-5 for clarity
Updated Figure 11-2 to match current spec revision
*B 13033 5 10/09/03 KKV Restor ed PRELIMINARY to header (had been removed in error from re v. *A)
*C 131673 02/12/04 KKU Section 8.1 changed “certi fi ed” to “compl iant”
Table 8-1 added parameter VIH_X and VIL_X
Added Sequence diagrams Section 9.16
Updated Ordering infor m ation with lead- free parts
Updated Registry Summar y
Section 3.12.4:example changed to column 8 from column 9
Updated Figure 9-3 memory write ti m ing Di agram
Updated section 3.9 (reset)
Updated section 3.15 ECC Gene rat ion
*D 230713 See ECN KKU Changed Lead free Marketing part numbers in Table 10-1 according to spec
change in 28-00054.
*E 242398 See ECN TMD Minor Change: data sheet posted to the web,
*F 271169 See ECN MON Added USB-IF Test I D numbe r
Added USB 2.0 logo
Added values for Isusp, Icc, Power Dessipation, Vih_x, Vil_x
Changed VCC from + 10% t o + 5%
Changed E -Pad si ze to 4.3 mm x 5.0 mm
Changed PKTEND to FLAGS output propagation delay (asynchronous
interface) in Table 9-14 from a max value of 70 ns to 115 ns
*G 316313 See ECN MON Removed CY7C68013A-56PVXCT part availability
Added parts ideal for batt ery powered applications
-CY7C68014A
-CY7C68016A
Provided additional timing restrictions and requirement regarding the use of
PKETEND pin to commit a short one byte/word packet subsequent to
commiting a packet automatically (when in auto mode).
Added MIn Vcc Ramp Up time (0 to 3.3v)