HCS12
Microcontrollers
freescale.com
MC9S12DT128
Device User Guide
Covers MC9S12DT128E, MC9S12DG128E,
MC9S12DJ128E, MC9S12DG128, MC9S12DJ128,
MC9S12DB128, MC9S12A128, SC515846, SC515847,
SC515848, SC515849, SC101161DT, SC101161DG,
SC101161DJ, SC102202, SC102203, SC102204,
SC102205
9S12DT128DGV2/D
V02.15
05 OCT 2005
Device User Guide — 9S12DT128DGV2/D V02.15
2Freescale Semiconductor
Revision History
Version
Number Revision
Date Effective
Date Author Description of Changes
V01.00 18 Jun
2001 18 June
2001 Initial version (parent doc v2.03 dug for dp256).
V01.01 23 July
2001 23 July
2001 Updated version after review
V01.02 23 Sep
2001 23 Sep
2001
Changed Partname, added pierce mode, updated electrical
characteristics
some minor corrections
V01.03 12 Oct
2001 12 Oct
2001 Replaced Star12 by HCS12
V01.04 27 Feb
2002 27 Feb
2002
Updated electrical spec after MC-Qualification (IOL/IOH), Data for
Pierce, NVM reliability
New document numbering. Corrected Typos
V01.05 4 Mar
2002 4 Mar
2002 Increased VDD to 2.35V, removed min. oscillator startup
Removed Document order number except from Cover Sheet
V01.06 8 July
2002 22 July
2002
Added:
Pull-up columns to signal table,
example for PLL Filter calculation,
Thermal values for junction to board and package,
BGND pin pull-up
Part Order Information
Global Register Table
Chip Configuration Summary
Modified:
Reduced Wait and Run IDD values
Mode of Operation chapter
changed leakage current for ADC inputs down to +-1uA
Corrected:
Interrupt vector table enable register inconsistencies
PCB layout for 80QFP VREGEN position
V02.00 11 Jan
2002 11 Jan
2002
NEW MASKSET
Changed part number from DTB128 to DT128
Functional Changes:
ROMCTL changes in Emulation Mode
80 Pin Byteflight package Option available
Flash with 2 Bit Backdoor Key Enable
Additional CAN0 routing to PJ7,6
Improved BDM with sync and acknowledge capabilities
New Part ID number
Improvements:
Significantly improved NVM reliability data
Corrections:
Interrupt vector Table
V02.01 01 Feb
2002 01 Feb
2002 Updated Block User Guide versions in preface
Updated Appendix A Electrical Characteristics
Device User Guide — 9S12DT128DGV2/D V02.15
Freescale Semiconductor 3
V02.02 08 Mar
2002 08 Mar
2002
Changed XCLKS to PE7 in Table 2-2
Updated device part numbers in Figure 2-1
Updated BDM clock in Figure 3-1
Removed SIM description in ov erview & nUPOSC spec in Table A-15
Updated electrical spec of VDD & VDDPLL (Table A-4), IOL/IOH
(Table A-6), CINS (Table A-9), CIN (Table A-6 & A-15),
Updated interrupt pulse timing variables in Table A-6
Updated device part numbers in Figure 2-1
Added document numbers on cover page and Table 0-2
V02.03 14 Mar
2002 14 Mar
2002
Cleaned up Fig. 1-1, 2-1
Updated Section 1.5 descriptions
Corrected PE assignment in Table 2-2, Fig. 2-5,6,7.
Corrected NVM sizes in Sections 16, 17
Added IREF spec for 1ATD in Table A-8
Added Blank Check in A.3.1.5 and Table A-11
Updated CRG spec in Table A-15
V02.04 16 Aug
2002 16 Aug
2002
Added:
Pull-up columns to signal table,
Example for PLL Filter calculation,
Thermal values for junction to board and package,
BGND pin pull-up
Part Order Information
Global Register Table
Chip Configuration Summary
Device specific info on CRG
Modified:
Reduced Wait and Run IDD values
Mode of Operation chapter
Changed leakage current for ADC inputs down to +-1uA
Minor modification of PLL frequency/ voltage gain values
Corrected:
Pin names/functions on 80 pin packages
Interrupt vector table enable register inconsistencies
PCB layout for 80QFP VREGEN position
V02.05 12 Sep
2002 12 Sep
2002 Corrected:
Register address mismatches in 1.5.1
V02.06 06 Nov
2002 06 Nov
2002
Removed document order no. from Revision History pages
Renamed "Preface" section to "Derivative Differences and
Document references". Added details for derivatives missing
CAN0/1/4, BDLC, IIC and/or Byteflight
Added 2L40K mask set in section 1.6
Added OSC User Guide in Preface, “Document References”
Added oscillator clock connection to BDM in S12_CORE in fig 3-1
Corrected several register and bit names in “Local Enable” column
of Table 5.1 Interrupt Vector Locations
Section HCS12 Core Block Description: mentioned alternate clock
of BDM to be equivalent to oscillator clock
Added new section: “Oscillator (OSC) Block Description”
Corrected in footnote of Table "PLL Characteristics": fOSC = 4MHz
Version
Number Revision
Date Effective
Date Author Description of Changes
Device User Guide — 9S12DT128DGV2/D V02.15
4Freescale Semiconductor
V02.07 29 Jan
2003 29 Jan
2003
Added 3L40K mask set in section 1.6
Corrected register entries in section 1.5.1 “Detailed Memory Map”
Updated description for ROMCTL in section 2.3.31
Updated section 4.3.3 “Unsecuring the Microcontroller”
Corrected and updated device-specific information for OSC
(section 8.1) & Byteflight (section 15.1)
Updated footnote in Table A-4 “Operating Conditions”
Changed reference of VDDM to VDDR in section A.1.8
Removed footnote on input leakage current in Table A-6 “5V I/O
Characteristics”
V02.08 26 Feb
2003 26 Feb
2003
Added part numbers MC9S12DT128E, MC9S12DG128E, and
MC9S12DJ128E in “Preface” and related part number references
Removed mask sets 0L40K and 2L40K from Table 1-3
V02.09 15 Oct
2003 15 Oct
2003
Replaced references to HCS12 Core Guide by the individual
HCS12 Block guides in Table 0-2, section 1.5.1, and section 6;
updated Fig.3-1 “Clock Connections” to sho w the individual HCS12
blocks
Corrected PIM module name and document order number in Table
0-2 “Document References”
Corrected ECT pulse accumulators description in section 1.2
“Features”
Corrected KWP5 pin name in Fig 2-1 112LQFP pin assignments
Corrected pull resistor CTRL/reset states for PE7 and PE4-PE0 in
Table 2.1 “Signal Properties”
Mentioned “S12LRAE” bootloader in Flash section 17
Corrected footnote on clamp of TEST pin under Table A-1
“Absolute Maximum Ratings”
Corrected minimum bus frequency to 0.25MHz in Table A-4
“Operating Conditions”
Replaced “burst prog r amming” by “row prog r amming” in A.3 “NVM,
Flash and EEPROM”
Corrected blank check time for EEPROM in Table A-11 “NVM
Timing Characteristics”
Corrected operating frequency in Table A-18 “SPI Master/Slave
Mode Timing Characteristics
V02.10 6 Feb
2004 6 Feb
2004
Added A128 information in “Derivative Differences”, 2.1 “Device
Pinout”, 2.2 “Signal Properties Summary”, Fig 23-2 & Fig 23-4
Added lead-free package option (PVE) in Table 0-2 “Derivative
Differences for MC9S12DB128” and Fig 0-1 “Order Partnumber
Example”
Added an “AEC qualified” row in the “Derivative Differences” tables
0-1 & 0-2.
V02.11 3 May
2004 3 May
2004
Added part numbers SC515846, SC515847, SC515848, and
SC515849 in “Derivative Differences” tables 0-1 & 0-2, section 2,
and section 23.
Corrected and added maskset 4L40K in tables 0-1 & 0-2 and
section 1.6.
Corrected BDLC module availability in DB128 80QFP part in
“Derivative Differences” table 0-2.
Version
Number Revision
Date Effective
Date Author Description of Changes
Device User Guide — 9S12DT128DGV2/D V02.15
Freescale Semiconductor 5
V02.12 06 Dec
2004 06 Dec
2004
Added maskset 0L94R
Added items VIH,EXTAL, VIL,EXTAL, & VHYS,EXTAL in table A-15
“Oscillator characteristics”
Remov ed item “Oscillator” from table A-4 “Oper ating Conditions” as
it is already covered in table “Oscillator Characteristics”
V02.13 04 Mar
2005 04 Mar
2005 Amended feature list of A128 in Table 0-1 “Derivative Differences”
V02.14 28 Apr
2005 28 Apr
2005
Updated cover page
Added part numbers SC101161DT, SC101161DG, SC101161DJ,
SC102202, SC102203, SC102204, & SC102205
Added masksets 5L40K &1L59W
Changed TJavg to 85°C in table A-12 “NVM Reliability” & added
footnote concerning data retention
V02.15 05 Oct
2005 05 Oct
2005 Updated “NVM Reliability” table A-12 format with added data.
Added figure A-2 “Typical Endurance vs Temperature”
Version
Number Revision
Date Effective
Date Author Description of Changes
Device User Guide — 9S12DT128DGV2/D V02.15
6Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.15
7
Freescale Semiconductor
Table of Contents
Section 1 Introduction
1.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5 Device Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.5.1 Detailed Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.6 Part ID Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Section 2 Signal Description
2.1 Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.2 Signal Properties Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3 Detailed Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.1 EXTAL, XTAL — Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.2 RESET — External Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.3 TEST — Test Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.4 XFC — PLL Loop Filter Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.5 BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin . . . . . 64
2.3.6 PAD[15] / AN1[7] / ETRIG1 — Port AD Input Pin [15] . . . . . . . . . . . . . . . . . . . . . 65
2.3.7 PAD[14:8] / AN1[6:0] — Port AD Input Pins [14:8]. . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.8 PAD[7] / AN0[7] / ETRIG0 — Port AD Input Pin [7] . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.9 PAD[6:0] / AN0[6:0] — Port AD Input Pins [6:0]. . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.10 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins . . . . . . . . . . . . . . . . . . . . 65
2.3.11 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins . . . . . . . . . . . . . . . . . . . . . . 65
2.3.12 PE7 / NOACC / XCLKS — Port E I/O Pin 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.13 PE6 / MODB / IPIPE1 — Port E I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.14 PE5 / MODA / IPIPE0 — Port E I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.15 PE4 / ECLK — Port E I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.16 PE3 / LSTRB / TAGLO — Port E I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.17 PE2 / R/W — Port E I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.18 PE1 / IRQ — Port E Input Pin 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.19 PE0 / XIRQ — Port E Input Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.20 PH7 / KWH7 — Port H I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Device User Guide — 9S12DT128DGV2/D V02.15
8Freescale Semiconductor
2.3.21 PH6 / KWH6 — Port H I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.3.22 PH5 / KWH5 — Port H I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.3.23 PH4 / KWH4 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.3.24 PH3 / KWH3 / SS1 — Port H I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.3.25 PH2 / KWH2 / SCK1 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.3.26 PH1 / KWH1 / MOSI1 — Port H I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.3.27 PH0 / KWH0 / MISO1 — Port H I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.3.28 PJ7 / KWJ7 / TXCAN4 / SCL / TXCAN0 — PORT J I/O Pin 7. . . . . . . . . . . . . . . 68
2.3.29 PJ6 / KWJ6 / RXCAN4 / SDA / RXCAN0 — PORT J I/O Pin 6 . . . . . . . . . . . . . . 69
2.3.30 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.3.31 PK7 / ECS / ROMCTL — Port K I/O Pin 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.3.32 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0] . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.3.33 PM7 / BF_PSLM / TXCAN4 — Port M I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.3.34 PM6 / BF_PERR / RXCAN4 — Port M I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.3.35 PM5 / BF_PROK / TXCAN0 / TXCAN4 / SCK0 — Port M I/O Pin 5 . . . . . . . . . . 69
2.3.36 PM4 / BF_PSYN / RXCAN0 / RXCAN4/ MOSI0 — Port M I/O Pin 4. . . . . . . . . . 70
2.3.37 PM3 / TX_BF / TXCAN1 / TXCAN0 / SS0 — Port M I/O Pin 3 . . . . . . . . . . . . . . 70
2.3.38 PM2 / RX_BF / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2. . . . . . . . . . . . 70
2.3.39 PM1 / TXCAN0 / TXB — Port M I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.3.40 PM0 / RXCAN0 / RXB — Port M I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.3.41 PP7 / KWP7 / PWM7 — Port P I/O Pin 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.3.42 PP6 / KWP6 / PWM6 — Port P I/O Pin 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.3.43 PP5 / KWP5 / PWM5 — Port P I/O Pin 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.3.44 PP4 / KWP4 / PWM4 — Port P I/O Pin 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.3.45 PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3. . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.3.46 PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . 71
2.3.47 PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1. . . . . . . . . . . . . . . . . . . . . . . . 71
2.3.48 PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . 71
2.3.49 PS7 / SS0 — Port S I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.3.50 PS6 / SCK0 — Port S I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.3.51 PS5 / MOSI0 — Port S I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.3.52 PS4 / MISO0 — Port S I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.3.53 PS3 / TXD1 — Port S I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.3.54 PS2 / RXD1 — Port S I/O Pin 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.3.55 PS1 / TXD0 — Port S I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.3.56 PS0 / RXD0 — Port S I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Device User Guide — 9S12DT128DGV2/D V02.15
9
Freescale Semiconductor
2.3.57 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.4 Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers. . . . . . . . . . . . . . . . . . . . . 73
2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.4.3 VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Supply Pins. . . . . . . . . . . . 73
2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG . . . . . . . . . . . . . . . . . . 74
2.4.5 VRH, VRL — ATD Reference Voltage Input Pins . . . . . . . . . . . . . . . . . . . . . . . . 74
2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL. . . . . . . . . . . . . . . . . . . . . . . . 74
2.4.7 VREGEN — On Chip Voltage Regulator Enable. . . . . . . . . . . . . . . . . . . . . . . . . 74
Section 3 System Clock Description
3.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Section 4 Modes of Operation
4.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Chip Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
4.3.1 Securing the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.2 Operation of the Secured Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.3 Unsecuring the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.1 Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.2 Pseudo Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.3 Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.4 Run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Section 5 Resets and Interrupts
5.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.1 Vector Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Effects of Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.1 I/O pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Section 6 HCS12 Core Block Description
6.1 CPU Block Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Device User Guide — 9S12DT128DGV2/D V02.15
10 Freescale Semiconductor
6.1.1 Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 HCS12 Module Mapping Control (MMC) Block Description. . . . . . . . . . . . . . . . . . . 85
6.2.1 Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3 HCS12 Multiplexed External Bus Interface (MEBI) Block Description . . . . . . . . . . . 85
6.3.1 Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4 HCS12 Interrupt (INT) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.5 HCS12 Background Debug Module (BDM) Block Description. . . . . . . . . . . . . . . . . 86
6.5.1 Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.6 HCS12 Breakpoint (BKP) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Section 7 Clock and Reset Generator (CRG) Block Description
7.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Section 8 Oscillator (OSC) Block Description
8.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Section 9 Enhanced Capture Timer (ECT) Block Description
Section 10 Analog to Digital Converter (ATD) Block Description
Section 11 Inter-IC Bus (IIC) Block Description
Section 12 Serial Communications Interface (SCI) Block Description
Section 13 Serial Peripheral Interface (SPI) Block Description
Section 14 J1850 (BDLC) Block Description
Section 15 Byteflight (BF) Block Description
15.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Section 16 Pulse Width Modulator (PWM) Block Description
Section 17 Flash EEPROM 128K Block Description
Section 18 EEPROM 2K Block Description
Section 19 RAM Block Description
Device User Guide — 9S12DT128DGV2/D V02.15
11
Freescale Semiconductor
Section 20 MSCAN Block Description
Section 21 Port Integration Module (PIM) Block Description
Section 22 Voltage Regulator (VREG) Block Description
Section 23 Printed Circuit Board Layout Proposal
Appendix A Electrical Characteristics
A.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.1.1 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.1.2 Power Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.1.3 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.1.4 Current Injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.1.5 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.1.6 ESD Protection and Latch-up Immunity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.1.7 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.1.8 Power Dissipation and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 101
A.1.9 I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.1.10 Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.2 ATD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.2.1 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.2.2 Factors influencing accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.2.3 ATD accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.3 NVM, Flash and EEPROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.3.1 NVM timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.3.2 NVM Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.4 Voltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.5 Reset, Oscillator and PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.5.1 Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.5.2 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.5.3 Phase Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.6 MSCAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.7 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.7.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.7.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Device User Guide — 9S12DT128DGV2/D V02.15
12 Freescale Semiconductor
A.8 External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.8.1 General Multiplexed Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Appendix B Package Information
B.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
B.2 112-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
B.3 80-pin QFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Device User Guide — 9S12DT128DGV2/D V02.15
13
Freescale Semiconductor
List of Figures
Figure 0-1 Order Partnumber Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 1-1 MC9S12DT128 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 1-2 MC9S12DT128 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 2-1 Pin assignments 112 LQFP for MC9S12DT128E, MC9S12DT128,
MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12DB128
MC9S12A128, SC515846, SC515847, SC515848, SC515849, SC101161DT, SC101161DG,
SC101161DJ, SC102202, SC102203, SC102204, and SC102205 . . . . . . . . . . . . . . . . . . 58
Figure 2-2 Pin Assignments in 80 QFP for MC9S12DG128E, MC9S12DG128,
MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG,
SC101161DJ, SC102203, and SC102204 Bondout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 2-3 Pin Assignments in 80 QFP for MC9S12DB128, SC515846, and SC102202 Bond-
out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 2-4 PLL Loop Filter Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 2-5 Colpitts Oscillator Connections (PE7=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 2-6 Pierce Oscillator Connections (PE7=0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 2-7 External Clock Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 3-1 Clock Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 23-1 Recommended PCB Layout for 112LQFP Colpitts Oscillator . . . . . . . . . . . . 91
Figure 23-2 Recommended PCB Layout for 80QFP (MC9S12DG128E, MC9S12DG128,
MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG,
SC101161DJ, SC102203, and SC102204) Colpitts Oscillator . . . . . . . . . . . . . . . . . . . . . . 92
Figure 23-3 Recommended PCB Layout for 112LQFP Pierce Oscillator . . . . . . . . . . . . . 93
Figure 23-4 Recommended PCB Layout for 80QFP (MC9S12DG128E, MC9S12DG128,
MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG,
SC101161DJ, SC102203, and SC102204) Pierce Oscillator . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 23-5 Recommended PCB Layout for 80QFP (MC9S12DB128, SC515846, and
SC102202) Pierce Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure A-1 ATD Accuracy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure A-2 Typical Endurance vs Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure A-3 Basic PLL functional diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure A-4 Jitter Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure A-5 Maximum bus clock jitter approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure A-6 SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure A-7 SPI Master Timing (CPHA =1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure A-8 SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure A-9 SPI Slave Timing (CPHA =1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Device User Guide — 9S12DT128DGV2/D V02.15
14 Freescale Semiconductor
Figure A-10 General External Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Figure 23-6 112-pin LQFP mechanical dimensions (case no. 987) . . . . . . . . . . . . . . . . 138
Device User Guide — 9S12DT128DGV2/D V02.15
15
Freescale Semiconductor
List of Tables
Table 0-1 Derivative Differences1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 0-2 Derivative Differences for MC9S12DB1281. . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 0-3 Document References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 1-1 Device Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
$0000 - $000FMEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface) ................... 32
$0010 - $0014 MMC map 1 of 4 (HCS12 Module Mapping Control) ................................. 32
$0015 - $0016 INT map 1 of 2 (HCS12 Interrupt) .............................................................. 33
$0017 - $0017MMC map 2 of 4 (HCS12 Module Mapping Control) .................................. 33
$0018 - $0019Reserved ..................................................................................................... 33
$001A - $001B Device ID Register ((Table 1-3)) ............................................................... 33
$001C - $001D MMC map 3 of 4 (HCS12 Module Mapping Control, (Table 1-4)) ............ 33
$001E - $001EMEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface) .................. 33
$001F - $001FINT map 2 of 2 (HCS12 Interrupt) ............................................................... 34
$0020 - $0027 Reserved .................................................................................................... 34
$0028 - $002F BKP (HCS12 Breakpoint) ........................................................................... 34
$0030 - $0031 MMC map 4 of 4 (HCS12 Module Mapping Control) ................................. 34
$0032 - $0033 MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface) .................. 34
$0034 - $003F CRG (Clock and Reset Generator) ............................................................ 35
$0040 - $007F ECT (Enhanced Capture Timer 16 Bit 8 Channels) ................................... 35
$0080 - $009F ATD0 (Analog to Digital Converter 10 Bit 8 Channel) ................................ 38
$00A0 - $00C7 PWM (Pulse Width Modulator 8 Bit 8 Channel) ........................................ 39
$00C8 - $00CF SCI0 (Asynchronous Serial Interface) ...................................................... 41
$00D0 - $00D7 SCI1 (Asynchronous Serial Interface) ....................................................... 41
$00D8 - $00DF SPI0 (Serial Peripheral Interface) ............................................................. 42
$00E0 - $00E7 IIC (Inter IC Bus) ....................................................................................... 42
$00E8 - $00EF BDLC (Byte Level Data Link Controller J1850) ......................................... 43
$00F0 - $00F7 SPI1 (Serial Peripheral Interface) .............................................................. 43
$00F8 - $00FF Reserved ................................................................................................... 43
$0100 - $010F Flash Control Register (fts128k2) .............................................................. 44
$0110 - $011B EEPROM Control Register (eets2k) .......................................................... 44
$011C - $011F Reserved for RAM Control Register .......................................................... 45
$0120 - $013F ATD1 (Analog to Digital Converter 10 Bit 8 Channel) ................................ 45
$0140 - $017F CAN0 (Motorola Scalable CAN - MSCAN) ................................................ 46
Device User Guide — 9S12DT128DGV2/D V02.15
16 Freescale Semiconductor
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout. . . . . . . . 47
$0180 - $01BF CAN1 (Motorola Scalable CAN - MSCAN)................................................ 48
$01C0 - $01FF Reserved ................................................................................................... 49
$0200 - $023F Reserved .................................................................................................... 49
$0240 - $027F PIM (Port Integration Module) .................................................................... 50
$0280 - $02BF CAN4 (Motorola Scalable CAN - MSCAN) ................................................ 52
$02C0 - $02FF Reserved ................................................................................................... 53
$0300 - $035F Byteflight .................................................................................................... 53
$0360 - $03FF Reserved ................................................................................................... 55
Table 1-3 Assigned Part ID Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 1-4 Memory size registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 2-1 Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 2-2 MC9S12DT128 Power and Ground Connection Summary . . . . . . . . . . . . . . . 72
Table 4-1 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 4-2 Clock Selection Based on PE7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 4-3 Voltage Regulator VREGEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 5-1 Interrupt Vector Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 23-1 Suggested External Component Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table A-1 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table A-2 ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table A-3 ESD and Latch-Up Protection Characteristics. . . . . . . . . . . . . . . . . . . . . . . . 100
Table A-4 Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table A-5 Thermal Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table A-6 5V I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table A-7 Supply Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table A-8 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table A-9 ATD Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table A-10 ATD Conversion Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table A-11 NVM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table A-12 NVM Reliability Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table A-13 Voltage Regulator Recommended Load Capacitances. . . . . . . . . . . . . . . . . 117
Table A-14 Startup Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table A-15 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table A-16 PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table A-17 MSCAN Wake-up Pulse Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table A-18 SPI Master Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Device User Guide — 9S12DT128DGV2/D V02.15
17
Freescale Semiconductor
Table A-19 SPI Slave Mode Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table A-20 Expanded Bus Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Device User Guide — 9S12DT128DGV2/D V02.15
18 Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.15
19
Freescale Semiconductor
Derivative Differences and Document References
Derivative Differences
(Table 0-1) and (Table 0-2) show the availability of peripheral modules on the various derivatives. For
details about the compatibility within the MC9S12D-Family refer also to engineering bulletin EB386.
Table 0-2 Derivative Differences for MC9S12DB1281
Table 0-1 Derivative Differences1
Modules
MC9S12DT128E3
MC9S12DT128
SC5158494
SC101161DT5
SC1022056
MC9S12DG128E3
MC9S12DG128
SC5158474
SC101161DG5
SC1022036
MC9S12DJ128E3
MC9S12DJ128
SC5158484
SC101161DJ5
SC1022046
MC9S12A128
# of CANs 3 2 2 0
CAN4
CAN1
CAN0
J1850/BDLC
IIC
Byteflight
Package 112 LQFP 112 LQFP/80 QFP2112 LQFP/80 QFP2112 LQFP/80 QFP2
Package Code PV PV/FU PV/FU PV/FU
Mask set 1L40K3, 3L40K,
0L94R, 4L40K4,
1L59W5, 5L40K6
1L40K3, 3L40K,
0L94R, 4L40K4,
1L59W5, 5L40K6
1L40K3, 3L40K,
0L94R, 4L40K4,
1L59W5, 5L40K63L40K, 0L94R
Temp Options M, V, C M, V, C M, V, C C
AEC qualified Yes Yes Yes No
Notes An errata exists
contact Sales Office An errata exists
contact Sales Office An errata exists
contact Sales Office An errata exists
contact Sales Office
Modules MC9S12DB128
SC5158464
SC1022026
MC9S12DB128
SC5158464
SC1022026
# of CANs 2 0
CAN4
CAN1
CAN0
J1850/BDLC
IIC
Byteflight
Package 112 LQFP 80 QFP2
Package Code PV/PVE FU
Device User Guide — 9S12DT128DGV2/D V02.15
20 Freescale Semiconductor
NOTE:
1. : Available for this device, : Not available for this device.
2. 80 Pin bond-out for MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847,
SC515848, SC101161DG, SC101161DJ, SC102203, and SC102204 is the same; MC9S12DB128, SC515846, and
SC102202 have a different bond-out.
3. Part numbers MC9S12DT128E, MC9S12DG128E, and MC9S12DJ128E are associated with the mask set 1L40K.
4. Part numbers SC515846, SC515847, SC515848, and SC515849 are associated with the mask set 4L40K.
5. Part numbers SC101161DT, SC101161DG, SC101161DJ are associated with the mask set 1L59W.
6. Part numbers SC102202, SC102203, SC102204, and SC102205 are associated with the mask set 5L40K which is not for
volume production.
The following figure provides an ordering number example for the MC9S12D128 devices.
Figure 0-1 Order Partnumber Example
The following items should be considered when using a derivative.
Registers
Do not write or read CAN0 registers (after reset: address range $0140 - $017F), if using a
derivative without CAN0 (see (Table 0-1) and (Table 0-2)).
Do not write or read CAN1 registers (after reset: address range $0180 - $01BF), if using a
derivative without CAN1 (see (Table 0-1) and (Table 0-2)).
Do not write or read CAN4 registers (after reset: address range $0280 - $02BF), if using a
derivative without CAN4 (see (Table 0-1) and (Table 0-2)).
Do not write or read BDLC registers (after reset: address range $00E8 - $00EF), if using a
derivative without BDLC (see (Table 0-1) and (Table 0-2)).
Do not write or read IIC registers (after reset: address range $00E0 - $00E7), if using a
derivative without IIC (see (Table 0-1) and (Table 0-2)).
Mask set 3L40K, 0L94R,
4L40K4, 5L40K63L40K, 0L94R,
4L40K4, 5L40K6
Temp Options M, V, C/M, V M, V, C
AEC qualified Yes Yes
Notes An errata exists
contact Sales Office An errata exists
contact Sales Office
Modules MC9S12DB128
SC5158464
SC1022026
MC9S12DB128
SC5158464
SC1022026
MC9S12 DJ128 C FU Package Option
Temperature Option
Device Title
Controller Family
Temperature Options
C = -40˚C to 85˚C
V = -40˚C to 105˚C
M = -40˚C to 125˚C
Package Options
FU = 80QFP
PV = 112LQFP
PVE = lead-free 112LQFP
Device User Guide — 9S12DT128DGV2/D V02.15
21
Freescale Semiconductor
Do not write or read Byteflight registers (after reset: address range $0300 - $035F), if using a
derivative without Byteflight registers (see (Table 0-1) and (Table 0-2)).
Interrupts
Fill the four CAN0 interrupt vectors ($FFB0 - $FFB7) according to your coding policies for
unused interrupts, if using a derivative without CAN0 (see (Table 0-1) and (Table 0-2)).
Fill the four CAN1 interrupt vectors ($FFA8 - $FFAF) according to your coding policies for
unused interrupts, if using a derivative without CAN1 (see (Table 0-1) and (Table 0-2)).
Fill the four CAN4 interrupt vectors ($FF90 - $FF97) according to your coding policies for
unused interrupts, if using a derivative without CAN4 (see (Table 0-1) and (Table 0-2)).
Fill the BDLC interrupt vector ($FFC2, $FFC3) according to your coding policies for unused
interrupts, if using a derivative without BDLC (see (Table 0-1) and (Table 0-2)).
Fill the IIC interrupt vector ($FFC0, $FFC1) according to your coding policies for unused
interrupts, if using a derivative without IIC (see (Table 0-1) and (Table 0-2)).
Fill the four Byteflight interrupt vectors ($FFA0 - $FFA7) according to your coding policies for
unused interrupts, if using a derivative without Byteflight (see (Table 0-1) and (Table 0-2)).
Ports
The CAN0 pin functionality (TXCAN0, RXCAN0) is not available on port PJ7, PJ6, PM5,
PM4, PM3, PM2, PM1 and PM0, if using a derivative without CAN0 (see (Table 0-1) and
(Table 0-2)).
The CAN1 pin functionality (TXCAN1, RXCAN1) is not available on port PM3 and PM2, if
using a derivative without CAN1 (see (Table 0-1) and (Table 0-2)).
The CAN4 pin functionality (TXCAN4, RXCAN4) is not available on port PJ7, PJ6, PM7,
PM6, PM5 and PM4, if using a derivative without CAN4 (see (Table 0-1) and (Table 0-2)).
The BDLC pin functionality (TXB, RXB) is not available on port PM1 and PM0, if using a
derivative without BDLC (see (Table 0-1) and (Table 0-2)).
The IIC pin functionality (SCL, SCA) is not available on port PJ7 and PJ6, if using a derivative
without IIC (see (Table 0-1) and (Table 0-2)).
The Byteflight pin functionality (BF_PSLM, BF_PERR, BF_PROK, BF_PSYN, TX_BF,
RX_BF) is not available on port PM7, PM6, PM5, PM4, PM3 and PM2, if using a derivative
without Byteflight (see (Table 0-1) and (Table 0-2)).
Do not write MODRR1 and MODRR0 Bit of Module Routing Register (PIM_9DTB128 Block
User Guide), if using a derivative without CAN0 (see (Table 0-1) and (Table 0-2)).
Do not write MODRR3 and MODRR2 Bit of Module Routing Register (PIM_9DTB128 Block
User Guide), if using a derivative without CAN4 (see (Table 0-1) and (Table 0-2)).
Pins not available in 80 pin QFP package for MC9S12DG128E, MC9S12DG128,
MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG,
SC101161DJ, SC102203, and SC102204
Device User Guide — 9S12DT128DGV2/D V02.15
22 Freescale Semiconductor
Port H
In order to avoid floating nodes the ports should be either configured as outputs by setting the
data direction register (DDRH at Base+$0262) to $FF, or enabling the pull resistors by writing
a $FF to the pull enable register (PERH at Base+$0264).
Port J[1:0]
Port J pull-up resistors are enabled out of reset on all four pins (7:6 and 1:0). Therefore care must
be taken not to disable the pull enables on PJ[1:0] by clearing the bits PERJ1 and PERJ0 at
Base+$026C.
Port K
Port K pull-up resistors are enabled out of reset, i.e. Bit 7 = PUKE = 1 in the register PUCR at
Base+$000C. Therefore care must be taken not to clear this bit.
Port M[7:6]
PM7:6 must be configured as outputs or their pull resistors must be enabled to avoid floating
inputs.
Port P6
PP6 must be configured as output or its pull resistor must be enabled to avoid a floating input.
Port S[7:4]
PS7:4 must be configured as outputs or their pull resistors must be enabled to avoid floating
inputs.
PAD[15:8] (ATD1 channels)
Out of reset the ATD1 is disabled preventing current flows in the pins. Do not modify the ATD1
registers!
Pins not available in 80 pin QFP package for MC9S12DB128, SC515846, and SC102202
Port H
In order to avoid floating nodes the ports should be either configured as outputs by setting the
data direction register (DDRH at Base+$0262) to $FF, or enabling the pull resistors by writing
a $FF to the pull enable register (PERH at Base+$0264).
Port J[7:6, 1:0]
Port J pull-up resistors are enabled out of reset on all four pins (7:6 and 1:0). Therefore care must
be taken not to disable the pull enables on PJ[7:6, 1:0] by clearing the bits PERJ7, PERJ6,
PERJ1 and PERJ0 at Base+$026C.
Port K
Port K pull-up resistors are enabled out of reset, i.e. Bit 7 = PUKE = 1 in the register PUCR at
Base+$000C. Therefore care must be taken not to clear this bit.
Port M[1:0]
PM1:0 must be configured as outputs or their pull resistors must be enabled to avoid floating
inputs.
Port P6
PP6 must be configured as output or its pull resistor must be enabled to avoid a floating input.
Device User Guide — 9S12DT128DGV2/D V02.15
23
Freescale Semiconductor
Port S[3:2]
PS3:2 must be configured as outputs or their pull resistors must be enabled to avoid floating
inputs.
PAD[15:8] (ATD1 channels)
Out of reset the ATD1 is disabled preventing current flows in the pins. Do not modify the ATD1
registers!
Document References
The Device User Guide provides information about the MC9S12DT128 device made up of standard
HCS12 blocks and the HCS12 processor core.
This document is part of the customer documentation. A complete set of device manuals also includes all
the individual Block User Guides of the implemented modules. In a effort to reduce redundancy all module
specific information is located only in the respective Block User Guide. If applicable, special
implementation details of the module are given in the block description sections of this document.
See Table 0-3 for names and versions of the referenced documents throughout the Device User Guide.
Table 0-3 Document References
User Guide Version Document Order Number
HCS12 CPU Reference Manual V02 S12CPUV2/D
HCS12 Module Mapping Control (MMC) Block Guide V04 S12MMCV4/D
HCS12 Multiplexed External Bus Interface (MEBI) Block Guide V03 S12MEBIV3/D
HCS12 Interrupt (INT) Block Guide V01 S12INTV1/D
HCS12 Background Debug Module (BDM) Block Guide V04 S12BDMV4/D
HCS12 Breakpoint (BKP) Block Guide V01 S12BKPV1/D
Clock and Reset Generator (CRG) Block User Guide V04 S12CRGV4/D
Oscillator (OSC) Block User Guide V02 S12OSCV2/D
Enhanced Capture Timer 16 Bit 8 Channel (ECT_16B8C) Block User Guide V01 S12ECT16B8CV1/D
Analog to Digital Converter 10 Bit 8 Channel (ATD_10B8C) Block User Guide V02 S12ATD10B8CV2/D
Inter IC Bus (IIC) Block User Guide V02 S12IICV2/D
Asynchronous Serial Interface (SCI) Block User Guide V02 S12SCIV2/D
Serial Peripheral Interface (SPI) Block User Guide V02 S12SPIV2/D
Pulse Width Modulator 8 Bit 8 Channel (PWM_8B8C) Block User Guide V01 S12PWM8B8CV1/D
128K Byte Flash (FTS128K) Block User Guide V02 S12FTS128KV2/D
2K Byte EEPROM (EETS2K) Block User Guide V01 S12EETS2KV1/D
Byte Level Data Link Controller -J1850 (BDLC) Block User Guide V01 S12BDLCV1/D
Motorola Scalable CAN (MSCAN) Block User Guide V02 S12MSCANV2/D
Voltage Regulator (VREG) Block User Guide V01 S12VREGV1/D
Port Integration Module (PIM_9DTB128) Block User Guide V02 S12DTB128PIMV2/D
Byteflight (BF) Block User Guide V01 S12BFV1/D
Device User Guide — 9S12DT128DGV2/D V02.15
24 Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.15
25
Freescale Semiconductor
Section 1 Introduction
1.1 Overview
The MC9S12DT128 microcontroller unit (MCU) is a 16-bit device composed of standard on-chip
peripherals including a 16-bit central processing unit (HCS12 CPU), 128K bytes of Flash EEPROM, 8K
bytes of RAM, 2K bytes of EEPROM, two asynchronous serial communications interfaces (SCI), two
serial peripheral interfaces (SPI), an 8-channel IC/OC enhanced capture timer, two 8-channel, 10-bit
analog-to-digital converters (ADC), an 8-channel pulse-width modulator (PWM), a digital Byte Data Link
Controller (BDLC), 29 discrete digital I/O channels (Port A, Port B, Port K and Port E), 20 discrete digital
I/O lines with interrupt and wakeup capability, three CAN 2.0 A, B software compatible modules
(MSCAN12), a Byteflight module and an Inter-IC Bus. The MC9S12DT128 has full 16-bit data paths
throughout. However, the external bus can operate in an 8-bit narrow mode so single 8-bit wide memory
can be interfaced for lower cost systems. The inclusion of a PLL circuit allows power consumption and
performance to be adjusted to suit operational requirements.
1.2 Features
HCS12 Core
16-bit HCS12 CPU
i. Upward compatible with M68HC11 instruction set
ii. Interrupt stacking and programmer’s model identical to M68HC11
iii.20-bit ALU
iv.Instruction queue
v. Enhanced indexed addressing
MEBI (Multiplexed External Bus Interface)
MMC (Module Mapping Control)
INT (Interrupt control)
BKP (Breakpoints)
BDM (Background Debug Module)
CRG (Clock and Reset Generator)
Choice of low current Colpitts oscillator or standard Pierce Oscillator
PLL
COP watchdog
real time interrupt
clock monitor
8-bit and 4-bit ports with interrupt functionality
Device User Guide — 9S12DT128DGV2/D V02.15
26 Freescale Semiconductor
Digital filtering
Programmable rising or falling edge trigger
Memory
128K Flash EEPROM
2K byte EEPROM
8K byte RAM
Two 8-channel Analog-to-Digital Converters
10-bit resolution
External conversion trigger capability
Three 1M bit per second, CAN 2.0 A, B software compatible modules
Five receive and three transmit buffers
Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit
Four separate interrupt channels for Rx, Tx, error and wake-up
Low-pass filter wake-up function
Loop-back for self test operation
Enhanced Capture Timer
16-bit main counter with 7-bit prescaler
8 programmable input capture or output compare channels
Four 8-bit or two 16-bit pulse accumulators
8 PWM channels
Programmable period and duty cycle
8-bit 8-channel or 16-bit 4-channel
Separate control for each pulse width and duty cycle
Center-aligned or left-aligned outputs
Programmable clock select logic with a wide range of frequencies
Fast emergency shutdown input
Usable as interrupt inputs
Serial interfaces
Two asynchronous Serial Communications Interfaces (SCI)
Two Synchronous Serial Peripheral Interface (SPI)
Byteflight
Byte Data Link Controller (BDLC)
Device User Guide — 9S12DT128DGV2/D V02.15
27
Freescale Semiconductor
SAE J1850 Class B Data Communications Network Interface
Compatible and ISO Compatible for Low-Speed (<125 Kbps) Serial Data Communications in
Automotive Applications
Inter-IC Bus (IIC)
Compatible with I2C Bus standard
Multi-master operation
Software programmable for one of 256 different serial clock frequencies
112-Pin LQFP and 80-Pin QFP package options
I/O lines with 5V input and drive capability
5V A/D converter inputs
Operation at 50MHz equivalent to 25MHz Bus Speed
Development support
Single-wire background debug™ mode
On-chip hardware breakpoints
1.3 Modes of Operation
User modes
Normal and Emulation Operating Modes
Normal Single-Chip Mode
Normal Expanded Wide Mode
Normal Expanded Narrow Mode
Emulation Expanded Wide Mode
Emulation Expanded Narrow Mode
Special Operating Modes
Special Single-Chip Mode with active Background Debug Mode
Special Test Mode (Freescale use only)
Special Peripheral Mode (Freescale use only)
Low power modes
Stop Mode
Pseudo Stop Mode
Wait Mode
Device User Guide — 9S12DT128DGV2/D V02.15
28 Freescale Semiconductor
1.4 Block Diagram
Figure 1-1 shows a block diagram of the MC9S12DT128 device.
Device User Guide — 9S12DT128DGV2/D V02.15
29
Freescale Semiconductor
Figure 1-1 MC9S12DT128 Block Diagram
128K Byte Flash EEPROM
8K Byte RAM
Enhanced Capture
RESET
EXTAL
XTAL
VDD1,2
VSS1,2
SCI0
2K Byte EEPROM
BKGD
R/W
MODB
XIRQ
NOACC/XCLKS
System
Integration
Module
(SIM)
VDDR
CPU
Periodic Interrupt
COP Watchdog
Clock Monitor
Single-wire Background
Breakpoints
PLL
VSSPLL
XFC
VDDPLL
Multiplexed Address/Data Bus
VDDA
VSSA
VRH
VRL
ATD0
Multiplexed
Wide Bus
Multiplexed
VDDX
VSSX
Internal Logic 2.5V
Narrow Bus
PPAGE
V
DDPLL
VSSPLL
PLL 2.5V
IRQ
LSTRB
ECLK
MODA
PA4
PA3
PA2
PA1
PA0
PA7
PA6
PA5
TEST
ADDR12
ADDR11
ADDR10
ADDR9
ADDR8
ADDR15
ADDR14
ADDR13
DATA12
DATA11
DATA10
DATA9
DATA8
DATA15
DATA14
DATA13
PB4
PB3
PB2
PB1
PB0
PB7
PB6
PB5
ADDR4
ADDR3
ADDR2
ADDR1
ADDR0
ADDR7
ADDR6
ADDR5
DATA4
DATA3
DATA2
DATA1
DATA0
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0
DATA7
DATA6
DATA5
PE3
PE4
PE5
PE6
PE7
PE0
PE1
PE2
AN2
AN6
AN0
AN7
AN1
AN3
AN4
AN5
PAD03
PAD04
PAD05
PAD06
PAD07
PAD00
PAD01
PAD02
IOC2
IOC6
IOC0
IOC7
IOC1
IOC3
IOC4
IOC5
PT3
PT4
PT5
PT6
PT7
PT0
PT1
PT2
VRH
VRL
VDDA
VSSA
VRH
VRL
ATD1
AN2
AN6
AN0
AN7
AN1
AN3
AN4
AN5
PAD11
PAD12
PAD13
PAD14
PAD15
PAD08
PAD09
PAD10
VDDA
VSSA
RXD
TXD
MISO
MOSI
PS3
PS4
PS5
PS0
PS1
PS2
SCI1 RXD
TXD
PWM2
PWM6
PWM0
PWM7
PWM1
PWM3
PWM4
PWM5
PP3
PP4
PP5
PP6
PP7
PP0
PP1
PP2
PIX2
PIX0
PIX1
PIX3
ROMCTL ECS
PK3
PK7
PK0
PK1
XADDR17
ECS ROMCTL
XADDR14
XADDR15
XADDR16
SCK
SS PS6
PS7
SPI0
IIC SDA
SCL PJ6
PJ7
CAN0 RxCAN
TxCAN PM1
PM0
CAN1 RxCAN
TxCAN PM2
PM3
PM4
PM5
PM6
PM7
KWH2
KWH6
KWH0
KWH7
KWH1
KWH3
KWH4
KWH5
PH3
PH4
PH5
PH6
PH7
PH0
PH1
PH2
KWJ0
KWJ1 PJ0
PJ1
I/O Driver 5V
VDDA
VSSA
A/D Converter 5V &
DDRA DDRB
PTA PTB
DDRE
PTE
AD1
AD0
PTK
DDRK
PTT
DDRT
PTP
DDRP PTS
DDRS
PTM
DDRM
PTH
DDRH PTJ
DDRJ
PK2
BDLC RxB
TxB
Clock and
Reset
Generation
Module
Voltage Regulator
VSSR
Debug Module
VDD1,2
VSS1,2
VREGEN
VDDR
VSSR
Voltage Regulator 5V & I/O
CAN0,4 RxCAN
TxCAN
MISO
MOSI
SCK
SS
SPI1
PIX4
PIX5 PK4
PK5 XADDR18
XADDR19
Voltage Regulator Reference
KWP2
KWP6
KWP0
KWP7
KWP1
KWP3
KWP4
KWP5
KWJ6
KWJ7
Timer
(J1850)
Signals shown in Bold are not available in any of the two the 80 Pin Package Options
Module to Port Routing
RX_BF
TX_BF
BYTE-
BF_PSYN
BF_PROK
BF_PERR
BF_PSLM
FLIGHT
Signals shown in Bold-Italics are not available in the 80 Pin Package Option for DG and DJ128
Signals shown in Italics are not available in the 80 Pin Package Option for B128
Device User Guide — 9S12DT128DGV2/D V02.15
30 Freescale Semiconductor
1.5 Device Memory Map
(Table 1-1) and (Figure 1-2) show the device memory map of the MC9S12DT128 after reset. Note that
after reset the EEPROM ($0000$07FF) is hidden by the register space ($0000 - $03FF) and the RAM
($0000 - $1FFF). The bottom 1K Bytes of RAM ($0000 - $03FF) are hidden by the register space.
Table 1-1 Device Memory Map
Address Module Size
(Bytes)
$0000 – $0017 CORE (Ports A, B, E, Modes, Inits, Test) 24
$0018 – $0019 Reserved 2
$001A – $001B Device ID register (PARTID) 2
$001C – $001F CORE (MEMSIZ, IRQ, HPRIO) 4
$0020 – $0027 Reserved 8
$0028 – $002F CORE (Background Debug Module) 8
$0030 – $0033 CORE (PPAGE, Port K) 4
$0034 – $003F Clock and Reset Generator (PLL, RTI, COP) 12
$0040 – $007F Enhanced Capture Timer 16-bit 8 channels 64
$0080 – $009F Analog to Digital Converter 10-bit 8 channels (ATD0) 32
$00A0 – $00C7 Pulse Width Modulator 8-bit 8 channels (PWM) 40
$00C8 – $00CF Serial Communications Interface (SCI0) 8
$00D0 – $00D7 Serial Communications Interface (SCI1) 8
$00D8 – $00DF Serial Peripheral Interface (SPI0) 8
$00E0 – $00E7 Inter IC Bus 8
$00E8 – $00EF Byte Level Data Link Controller (BDLC) 8
$00F0 – $00F7 Serial Peripheral Interface (SPI1) 8
$00F8 – $00FF Reserved 8
$0100 – $010F Flash Control Register 16
$0110 – $011B EEPROM Control Register 12
$011C – $011F Reserved 4
$0120 – $013F Analog to Digital Converter 10-bit 8 channels (ATD1) 32
$0140 – $017F Motorola Scalable CAN (CAN0) 64
$0180 – $01BF Motorola Scalable CAN (CAN1) 64
$01C0 – $01FF Reserved 64
$0200 – $023F Reserved 64
$0240 – $027F Port Integration Module (PIM) 64
$0280 – $02BF Motorola Scalable CAN (CAN4) 64
$02C0 – $02FF Reserved 64
$0300 – $035F Byteflight (BF) 96
$0360 – $03FF Reserved 160
$0000 – $07FF EEPROM array 2048
$0000 – $1FFF RAM array 8192
$4000 – $7FFF Fixed Flash EEPROM array
incl. 0.5K, 1K, 2K or 4K Protected Sector at start 16384
$8000 – $BFFF Flash EEPROM Page Window 16384
Device User Guide — 9S12DT128DGV2/D V02.15
31
Freescale Semiconductor
Figure 1-2 MC9S12DT128 Memory Map
$C000 – $FFFF Fixed Flash EEPROM array
incl. 0.5K, 1K, 2K or 4K Protected Sector at end
and 256 bytes of Vector Space at $FF80$FFFF 16384
Table 1-1 Device Memory Map
Address Module Size
(Bytes)
$0000
$FFFF
$C000
$8000
$4000
$0400
$0800
$1000
$2000
$FF00
EXT
NORMAL
SINGLE CHIP
EXPANDED SPECIAL
SINGLE CHIP
VECTORSVECTORS VECTORS
$FF00
$FFFF
BDM
(If Active)
$C000
$FFFF
16K Fixed Flash EEPROM
2K, 4K, 8K or 16K Protected Boot Sector
$8000
$BFFF
16K Page Window
eight * 16K Flash EEPROM Pages
$4000
$7FFF 16K Fixed Flash EEPROM
0.5K, 1K, 2K or 4K Protected Sector
$2000
$3FFF
8K Bytes RAM
Mappable to any 8K Boundary
$0800
$0FFF
2K Bytes EEPROM
Mappable to any 2K Boundary
$0000
$03FF
1K Register Space
Mappable to any 2K Boundary
The address does not show the map after reset, but a useful map. After reset the map is:
$0000 – $03FF: Register Space
$0000 – $1FFF: 8K RAM
$0000 – $07FF: 2K EEPROM (not visible)
Device User Guide — 9S12DT128DGV2/D V02.15
32 Freescale Semiconductor
1.5.1 Detailed Register Map
$0000 - $000F MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0000 PORTA Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0001 PORTB Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0002 DDRA Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0003 DDRB Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0004 Reserved Read:00000000
Write:
$0005 Reserved Read:00000000
Write:
$0006 Reserved Read:00000000
Write:
$0007 Reserved Read:00000000
Write:
$0008 PORTE Read: Bit 7 6 5 4 3 2 Bit 1 Bit 0
Write:
$0009 DDRE Read: Bit 7 6 5 4 3 Bit 2 0 0
Write:
$000A PEAR Read: NOACCE 0PIPOE NECLK LSTRE RDWE 0 0
Write:
$000B MODE Read: MODC MODB MODA 0IVIS 0EMK EME
Write:
$000C PUCR Read: PUPKE 0 0 PUPEE 0 0 PUPBE PUPAE
Write:
$000D RDRIV Read: RDPK 0 0 RDPE 0 0 RDPB RDPA
Write:
$000E EBICTL Read: 0 0 0 0 0 0 0 ESTR
Write:
$000F Reserved Read:00000000
Write:
$0010 - $0014 MMC map 1 of 4 (HCS12 Module Mapping Control)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0010 INITRM Read: RAM15 RAM14 RAM13 RAM12 RAM11 0 0 RAMHAL
Write:
$0011 INITRG Read: 0 REG14 REG13 REG12 REG11 000
Write:
$0012 INITEE Read: EE15 EE14 EE13 EE12 EE11 0 0 EEON
Write:
$0013 MISC Read: 0 0 0 0 EXSTR1 EXSTR0 ROMHM ROMON
Write:
$0014 Reserved Read:00000000
Write:
Device User Guide — 9S12DT128DGV2/D V02.15
33
Freescale Semiconductor
$0015 - $0016 INT map 1 of 2 (HCS12 Interrupt)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0015 ITCR Read: 0 0 0 WRINT ADR3 ADR2 ADR1 ADR0
Write:
$0016 ITEST Read: INTE INTC INTA INT8 INT6 INT4 INT2 INT0
Write:
$0017 - $0017 MMC map 2 of 4 (HCS12 Module Mapping Control)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0017 MTST1
Test Only Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0018 - $0019 Reserved
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0018 -
$0019 Reserved Read:00000000
Write:
$001A - $001B Device ID Register ((Table 1-3))
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$001A PARTIDH Read: ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8
Write:
$001B PARTIDL Read: ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0
Write:
$001C - $001D MMC map 3 of 4 (HCS12 Module Mapping Control, (Table
1-4))
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$001C MEMSIZ0 Read: reg_sw0 0 eep_sw1 eep_sw0 0 ram_sw2 ram_sw1 ram_sw0
Write:
$001D MEMSIZ1 Read: rom_sw1 rom_sw0 0 0 0 0 pag_sw1 pag_sw0
Write:
$001E - $001E MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$001E INTCR Read: IRQE IRQEN 000000
Write:
Device User Guide — 9S12DT128DGV2/D V02.15
34 Freescale Semiconductor
$001F - $001F INT map 2 of 2 (HCS12 Interrupt)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$001F HPRIO Read: PSEL7 PSEL6 PSEL5 PSEL4 PSEL3 PSEL2 PSEL1 0
Write:
$0020 - $0027 Reserved
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0020 -
$0027 Reserved Read:00000000
Write:
$0028 - $002F BKP (HCS12 Breakpoint)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0028 BKPCT0 Read: BKEN BKFULL BKBDM BKTAG 0000
Write:
$0029 BKPCT1 Read: BK0MBH BK0MBL BK1MBH BK1MBL BK0RWE BK0RW BK1RWE BK1RW
Write:
$002A BKP0X Read: 0 0 BK0V5 BK0V4 BK0V3 BK0V2 BK0V1 BK0V0
Write:
$002B BKP0H Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$002C BKP0L Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$002D BKP1X Read: 0 0 BK1V5 BK1V4 BK1V3 BK1V2 BK1V1 BK1V0
Write:
$002E BKP1H Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$002F BKP1L Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0030 - $0031 MMC map 4 of 4 (HCS12 Module Mapping Control)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0030 PPAGE Read: 0 0 PIX5 PIX4 PIX3 PIX2 PIX1 PIX0
Write:
$0031 Reserved Read:00000000
Write:
$0032 - $0033 MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0032 PORTK Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0033 DDRK Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
Device User Guide — 9S12DT128DGV2/D V02.15
35
Freescale Semiconductor
$0034 - $003F CRG (Clock and Reset Generator)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0034 SYNR Read: 0 0 SYN5 SYN4 SYN3 SYN2 SYN1 SYN0
Write:
$0035 REFDV Read: 0 0 0 0 REFDV3 REFDV2 REFDV1 REFDV0
Write:
$0036 CTFLG
TEST ONLY Read:00000000
Write:
$0037 CRGFLG Read: RTIF PORF 0LOCKIF LOCK TRACK SCMIF SCM
Write:
$0038 CRGINT Read: RTIE 0 0 LOCKIE 0 0 SCMIE 0
Write:
$0039 CLKSEL Read: PLLSEL PSTP SYSWAI ROAWAI PLLWAI CWAI RTIWAI COPWAI
Write:
$003A PLLCTL Read: CME PLLON AUTO ACQ 0PRE PCE SCME
Write:
$003B RTICTL Read: 0 RTR6 RTR5 RTR4 RTR3 RTR2 RTR1 RTR0
Write:
$003C COPCTL Read: WCOP RSBCK 000CR2 CR1 CR0
Write:
$003D FORBYP
TEST ONLY Read:00000000
Write:
$003E CTCTL
TEST ONLY Read:00000000
Write:
$003F ARMCOP Read:00000000
Write: Bit 7 6 5 4 3 2 1 Bit 0
$0040 - $007F ECT (Enhanced Capture Timer 16 Bit 8 Channels)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0040 TIOS Read: IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0
Write:
$0041 CFORC Read:00000000
Write: FOC7 FOC6 FOC5 FOC4 FOC3 FOC2 FOC1 FOC0
$0042 OC7M Read: OC7M7 OC7M6 OC7M5 OC7M4 OC7M3 OC7M2 OC7M1 OC7M0
Write:
$0043 OC7D Read: OC7D7 OC7D6 OC7D5 OC7D4 OC7D3 OC7D2 OC7D1 OC7D0
Write:
$0044 TCNT (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$0045 TCNT (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0046 TSCR1 Read: TEN TSWAI TSFRZ TFFCA 0000
Write:
$0047 TTOV Read: TOV7 TOV6 TOV5 TOV4 TOV3 TOV2 TOV1 TOV0
Write:
$0048 TCTL1 Read: OM7 OL7 OM6 OL6 OM5 OL5 OM4 OL4
Write:
$0049 TCTL2 Read: OM3 OL3 OM2 OL2 OM1 OL1 OM0 OL0
Write:
Device User Guide — 9S12DT128DGV2/D V02.15
36 Freescale Semiconductor
$004A TCTL3 Read: EDG7B EDG7A EDG6B EDG6A EDG5B EDG5A EDG4B EDG4A
Write:
$004B TCTL4 Read: EDG3B EDG3A EDG2B EDG2A EDG1B EDG1A EDG0B EDG0A
Write:
$004C TIE Read: C7I C6I C5I C4I C3I C2I C1I C0I
Write:
$004D TSCR2 Read: TOI 000TCRE PR2 PR1 PR0
Write:
$004E TFLG1 Read: C7F C6F C5F C4F C3F C2F C1F C0F
Write:
$004F TFLG2 Read: TOF 0000000
Write:
$0050 TC0 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$0051 TC0 (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0052 TC1 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$0053 TC1 (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0054 TC2 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$0055 TC2 (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0056 TC3 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$0057 TC3 (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0058 TC4 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$0059 TC4 (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$005A TC5 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$005B TC5 (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$005C TC6 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$005D TC6 (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$005E TC7 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$005F TC7 (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0060 PACTL Read: 0 PAEN PAMOD PEDGE CLK1 CLK0 PAOVI PAI
Write:
$0061 PAFLG Read: 0 0 0 0 0 0 PAOVF PAIF
Write:
$0062 PACN3 (hi) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0040 - $007F ECT (Enhanced Capture Timer 16 Bit 8 Channels)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12DT128DGV2/D V02.15
37
Freescale Semiconductor
$0063 PACN2 (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0064 PACN1 (hi) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0065 PACN0 (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0066 MCCTL Read: MCZI MODMC RDMCL 0 0 MCEN MCPR1 MCPR0
Write: ICLAT FLMC
$0067 MCFLG Read: MCZF 0 0 0 POLF3 POLF2 POLF1 POLF0
Write:
$0068 ICPAR Read: 0 0 0 0 PA3EN PA2EN PA1EN PA0EN
Write:
$0069 DLYCT Read: 0 0 0 0 0 0 DLY1 DLY0
Write:
$006A ICOVW Read: NOVW7 NOVW6 NOVW5 NOVW4 NOVW3 NOVW2 NOVW1 NOVW0
Write:
$006B ICSYS Read: SH37 SH26 SH15 SH04 TFMOD PACMX BUFEN LATQ
Write:
$006C Reserved Read:
Write:
$006D TIMTST
Test Only Read: 0 0 0 0 0 0 TCBYP 0
Write:
$006E Reserved Read:
Write:
$006F Reserved Read:
Write:
$0070 PBCTL Read: 0 PBEN 0000PBOVI 0
Write:
$0071 PBFLG Read: 0 0 0 0 0 0 PBOVF 0
Write:
$0072 PA3H Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0073 PA2H Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0074 PA1H Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0075 PA0H Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0076 MCCNT (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$0077 MCCNT (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0078 TC0H (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$0079 TC0H (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$007A TC1H (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$007B TC1H (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0040 - $007F ECT (Enhanced Capture Timer 16 Bit 8 Channels)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12DT128DGV2/D V02.15
38 Freescale Semiconductor
$007C TC2H (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$007D TC2H (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$007E TC3H (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$007F TC3H (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0080 - $009F ATD0 (Analog to Digital Converter 10 Bit 8 Channel)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0080 ATD0CTL0 Read:00000000
Write:
$0081 ATD0CTL1 Read:00000000
Write:
$0082 ATD0CTL2 Read: ADPU AFFC AWAI ETRIGLE ETRIGP ETRIG ASCIE ASCIF
Write:
$0083 ATD0CTL3 Read: 0 S8C S4C S2C S1C FIFO FRZ1 FRZ0
Write:
$0084 ATD0CTL4 Read: SRES8 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0
Write:
$0085 ATD0CTL5 Read: DJM DSGN SCAN MULT 0CC CB CA
Write:
$0086 ATD0STAT0 Read: SCF 0ETORF FIFOR 0 CC2 CC1 CC0
Write:
$0087 Reserved Read:00000000
Write:
$0088 ATD0TEST0 Read:00000000
Write:
$0089 ATD0TEST1 Read: 0 0 0 0 0 0 0 SC
Write:
$008A Reserved Read:00000000
Write:
$008B ATD0STAT1 Read: CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0
Write:
$008C Reserved Read:00000000
Write:
$008D ATD0DIEN Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$008E Reserved Read:00000000
Write:
$008F PORTAD0 Read: Bit7 6 5 4 3 2 1 BIT 0
Write:
$0090 ATD0DR0H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0091 ATD0DR0L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$0040 - $007F ECT (Enhanced Capture Timer 16 Bit 8 Channels)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12DT128DGV2/D V02.15
39
Freescale Semiconductor
$0092 ATD0DR1H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0093 ATD0DR1L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$0094 ATD0DR2H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0095 ATD0DR2L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$0096 ATD0DR3H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0097 ATD0DR3L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$0098 ATD0DR4H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0099 ATD0DR4L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$009A ATD0DR5H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$009B ATD0DR5L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$009C ATD0DR6H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$009D ATD0DR6L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$009E ATD0DR7H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$009F ATD0DR7L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$00A0 - $00C7 PWM (Pulse Width Modulator 8 Bit 8 Channel)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00A0 PWME Read: PWME7 PWME6 PWME5 PWME4 PWME3 PWME2 PWME1 PWME0
Write:
$00A1 PWMPOL Read: PPOL7 PPOL6 PPOL5 PPOL4 PPOL3 PPOL2 PPOL1 PPOL0
Write:
$00A2 PWMCLK Read: PCLK7 PCLK6 PCLK5 PCLK4 PCLK3 PCLK2 PCLK1 PCLK0
Write:
$00A3 PWMPRCLK Read: 0 PCKB2 PCKB1 PCKB0 0PCKA2 PCKA1 PCKA0
Write:
$00A4 PWMCAE Read: CAE7 CAE6 CAE5 CAE4 CAE3 CAE2 CAE1 CAE0
Write:
$00A5 PWMCTL Read: CON67 CON45 CON23 CON01 PSWAI PFRZ 0 0
Write:
$00A6 PWMTST
Test Only Read:00000000
Write:
$00A7 PWMPRSC
Test Only Read:00000000
Write:
$00A8 PWMSCLA Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0080 - $009F ATD0 (Analog to Digital Converter 10 Bit 8 Channel)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12DT128DGV2/D V02.15
40 Freescale Semiconductor
$00A9 PWMSCLB Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00AA PWMSCNTA
Test Only Read:00000000
Write:
$00AB PWMSCNTB
Test Only Read:00000000
Write:
$00AC PWMCNT0 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0
$00AD PWMCNT1 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0
$00AE PWMCNT2 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0
$00AF PWMCNT3 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0
$00B0 PWMCNT4 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0
$00B1 PWMCNT5 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0
$00B2 PWMCNT6 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0
$00B3 PWMCNT7 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0
$00B4 PWMPER0 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00B5 PWMPER1 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00B6 PWMPER2 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00B7 PWMPER3 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00B8 PWMPER4 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00B9 PWMPER5 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00BA PWMPER6 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00BB PWMPER7 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00BC PWMDTY0 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00BD PWMDTY1 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00BE PWMDTY2 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00BF PWMDTY3 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00C0 PWMDTY4 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00C1 PWMDTY5 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00A0 - $00C7 PWM (Pulse Width Modulator 8 Bit 8 Channel)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12DT128DGV2/D V02.15
41
Freescale Semiconductor
$00C2 PWMDTY6 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00C3 PWMDTY7 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00C4 PWMSDN Read: PWMIF PWMIE PWMRSTRT PWMLVL 0 PWM7IN PWM7INL PWM7ENA
Write:
$00C5 Reserved Read:00000000
Write:
$00C6 Reserved Read:00000000
Write:
$00C7 Reserved Read:00000000
Write:
$00C8 - $00CF SCI0 (Asynchronous Serial Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00C8 SCI0BDH Read: 0 0 0 SBR12 SBR11 SBR10 SBR9 SBR8
Write:
$00C9 SCI0BDL Read: SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0
Write:
$00CA SCI0CR1 Read: LOOPS SCISWAI RSRC M WAKE ILT PE PT
Write:
$00CB SCI0CR2 Read: TIE TCIE RIE ILIE TE RE RWU SBK
Write:
$00CC SCI0SR1 Read: TDRE TC RDRF IDLE OR NF FE PF
Write:
$00CD SCI0SR2 Read: 0 0 0 0 0 BRK13 TXDIR RAF
Write:
$00CE SCI0DRH Read: R8 T8 000000
Write:
$00CF SCI0DRL Read: R7 R6 R5 R4 R3 R2 R1 R0
Write: T7 T6 T5 T4 T3 T2 T1 T0
$00D0 - $00D7 SCI1 (Asynchronous Serial Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00D0 SCI1BDH Read: 0 0 0 SBR12 SBR11 SBR10 SBR9 SBR8
Write:
$00D1 SCI1BDL Read: SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0
Write:
$00D2 SCI1CR1 Read: LOOPS SCISWAI RSRC M WAKE ILT PE PT
Write:
$00D3 SCI1CR2 Read: TIE TCIE RIE ILIE TE RE RWU SBK
Write:
$00D4 SCI1SR1 Read: TDRE TC RDRF IDLE OR NF FE PF
Write:
$00A0 - $00C7 PWM (Pulse Width Modulator 8 Bit 8 Channel)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12DT128DGV2/D V02.15
42 Freescale Semiconductor
$00D5 SCI1SR2 Read: 0 0 0 0 0 BRK13 TXDIR RAF
Write:
$00D6 SCI1DRH Read: R8 T8 000000
Write:
$00D7 SCI1DRL Read: R7 R6 R5 R4 R3 R2 R1 R0
Write: T7 T6 T5 T4 T3 T2 T1 T0
$00D8 - $00DF SPI0 (Serial Peripheral Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00D8 SPI0CR1 Read: SPIE SPE SPTIE MSTR CPOL CPHA SSOE LSBFE
Write:
$00D9 SPI0CR2 Read: 0 0 0 MODFEN BIDIROE 0SPISWAI SPC0
Write:
$00DA SPI0BR Read: 0 SPPR2 SPPR1 SPPR0 0SPR2 SPR1 SPR0
Write:
$00DB SPI0SR Read: SPIF 0 SPTEF MODF 0 0 0 0
Write:
$00DC Reserved Read:00000000
Write:
$00DD SPI0DR Read: Bit7 6 5 4 3 2 1 Bit0
Write:
$00DE Reserved Read:00000000
Write:
$00DF Reserved Read:00000000
Write:
$00E0 - $00E7 IIC (Inter IC Bus)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00E0 IBAD Read: ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 0
Write:
$00E1 IBFD Read: IBC7 IBC6 IBC5 IBC4 IBC3 IBC2 IBC1 IBC0
Write:
$00E2 IBCR Read: IBEN IBIE MS/SL TX/RX TXAK 0 0 IBSWAI
Write: RSTA
$00E3 IBSR Read: TCF IAAS IBB IBAL 0 SRW IBIF RXAK
Write:
$00E4 IBDR Read: D7 D6 D5 D4 D3 D2 D1 D 0
Write:
$00E5 Reserved Read: 0 0 0 0 0 0 0 0
Write:
$00E6 Reserved Read:00000000
Write:
$00E7 Reserved Read:00000000
Write:
$00D0 - $00D7 SCI1 (Asynchronous Serial Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12DT128DGV2/D V02.15
43
Freescale Semiconductor
$00E8 - $00EF BDLC (Byte Level Data Link Controller J1850)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00E8 DLCBCR1 Read: IMSG CLKS 0000IE WCM
Write:
$00E9 DLCBSVR Read: 0 0 I3 I2 I1 I0 0 0
Write:
$00EA DLCBCR2 Read: SMRST DLOOP RX4XE NBFS TEOD TSIFR TMIFR1 TMIFR0
Write:
$00EB DLCBDR Read: D7 D6 D5 D4 D3 D2 D1 D0
Write:
$00EC DLCBARD Read: 0 RXPOL 0 0 BO3 BO2 BO1 BO0
Write:
$00ED DLCBRSR Read: 0 0 R5 R4 R3 R2 R1 R0
Write:
$00EE DLCSCR Read: 0 0 0 BDLCE 0000
Write:
$00EF DLCBSTAT Read: 0 0 0 0 0 0 0 IDLE
Write:
$00F0 - $00F7 SPI1 (Serial Peripheral Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00F0 SPI1CR1 Read: SPIE SPE SPTIE MSTR CPOL CPHA SSOE LSBFE
Write:
$00F1 SPI1CR2 Read: 0 0 0 MODFEN BIDIROE 0SPISWAI SPC0
Write:
$00F2 SPI1BR Read: 0 SPPR2 SPPR1 SPPR0 0SPR2 SPR1 SPR0
Write:
$00F3 SPI1SR Read: SPIF 0 SPTEF MODF 0 0 0 0
Write:
$00F4 Reserved Read:00000000
Write:
$00F5 SPI1DR Read: Bit7 6 5 4 3 2 1 Bit0
Write:
$00F6 Reserved Read:00000000
Write:
$00F7 Reserved Read:00000000
Write:
$00F8 - $00FF Reserved
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00F8 -
$00FF Reserved Read:00000000
Write:
Device User Guide — 9S12DT128DGV2/D V02.15
44 Freescale Semiconductor
$0100 - $010F Flash Control Register (fts128k2)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0100 FCLKDIV Read: FDIVLD PRDIV8 FDIV5 FDIV4 FDIV3 FDIV2 FDIV1 FDIV0
Write:
$0101 FSEC Read: KEYEN1 KEYEN0 NV5 NV4 NV3 NV2 SEC1 SEC0
Write:
$0102 FTSTMOD Read: 0 0 0 WRALL 0000
Write:
$0103 FCNFG Read: CBEIE CCIE KEYACC 000BKSEL1 BKSEL0
Write:
$0104 FPROT Read: FPOPEN NV6 FPHDIS FPHS1 FPHS0 FPLDIS FPLS1 FPLS0
Write:
$0105 FSTAT Read: CBEIF CCIF PVIOL ACCERR 0BLANK 0 0
Write:
$0106 FCMD Read: 0 CMDB6 CMDB5 0 0 CMDB2 0CMDB0
Write:
$0107 Reserved for
Factory Test Read:00000000
Write:
$0108 FADDRHI Read: 0 Bit 14 13 12 11 10 9 Bit 8
Write:
$0109 FADDRLO Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$010A FDATAHI Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$010B FDATALO Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$010C -
$010F Reserved Read:00000000
Write:
$0110 - $011B EEPROM Control Register (eets2k)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0110 ECLKDIV Read: EDIVLD PRDIV8 EDIV5 EDIV4 EDIV3 EDIV2 EDIV1 EDIV0
Write:
$0111 Reserved Read:00000000
Write:
$0112 Reserved for
Factory Test Read:00000000
Write:
$0113 ECNFG Read: CBEIE CCIE 000000
Write:
$0114 EPROT Read: EPOPEN NV6 NV5 NV4 EPDIS EP2 EP1 EP0
Write:
$0115 ESTAT Read: CBEIF CCIF PVIOL ACCERR 0BLANK 0 0
Write:
$0116 ECMD Read: 0 CMDB6 CMDB5 0 0 CMDB2 0CMDB0
Write:
$0117 Reserved for
Factory Test Read:00000000
Write:
$0118 EADDRHI Read: 0 0 0 0 0 0 Bit 9 Bit 8
Write:
Device User Guide — 9S12DT128DGV2/D V02.15
45
Freescale Semiconductor
$0119 EADDRLO Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$011A EDATAHI Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$011B EDATALO Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$011C - $011F Reserved for RAM Control Register
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$011C -
$011F Reserved Read:00000000
Write:
$0120 - $013F ATD1 (Analog to Digital Converter 10 Bit 8 Channel)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0120 ATD1CTL0 Read:00000000
Write:
$0121 ATD1CTL1 Read:00000000
Write:
$0122 ATD1CTL2 Read: ADPU AFFC AWAI ETRIGLE ETRIGP ETRIG ASCIE ASCIF
Write:
$0123 ATD1CTL3 Read: 0 S8C S4C S2C S1C FIFO FRZ1 FRZ0
Write:
$0124 ATD1CTL4 Read: SRES8 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0
Write:
$0125 ATD1CTL5 Read: DJM DSGN SCAN MULT 0CC CB CA
Write:
$0126 ATD1STAT0 Read: SCF 0 ETORF FIFOR 0 CC2 CC1 CC0
Write:
$0127 Reserved Read:00000000
Write:
$0128 ATD1TEST0 Read:00000000
Write:
$0129 ATD1TEST1 Read: 0 0 0 0 0 00SC
Write:
$012A Reserved Read:00000000
Write:
$012B ATD1STAT1 Read: CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0
Write:
$012C Reserved Read:00000000
Write:
$012D ATD1DIEN Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$012E Reserved Read:00000000
Write:
$012F PORTAD1 Read: Bit7 6 5 4 3 2 1 BIT 0
Write:
$0110 - $011B EEPROM Control Register (eets2k)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12DT128DGV2/D V02.15
46 Freescale Semiconductor
$0130 ATD1DR0H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0131 ATD1DR0L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$0132 ATD1DR1H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0133 ATD1DR1L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$0134 ATD1DR2H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0135 ATD1DR2L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$0136 ATD1DR3H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0137 ATD1DR3L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$0138 ATD1DR4H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0139 ATD1DR4L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$013A ATD1DR5H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$013B ATD1DR5L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$013C ATD1DR6H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$013D ATD1DR6L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$013E ATD1DR7H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$013F ATD1DR7L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$0140 - $017F CAN0 (Motorola Scalable CAN - MSCAN)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0140 CAN0CTL0 Read: RXFRM RXACT CSWAI SYNCH TIME WUPE SLPRQ INITRQ
Write:
$0141 CAN0CTL1 Read: CANE CLKSRC LOOPB LISTEN 0WUPM SLPAK INITAK
Write:
$0142 CAN0BTR0 Read: SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0
Write:
$0143 CAN0BTR1 Read: SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10
Write:
$0144 CAN0RFLG Read: WUPIF CSCIF RSTAT1 RSTAT0 TSTAT1 TSTAT0 OVRIF RXF
Write:
$0145 CAN0RIER Read: WUPIE CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE RXFIE
Write:
$0120 - $013F ATD1 (Analog to Digital Converter 10 Bit 8 Channel)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12DT128DGV2/D V02.15
47
Freescale Semiconductor
$0146 CAN0TFLG Read: 0 0 0 0 0 TXE2 TXE1 TXE0
Write:
$0147 CAN0TIER Read: 0 0 0 0 0 TXEIE2 TXEIE1 TXEIE0
Write:
$0148 CAN0TARQ Read: 0 0 0 0 0 ABTRQ2 ABTRQ1 ABTRQ0
Write:
$0149 CAN0TAAK Read: 0 0 0 0 0 ABTAK2 ABTAK1 ABTAK0
Write:
$014A CAN0TBSEL Read: 0 0 0 0 0 TX2 TX1 TX0
Write:
$014B CAN0IDAC Read: 0 0 IDAM1 IDAM0 0 IDHIT2 IDHIT1 IDHIT0
Write:
$014C Reserved Read:00000000
Write:
$014D Reserved Read:00000000
Write:
$014E CAN0RXERR Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0
Write:
$014F CAN0TXERR Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0
Write:
$0150 -
$0153 CAN0IDAR0 -
CAN0IDAR3 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$0154 -
$0157 CAN0IDMR0 -
CAN0IDMR3 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$0158 -
$015B CAN0IDAR4 -
CAN0IDAR7 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$015C -
$015F CAN0IDMR4 -
CAN0IDMR7 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$0160 -
$016F CAN0RXFG Read: FOREGROUND RECEIVE BUFFER see (Table 1-2)
Write:
$0170 -
$017F CAN0TXFG Read: FOREGROUND TRANSMIT BUFFER see (Table 1-2)
Write:
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$xxx0 Extended ID Read: ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21
Standard ID Read: ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3
CANxRIDR0 Write:
$xxx1 Extended ID Read: ID20 ID19 ID18 SRR=1 IDE=1 ID17 ID16 ID15
Standard ID Read: ID2 ID1 ID0 RTR IDE=0
CANxRIDR1 Write:
$xxx2 Extended ID Read: ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7
Standard ID Read:
CANxRIDR2 Write:
$xxx3 Extended ID Read: ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR
Standard ID Read:
CANxRIDR3 Write:
$xxx4-
$xxxB CANxRDSR0 -
CANxRDSR7 Read: DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Write:
$0140 - $017F CAN0 (Motorola Scalable CAN - MSCAN)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12DT128DGV2/D V02.15
48 Freescale Semiconductor
$xxxC CANRxDLR Read: DLC3 DLC2 DLC1 DLC0
Write:
$xxxD Reserved Read:
Write:
$xxxE CANxRTSRH Read: TSR15 TSR14 TSR13 TSR12 TSR11 TSR10 TSR9 TSR8
Write:
$xxxF CANxRTSRL Read: TSR7 TSR6 TSR5 TSR4 TSR3 TSR2 TSR1 TSR0
Write:
$xx10
Extended ID Read: ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21
CANxTIDR0 Write:
Standard ID Read: ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3
Write:
$xx11
Extended ID Read: ID20 ID19 ID18 SRR=1 IDE=1 ID17 ID16 ID15
CANxTIDR1 Write:
Standard ID Read: ID2 ID1 ID0 RTR IDE=0
Write:
$xx12
Extended ID Read: ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7
CANxTIDR2 Write:
Standard ID Read:
Write:
$xx13
Extended ID Read: ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR
CANxTIDR3 Write:
Standard ID Read:
Write:
$xx14-
$xx1B CANxTDSR0 -
CANxTDSR7 Read: DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Write:
$xx1C CANxTDLR Read: DLC3 DLC2 DLC1 DLC0
Write:
$xx1D CONxTTBPR Read: PRIO7 PRIO6 PRIO5 PRIO4 PRIO3 PRIO2 PRIO1 PRIO0
Write:
$xx1E CANxTTSRH Read: TSR15 TSR14 TSR13 TSR12 TSR11 TSR10 TSR9 TSR8
Write:
$xx1F CANxTTSRL Read: TSR7 TSR6 TSR5 TSR4 TSR3 TSR2 TSR1 TSR0
Write:
$0180 - $01BF CAN1 (Motorola Scalable CAN - MSCAN)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0180 CAN1CTL0 Read: RXFRM RXACT CSWAI SYNCH TIME WUPE SLPRQ INITRQ
Write:
$0181 CAN1CTL1 Read: CANE CLKSRC LOOPB LISTEN 0WUPM SLPAK INITAK
Write:
$0182 CAN1BTR0 Read: SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0
Write:
$0183 CAN1BTR1 Read: SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10
Write:
$0184 CAN1RFLG Read: WUPIF CSCIF RSTAT1 RSTAT0 TSTAT1 TSTAT0 OVRIF RXF
Write:
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12DT128DGV2/D V02.15
49
Freescale Semiconductor
$0185 CAN1RIER Read: WUPIE CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE RXFIE
Write:
$0186 CAN1TFLG Read: 0 0 0 0 0 TXE2 TXE1 TXE0
Write:
$0187 CAN1TIER Read: 0 0 0 0 0 TXEIE2 TXEIE1 TXEIE0
Write:
$0188 CAN1TARQ Read: 0 0 0 0 0 ABTRQ2 ABTRQ1 ABTRQ0
Write:
$0189 CAN1TAAK Read: 0 0 0 0 0 ABTAK2 ABTAK1 ABTAK0
Write:
$018A CAN1TBSEL Read: 0 0 0 0 0 TX2 TX1 TX0
Write:
$018B CAN1IDAC Read: 0 0 IDAM1 IDAM0 0 IDHIT2 IDHIT1 IDHIT0
Write:
$018C Reserved Read:00000000
Write:
$018D Reserved Read:00000000
Write:
$018E CAN1RXERR Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0
Write:
$018F CAN1TXERR Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0
Write:
$0190 -
$0193 CAN1IDAR0 -
CAN1IDAR3 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$0194 -
$0197 CAN1IDMR0 -
CAN1IDMR3 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$0198 -
$019B CAN1IDAR4 -
CAN1IDAR7 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$019C -
$019F CAN1IDMR4 -
CAN1IDMR7 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$01A0 -
$01AF CAN0RXFG Read: FOREGROUND RECEIVE BUFFER see (Table 1-2)
Write:
$01B0 -
$01BF CAN0TXFG Read: FOREGROUND TRANSMIT BUFFER see (Table 1-2)
Write:
$01C0 - $01FF Reserved
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$01C0 -
$01FF Reserved Read:00000000
Write:
$0200 - $023F Reserved
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$020C -
$023F Reserved Read:00000000
Write:
$0180 - $01BF CAN1 (Motorola Scalable CAN - MSCAN)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12DT128DGV2/D V02.15
50 Freescale Semiconductor
$0240 - $027F PIM (Port Integration Module)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0240 PTT Read: PTT7 PTT6 PTT5 PTT4 PTT3 PTT2 PTT1 PTT0
Write:
$0241 PTIT Read: PTIT7 PTIT6 PTIT5 PTIT4 PTIT3 PTIT2 PTIT1 PTIT0
Write:
$0242 DDRT Read: DDRT7 DDRT7 DDRT5 DDRT4 DDRT3 DDRT2 DDRT1 DDRT0
Write:
$0243 RDRT Read: RDRT7 RDRT6 RDRT5 RDRT4 RDRT3 RDRT2 RDRT1 RDRT0
Write:
$0244 PERT Read: PERT7 PERT6 PERT5 PERT4 PERT3 PERT2 PERT1 PERT0
Write:
$0245 PPST Read: PPST7 PPST6 PPST5 PPST4 PPST3 PPST2 PPST1 PPST0
Write:
$0246 Reserved Read:00000000
Write:
$0247 Reserved Read:00000000
Write:
$0248 PTS Read: PTS7 PTS6 PTS5 PTS4 PTS3 PTS2 PTS1 PTS0
Write:
$0249 PTIS Read: PTIS7 PTIS6 PTIS5 PTIS4 PTIS3 PTIS2 PTIS1 PTIS0
Write:
$024A DDRS Read: DDRS7 DDRS7 DDRS5 DDRS4 DDRS3 DDRS2 DDRS1 DDRS0
Write:
$024B RDRS Read: RDRS7 RDRS6 RDRS5 RDRS4 RDRS3 RDRS2 RDRS1 RDRS0
Write:
$024C PERS Read: PERS7 PERS6 PERS5 PERS4 PERS3 PERS2 PERS1 PERS0
Write:
$024D PPSS Read: PPSS7 PPSS6 PPSS5 PPSS4 PPSS3 PPSS2 PPSS1 PPSS0
Write:
$024E WOMS Read: WOMS7 WOMS6 WOMS5 WOMS4 WOMS3 WOMS2 WOMS1 WOMS0
Write:
$024F Reserved Read:00000000
Write:
$0250 PTM Read: PTM7 PTM6 PTM5 PTM4 PTM3 PTM2 PTM1 PTM0
Write:
$0251 PTIM Read: PTIM7 PTIM6 PTIM5 PTIM4 PTIM3 PTIM2 PTIM1 PTIM0
Write:
$0252 DDRM Read: DDRM7 DDRM7 DDRM5 DDRM4 DDRM3 DDRM2 DDRM1 DDRM0
Write:
$0253 RDRM Read: RDRM7 RDRM6 RDRM5 RDRM4 RDRM3 RDRM2 RDRM1 RDRM0
Write:
$0254 PERM Read: PERM7 PERM6 PERM5 PERM4 PERM3 PERM2 PERM1 PERM0
Write:
$0255 PPSM Read: PPSM7 PPSM6 PPSM5 PPSM4 PPSM3 PPSM2 PPSM1 PPSM0
Write:
$0256 WOMM Read: WOMM7 WOMM6 WOMM5 WOMM4 WOMM3 WOMM2 WOMM1 WOMM0
Write:
$0257 MODRR Read: 0 0 MODRR5 MODRR4 MODRR3 MODRR2 MODRR1 MODRR0
Write:
$0258 PTP Read: PTP7 PTP6 PTP5 PTP4 PTP3 PTP2 PTP1 PTP0
Write:
Device User Guide — 9S12DT128DGV2/D V02.15
51
Freescale Semiconductor
$0259 PTIP Read: PTIP7 PTIP6 PTIP5 PTIP4 PTIP3 PTIP2 PTIP1 PTIP0
Write:
$025A DDRP Read: DDRP7 DDRP7 DDRP5 DDRP4 DDRP3 DDRP2 DDRP1 DDRP0
Write:
$025B RDRP Read: RDRP7 RDRP6 RDRP5 RDRP4 RDRP3 RDRP2 RDRP1 RDRP0
Write:
$025C PERP Read: PERP7 PERP6 PERP5 PERP4 PERP3 PERP2 PERP1 PERP0
Write:
$025D PPSP Read: PPSP7 PPSP6 PPSP5 PPSP4 PPSP3 PPSP2 PPSP1 PPSS0
Write:
$025E PIEP Read: PIEP7 PIEP6 PIEP5 PIEP4 PIEP3 PIEP2 PIEP1 PIEP0
Write:
$025F PIFP Read: PIFP7 PIFP6 PIFP5 PIFP4 PIFP3 PIFP2 PIFP1 PIFP0
Write:
$0260 PTH Read: PTH7 PTH6 PTH5 PTH4 PTH3 PTH2 PTH1 PTH0
Write:
$0261 PTIH Read: PTIH7 PTIH6 PTIH5 PTIH4 PTIH3 PTIH2 PTIH1 PTIH0
Write:
$0262 DDRH Read: DDRH7 DDRH7 DDRH5 DDRH4 DDRH3 DDRH2 DDRH1 DDRH0
Write:
$0263 RDRH Read: RDRH7 RDRH6 RDRH5 RDRH4 RDRH3 RDRH2 RDRH1 RDRH0
Write:
$0264 PERH Read: PERH7 PERH6 PERH5 PERH4 PERH3 PERH2 PERH1 PERH0
Write:
$0265 PPSH Read: PPSH7 PPSH6 PPSH5 PPSH4 PPSH3 PPSH2 PPSH1 PPSH0
Write:
$0266 PIEH Read: PIEH7 PIEH6 PIEH5 PIEH4 PIEH3 PIEH2 PIEH1 PIEH0
Write:
$0267 PIFH Read: PIFH7 PIFH6 PIFH5 PIFH4 PIFH3 PIFH2 PIFH1 PIFH0
Write:
$0268 PTJ Read: PTJ7 PTJ6 0000PTJ1 PTJ0
Write:
$0269 PTIJ Read: PTIJ7 PTIJ6 0 0 0 0 PTIJ1 PTIJ0
Write:
$026A DDRJ Read: DDRJ7 DDRJ7 0000DDRJ1 DDRJ0
Write:
$026B RDRJ Read: RDRJ7 RDRJ6 0000RDRJ1 RDRJ0
Write:
$026C PERJ Read: PERJ7 PERJ6 0000PERJ1 PERJ0
Write:
$026D PPSJ Read: PPSJ7 PPSJ6 0000PPSJ1 PPSJ0
Write:
$026E PIEJ Read: PIEJ7 PIEJ6 0000PIEJ1 PIEJ0
Write:
$026F PIFJ Read: PIFJ7 PIFJ6 0000PIFJ1 PIFJ0
Write:
$0270 -
$027F Reserved Read:00000000
Write:
$0240 - $027F PIM (Port Integration Module)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12DT128DGV2/D V02.15
52 Freescale Semiconductor
$0280 - $02BF CAN4 (Motorola Scalable CAN - MSCAN)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0280 CAN4CTL0 Read: RXFRM RXACT CSWAI SYNCH TIME WUPE SLPRQ INITRQ
Write:
$0281 CAN4CTL1 Read: CANE CLKSRC LOOPB LISTEN 0WUPM SLPAK INITAK
Write:
$0282 CAN4BTR0 Read: SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0
Write:
$0283 CAN4BTR1 Read: SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10
Write:
$0284 CAN4RFLG Read: WUPIF CSCIF RSTAT1 RSTAT0 TSTAT1 TSTAT0 OVRIF RXF
Write:
$0285 CAN4RIER Read: WUPIE CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE RXFIE
Write:
$0286 CAN4TFLG Read: 0 0 0 0 0 TXE2 TXE1 TXE0
Write:
$0287 CAN4TIER Read: 0 0 0 0 0 TXEIE2 TXEIE1 TXEIE0
Write:
$0288 CAN4TARQ Read: 0 0 0 0 0 ABTRQ2 ABTRQ1 ABTRQ0
Write:
$0289 CAN4TAAK Read: 0 0 0 0 0 ABTAK2 ABTAK1 ABTAK0
Write:
$028A CAN4TBSEL Read: 0 0 0 0 0 TX2 TX1 TX0
Write:
$028B CAN4IDAC Read: 0 0 IDAM1 IDAM0 0 IDHIT2 IDHIT1 IDHIT0
Write:
$028C Reserved Read:00000000
Write:
$028D Reserved Read:00000000
Write:
$028E CAN4RXERR Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0
Write:
$028F CAN4TXERR Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0
Write:
$0290 -
$0293 CAN0IDAR0 -
CAN0IDAR3 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$0294 -
$0297 CAN0IDMR0 -
CAN0IDMR3 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$0298 -
$029B CAN0IDAR4 -
CAN0IDAR7 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$029C -
$029F CAN0IDMR4 -
CAN0IDMR7 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
$02A0 -
$02AF CAN4RXFG Read: FOREGROUND RECEIVE BUFFER see (Table 1-2)
Write:
$02B0 -
$02BF CAN4TXFG Read: FOREGROUND TRANSMIT BUFFER see (Table 1-2)
Write:
Device User Guide — 9S12DT128DGV2/D V02.15
53
Freescale Semiconductor
$02C0 - $02FF Reserved
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$02C0 -
$02FF Reserved Read:00000000
Write:
$0300 - $035F Byteflight
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0300 BFMCR Read: INITRQ MASTER ALARM SLPAK SLPRQ WPULSE SSWAI INITAK
Write:
$0301 BFFSIZR Read: 0 0 0 FSIZ4 FSIZ3 FSIZ2 FSIZ1 FSIZ0
Write:
$0302 BFTCR1 Read: TWX0T7 TWX0T6 TWX0T5 TWX0T4 TWX0T3 TWX0T2 TWX0T1 TWX0T0
Write:
$0303 BFTCR2 Read: TWX0R7 TWX0R6 TWX0R5 TWX0R4 TWX0R3 TWX0R2 TWX0R1 TWX0R0
Write:
$0304 BFTCR3 Read: TWX0D7 TWX0D6 TWX0D5 TWX0D4 TWX0D3 TWX0D2 TWX0D1 TWX0D0
Write:
$0305 Reserved Read:00000000
Write:
$0306 BFRISR Read: RCVFIF RXIF SYNAIF SYNNIF SLMMIF 0XSYNIF OPTDF
Write:
$0307 BFGISR Read: TXIF OVRNIF ERRIF SYNEIF SYNLIF ILLPIF LOCKIF WAKEIF
Write:
$0308 BFRIER Read: RCVFIE RXIE SYNAIE SYNNIE SLMMIE 0XSYNIE 0
Write:
$0309 BFGIER Read: TXIE OVRNIE ERRIE SYNEIE SYNLIE ILLPIE LOCKIE WAKEIE
Write:
$030A BFRIVEC Read: 0 0 0 0 RIVEC3 RIVEC2 RIVEC1 RIVEC0
Write:
$030B BFTIVEC Read: 0 0 0 0 TIVEC3 TIVEC2 TIVEC1 TIVEC0
Write:
$030C BFFIDAC Read: FIDAC7 FIDAC6 FIDAC5 FIDAC4 FIDAC3 FIDAC2 FIDAC1 FIDAC0
Write:
$030D BFFIDMR Read: FIDMR7 FIDMR6 FIDMR5 FIDMR4 FIDMR3 FIDMR2 FIDMR1 FIDMR0
Write:
$030E BFMVR Read: MVR7 MVR6 MVR5 MVR4 MVR3 MVR2 MVR1 MVR0
Write:
$030F Reserved Read:00000000
Write:
$0310 BFPCTLBF Read: PMEREN 0PSLMEN PERREN PROKEN PSYNEN 0BFEN
Write:
$0311 Reserved Read:00000000
Write:
$0312 BFBUFLOCK Read: 0 0 0 0 0 0 TXBUFL
OCK RXBUFL
OCK
Write:
$0313 Reserved Read:00000000
Write:
$0314 BFFIDRJ Read: FIDRJ7 FIDRJ6 FIDRJ5 FIDRJ4 FIDRJ3 FIDRJ2 FIDRJ1 FIDRJ0
Write:
Device User Guide — 9S12DT128DGV2/D V02.15
54 Freescale Semiconductor
$0315 BFFIDRMR Read: FIDRMR
7FIDRMR
6FIDRMR
5FIDRMR
5FIDRMR
4FIDRMR
3FIDRMR
2FIDRMR
1
Write:
$0316 Reserved Read:00000000
Write:
$0317 Reserved Read:00000000
Write:
$0318 Reserved Read:00000000
Write:
$0319 Reserved Read:00000000
Write:
$031A Reserved Read:00000000
Write:
$031B Reserved Read:00000000
Write:
$031C Reserved Read:00000000
Write:
$031D Reserved Read:00000000
Write:
$031E Reserved Read:00000000
Write:
$031F Reserved Read:00000000
Write:
$0320 BFTIDENT Read: ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0
Write:
$0321 BFTLEN Read: LEN3 LEN2 LEN1 LEN0
Write:
$0322 -
$032D BFTDATA0-
BFTDATA11 Read: DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0
Write:
$032E -
$032F Reserved Read:
Write:
$0330 BFRIDENT Read: ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0
Write:
$0331 BFRLEN Read: LEN3 LEN2 LEN1 LEN0
Write:
$0332 -
$033D BFRDATA0-
BFRDATA11 Read: DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA 0
Write:
$033E-
$033F Reserved Read:
Write:
$0340 BFFIDENT Read: ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0
Write:
$0341 BFFLEN Read: LEN3 LEN2 LEN1 LEN0
Write:
$0342 -
$034D BFFDATA0-
BFFDATA11 Read: DATA 7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0
Write:
$034E -
$034F Reserved Read:
Write:
$0350 -
$035F BFBUFCTL0 -
BFBUFCTL15 Read: IFLG IENA LOCK ABTAK ABTRQ 0 0 CFG
Write:
$0300 - $035F Byteflight
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12DT128DGV2/D V02.15
55
Freescale Semiconductor
1.6 Part ID Assignments
The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses $001A and $001B after
reset). The read-only value is a unique part ID for each revision of the chip. (Table 1-3) shows the
assigned part ID number.
The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses $001C
and $001D after reset). Table 1-4 shows the read-only values of these registers. Refer to HCS12 Module
Mapping Control (MMC) Block Guide for further details.
$0360 - $03FF Reserved
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0360 -
$03FF Reserved Read:00000000
Write:
Table 1-3 Assigned Part ID Numbers
Device Mask Set Number Part ID1
NOTES:
1. The coding is as follows:
Bit 15-12: Major family identifier
Bit 11-8: Minor family identifier
Bit 7-4: Major mask set revision number including FAB transfers
Bit 3-0: Minor - non full - mask set revision
MC9S12DT128 1L40K $0111
MC9S12DT128 3L40K $0113
MC9S12DT128 4L40K $0114
MC9S12DT128 0L94R $0110
MC9S12DT128 1L59W $0115
MC9S12DT128 5L40K $0115
Table 1-4 Memory size registers
Register name Value
MEMSIZ0 $13
MEMSIZ1 $80
Device User Guide — 9S12DT128DGV2/D V02.15
56 Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.15
57
Freescale Semiconductor
Section 2 Signal Description
This section describes signals that connect off-chip. It includes a pinout diagram, a table of signal
properties, and detailed discussion of signals. It is built from the signal description sections of the Block
User Guides of the individual IP blocks on the device.
2.1 Device Pinout
The MC9S12DT128 and its derivatives are available in a 112-pin low profile quad flat pack (LQFP) and
in a 80-pin quad flat pack (QFP). Most pins perform two or more functions, as described in the Signal
Descriptions. Figure 2-1, Figure 2-2, and Figure 2-3 show the pin assignments for different packages.
Device User Guide — 9S12DT128DGV2/D V02.15
58 Freescale Semiconductor
Figure 2-1 Pin assignments 112 LQFP for MC9S12DT128E, MC9S12DT128,
MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12DB128
MC9S12A128, SC515846, SC515847, SC515848, SC515849, SC101161DT, SC101161DG,
SC101161DJ, SC102202, SC102203, SC102204, and SC102205
VRH
VDDA
PAD15/AN15/ETRIG1
PAD07/AN07/ETRIG0
PAD14/AN14
PAD06/AN06
PAD13/AN13
PAD05/AN05
PAD12/AN12
PAD04/AN04
PAD11/AN11
PAD03/AN03
PAD10/AN10
PAD02/AN02
PAD09/AN09
PAD01/AN01
PAD08/AN08
PAD00/AN00
VSS2
VDD2
PA7/ADDR15/DATA15
PA6/ADDR14/DATA14
PA5/ADDR13/DATA13
PA4/ADDR12/DATA12
PA3/ADDR11/DATA11
PA2/ADDR10/DATA10
PA1/ADDR9/DATA9
PA0/ADDR8/DATA8
PP4/KWP4/PWM4
PP5/KWP5/PWM5
PP6/KWP6/PWM6
PP7/KWP7/PWM7
PK7/ECS/ROMCTL
VDDX
VSSX
PM0/RXCAN0/RXB
PM1/TXCAN0/TXB
PM2/RX_BF/RXCAN1/RXCAN0/MISO0
PM3/TX_BF/TXCAN1/TXCAN0/SS0
PM4/BF_PSYN/RXCAN0/RXCAN4/MOSI0
PM5/BF_PROK/TXCAN0/TXCAN4/SCK0
PJ6/KWJ6/RXCAN4/SDA/RXCAN0
PJ7/KWJ7/TXCAN4/SCL/TXCAN0
VREGEN
PS7/SS0
PS6/SCK0
PS5/MOSI0
PS4/MISO0
PS3/TXD1
PS2/RXD1
PS1/TXD0
PS0/RXD0
PM6/BF_PERR/RXCAN4
PM7/BF_PSLM/TXCAN4
VSSA
VRL
SS1/PWM3/KWP3/PP3
SCK1/PWM2/KWP2/PP2
MOSI1/PWM1/KWP1/PP1
MISO1/PWM0/KWP0/PP0
XADDR17/PK3
XADDR16/PK2
XADDR15/PK1
XADDR14/PK0
IOC0/PT0
IOC1/PT1
IOC2/PT2
IOC3/PT3
VDD1
VSS1
IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
XADDR19/PK5
XADDR18/PK4
KWJ1/PJ1
KWJ0/PJ0
MODC/TAGHI/BKGD
ADDR0/DATA0/PB0
ADDR1/DATA1/PB1
ADDR2/DATA2/PB2
ADDR3/DATA3/PB3
ADDR4/DATA4/PB4
ADDR5/DATA5/PB5
ADDR6/DATA6/PB6
ADDR7/DATA7/PB7
KWH7/PH7
KWH6/PH6
KWH5/PH5
KWH4/PH4
XCLKS/NOACC/PE7
MODB/IPIPE1/PE6
MODA/IPIPE0/PE5
ECLK/PE4
VSSR
VDDR
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
SS1/KWH3/PH3
SCK1/KWH2/PH2
MOSI1/KWH1/PH1
MISO1/KWH0/PH0
LSTRB/TAGLO/PE3
R/W/PE2
IRQ/PE1
XIRQ/PE0
Signals shown in Bold are not available on all the 80 pin package options
MC9S12DT128E, MC9S12DT128, MC9S12DG128E,
MC9S12DG128, MC9S12DJ128E, MC9S12DJ128,
MC9S12DB128, MC9S12A128, SC515846, SC515847,
SC515848, SC515849, SC101161DT, SC101161DG,
SC101161DJ, SC102202, SC102203, SC102204,
SC102205
112LQFP
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
Signals shown in Bold-Italics are not available on the MC9S12DJ128E, MC9S12DJ128, MC9S12DG128E, MC9S12DG128, MC9S12A128,
Signals shown in Italics are not available on the MC9S12DB128, SC515846, and SC102202 80 pin package options
SC515847, SC515848, SC101161DG, SC101161DJ, SC102203, and SC102204 80 pin package options
Device User Guide — 9S12DT128DGV2/D V02.15
59
Freescale Semiconductor
Figure 2-2 Pin Assignments in 80 QFP for MC9S12DG128E, MC9S12DG128,
MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG,
SC101161DJ, SC102203, and SC102204 Bondout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
MC9S12DG128E, MC9S12DG128,
MC9S12DJ128E, MC9S12DJ128,
MC9S12A128, SC515847,
SC515848, SC101161DG,
SC101161DJ, SC102203, SC102204
80 QFP
VRH
VDDA
PAD07/AN07/ETRIG0
PAD06/AN06
PAD05/AN05
PAD04/AN04
PAD03/AN03
PAD02/AN02
PAD01/AN01
PAD00/AN00
VSS2
VDD2
PA7/ADDR15/DATA15
PA6/ADDR14/DATA14
PA5/ADDR13/DATA13
PA4/ADDR12/DATA12
PA3/ADDR11/DATA11
PA2/ADDR10/DATA10
PA1/ADDR9/DATA9
PA0/ADDR8/DATA8
PP4/KWP4/PWM4
PP5/KWP5/PWM5
PP7/KWP7/PWM7
VDDX
VSSX
PM0/RXCAN0/RXB
PM1/TXCAN0/TXB
PM2/RXCAN1/RXCAN0/MISO0
PM3/TXCAN1/TXCAN0/SS0
PM4/RXCAN0/RXCAN4/MOSI0
PM5/TXCAN0/TXCAN4/SCK0
PJ6/KWJ6/RXCAN4/SDA/RXCAN0
PJ7/KWJ7/TXCAN4/SCL/TXCAN0
VREGEN
PS3/TXD1
PS2//RXD1
PS1/TXD0
PS0/RXD0
VSSA
VRL
SS1/PWM3/KWP3/PP3
SCK1/PWM2/KWP2/PP2
MOSI1/PWM1/KWP1/PP1
MISO1/PWM0/KWP0/PP0
IOC0/PT0
IOC1/PT1
IOC2/PT2
IOC3/PT3
VDD1
VSS1
IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
MODC/TAGHI/BKGD
ADDR0/DATA0/PB0
ADDR1/DATA1/PB1
ADDR2/DATA2/PB2
ADDR3/DATA3/PB3
ADDR4/DATA4/PB4
ADDR5/DATA5/PB5
ADDR6/DATA6/PB6
ADDR7/DATA7/PB7
XCLKS/NOACC/PE7
MODB/IPIPE1/PE6
MODA/IPIPE0/PE5
ECLK/PE4
VSSR
VDDR
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
LSTRB/TAGLO/PE3
R/W/PE2
IRQ/PE1
XIRQ/PE0
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
Device User Guide — 9S12DT128DGV2/D V02.15
60 Freescale Semiconductor
Figure 2-3 Pin Assignments in 80 QFP for MC9S12DB128, SC515846, and SC102202
Bondout
2.2 Signal Properties Summary
(Table 2-1) summarizes the pin functionality. Signals shown in Bold are not available on all the 80-pin
package options. Signals shown in Bold-Italics are not available on the MC9S12DG128E,
MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848,
SC101161DG, SC101161DJ, SC102203, and SC102204 80-pin package options. Signals shown in Italics
are not available on MC9S12DB128, SC515846, and SC102202 80-pin package options.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
MC9S12DB128, SC515846,
SC102202
80 QFP
VRH
VDDA
PAD07/AN07/ETRIG0
PAD06/AN06
PAD05/AN05
PAD04/AN04
PAD03/AN03
PAD02/AN02
PAD01/AN01
PAD00/AN00
VSS2
VDD2
PA7/ADDR15/DATA15
PA6/ADDR14/DATA14
PA5/ADDR13/DATA13
PA4/ADDR12/DATA12
PA3/ADDR11/DATA11
PA2/ADDR10/DATA10
PA1/ADDR9/DATA9
PA0/ADDR8/DATA8
PP4/KWP4/PWM4
PP5/KWP5/PWM5
PP7/KWP7/PWM7
VDDX
VSSX
PM2/RX_BF
PM3/TX_BF
PM4/BF_PSYN
PM5/BF_PROK
VREGEN
PS7/SS0
PS6/SCK0
PS5/MOSI0
PS4/MISO0
PS1/TXD0
PS0/RXD0
PM6/BF_PERR
PM7/BF_PSLM
VSSA
VRL
SS1/PWM3/KWP3/PP3
SCK1/PWM2/KWP2/PP2
MOSI1/PWM1/KWP1/PP1
MISO1/PWM0/KWP0/PP0
IOC0/PT0
IOC1/PT1
IOC2/PT2
IOC3/PT3
VDD1
VSS1
IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
MODC/TAGHI/BKGD
ADDR0/DATA0/PB0
ADDR1/DATA1/PB1
ADDR2/DATA2/PB2
ADDR3/DATA3/PB3
ADDR4/DATA4/PB4
ADDR5/DATA5/PB5
ADDR6/DATA6/PB6
ADDR7/DATA7/PB7
XCLKS/NOACC/PE7
MODB/IPIPE1/PE6
MODA/IPIPE0/PE5
ECLK/PE4
VSSR
VDDR
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
LSTRB/TAGLO/PE3
R/W/PE2
IRQ/PE1
XIRQ/PE0
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
Device User Guide — 9S12DT128DGV2/D V02.15
61
Freescale Semiconductor
Table 2-1 Signal Properties
Pin Name
Function 1 Pin Name
Function 2 Pin Name
Function 3 Pin Name
Function 4 Pin Name
Function 5 Powered
by
Internal Pull
Resistor Description
CTRL Reset
State
EXTAL VDDPLL NA NA Oscillator Pins
XTAL VDDPLL NA NA
RESET VDDR None None External Reset
TEST N.A. None None Test Input
VREGEN VDDX NA NA Voltage Regulator
Enable Input
XFC VDDPLL NA NA PLL Loop Filter
BKGD TAGHI MODC VDDR Always
Up Up Background Debug,
Tag High, Mode Input
PAD[15] AN1[7] ETRIG1 VDDA None None
Port AD Input,
Analog Inputs,
External Trigger
Input (ATD1)
PAD[14:8] AN1[6:0] VDDA None None Port AD Input,
Analog Inputs
(ATD1)
PAD[7] AN0[7] ETRIG0 VDDA None None Port AD Input, Analog
Inputs, External
Trigger Input (ATD0)
PAD[6:0] AN0[6:0] VDDA None None P ort AD Input, Analog
Inputs (ATD0)
PA[7:0] ADDR[15:8]/
DATA[15:8] VDDR PUCR/
PUPAE Disabled Port A I/O,
Multiplexed
Address/Data
PB[7:0] ADDR[7:0]/
DATA[7:0] VDDR PUCR/
PUPBE Disabled Port B I/O,
Multiplexed
Address/Data
PE7 NOACC XCLKS VDDR PUCR/
PUPEE
Mode
depen-
dant1
Port E I/O, Access,
Clock Select
PE6 IPIPE1 MODB VDDR While RESET pin
low:
Down
Port E I/O, Pipe
Status, Mode Input
PE5 IPIPE0 MODA VDDR Port E I/O, Pipe
Status, Mode Input
PE4 ECLK VDDR
PUCR/
PUPEE
Mode
depen-
dant1
Port E I/O, Bus Clock
Output
PE3 LSTRB TAGLO VDDR Port E I/O, Byte
Strobe, Tag Low
PE2 R/W VDDR Port E I/O, R/W in
expanded modes
PE1 IRQ VDDR Up
Port E Input,
Maskable Interrupt
PE0 XIRQ VDDR Port E Input, Non
Maskable Interrupt
PH7 KWH7 --- VDDR PERH/
PPSH Disabled Port H I/O, Interrupt
Device User Guide — 9S12DT128DGV2/D V02.15
62 Freescale Semiconductor
PH6 KWH6 --- VDDR PERH/
PPSH Disabled Port H I/O, Interrupt
PH5 KWH5 --- VDDR PERH/
PPSH Disabled Port H I/O, Interrupt
PH4 KWH4 --- VDDR PERH/
PPSH Disabled Port H I/O, Interrupt
PH3 KWH3 SS1 VDDR PERH/
PPSH Disabled Port H I/O, Interrupt,
SS of SPI1
PH2 KWH2 SCK1 VDDR PERH/
PPSH Disabled Port H I/O, Interrupt,
SCK of SPI1
PH1 KWH1 MOSI1 VDDR PERH/
PPSH Disabled Port H I/O, Interrupt,
MOSI of SPI1
PH0 KWH0 MISO1 VDDR PERH/
PPSH Disabled Port H I/O, Interrupt,
MISO of SPI1
PJ7 KWJ7 TXCAN4 SCL TXCAN0 VDDX PERJ/
PPSJ Up Port J I/O, Interrupt,
TX of CAN4, SCL of
IIC
PJ6 KWJ6 RXCAN4 SDA RXCAN0 VDDX PERJ/
PPSJ Up Port J I/O, Interrupt,
RX of CAN4, SDA of
IIC
PJ[1:0] KWJ[1:0] VDDX PERJ/
PPSJ Up Port J I/O, Interrupts
PK7 ECS ROMCTL VDDX PUCR/
PUPKE Up Port K I/O,
Emulation Chip
Select, ROM Control
PK[5:0] XADDR[19:
14] ———VDDX PUCR/
PUPKE Up P ort K I/O, Extended
Addresses
PM7 BF_PSLM TXCAN4 VDDX PERM/
PPSM Disabled Port M I/O, BF slot
mismatch pulse, TX
of CAN4
PM6 BF_PERR RXCAN4 VDDX PERM/
PPSM Disabled
P ort M I/O, BF illegal
pulse/message
format error pulse,
RX of CAN4
PM5 BF_PROK TXCAN0 TXCAN4 SCK0 VDDX PERM/
PPSM Disabled
Port M I/O, BF
reception ok pulse,
TX of CAN0, CAN4,
SCK of SPI0
PM4 BF_PSYN RXCAN0 RXCAN4 MOSI0 VDDX PERM/
PPSM Disabled
Port M I/O, BF sync
pulse (Rx/Tx) OK
pulse o/p, RX of
CAN0, CAN4, MOSI
of SPI0
PM3 TX_BF TXCAN1 TXCAN0 SS0 VDDX PERM/
PPSM Disabled Port M I/O, TX of BF,
CAN1, CAN0, SS of
SPI0
PM2 RX_BF RXCAN1 RXCAN0 MISO0 VDDX PERM/
PPSM Disabled Port M I/O, RX of BF,
CAN1, CAN0, MISO
of SPI0
Pin Name
Function 1 Pin Name
Function 2 Pin Name
Function 3 Pin Name
Function 4 Pin Name
Function 5 Powered
by
Internal Pull
Resistor Description
CTRL Reset
State
Device User Guide — 9S12DT128DGV2/D V02.15
63
Freescale Semiconductor
PM1 TXCAN0 TXB VDDX PERM/
PPSM Disabled Port M I/O, TX of
CAN0, RX of BDLC
PM0 RXCAN0 RXB VDDX PERM/
PPSM Disabled Port M I/O, RX of
CAN0, RX of BDLC
PP7 KWP7 PWM7 VDDX PERP/
PPSP Disabled Port P I/O, Interrupt,
Channel 7 of PWM
PP6 KWP6 PWM6 VDDX PERP/
PPSP Disabled Port P I/O, Interrupt,
Channel 6 of PWM
PP5 KWP5 PWM5 VDDX PERP/
PPSP Disabled Port P I/O, Interrupt,
Channel 5 of PWM
PP4 KWP4 PWM4 VDDX PERP/
PPSP Disabled Port P I/O, Interrupt,
Channel 4 of PWM
PP3 KWP3 PWM3 SS1 VDDX PERP/
PPSP Disabled Port P I/O, Interrupt,
Channel 3 of PWM,
SS of SPI1
PP2 KWP2 PWM2 SCK1 VDDX PERP/
PPSP Disabled Port P I/O, Interrupt,
Channel 2 of PWM,
SCK of SPI1
PP1 KWP1 PWM1 MOSI1 VDDX PERP/
PPSP Disabled Port P I/O, Interrupt,
Channel 1 of PWM,
MOSI of SPI1
PP0 KWP0 PWM0 MISO1 VDDX PERP/
PPSP Disabled Port P I/O, Interrupt,
Channel 0 of PWM,
MISO2 of SPI1
PS7 SS0 VDDX PERS/
PPSS Up Port S I/O, SS of
SPI0
PS6 SCK0 VDDX PERS/
PPSS Up Port S I/O, SCK of
SPI0
PS5 MOSI0 VDDX PERS/
PPSS Up Port S I/O, MOSI of
SPI0
PS4 MISO0 VDDX PERS/
PPSS Up Port S I/O, MISO of
SPI0
PS3 TXD1 VDDX PERS/
PPSS Up Port S I/O, TXD of
SCI1
PS2 RXD1 VDDX PERS/
PPSS Up Port S I/O, RXD of
SCI1
PS1 TXD0 VDDX PERS/
PPSS Up Port S I/O, TXD of
SCI0
PS0 RXD0 VDDX PERS/
PPSS Up Port S I/O, RXD of
SCI0
PT[7:0] IOC[7:0] VDDX PERT/
PPST Disabled Port T I/O, Timer
channels
NOTES:
1. Refer to PEAR register description in HCS12 Multiplexed External Bus Interface (MEBI) Block Guide.
Pin Name
Function 1 Pin Name
Function 2 Pin Name
Function 3 Pin Name
Function 4 Pin Name
Function 5 Powered
by
Internal Pull
Resistor Description
CTRL Reset
State
Device User Guide — 9S12DT128DGV2/D V02.15
64 Freescale Semiconductor
2.3 Detailed Signal Descriptions
2.3.1 EXTAL, XTAL — Oscillator Pins
EXTAL and XTAL are the crystal driver and external clock pins. On reset all the device clocks are derived
from the EXTAL input frequency. XTAL is the crystal output.
2.3.2 RESET — External Reset Pin
An active low bidirectional control signal, it acts as an input to initialize the MCU to a known start-up
state, and an output when an internal MCU function causes a reset.
2.3.3 TEST — Test Pin
This input only pin is reserved for test.
NOTE: The TEST pin must be tied to VSS in all applications.
2.3.4 XFC — PLL Loop Filter Pin
PLL loop filter. Please ask your Freescale representative for the interactive application note to compute
PLL loop filter elements. Any current leakage on this pin must be avoided.
Figure 2-4 PLL Loop Filter Connections
2.3.5 BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin
The BKGD/TAGHI/MODC pin is used as a pseudo-open-drain pin for the background debug
communication. In MCU expanded modes of operation when instruction tagging is on, an input low on
this pin during the falling edge of E-clock tags the high half of the instruction word being read into the
instruction queue. It is used as a MCU operating mode select pin during reset. The state of this pin is
latched to the MODC bit at the rising edge of RESET. This pin has a permanently enabled pull-up device.
MCU
XFC
R
CS
CP
VDDPLLVDDPLL
Device User Guide — 9S12DT128DGV2/D V02.15
65
Freescale Semiconductor
2.3.6 PAD[15] / AN1[7] / ETRIG1 — Port AD Input Pin [15]
PAD15 is a general purpose input pin and analog input of the analog to digital converter ATD1. It can act
as an external trigger input for the ATD1.
2.3.7 PAD[14:8] / AN1[6:0] — Port AD Input Pins [14:8]
PAD14 - PAD8 are general purpose input pins and analog inputs of the analog to digital converter ATD1.
2.3.8 PAD[7] / AN0[7] / ETRIG0 — Port AD Input Pin [7]
PAD7 is a general purpose input pin and analog input of the analog to digital converter ATD0. It can act
as an external trigger input for the ATD0.
2.3.9 PAD[6:0] / AN0[6:0] — Port AD Input Pins [6:0]
PAD6 - PAD8 are general purpose input pins and analog inputs of the analog to digital converter ATD0.
2.3.10 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins
PA7-PA0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are
used for the multiplexed external address and data bus.
2.3.11 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins
PB7-PB0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are
used for the multiplexed external address and data bus.
2.3.12 PE7 / NOACC / XCLKS — Port E I/O Pin 7
PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC
signal, when enabled, is used to indicate that the current bus cycle is an unused or “free” cycle. This signal
will assert when the CPU is not using the bus.
The XCLKS is an input signal which controls whether a crystal in combination with the internal Colpitts
(low power) oscillator is used or whether Pierce oscillator/external clock circuitry is used. The state of this
pin is latched at the rising edge of RESET. If the input is a logic low the EXTAL pin is configured for an
external clock drive. If input is a logic high an oscillator circuit is configured on EXTAL and XTAL. Since
this pin is an input with a pull-up device during reset, if the pin is left floating, the default configuration is
an oscillator circuit on EXTAL and XTAL.
Device User Guide — 9S12DT128DGV2/D V02.15
66 Freescale Semiconductor
Figure 2-5 Colpitts Oscillator Connections (PE7=1)
Figure 2-6 Pierce Oscillator Connections (PE7=0)
Figure 2-7 External Clock Connections (PE7=0)
MCU
C2
EXTAL
XTAL
Crystal or
VSSPLL
ceramic resonator
C1
CDC *
* Due to the nature of a translated ground Colpitts oscillator a
DC voltage bias is applied to the crystal
bias conditions and recommended capacitor value CDC.
Please contact the crystal manufacturer for crystal DC
MCU
EXTAL
XTAL RS*
RB
VSSPLL
Crystal or
ceramic resonator
C2
C1
* Rs can be zero (shorted) when used with higher frequency crystals.
Refer to manufacturer’s data.
MCU
EXTAL
XTAL
CMOS-COMPATIBLE
EXTERNAL OSCILLATOR
not connected
(VDDPLL-Level)
Device User Guide — 9S12DT128DGV2/D V02.15
67
Freescale Semiconductor
2.3.13 PE6 / MODB / IPIPE1 — Port E I/O Pin 6
PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODB bit at the rising edge of RESET. This pin is shared with the
instruction queue tracking signal IPIPE1. This pin is an input with a pull-down device which is only active
when RESET is low.
2.3.14 PE5 / MODA / IPIPE0 — Port E I/O Pin 5
PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODA bit at the rising edge of RESET. This pin is shared with the
instruction queue tracking signal IPIPE0. This pin is an input with a pull-down device which is only active
when RESET is low.
2.3.15 PE4 / ECLK — Port E I/O Pin 4
PE4 is a general purpose input or output pin. It can be configured to drive the internal bus clock ECLK.
ECLK can be used as a timing reference.
2.3.16 PE3 / LSTRB / TAGLO — Port E I/O Pin 3
PE3 is a general purpose input or output pin. In MCU expanded modes of operation, LSTRB can be used
for the low-byte strobe function to indicate the type of bus access and when instruction tagging is on,
TAGLO is used to tag the low half of the instruction word being read into the instruction queue.
2.3.17 PE2 / R/W Port E I/O Pin 2
PE2 is a general purpose input or output pin. In MCU expanded modes of operations, this pin drives the
read/write output signal for the external bus. It indicates the direction of data on the external bus.
2.3.18 PE1 / IRQ — Port E Input Pin 1
PE1 is a general purpose input pin and the maskable interrupt request input that provides a means of
applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.
2.3.19 PE0 / XIRQ — Port E Input Pin 0
PE0 is a general purpose input pin and the non-maskable interrupt request input that provides a means of
applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.
2.3.20 PH7 / KWH7 — Port H I/O Pin 7
PH7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode.
Device User Guide — 9S12DT128DGV2/D V02.15
68 Freescale Semiconductor
2.3.21 PH6 / KWH6 — Port H I/O Pin 6
PH6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode.
2.3.22 PH5 / KWH5 — Port H I/O Pin 5
PH5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode.
2.3.23 PH4 / KWH4 — Port H I/O Pin 2
PH4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode.
2.3.24 PH3 / KWH3 / SS1 — Port H I/O Pin 3
PH3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as slave select pin SS of the Serial Peripheral Interface
1 (SPI1).
2.3.25 PH2 / KWH2 / SCK1 — Port H I/O Pin 2
PH2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as serial clock pin SCK of the Serial Peripheral Interface
1 (SPI1).
2.3.26 PH1 / KWH1 / MOSI1 — Port H I/O Pin 1
PH1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as master output (during master mode) or slave input
pin (during slave mode) MOSI of the Serial Peripheral Interface 1 (SPI1).
2.3.27 PH0 / KWH0 / MISO1 — Port H I/O Pin 0
PH0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as master input (during master mode) or slave output
(during slave mode) pin MISO of the Serial Peripheral Interface 1 (SPI1).
2.3.28 PJ7 / KWJ7 / TXCAN4 / SCL / TXCAN0 — PORT J I/O Pin 7
PJ7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as the transmit pin TXCAN for the Motorola Scalable
Controller Area Network controller 0 or 4 (CAN0, CAN4) or the serial clock pin SCL of the IIC module.
Device User Guide — 9S12DT128DGV2/D V02.15
69
Freescale Semiconductor
2.3.29 PJ6 / KWJ6 / RXCAN4 / SDA / RXCAN0 — PORT J I/O Pin 6
PJ6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as the receive pin RXCAN for the Motorola Scalable
Controller Area Network controller 0 or 4 (CAN0, CAN4) or the serial data pin SDA of the IIC module.
2.3.30 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0]
PJ1 and PJ0 are general purpose input or output pins. They can be configured to generate an interrupt
causing the MCU to exit STOP or WAIT mode.
2.3.31 PK7 / ECS / ROMCTL — Port K I/O Pin 7
PK7 is a general purpose input or output pin. During MCU expanded modes of operation, this pin is used
as the emulation chip select output (ECS). While configurating MCU expanded modes, this pin is used to
enable the Flash EEPROM memory in the memory map (ROMCTL). At the rising edge of RESET, the
state of this pin is latched to the ROMON bit. For a complete list of modes refer to 4.2 Chip Configuration
Summary.
2.3.32 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0]
PK5-PK0 are general purpose input or output pins. In MCU expanded modes of operation, these pins
provide the expanded address XADDR[19:14] for the external bus.
2.3.33 PM7 / BF_PSLM / TXCAN4 — Port M I/O Pin 7
PM7 is a general purpose input or output pin. It can be configured as the slot mismatch output pulse pin
of Byteflight. It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area
Network controllers 4 (CAN4).
2.3.34 PM6 / BF_PERR / RXCAN4 — Port M I/O Pin 6
PM6 is a general purpose input or output pin. It can be configured as the illegal pulse or message format
error output pulse pin of Byteflight. It can be configured as the receive pin RXCAN of the Motorola
Scalable Controller Area Network controllers 4 (CAN4).
2.3.35 PM5 / BF_PROK / TXCAN0 / TXCAN4 / SCK0 — Port M I/O Pin 5
PM5 is a general purpose input or output pin. It can be configured as the reception OK output pulse pin of
Byteflight. It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area
Network controllers 0 or 4 (CAN0 or CAN4). It can be configured as the serial clock pin SCK of the Serial
Peripheral Interface 0 (SPI0).
Device User Guide — 9S12DT128DGV2/D V02.15
70 Freescale Semiconductor
2.3.36 PM4 / BF_PSYN / RXCAN0 / RXCAN4/ MOSI0 — Port M I/O Pin 4
PM4 is a general purpose input or output pin. It can be configured as the correct synchronisation pulse
reception/transmission output pulse pin of Byteflight. It can be configured as the receive pin RXCAN of
the Motorola Scalable Controller Area Network controllers 0 or 4 (CAN0 or CAN4). It can be configured
as the master output (during master mode) or slave input pin (during slave mode) MOSI for the Serial
Peripheral Interface 0 (SPI0).
2.3.37 PM3 / TX_BF / TXCAN1 / TXCAN0 / SS0 — Port M I/O Pin 3
PM3 is a general purpose input or output pin. It can be configured as the transmit pinTX_BF of Byteflight.
It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area Network
controllers 1 or 0 (CAN1 or CAN0). It can be configured as the slave select pin SS of the Serial Peripheral
Interface 0 (SPI0).
2.3.38 PM2 / RX_BF / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2
PM2 is a general purpose input or output pin. It can be configured as the receive pin RX_BF of Byteflight.
It can be configured as the receive pin RXCAN of the Motorola Scalable Controller Area Network
controllers 1 or 0 (CAN1 or CAN0). It can be configured as the master input (during master mode) or slave
output pin (during slave mode) MISO for the Serial Peripheral Interface 0 (SPI0).
2.3.39 PM1 / TXCAN0 / TXB — Port M I/O Pin 1
PM1 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the
Motorola Scalable Controller Area Network controller 0 (CAN0). It can be configured as the transmit pin
TXB of the BDLC.
2.3.40 PM0 / RXCAN0 / RXB — Port M I/O Pin 0
PM0 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the
Motorola Scalable Controller Area Network controller 0 (CAN0). It can be configured as the receive pin
RXB of the BDLC.
2.3.41 PP7 / KWP7 / PWM7 — Port P I/O Pin 7
PP7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 7 output.
2.3.42 PP6 / KWP6 / PWM6 — Port P I/O Pin 6
PP6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 6 output.
Device User Guide — 9S12DT128DGV2/D V02.15
71
Freescale Semiconductor
2.3.43 PP5 / KWP5 / PWM5 — Port P I/O Pin 5
PP5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 5 output.
2.3.44 PP4 / KWP4 / PWM4 — Port P I/O Pin 4
PP4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 4 output.
2.3.45 PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3
PP3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 3 output. It
can be configured as slave select pin SS of the Serial Peripheral Interface 1 (SPI1).
2.3.46 PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2
PP2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 2 output. It
can be configured as serial clock pin SCK of the Serial Peripheral Interface 1 (SPI1).
2.3.47 PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1
PP1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 1 output. It
can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of
the Serial Peripheral Interface 1 (SPI1).
2.3.48 PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0
PP0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 0 output. It
can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of
the Serial Peripheral Interface 1 (SPI1).
2.3.49 PS7 / SS0 — Port S I/O Pin 7
PS7 is a general purpose input or output pin. It can be configured as the slave select pin SS of the Serial
Peripheral Interface 0 (SPI0).
2.3.50 PS6 / SCK0 — Port S I/O Pin 6
PS6 is a general purpose input or output pin. It can be configured as the serial clock pin SCK of the Serial
Peripheral Interface 0 (SPI0).
Device User Guide — 9S12DT128DGV2/D V02.15
72 Freescale Semiconductor
2.3.51 PS5 / MOSI0 — Port S I/O Pin 5
PS5 is a general purpose input or output pin. It can be configured as master output (during master mode)
or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0).
2.3.52 PS4 / MISO0 — Port S I/O Pin 4
PS4 is a general purpose input or output pin. It can be configured as master input (during master mode) or
slave output pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0).
2.3.53 PS3 / TXD1 — Port S I/O Pin 3
PS3 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial
Communication Interface 1 (SCI1).
2.3.54 PS2 / RXD1 — Port S I/O Pin 2
PS2 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial
Communication Interface 1 (SCI1).
2.3.55 PS1 / TXD0 — Port S I/O Pin 1
PS1 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial
Communication Interface 0 (SCI0).
2.3.56 PS0 / RXD0 — Port S I/O Pin 0
PS0 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial
Communication Interface 0 (SCI0).
2.3.57 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0]
PT7-PT0 are general purpose input or output pins. They can be configured as input capture or output
compare pins IOC7-IOC0 of the Enhanced Capture Timer (ECT).
2.4 Power Supply Pins
MC9S12DT128 power and ground pins are described below.
Table 2-2 MC9S12DT128 Power and Ground Connection Summary
Mnemonic Pin Number Nominal
Voltage Description
112-pin QFP
VDD1, 2 13, 65 2.5V Internal power and ground generated by internal regulator
VSS1, 2 14, 66 0V
Device User Guide — 9S12DT128DGV2/D V02.15
73
Freescale Semiconductor
NOTE: All VSS pins must be connected together in the application.
2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers
External power and ground for I/O drivers. Because fast signal transitions place high, short-duration
current demands on the power supply, use bypass capacitors with high-frequency characteristics and place
them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are
loaded.
2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal
Voltage Regulator
External power and ground for I/O drivers and input to the internal voltage regulator. Because fast signal
transitions place high, short-duration current demands on the power supply, use bypass capacitors with
high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements
depend on how heavily the MCU pins are loaded.
2.4.3 VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Supply Pins
Power is supplied to the MCU through VDD and VSS. Because fast signal transitions place high,
short-duration current demands on the power supply, use bypass capacitors with high-frequency
characteristics and place them as close to the MCU as possible. This 2.5V supply is derived from the
internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is
turned off, if VREGEN is tied to ground.
NOTE: No load allowed except for bypass capacitors.
VDDR 41 5.0V External power and ground, supply to pin drivers and internal
voltage regulator.
VSSR 40 0V
VDDX 107 5.0V External power and ground, supply to pin drivers.
VSSX 106 0V
VDDA 83 5.0V Operating voltage and ground for the analog-to-digital
converters and the reference f or the internal voltage regulator,
allows the supply voltage to the A/D to be bypassed
independently.
VSSA 86 0V
VRL 85 0V Reference voltages for the analog-to-digital converter.
VRH 84 5.0V
VDDPLL 43 2.5V Provides operating voltage and ground for the Phased-Locked
Loop. This allows the supply voltage to the PLL to be
bypassed independently. Internal power and ground
generated by internal regulator.
VSSPLL 45 0V
VREGEN 97 5V Internal Voltage Regulator enable/disable
Mnemonic Pin Number Nominal
Voltage Description
112-pin QFP
Device User Guide — 9S12DT128DGV2/D V02.15
74 Freescale Semiconductor
2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG
VDDA, VSSA are the power supply and ground input pins for the voltage regulator and the analog to
digital converter. It also provides the reference for the internal voltage regulator. This allows the supply
voltage to the ATD and the reference voltage to be bypassed independently.
2.4.5 VRH, VRL — ATD Reference Voltage Input Pins
VRH and VRL are the reference voltage input pins for the analog to digital converter.
2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL
Provides operating voltage and ground for the Oscillator and the Phased-Locked Loop. This allows the
supply voltage to the Oscillator and PLL to be bypassed independently.This 2.5V voltage is generated by
the internal voltage regulator.
NOTE: No load allowed except for bypass capacitors.
2.4.7 VREGEN — On Chip Voltage Regulator Enable
Enables the internal 5V to 2.5V voltage regulator. If this pin is tied low, VDD1,2 and VDDPLL must be
supplied externally.
Device User Guide — 9S12DT128DGV2/D V02.15
75
Freescale Semiconductor
Section 3 System Clock Description
3.1 Overview
The Clock and Reset Generator provides the internal clock signals for the core and all peripheral modules.
Figure 3-1 shows the clock connections from the CRG to all modules.
Consult the CRG Block User Guide for details on clock generation.
Figure 3-1 Clock Connections
CRG bus clock
core clock
EXTAL
XTAL oscillator clock
HCS12 CORE
IIC
RAM
SCI0, SCI1
PWM
ATD0, 1
BF
Flash
ECT
BDLC
SPI0, 1
CAN0, 1, 4
PIM
EEPROM
BDM
MEBI
INT
CPU
BKP
MMC
Device User Guide — 9S12DT128DGV2/D V02.15
76 Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.15
77
Freescale Semiconductor
Section 4 Modes of Operation
4.1 Overview
Eight possible modes determine the operating configuration of the MC9S12DT128. Each mode has an
associated default memory map and external bus configuration controlled by a further pin.
Three low power modes exist for the device.
4.2 Chip Configuration Summary
The operating mode out of reset is determined by the states of the MODC, MODB, and MODA pins during
reset ((Table 4-1)). The MODC, MODB, and MODA bits in the MODE register show the current
operating mode and provide limited mode switching during operation. The states of the MODC, MODB,
and MODA pins are latched into these bits on the rising edge of the reset signal. The ROMCTL signal
allows the setting of the ROMON bit in the MISC register thus controlling whether the internal Flash is
visible in the memory map. ROMON = 1 mean the Flash is visible in the memory map. The state of the
ROMCTL pin is latched into the ROMON bit in the MISC register on the rising edge of the reset signal.
For further explanation on the modes refer to the HCS12 Multiplexed External Bus Interface Block Guide.
Table 4-1 Mode Selection
BKGD =
MODC PE6 =
MODB PE5 =
MODA PK7 =
ROMCTL ROMON
Bit Mode Description
0 0 0 X 1 Special Single Chip, BDM allowed and ACTIVE. BDM is
allowed in all other modes but a serial command is
required to make BDM active.
0010 1 Emulation Expanded Narrow, BDM allowed
1 0
0 1 0 X 0 Special Test (Expanded Wide), BDM allowed
0110 1 Emulation Expanded Wide, BDM allowed
1 0
1 0 0 X 1 Normal Single Chip, BDM allowed
1010 0 Normal Expanded Narrow, BDM allowed
1 1
1 1 0 X 1 Special Peripheral; BDM allowed but bus operations
would cause bus conflicts (must not be used)
1110 0 Normal Expanded Wide, BDM allowed
1 1
Table 4-2 Clock Selection Based on PE7
PE7 = XCLKS Description
1 Colpitts Oscillator selected
0 Pierce Oscillator/external clock selected
Device User Guide — 9S12DT128DGV2/D V02.15
78 Freescale Semiconductor
4.3 Security
The device will make available a security feature preventing the unauthorized read and write of the
memory contents. This feature allows:
Protection of the contents of FLASH,
Protection of the contents of EEPROM,
Operation in single-chip mode, No BDM possible
Operation from external memory with internal FLASH and EEPROM disabled.
The user must be reminded that part of the security must lie with the user’s code. An extreme example
would be user’s code that dumps the contents of the internal program. This code would defeat the purpose
of security. At the same time the user may also wish to put a back door in the user’s program. An example
of this is the user downloads a key through the SCI which allows access to a programming routine that
updates parameters stored in EEPROM.
4.3.1 Securing the Microcontroller
Once the user has programmed the FLASH and EEPROM (if desired), the part can be secured by
programming the security bits located in the FLASH module. These non-volatile bits will keep the part
secured through resetting the part and through powering down the part.
The security byte resides in a portion of the Flash array.
Check the Flash Block User Guide for more details on the security configuration.
4.3.2 Operation of the Secured Microcontroller
4.3.2.1 Normal Single Chip Mode
This will be the most common usage of the secured part. Everything will appear the same as if the part was
not secured with the exception of BDM operation. The BDM operation will be blocked.
4.3.2.2 Executing from External Memory
The user may wish to execute from external space with a secured microcontroller. This is accomplished
by resetting directly into expanded mode. The internal FLASH and EEPROM will be disabled. BDM
operations will be blocked.
Table 4-3 Voltage Regulator VREGEN
VREGEN Description
1 Internal Voltage Regulator enabled
0Internal Voltage Regulator disabled, VDD1,2 and
VDDPLL must be supplied externally with 2.5V
Device User Guide — 9S12DT128DGV2/D V02.15
79
Freescale Semiconductor
4.3.3 Unsecuring the Microcontroller
In order to unsecure the microcontroller, the internal FLASH and EEPROM must be erased. This can be
done through an external program in expanded mode or via a .sequence of BDM commands. Unsecuring
is also possible via the Backdoor Key Access. Refer to Flash Block Guide for details.
Once the user has erased the FLASH and EEPROM, the part can be reset into special single chip mode.
This invokes a program that verifies the erasure of the internal FLASH and EEPROM. Once this program
completes, the user can erase and program the FLASH security bits to the unsecured state. This is generally
done through the BDM, but the user could also change to expanded mode (by writing the mode bits
through the BDM) and jumping to an external program (again through BDM commands). Note that if the
part goes through a reset before the security bits are reprogrammed to the unsecure state, the part will be
secured again.
4.4 Low Power Modes
The microcontroller features three main low power modes. Consult the respective Block User Guide for
information on the module behavior in Stop, Pseudo Stop, and Wait Mode. An important source of
information about the clock system is the Clock and Reset Generator User Guide (CRG).
4.4.1 Stop
Executing the CPU STOP instruction stops all clocks and the oscillator thus putting the chip in fully static
mode. Wake up from this mode can be done via reset or external interrupts.
4.4.2 Pseudo Stop
This mode is entered by executing the CPU STOP instruction. In this mode the oscillator is still running
and the Real Time Interrupt (RTI) or Watchdog (COP) sub module can stay active. Other peripherals are
turned off. This mode consumes more current than the full STOP mode, but the wake up time from this
mode is significantly shorter.
4.4.3 Wait
This mode is entered by executing the CPU WAI instruction. In this mode the CPU will not execute
instructions. The internal CPU signals (address and databus) will be fully static. All peripherals stay active.
For further power consumption the peripherals can individually turn off their local clocks.
4.4.4 Run
Although this is not a low power mode, unused peripheral modules should not be enabled in order to save
power.
Device User Guide — 9S12DT128DGV2/D V02.15
80 Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.15
81
Freescale Semiconductor
Section 5 Resets and Interrupts
5.1 Overview
Consult the Exception Processing section of the CPU Reference Manual for information on resets and
interrupts.
5.2 Vectors
5.2.1 Vector Table
(Table 5-1) lists interrupt sources and vectors in default order of priority.
Table 5-1 Interrupt Vector Locations
Vector Address Interrupt Source CCR
Mask Local Enable HPRIO Value
to Elevate
$FFFE, $FFFF Reset None None
$FFFC, $FFFD Clock Monitor fail reset None COPCTL (CME, FCME)
$FFFA, $FFFB COP failure reset None COP rate select
$FFF8, $FFF9 Unimplemented instruction trap None None
$FFF6, $FFF7 SWI None None
$FFF4, $FFF5 XIRQ / BF High Priority Sync Pulse X-Bit None / BFRIER (XSYNIE)
$FFF2, $FFF3 IRQ I-Bit INTCR (IRQEN) $F2
$FFF0, $FFF1 Real Time Interrupt I-Bit CRGINT (RTIE) $F0
$FFEE, $FFEF Enhanced Capture Timer channel 0 I-Bit TIE (C0I) $EE
$FFEC, $FFED Enhanced Capture Timer channel 1 I-Bit TIE (C1I) $EC
$FFEA, $FFEB Enhanced Capture Timer channel 2 I-Bit TIE (C2I) $EA
$FFE8, $FFE9 Enhanced Capture Timer channel 3 I-Bit TIE (C3I) $E8
$FFE6, $FFE7 Enhanced Capture Timer channel 4 I-Bit TIE (C4I) $E6
$FFE4, $FFE5 Enhanced Capture Timer channel 5 I-Bit TIE (C5I) $E4
$FFE2, $FFE3 Enhanced Capture Timer channel 6 I-Bit TIE (C6I) $E2
$FFE0, $FFE1 Enhanced Capture Timer channel 7 I-Bit TIE (C7I) $E0
$FFDE, $FFDF Enhanced Capture Timer overflow I-Bit TSCR2 (TOF) $DE
$FFDC, $FFDD Pulse accumulator A overflow I-Bit PACTL (PAOVI) $DC
$FFDA, $FFDB Pulse accumulator input edge I-Bit PACTL (PAI) $DA
$FFD8, $FFD9 SPI0 I-Bit SPICR1 (SPIE, SPTIE) $D8
$FFD6, $FFD7 SCI0 I-Bit SCICR2
(TIE, TCIE, RIE, ILIE) $D6
$FFD4, $FFD5 SCI1 I-Bit SCICR2
(TIE, TCIE, RIE, ILIE) $D4
$FFD2, $FFD3 ATD0 I-Bit ATDCTL2 (ASCIE) $D2
$FFD0, $FFD1 ATD1 I-Bit ATDCTL2 (ASCIE) $D0
$FFCE, $FFCF Port J I-Bit PIEJ
(PIEJ7, PIEJ6, PIEJ1, PIEJ0) $CE
$FFCC, $FFCD Port H I-Bit PIEH (PIEH7-0) $CC
Device User Guide — 9S12DT128DGV2/D V02.15
82 Freescale Semiconductor
5.3 Effects of Reset
When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the
respective module Block User Guides for register reset states.
5.3.1 I/O pins
Refer to the HCS12 Multiplexed External Bus Interface (MEBI) Block Guide for mode dependent pin
configuration of port A, B, E and K out of reset.
Refer to the PIM Block User Guide for reset configurations of all peripheral module ports.
$FFCA, $FFCB Modulus Down Counter underflow I-Bit MCCTL (MCZI) $CA
$FFC8, $FFC9 Pulse Accumulator B Overflow I-Bit PBCTL (PBOVI) $C8
$FFC6, $FFC7 CRG PLL lock I-Bit PLLCR (LOCKIE) $C6
$FFC4, $FFC5 CRG Self Clock Mode I-Bit PLLCR (SCMIE) $C4
$FFC2, $FFC3 BDLC I-Bit DLCBCR1 (IE) $C2
$FFC0, $FFC1 IIC Bus I-Bit IBCR (IBIE) $C0
$FFBE, $FFBF SPI1 I-Bit SPICR1 (SPIE, SPTIE) $BE
$FFBC, $FFBD Reserved
$FFBA, $FFBB EEPROM I-Bit ECNFG (CCIE, CBEIE) $BA
$FFB8, $FFB9 FLASH I-Bit FCNFG (CCIE, CBEIE) $B8
$FFB6, $FFB7 CAN0 wake-up I-Bit CANRIER (WUPIE) $B6
$FFB4, $FFB5 CAN0 errors I-Bit CANRIER (CSCIE, OVRIE) $B4
$FFB2, $FFB3 CAN0 receive I-Bit CANRIER (RXFIE) $B2
$FFB0, $FFB1 CAN0 transmit I-Bit CANTIER (TXEIE[2:0]) $B0
$FFAE, $FFAF CAN1 wake-up I-Bit CANRIER (WUPIE) $AE
$FFAC, $FFAD CAN1 errors I-Bit CANRIER (CSCIE, OVRIE) $AC
$FFAA, $FFAB CAN1 receive I-Bit CANRIER (RXFIE) $AA
$FFA8, $FFA9 CAN1 transmit I-Bit CANTIER (TXEIE[2:0]) $A8
$FFA6, $FFA7 BF Receive FIFO not empty I-Bit BFRIER (RCVFIE) $A6
$FFA4, $FFA5 BF receive I-Bit BFBUFCTL[15:0] (IENA) $A4
$FFA2, $FFA3 BF Synchronization I-Bit BFRIER (SYNAIE, SYNNIE) $A2
$FFA0, $FFA1 BF general I-Bit
BFBUFCTL[15:0] (IENA),
BFGIER (OVRNIE, ERRIE,
SYNEIE, SYNLIE, ILLPIE,
LOCKIE, WAKEIE)
BFRIER (SLMMIE)
$A0
$FF98, $FF9F Reserved
$FF96, $FF97 CAN4 wake-up I-Bit CANRIER (WUPIE) $96
$FF94, $FF95 CAN4 errors I-Bit CANRIER (CSCIE, OVRIE) $94
$FF92, $FF93 CAN4 receive I-Bit CANRIER (RXFIE) $92
$FF90, $FF91 CAN4 transmit I-Bit CANTIER (TXEIE[2:0]) $90
$FF8E, $FF8F Port P Interrupt I-Bit PIEP (PIEP7-0) $8E
$FF8C, $FF8D PWM Emergency Shutdown I-Bit PWMSDN (PWMIE) $8C
$FF80 to
$FF8B Reserved
Device User Guide — 9S12DT128DGV2/D V02.15
83
Freescale Semiconductor
NOTE: For devices assembled in 80-pin QFP packages all non-bonded out pins should be
configured as outputs after reset in order to avoid current drawn from floating
inputs. Refer to Table 2-1 for affected pins.
5.3.2 Memory
Refer to Table 1-1 for locations of the memories depending on the operating mode after reset.
The RAM array is not automatically initialized out of reset.
Device User Guide — 9S12DT128DGV2/D V02.15
84 Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.15
85
Freescale Semiconductor
Section 6 HCS12 Core Block Description
6.1 CPU Block Description
Consult the CPU Reference Manual for information on the CPU.
6.1.1 Device-specific information
When the CPU Reference Manual refers to cycles this is equivalent to Bus Clock periods. So 1 cycle is
equivalent to 1 Bus Clock period.
6.2 HCS12 Module Mapping Control (MMC) Block Description
Consult the MMC Block Guide for information on the HCS12 Module Mapping Control module.
6.2.1 Device-specific information
INITEE
Reset state: $01
Bits EE11-EE15 are "Write once in Normal and Emulation modes and write anytime in Special
modes".
PPAGE
Reset state: $00
Register is "Write anytime in all modes".
MEMSIZ0
Reset state: $13
MEMSIZ1
Reset state: $80
6.3 HCS12 Multiplexed External Bus Interface (MEBI) Block
Description
Consult the MEBI Block Guide for information on HCS12 Multiplexed External Bus Interface module.
6.3.1 Device-specific information
PUCR
Reset state: $90
Device User Guide — 9S12DT128DGV2/D V02.15
86 Freescale Semiconductor
6.4 HCS12 Interrupt (INT) Block Description
Consult the INT Block Guide for information on the HCS12 Interrupt module.
6.5 HCS12 Background Debug Module (BDM) Block Description
Consult the BDM Block Guide for information on the HCS12 Background Debug module.
6.5.1 Device-specific information
When the BDM Block Guide refers to alternate clock this is equivalent to oscillator clock.
6.6 HCS12 Breakpoint (BKP) Block Description
Consult the BKP Block Guide for information on the HCS12 Breakpoint module.
Section 7 Clock and Reset Generator (CRG) Block
Description
Consult the CRG Block User Guide for information about the Clock and Reset Generator module.
7.1 Device-specific information
The Low Voltage Reset feature of the CRG is not available on this device.
Section 8 Oscillator (OSC) Block Description
Consult the OSC Block User Guide for information about the Oscillator module.
8.1 Device-specific information
The XCLKS input signal is active low (see 2.3.12 PE / NOACC / XCLKS Port E I/O Pin 7).
Section 9 Enhanced Capture Timer (ECT) Block
Description
Device User Guide — 9S12DT128DGV2/D V02.15
87
Freescale Semiconductor
Consult the ECT_16B8C Block User Guide for information about the Enhanced Capture Timer
module.When the ECT_16B8C Block User Guide refers to freeze mode this is equivalent to active BDM
mode.
Section 10 Analog to Digital Converter (ATD) Block
Description
There are two Analog to Digital Converters (ATD1 and ATD0) implemented on the MC9S12DT128.
Consult the ATD_10B8C Block User Guide for information about each Analog to Digital Converter
module. When the ATD_10B8C Block User Guide refers to freeze mode this is equivalent to active BDM
mode.
Section 11 Inter-IC Bus (IIC) Block Description
Consult the IIC Block User Guide for information about the Inter-IC Bus module.
Section 12 Serial Communications Interface (SCI) Block
Description
There are two Serial Communications Interfaces (SCI1 and SCI0) implemented on the MC9S12DT128
device. Consult the SCI Block User Guide for information about each Serial Communications Interface
module.
Section 13 Serial Peripheral Interface (SPI) Block
Description
There are two Serial Peripheral Interfaces (SPI1 and SPI0) implemented on MC9S12DT128. Consult the
SPI Block User Guide for information about each Serial Peripheral Interface module.
Section 14 J1850 (BDLC) Block Description
Consult the BDLC Block User Guide for information about the J1850 module.
Section 15 Byteflight (BF) Block Description
Consult the BF Block User Guide for information about the 10 Mbps Byteflight module.
Device User Guide — 9S12DT128DGV2/D V02.15
88 Freescale Semiconductor
15.1 Device-specific information
The read-only Module Version Register (BFMVR) contains the current version number of $80.
Section 16 Pulse Width Modulator (PWM) Block
Description
Consult the PWM_8B8C Block User Guide for information about the Pulse Width Modulator module.
When the PWM_8B8C Block User Guide refers to freeze mode this is equivalent to active BDM mode.
Section 17 Flash EEPROM 128K Block Description
Consult the FTS128K Block User Guide for information about the flash module.
The "S12 LRAE" is a generic Load RAM and Execute (LRAE) program which will be programmed into
the flash memory of this device during manufacture. This LRAE program will provide greater
programming flexibility to the end users by allowing the device to be programmed directly using CAN or
SCI after it is assembled on the PCB. Use of the LRAE program is at the discretion of the end user and, if
not required, it must simply be erased prior to flash programming. For more details of the S12 LRAE and
its implementation, please see the S12 LREA Application Note (AN2546/D).
It is planned that most HC9S12 devices manufactured after Q1 of 2004 will be shipped with the S12 LRAE
programmed in the Flash . Exact details of the changeover (ie blank to programmed) for each product will
be communicated in advance via GPCN and will be traceable by the customer via datecode marking on
the device.
Please contact Freescale Sales if you have any additional questions.
Section 18 EEPROM 2K Block Description
Consult the EETS2K Block User Guide for information about the EEPROM module.
Section 19 RAM Block Description
This module supports single-cycle misaligned word accesses without wait states.
Section 20 MSCAN Block Description
There are three MSCAN modules (CAN4, CAN1 and CAN0) implemented on the MC9S12DT128.
Consult the MSCAN Block User Guide for information about the Motorola Scalable CAN Module.
Device User Guide — 9S12DT128DGV2/D V02.15
89
Freescale Semiconductor
Section 21 Port Integration Module (PIM) Block Description
Consult the PIM_9DTB128 Block User Guide for information about the Port Integration Module.
Section 22 Voltage Regulator (VREG) Block Description
Consult the VREG Block User Guide for information about the dual output linear voltage regulator.
Section 23 Printed Circuit Board Layout Proposal
The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as of the
MCU itself. The following rules must be observed:
Every supply pair must be decoupled by a ceramic capacitor connected as near as possible to the
corresponding pins (C1 – C6).
Central point of the ground star should be the VSSR pin.
Table 23-1 Suggested External Component Values
Component Purpose Type Value
C1 VDD1 filter cap ceramic X7R 100 … 220nF
C2 VDD2 filter cap ceramic X7R 100 … 220nF
C3 VDDA filter cap ceramic X7R 100nF
C4 VDDR filter cap X7R/tantalum >= 100nF
C5 VDDPLL filter cap ceramic X7R 100nF
C6 VDDX filter cap X7R/tantalum >= 100nF
C7 OSC load cap
C8 OSC load cap
C9 / CSPLL loop filter cap See PLL specification chapter
C10 / CPPLL loop filter cap
C11 / CDC DC cutoff cap Colpitts mode only, if recommended by
quartz manufacturer
R1 / R PLL loop filter res See PLL Specification chapter
R2 / RBPierce mode only
R3 / RS
Q1 Quartz
Device User Guide — 9S12DT128DGV2/D V02.15
90 Freescale Semiconductor
Use low ohmic low inductance connections between VSS1, VSS2 and VSSR.
VSSPLL must be directly connected to VSSR.
Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C7,
C8, C11 and Q1 as small as possible.
Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1 and the
connection area to the MCU.
Central power input should be fed in at the VDDA/VSSA pins.
Device User Guide — 9S12DT128DGV2/D V02.15
91
Freescale Semiconductor
Figure 23-1 Recommended PCB Layout for 112LQFP Colpitts Oscillator
C5
C4
C1
C6
C3
C2
C8
C7
Q1
C10
C9
R1
VDDX
VSSX
VDDR
VSSR
VDD1
VSS1
VDD2
VSS2
VDDPLL
VSSPLL
VDDA
VSSA
VREGEN
C11
Device User Guide — 9S12DT128DGV2/D V02.15
92 Freescale Semiconductor
Figure 23-2 Recommended PCB Layout for 80QFP (MC9S12DG128E, MC9S12DG128,
MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG,
SC101161DJ, SC102203, and SC102204) Colpitts Oscillator
C5
C4
C3
C2
C8
C7
C10
C9
R1
C11
C6
C1
Q1
VDD1
VSS1
VSS2
VDD2
VSSR
VDDR
VSSPLL
VDDPLL
VDDA
VSSA
VSSX
VREGEN
VDDX
Device User Guide — 9S12DT128DGV2/D V02.15
93
Freescale Semiconductor
Figure 23-3 Recommended PCB Layout for 112LQFP Pierce Oscillator
C5
C4
C1
C6
C3
C2
C10
C9
R1
VDDX
VSSX
VDDR
VSSR
VDD1
VSS1
VDD2
VSS2
VDDPLL
VSSPLL
VDDA
VSSA
VREGEN
R2
C7
R3
C8
Q1
Device User Guide — 9S12DT128DGV2/D V02.15
94 Freescale Semiconductor
Figure 23-4 Recommended PCB Layout for 80QFP (MC9S12DG128E, MC9S12DG128,
MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG,
SC101161DJ, SC102203, and SC102204) Pierce Oscillator
C5
C4
C3
C2
C10
C9
R1
C6
C1
VDD1
VSS1
VSS2
VDD2
VSSR
VDDR
VSSPLL
VDDPLL
VDDA
VSSA
VSSX
VREGEN
VDDX
R2
C7
R3
C8
Q1
VSSPLL
Device User Guide — 9S12DT128DGV2/D V02.15
95
Freescale Semiconductor
Figure 23-5 Recommended PCB Layout for 80QFP (MC9S12DB128, SC515846, and
SC102202) Pierce Oscillator
C5
C4
C3
C2
C10
C9
R1
C6
C1
VDD1
VSS1
VSS2
VDD2
VSSR
VDDR
VSSPLL
VDDPLL
VDDA
VSSA
VSSX
VREGEN
VDDX
R2
C7
R3
C8
Q1
VSSPLL
Device User Guide — 9S12DT128DGV2/D V02.15
96 Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.15
97
Freescale Semiconductor
Appendix A Electrical Characteristics
A.1 General
This introduction is intended to give an overview on several common topics like power supply, current
injection etc.
A.1.1 Parameter Classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the
customer a better understanding the following classification is used and the parameters are tagged
accordingly in the tables where appropriate.
P:
Those parameters are guaranteed during production testing on each individual device.
C:
Those parameters are achieved by the design characterization by measuring a statistically relevant
sample size across process variations. They are regularly verified by production monitors.
T:
Those parameters are achieved by design characterization on a small sample size from typical
devices. All values shown in the typical column are within this category.
D:
Those parameters are derived mainly from simulations.
A.1.2 Power Supply
The MC9S12DT128 utilizes several pins to supply power to the I/O ports, A/D converter, oscillator, PLL
and internal logic.
The VDDA, VSSA pair supplies the A/D converter and the resistor ladder of the internal voltage regulator.
The VDDX, VSSX, VDDR and VSSR pairs supply the I/O pins, VDDR supplies also the internal voltage
regulator.
VDD1, VSS1, VDD2 and VSS2 are the supply pins for the digital logic, VDDPLL, VSSPLL supply the
oscillator and the PLL.
VSS1 and VSS2 are internally connected by metal.
VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD
protection.
Device User Guide — 9S12DT128DGV2/D V02.15
98 Freescale Semiconductor
NOTE: In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5
is used for either VSSA, VSSR and VSSX unless otherwise noted.
IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR
pins.
VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and
VSSPLL.
IDD is used for the sum of the currents flowing into VDD1 and VDD2.
A.1.3 Pins
There are four groups of functional pins.
A.1.3.1 5V I/O pins
Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog
inputs, BKGD pin and the RESET inputs.The internal structure of all those pins is identical, however some
of the functionality may be disabled. E.g. for the analog inputs the output drivers, pull-up and pull-down
resistors are disabled permanently.
A.1.3.2 Analog Reference
This class is made up by the two VRH and VRL pins.
A.1.3.3 Oscillator
The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied
by VDDPLL.
A.1.3.4 TEST
This pin is used for production testing only.
A.1.3.5 VREGEN
This pin is used to enable the on chip voltage regulator.
A.1.4 Current Injection
Power supply must maintain regulation within operating VDD5 or VDD range during instantaneous and
operating maximum current conditions. If positive injection current (Vin > VDD5) is greater than IDD5, the
injection current may flow out of VDD5 and could result in external power supply going out of regulation.
Insure external VDD5 load will shunt current greater than maximum injection current. This will be the
greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is
very low which would reduce overall power consumption.
Device User Guide — 9S12DT128DGV2/D V02.15
99
Freescale Semiconductor
A.1.5 Absolute Maximum Ratings
Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima
is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the
device.
This device contains circuitry protecting against damage due to high static voltage or electrical fields;
however, it is advised that normal precautions be taken to avoid application of any voltages higher than
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused
inputs are tied to an appropriate logic voltage level (e.g., either VSS5 or VDD5).
A.1.6 ESD Protection and Latch-up Immunity
All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade
Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body
Model (HBM), the Machine Model (MM) and the Charge Device Model.
Table A-1 Absolute Maximum Ratings1
NOTES:
1. Beyond absolute maximum ratings device might be damaged.
Num Rating Symbol Min Max Unit
1 I/O, Regulator and Analog Supply Voltage VDD5 -0.3 6.0 V
2Digital Logic Supply Voltage 2
2. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply.
The absolute maximum ratings apply when the device is powered from an external source.
VDD -0.3 3.0 V
3PLL Supply Voltage (2) VDDPLL -0.3 3.0 V
4 Voltage difference VDDX to VDDR and VDDA VDDX -0.3 0.3 V
5 Voltage difference VSSX to VSSR and VSSA VSSX -0.3 0.3 V
6 Digital I/O Input Voltage VIN -0.3 6.0 V
7 Analog Reference VRH, VRL -0.3 6.0 V
8 XFC, EXTAL, XTAL inputs VILV -0.3 3.0 V
9 TEST input VTEST -0.3 10.0 V
10 Instantaneous Maximum Current
Single pin limit for all digital I/O pins 3
3. All digital I/O pins are internally clamped to VSSX and VDDX, VSSR and VDDR or VSSA and VDDA.
ID-25 +25 mA
11 Instantaneous Maximum Current
Single pin limit for XFC, EXTAL, XTAL4
4. Those pins are internally clamped to VSSPLL and VDDPLL.
IDL -25 +25 mA
12 Instantaneous Maximum Current
Single pin limit for TEST 5
5. This pin is clamped low to VSSX, but not clamped high. This pin must be tied low in applications.
IDT -0.25 0 mA
13 Storage Temperature Range Tstg – 65 155 °C
Device User Guide — 9S12DT128DGV2/D V02.15
100 Freescale Semiconductor
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device
specification. Complete DC parametric and functional testing is performed per the applicable device
specification at room temperature followed by hot temperature, unless specified otherwise in the device
specification.
A.1.7 Operating Conditions
This chapter describes the operating conditions of the device. Unless otherwise noted those conditions
apply to all the following data.
NOTE: Please refer to the temperature rating of the device (C, V, M) with regards to the
ambient temperature TA and the junction temperature TJ. For power dissipation
Table A-2 ESD and Latch-up Test Conditions
Model Description Symbol Value Unit
Human Body
Series Resistance R1 1500 Ohm
Storage Capacitance C 100 pF
Number of Pulse per pin
positive
negative
3
3
Machine
Series Resistance R1 0 Ohm
Storage Capacitance C 200 pF
Number of Pulse per pin
positive
negative
3
3
Latch-up Minimum input voltage limit –2.5 V
Maximum input voltage limit 7.5 V
Table A-3 ESD and Latch-Up Protection Characteristics
Num C Rating Symbol Min Max Unit
1 C Human Body Model (HBM) VHBM 2000 V
2 C Machine Model (MM) VMM 200 V
3 C Charge Device Model (CDM) VCDM 500 V
4 C Latch-up Current at 125°C
positive
negative ILAT +100
–100 mA
5 C Latch-up Current at 27°C
positive
negative ILAT +200
–200 mA
Device User Guide — 9S12DT128DGV2/D V02.15
101
Freescale Semiconductor
calculations refer to Section A.1.8 Power Dissipation and Thermal
Characteristics.
A.1.8 Power Dissipation and Thermal Characteristics
Power dissipation and thermal characteristics are closely related. The user must assure that the maximum
operating junction temperature is not exceeded. The average chip-junction temperature (TJ) in °C can be
obtained from:
Table A-4 Operating Conditions
Rating Symbol Min Typ Max Unit
I/O, Regulator and Analog Supply Voltage VDD5 4.5 5 5.25 V
Digital Logic Supply Voltage 1
NOTES:
1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The
given operating range applies when this regulator is disabled and the device is powered from an external source.
VDD 2.35 2.5 2.75 V
PLL Supply Voltage 1VDDPLL 2.25 2.5 2.75 V
Voltage Difference VDDX to VDDR and VDDA VDDX -0.1 0 0.1 V
Voltage Difference VSSX to VSSR and VSSA VSSX -0.1 0 0.1 V
Bus Frequency fbus 0.252
2. Some blocks e.g. ATD (conversion) and NVMs (program/erase) require higher bus frequencies for proper oper-
ation.
- 25 MHz
MC9S12DT128C
Operating Junction Temperature Range TJ-40 - 100 °C
Operating Ambient Temperature Range 3
3. Please refer to Section A.1.8 Power Dissipation and Thermal Characteristics for more details about the rela-
tion between ambient temperature TA and device junction temperature TJ.
TA-40 27 85 °C
MC9S12DT128V
Operating Junction Temperature Range TJ-40 - 120 °C
Operating Ambient Temperature Range 3TA-40 27 105 °C
MC9S12DT128M
Operating Junction Temperature Range TJ-40 - 140 °C
Operating Ambient Temperature Range 3TA-40 27 125 °C
TJTAPDΘJA
()+=
TJJunction Temperature, [°C]=
TAAmbient Temperature, [°C]=
Device User Guide — 9S12DT128DGV2/D V02.15
102 Freescale Semiconductor
The total power dissipation can be calculated from:
Two cases with internal voltage regulator enabled and disabled must be considered:
1. Internal Voltage Regulator disabled
Which is the sum of all output currents on I/O ports associated with VDDX and VDDR.
For RDSON is valid:
respectively
2. Internal voltage regulator enabled
IDDR is the current shown in (Table A-7) and not the overall current flowing into VDDR, which
additionally contains the current flowing into the external loads with output high.
Which is the sum of all output currents on I/O ports associated with VDDX and VDDR.
PDTotal Chip Power Dissipation, [W]=
ΘJA Package Thermal Resistance, [°C/W]=
PDPINT PIO
+=
PINT Chip Internal Power Dissipation, [W]=
PINT IDD VDD
IDDPLL VDDPLL
IDDA
+V
DDA
+=
PIO RDSON
i
IIOi2
=
RDSON VOL
IOL
------------ for outputs driven low;=
RDSON VDD5 VOH
IOH
------------------------------------ for outputs driven high;=
PINT IDDR VDDR
IDDA VDDA
+=
PIO RDSON
i
IIOi2
=
Device User Guide — 9S12DT128DGV2/D V02.15
103
Freescale Semiconductor
A.1.9 I/O Characteristics
This section describes the characteristics of all 5V I/O pins. All parameters are not always applicable, e.g.
not all pins feature pull up/down resistances.
Table A-5 Thermal Package Characteristics1
NOTES:
1. The values for thermal resistance are achieved by package simulations
Num C Rating Symbol Min Typ Max Unit
1 T Thermal Resistance LQFP112, single sided PCB2
2. PC Board according to EIA/JEDEC Standard 51-3
θJA 54 oC/W
2 T Thermal Resistance LQFP112, double sided PCB
with 2 internal planes3
3. PC Board according to EIA/JEDEC Standard 51-7
θJA 41 oC/W
3 T Junction to Board LQFP112 θJB 31 oC/W
4 T Junction to Case LQFP112 θJC 11 oC/W
5 T Junction to Package Top LQFP112 ΨJT ––2oC/W
6 T Thermal Resistance QFP 80, single sided PCB θJA 51 oC/W
7 T Thermal Resistance QFP 80, double sided PCB with
2 internal planes θJA 41 oC/W
8 T Junction to Board QFP80 θJB 27 oC/W
9 T Junction to Case QFP80 θJC 14 oC/W
10 T Junction to Package Top QFP80 ΨJT ––3oC/W
Device User Guide — 9S12DT128DGV2/D V02.15
104 Freescale Semiconductor
A.1.10 Supply Currents
This section describes the current consumption characteristics of the device as well as the conditions for
the measurements.
Table A-6 5V I/O Characteristics
Conditions are shown in (Table A-4) unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 P Input High Voltage VIH 0.65*VDD5 V
T Input High Voltage VIH VDD5 + 0.3
2 P Input Low Voltage VIL 0.35*VDD5 V
T Input Low Voltage VIL VSS5 0.3 V
3 C Input Hysteresis VHYS 250 mV
4 P Input Leakage Current (pins in high ohmic input
mode)
Vin = VDD5 or VSS5
Iin -1.0 1.0 µA
5 C
P
Output High Voltage (pins in output mode)
Partial Drive IOH = –2.0mA
Full Drive IOH = –10.0mA VOH VDD5 – 0.8 V
6 C
P
Output Low Voltage (pins in output mode)
Partial Drive IOL = +2.0mA
Full Drive IOL = +10.0mA VOL 0.8 V
7 P Internal Pull Up Device Current,
tested at VIL Max. IPUL –130 µA
8 C Internal Pull Up Device Current,
tested at VIH Min. IPUH –10 µA
9 P Internal Pull Down Device Current,
tested at VIH Min. IPDH 130 µA
10 C Internal Pull Down Device Current,
tested at VIL Max. IPDL 10 µA
11 D Input Capacitance Cin 6 pF
12 T Injection current1
Single Pin limit
Total Device Limit. Sum of all injected currents
NOTES:
1. Refer to Section A.1.4 Current Injection, for more details
IICS
IICP
–2.5
–25 2.5
25 mA
13 P Port H, J, P Interrupt Input Pulse filtered 2
2. Parameter only applies in STOP or Pseudo STOP mode.
tPULSE 3µs
14 P Port H, J, P Interrupt Input Pulse passed 2tPULSE 10 µs
Device User Guide — 9S12DT128DGV2/D V02.15
105
Freescale Semiconductor
A.1.10.1 Measurement Conditions
All measurements are without output loads. Unless otherwise noted the currents are measured in single
chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator in
Colpitts mode. Production testing is performed using a square wave signal at the EXTAL input.
A.1.10.2 Additional Remarks
In expanded modes the currents flowing in the system are highly dependent on the load at the address, data
and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be
given. A very good estimate is to take the single chip currents and add the currents due to the external
loads.
Table A-7 Supply Current Characteristics
Conditions are shown in (Table A-4) unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 P Run supply currents
Single Chip, Internal regulator enabled IDD5 55 mA
2 P
P
Wait Supply current All modules enabled, PLL on
only RTI enabled (1) IDDW 30
5mA
3
C
P
C
C
P
C
P
C
P
Pseudo Stop Current (RTI and COP disabled) 1, 2
-40°C
27°C
70°C
85°C
“C” Temp Option 100°C
105°C
“V” Temp Option 120°C
125°C
“M” Temp Option 140°C
IDDPS
370
400
450
550
600
650
800
850
1200
500
1600
2100
5000
µA
4
C
C
C
C
C
C
C
Pseudo Stop Current (RTI and COP enabled) (1), (2)
-40°C
27°C
70°C
85°C
105°C
125°C
140°C
IDDPS
570
600
650
750
850
1200
1500
µA
5
C
P
C
C
P
C
P
C
P
Stop Current (2)
-40°C
27°C
70°C
85°C
“C” Temp Option 100°C
105°C
“V” Temp Option 120°C
125°C
“M” Temp Option 140°C
IDDS
12
25
100
130
160
200
350
400
600
100
1200
1700
5000
µA
Device User Guide — 9S12DT128DGV2/D V02.15
106 Freescale Semiconductor
NOTES:
1. PLL off, Oscillator in Colpitts Mode
2. At those low power dissipation levels TJ = TA can be assumed
Device User Guide — 9S12DT128DGV2/D V02.15
107
Freescale Semiconductor
A.2 ATD Characteristics
This section describes the characteristics of the analog to digital converter.
A.2.1 ATD Operating Characteristics
The (Table A-8) shows conditions under which the ATD operates.
The following constraints exist to obtain full-scale, full range results:
VSSA VRLVINVRHVDDA. This constraint exists since the sample buffer amplifier can not drive
beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively
be clipped.
Table A-8 ATD Operating Characteristics
A.2.2 Factors influencing accuracy
Three factors – source resistance, source capacitance and current injection – have an influence on the
accuracy of the ATD.
A.2.2.1 Source Resistance:
Due to the input pin leakage current as specified in (Table A-6) in conjunction with the source resistance
there will be a voltage drop from the signal source to the ATD input. The maximum source resistance RS
Conditions are shown in (Table A-4) unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 D Reference Potential Low
High VRL
VRH
VSSA
VDDA/2 VDDA/2
VDDA
V
V
2 C Differential Reference Voltage1
NOTES:
1. Full accuracy is not guaranteed when differential voltage is less than 4.50V
VRH-VRL 4.50 5.00 5.25 V
3 D ATD Clock Frequency fATDCLK 0.5 2.0 MHz
4 D ATD 10-Bit Conversion Period Clock Cycles2
Conv, Time at 2.0MHz ATD Clock fATDCLK
2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample
period of 16 ATD clocks.
NCONV10
TCONV10
14
728
14 Cycles
µs
5 D ATD 8-Bit Conversion Period Clock Cycles(2)
Conv, Time at 2.0MHz ATD Clock fATDCLK NCONV8
TCONV8
12
626
13 Cycles
µs
6 D Stop Recovery Time (VDDA=5.0 Volts) tSR 20 µs
7 P Reference Supply current (Both ATD modules on) IREF 0.75 mA
8 P Reference Supply current (Only one ATD module on) IREF 0.375 mA
Device User Guide — 9S12DT128DGV2/D V02.15
108 Freescale Semiconductor
specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or
operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source
resistance is allowed.
A.2.2.2 Source capacitance
When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due
to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input
voltage 1LSB, then the external filter capacitor, Cf 1024 * (CINS– CINN).
A.2.2.3 Current injection
There are two cases to consider.
1. A current is injected into the channel being converted. The channel being stressed has conversion
values of $3FF ($FF in 8-bit mode) for analog inputs greater than VRH and $000 for values less than
VRL unless the current is higher than specified as disruptive conditions.
2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this
current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy
of the conversion depending on the source resistance.
The additional input voltage error on the converted channel can be calculated as VERR = K * RS *
IINJ, with IINJ being the sum of the currents injected into the two pins adjacent to the converted
channel.
Table A-9 ATD Electrical Characteristics
Conditions are shown in (Table A-4) unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 C Max input Source Resistance RS- - 1 K
2 T Total Input Capacitance
Non Sampling
Sampling CINN
CINS
10
22 pF
3 C Disruptive Analog Input Current INA -2.5 2.5 mA
4 C Coupling Ratio positive current injection Kp10-4 A/A
5 C Coupling Ratio negative current injection Kn10-2 A/A
Device User Guide — 9S12DT128DGV2/D V02.15
109
Freescale Semiconductor
A.2.3 ATD accuracy
(Table A-10) specifies the ATD conversion performance excluding any errors due to current injection,
input capacitance and source resistance.
Table A-10 ATD Conversion Performance
For the following definitions see also Figure A-1.
Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.
The Integral Non-Linearity (INL) is defined as the sum of all DNLs:
Conditions are shown in (Table A-4) unless otherwise noted
VREF = VRH - VRL = 5.12V. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV
fATDCLK = 2.0MHz
Num C Rating Symbol Min Typ Max Unit
1 P 10-Bit Resolution LSB 5 mV
2 P 10-Bit Differential Nonlinearity DNL –1 1 Counts
3 P 10-Bit Integral Nonlinearity INL –2.5 ±1.5 2.5 Counts
4 P 10-Bit Absolute Error1
NOTES:
1. These values include the quantization error which is inherently 1/2 count for any A/D converter.
AE -3 ±2.0 3 Counts
5 P 8-Bit Resolution LSB 20 mV
6 P 8-Bit Differential Nonlinearity DNL –0.5 0.5 Counts
7 P 8-Bit Integral Nonlinearity INL –1.0 ±0.5 1.0 Counts
8 P 8-Bit Absolute Error(1) AE -1.5 ±1.0 1.5 Counts
DNL i() ViVi1
1LSB
------------------------ 1=
INL n() DNL i()
i1=
n
VnV0
1LSB
--------------------n==
Device User Guide — 9S12DT128DGV2/D V02.15
110 Freescale Semiconductor
Figure A-1 ATD Accuracy Definitions
NOTE: Figure A-1 shows only definitions, for specification values refer to Table A-10.
1
5Vin
mV
10 15 20 25 30 35 40 5085 5090 5095 5100 5105 5110 5115 51205065 5070 5075 50805060
0
3
2
5
4
7
6
45
$3F7
$3F9
$3F8
$3FB
$3FA
$3FD
$3FC
$3FE
$3FF
$3F4
$3F6
$3F5
8
9
1
2
$FF
$FE
$FD
$3F3
10-Bit Resolution
8-Bit Resolution
Ideal Transfer Curve
10-Bit Transfer Curve
8-Bit Transfer Curve
5055
10-Bit Absolute Error Boundary
8-Bit Absolute Error Boundary
LSB
Vi-1 Vi
DNL
Device User Guide — 9S12DT128DGV2/D V02.15
111
Freescale Semiconductor
A.3 NVM, Flash and EEPROM
NOTE: Unless otherwise noted the abbreviation NVM (Non Volatile Memory) is used for
both Flash and EEPROM.
A.3.1 NVM timing
The time base for all NVM program or erase operations is derived from the oscillator. A minimum
oscillator frequency fNVMOSC is required for performing program or erase operations. The NVM modules
do not have any means to monitor the frequency and will not prevent program or erase operation at
frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at
a lower frequency a full program or erase transition is not assured.
The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator
using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within
the limits specified as fNVMOP.
The minimum program and erase times shown in (Table A-11) are calculated for maximum fNVMOP and
maximum fbus. The maximum times are calculated for minimum fNVMOP and a fbus of 2MHz.
A.3.1.1 Single Word Programming
The programming time for single word programming is dependant on the bus frequency as a well as on
the frequency fNVMOP and can be calculated according to the following formula.
A.3.1.2 Row Programming
This applies only to the Flash where up to 32 words in a row can be programmed consecutively by keeping
the command pipeline filled. The time to program a consecutive word can be calculated as:
The time to program a whole row is:
Row programming is more than 2 times faster than single word programming.
A.3.1.3 Sector Erase
Erasing a 512 byte Flash sector or a 4 byte EEPROM sector takes:
tswpgm 91
fNVMOP
---------------------
25 1
fbus
----------
+=
tbwpgm 41
fNVMOP
---------------------
91
fbus
----------
+=
tbrpgm tswpgm 31 tbwpgm
+=
Device User Guide — 9S12DT128DGV2/D V02.15
112 Freescale Semiconductor
The setup time can be ignored for this operation.
A.3.1.4 Mass Erase
Erasing a NVM block takes:
The setup time can be ignored for this operation.
A.3.1.5 Blank Check
The time it takes to perform a blank check on the Flash or EEPROM is dependant on the location of the
first non-blank word starting at relative address zero. It takes one bus cycle per word to verify plus a setup
of the command.
Table A-11 NVM Timing Characteristics
Conditions are shown in (Table A-4) unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 D External Oscillator Clock fNVMOSC 0.5 50 1
NOTES:
1. Restrictions for oscillator in crystal mode apply!
MHz
2 D Bus frequency for Programming or Erase Operations fNVMBUS 1 MHz
3 D Operating Frequency fNVMOP 150 200 kHz
4 P Single Word Programming Time tswpgm 46 2
2. Minimum Programming times are achieved under maximum NVM operating frequency fNVMOP and maximum bus frequency
fbus.
74.5 3
3. Maximum Erase and Programming times are achieved under particular combinations of fNVMOP and bus frequency fbus.
Refer to formulae in Sections Section A.3.1.1 Single Word Programming- Section A.3.1.4 Mass Erasefor guidance.
µs
5 D Flash Row Programming consecutive word 4
4. Row Programming operations are not applicable to EEPROM
tbwpgm 20.4 (2) 31 (3) µs
6 D Flash Row Programming Time for 32 Words (4) tbrpgm 678.4 (2) 1035.5 (3) µs
7 P Sector Erase Time tera 20 5
5. Minimum Erase times are achieved under maximum NVM operating frequency fNVMOP.
26.7 (3) ms
8 P Mass Erase Time tmass 100 (5) 133 (3) ms
9 D Blank Check Time Flash per block tcheck 11 6
6. Minimum time, if first word in the array is not blank
32778 7
7. Maximum time to complete check on an erased block
tcyc
10 D Blank Check Time EEPROM per block tcheck 11 (6) 1034(7) tcyc
tera 4000 1
fNVMOP
---------------------
tmass 20000 1
fNVMOP
---------------------
tcheck location tcyc 10 tcyc
+
Device User Guide — 9S12DT128DGV2/D V02.15
113
Freescale Semiconductor
A.3.2 NVM Reliability
The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process
monitors and burn-in to screen early life failures.
The failure rates for data retention and program/erase cycling are specified at the operating conditions
noted.
The program/erase cycle count on the sector is incremented every time a sector or mass erase event is
executed.
Device User Guide — 9S12DT128DGV2/D V02.15
114 Freescale Semiconductor
Table A-12 NVM Reliability Characteristics1
NOTES:
1. TJavg will not exeed 85°C considering a typical temperature profile over the lifetime of a consumer, industrial or automotive
application.
Conditions are shown in (Table A-4) unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
Flash Reliability Characteristics
1 C Data retention after 10,000 program/erase cycles at an
average junction temperature of TJavg 85°CtFLRET
15 1002
2. Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated
to 25°C using the Arrhenius equation. For additional information on how Freescale defines Typical Data Retention, please
refer to Engineering Bulletin EB618.
Years
2 C Data retention with <100 program/erase cycles at an
average junction temperature TJavg 85°C20 1002
3 C Number of program/erase cycles
(–40°C TJ 0°C) nFL
10,000
Cycles
4 C Number of program/erase cycles
(0°C TJ 140°C) 10,000 100,0003
3. Spec table quotes typical endurance evaluated at 25°C for this product family, typical endurance at various temperature
can be estimated using the graph below. For additional information on how Freescale defines Typical Endurance, please
refer to Engineering Bulletin EB619.
EEPROM Reliability Characteristics
5 C Data retention after up to 100,000 program/erase cycles
at an average junction temperature of TJavg 85°CtEEPRET
15 1002
Years
6 C Data retention with <100 program/erase cycles at an
average junction temperature TJavg 85°C20 1002
7 C Number of program/erase cycles
(–40°C TJ 0°C) nEEP
10,000
Cycles
8 C Number of program/erase cycles
(0°C < TJ 140°C) 100,000 300,0003
Device User Guide — 9S12DT128DGV2/D V02.15
115
Freescale Semiconductor
Figure A-2 Typical Endurance vs Temperature
Typical Endurance [103 Cycles]
Operating Temperature TJ [°C]
0
50
100
150
200
250
300
350
400
450
500
-40 -20 0 20 40
60
80
100 120 140
------ Flash
------ EEPROM
Device User Guide — 9S12DT128DGV2/D V02.15
116 Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.15
117
Freescale Semiconductor
A.4 Voltage Regulator
The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits. No external
DC load is allowed.
Table A-13 Voltage Regulator Recommended Load Capacitances
Rating Symbol Min Typ Max Unit
Load Capacitance on VDD1, 2 CLVDD 220 nF
Load Capacitance on VDDPLL CLVDDfcPLL 220 nF
Device User Guide — 9S12DT128DGV2/D V02.15
118 Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.15
119
Freescale Semiconductor
A.5 Reset, Oscillator and PLL
This section summarizes the electrical characteristics of the various startup scenarios for Oscillator and
Phase-Locked-Loop (PLL).
A.5.1 Startup
(Table A-14) summarizes several startup characteristics explained in this section. Detailed description of
the startup behavior can be found in the Clock and Reset Generator (CRG) Block User Guide.
Table A-14 Startup Characteristics
A.5.1.1 POR
The release level VPORR and the assert level VPORA are derived from the VDD Supply. They are also valid
if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check
are started. If after a time tCQOUT no valid oscillation is detected, the MCU will start using the internal self
clock. The fastest startup time possible is given by nuposc.
A.5.1.2 SRAM Data Retention
Provided an appropriate external reset signal is applied to the MCU, preventing the CPU from executing
code when VDD5 is out of specification limits, the SRAM contents integrity is guaranteed if after the reset
the PORF bit in the CRG Flags Register has not been set.
A.5.1.3 External Reset
When external reset is asserted for a time greater than PWRSTL the CRG module generates an internal
reset, and the CPU starts fetching the reset vector without doing a clock quality check, if there was an
oscillation before reset.
A.5.1.4 Stop Recovery
Out of STOP the controller can be woken up by an external interrupt. A clock quality check as after POR
is performed before releasing the clocks to the system.
Conditions are shown in (Table A-4) unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 T POR release level VPORR 2.07 V
2 T POR assert level VPORA 0.97 V
3 D Reset input pulse width, minimum input time PWRSTL 2tosc
4 D Startup from Reset nRST 192 196 nosc
5 D Interrupt pulse width, IRQ edge-sensitive mode PWIRQ 20 ns
6 D Wait recovery startup time tWRS 14 tcyc
Device User Guide — 9S12DT128DGV2/D V02.15
120 Freescale Semiconductor
A.5.1.5 Pseudo Stop and Wait Recovery
The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in
both modes. The controller can be woken up by internal or external interrupts. After twrs the CPU starts
fetching the interrupt vector.
A.5.2 Oscillator
The device features an internal Colpitts and Pierce oscillator. The selection of Colpitts oscillator or Pierce
oscillator/external clock depends on the XCLKS signal which is sampled during reset.By asserting the
XCLKS input during reset this oscillator can be bypassed allowing the input of a square wave. Before
asserting the oscillator to the internal system clocks the quality of the oscillation is checked for each start
from either power-on, STOP or oscillator fail. tCQOUT specifies the maximum time before switching to the
internal self clock mode after POR or STOP if a proper oscillation is not detected. The quality check also
determines the minimum oscillator start-up time tUPOSC. The device also features a clock monitor. A
Device User Guide — 9S12DT128DGV2/D V02.15
121
Freescale Semiconductor
Clock Monitor Failure is asserted if the frequency of the incoming clock signal is below the Assert
Frequency fCMFA.
A.5.3 Phase Locked Loop
The oscillator provides the reference clock for the PLL. The PLL´s Voltage Controlled Oscillator (VCO)
is also the system clock source in self clock mode.
A.5.3.1 XFC Component Selection
This section describes the selection of the XFC components to achieve a good filter characteristics.
Table A-15 Oscillator Characteristics
Conditions are shown in (Table A-4) unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1a C Crystal oscillator range (Colpitts) fOSC 0.5 16 MHz
1b C Crystal oscillator range (Pierce) 1
NOTES:
1. Depending on the crystal a damping series resistor might be necessary
fOSC 0.5 40 MHz
2 P Startup Current iOSC 100 µA
3 C Oscillator start-up time (Colpitts) tUPOSC 82
2. fosc = 4MHz, C = 22pF.
1003
3. Maximum value is for extreme cases using high Q, low frequency crystals
ms
4 D Clock Quality check time-out tCQOUT 0.45 2.5 s
5 P Clock Monitor Failure Assert Frequency fCMFA 50 100 200 KHz
6 P External square wave input frequency 4
4. XCLKS =0 during reset
fEXT 0.5 50 MHz
7 D External square wave pulse width low tEXTL 9.5 ns
8 D External square wave pulse width high tEXTH 9.5 ns
9 D External square wave rise time tEXTR 1 ns
10 D External square wave fall time tEXTF 1 ns
11 D Input Capacitance (EXTAL, XTAL pins) CIN 7 pF
12 C DC Operating Bias in Colpitts Configuration on
EXTAL Pin VDCBIAS 1.1 V
13 P EXTAL Pin Input High Voltage4VIH,EXTAL 0.75*VDDPLL V
TEXTAL Pin Input High Voltage4VIH,EXTAL VDDPLL + 0.3 V
14 P EXTAL Pin Input Low Voltage4VIL,EXTAL 0.25*VDDPLL V
TEXTAL Pin Input Low Voltage4VIL,EXTAL VSSPLL - 0.3 V
15 C EXTAL Pin Input Hysteresis4VHYS,EXTAL 250 mV
Device User Guide — 9S12DT128DGV2/D V02.15
122 Freescale Semiconductor
Figure A-3 Basic PLL functional diagram
The following procedure can be used to calculate the resistance and capacitance values using typical
values for K1, f1 and ich from (Table A-16).
The grey boxes show the calculation for fVCO = 50MHz and fref = 1MHz. E.g., these frequencies are used
for fOSC = 4MHz and a 25MHz bus clock.
The VCO Gain at the desired VCO frequency is approximated by:
The phase detector relationship is given by:
ich is the current in tracking mode.
The loop bandwidth fC should be chosen to fulfill the Gardner’s stability criteria by at least a factor of 10,
typical values are 50. ζ = 0.9 ensures a good transient response.
fosc 1
refdv+1 fref
Phase
Detector
VCO
KV
1
synr+1
fvco
Loop Divider
KΦ
1
2
fcmp
CsR
Cp
VDDPLL
XFC Pin
KVK1e
f1fvco
()
K11V
-----------------------
=100e
60 50()
100
------------------------
=
= -90.48MHz/V
KΦich
KV
== 316.7Hz/
fC2ζfref
⋅⋅
πζ 1ζ2
++


------------------------------------------ 1
10
------ fCfref
410
-------------- ζ0.9=();<<
fC < 25kHz
Device User Guide — 9S12DT128DGV2/D V02.15
123
Freescale Semiconductor
And finally the frequency relationship is defined as
With the above values the resistance can be calculated. The example is shown for a loop bandwidth
fC=10KHz:
The capacitance Cs can now be calculated as:
The capacitance Cp should be chosen in the range of:
A.5.3.2 Jitter Information
The basic functionality of the PLL is shown in Figure A-3. With each transition of the clock fcmp, the
deviation from the reference clock fref is measured and input voltage to the VCO is adjusted
accordingly.The adjustment is done continuously with no abrupt changes in the clock output frequency.
Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock
jitter. This jitter affects the real minimum and maximum clock periods as illustrated in Figure A-4.
nfVCO
fref
------------- 2 s y n r 1+()== = 50
R2πnf
C
⋅⋅⋅
KΦ
-----------------------------= = 2*π*50*10kHz/(316.7Hz/)=9.9k =~ 10k
Cs2ζ2
πfCR⋅⋅
----------------------0.516
fCR
---------------ζ0.9=();== 5.19nF =~ 4.7nF
Cs20CpCs10≤≤ Cp = 470pF
Device User Guide — 9S12DT128DGV2/D V02.15
124 Freescale Semiconductor
Figure A-4 Jitter Definitions
The relative deviation of tnom is at its maximum for one clock period, and decreases towards zero for larger
number of clock periods (N).
Defining the jitter as:
For N < 100, the following equation is a good fit for the maximum jitter:
Figure A-5 Maximum bus clock jitter approximation
2 3 N-1 N1
0
tnom
tmax1
tmin1
tmaxN
tminN
JN() max 1 tmax N()
Nt
nom
---------------------
1tmin N()
Nt
nom
---------------------
,



=
J
N() j1
N
-------- j2
+=
1 5 10 20 N
J
(N)
Device User Guide — 9S12DT128DGV2/D V02.15
125
Freescale Semiconductor
This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the
effect of the jitter to a large extent.
Table A-16 PLL Characteristics
Conditions are shown in (Table A-4) unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 P Self Clock Mode frequency fSCM 1 5.5 MHz
2 D VCO locking range fVCO 8 50 MHz
3 D Lock Detector transition from Acquisition to Tracking
mode |∆trk|3 4 %1
NOTES:
1. % deviation from target frequency
4 D Lock Detection |∆Lock|0 1.5 %(1)
5 D Un-Lock Detection |∆unl|0.5 2.5 %(1)
6 D Lock Detector transition from Tracking to Acquisition
mode |∆unt|6 8 %(1)
7 C PLLON Total Stabilization delay (Auto Mode) 2
2. fOSC = 4MHz, fBUS = 25MHz equivalent fVCO = 50MHz: REFDV = #$03, SYNR = #$018, Cs = 4.7nF, Cp = 470pF, Rs =
10K.
tstab 0.5 ms
8 D PLLON Acquisition mode stabilization delay (2) tacq 0.3 ms
9 D PLLON Tracking mode stabilization delay (2) tal 0.2 ms
10 D Fitting parameter VCO loop gain K1-100 MHz/V
11 D Fitting parameter VCO loop frequency f160 MHz
12 D Charge pump current acquisition mode | ich | 38.5 µA
13 D Charge pump current tracking mode | ich | 3.5 µA
14 C Jitter fit parameter 1(2) j11.1 %
15 C Jitter fit parameter 2(2) j20.13 %
Device User Guide — 9S12DT128DGV2/D V02.15
126 Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.15
127
Freescale Semiconductor
A.6 MSCAN
Table A-17 MSCAN Wake-up Pulse Characteristics
Conditions are shown in (Table A-4) unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 P MSCAN Wake-up dominant pulse filtered tWUP 2µs
2 P MSCAN Wake-up dominant pulse pass tWUP 5µs
Device User Guide — 9S12DT128DGV2/D V02.15
128 Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.15
129
Freescale Semiconductor
A.7 SPI
A.7.1 Master Mode
Figure A-6 and Figure A-7 illustrate the master mode timing. Timing values are shown in (Table
A-18).
Figure A-6 SPI Master Timing (CPHA = 0)
SCK
(OUTPUT)
SCK
(OUTPUT)
MISO
(INPUT)
MOSI
(OUTPUT)
SS1
(OUTPUT)
1
9
5 6
MSB IN2
BIT 6 . . . 1
LSB IN
MSB OUT2LSB OUT
BIT 6 . . . 1
10
4
4
2
9
(CPOL = 0)
(CPOL = 1)
3
11
12
1.if configured as an output.
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Device User Guide — 9S12DT128DGV2/D V02.15
130 Freescale Semiconductor
Figure A-7 SPI Master Timing (CPHA =1)
Table A-18 SPI Master Mode Timing Characteristics1
NOTES:
1. The numbers 7, 8 in the column labeled “Num” are missing. This has been done on purpose to be consistent between the
Master and the Slave timing shown in (Table A-19).
Conditions are shown in (Table A-4) unless otherwise noted, CLOAD = 200pF on all outputs
Num C Rating Symbol Min Typ Max Unit
1 P Operating Frequency fop DC 1/2fbus
1 P SCK Period tsck = 1./fop tsck 4 2048 tbus
2 D Enable Lead Time tlead 1/2 tsck
3 D Enable Lag Time tlag 1/2tsck
4 D Clock (SCK) High or Low Time twsck tbus 30 1024 tbus ns
5 D Data Setup Time (Inputs) tsu 25 ns
6 D Data Hold Time (Inputs) thi 0 ns
9 D Data Valid (after SCK Edge) tv25 ns
10 D Data Hold Time (Outputs) tho 0 ns
11 D Rise Time Inputs and Outputs tr25 ns
12 D Fall Time Inputs and Outputs tf25 ns
SCK
(OUTPUT)
SCK
(OUTPUT)
MISO
(INPUT)
MOSI
(OUTPUT)
1
5 6
MSB IN2
BIT 6 . . . 1
LSB IN
MASTER MSB OUT2MASTER LSB OUT
BIT 6 . . . 1
4
4
9
11 12
10
PORT DATA
(CPOL = 0)
(CPOL = 1)
PORT DATA
SS1
(OUTPUT)
212 11 3
1.If configured as output
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Device User Guide — 9S12DT128DGV2/D V02.15
131
Freescale Semiconductor
A.7.2 Slave Mode
Figure A-8 and Figure A-9 illustrate the slave mode timing. Timing values are shown in (Table A-19).
Figure A-8 SPI Slave Timing (CPHA = 0)
Figure A-9 SPI Slave Timing (CPHA =1)
SCK
(INPUT)
SCK
(INPUT)
MOSI
(INPUT)
MISO
(OUTPUT)
SS
(INPUT)
1
9
5 6
MSB IN
BIT 6 . . . 1
LSB IN
MSB OUT SLAVE LSB OUT
BIT 6 . . . 1
10
4
4
2
7
(CPOL = 0)
(CPOL = 1)
3
12
SLAVE
12
11
10
11
8
SCK
(INPUT)
SCK
(INPUT)
MOSI
(INPUT)
MISO
(OUTPUT)
1
5 6
MSB IN
BIT 6 . . . 1
LSB IN
MSB OUT SLAVE LSB OUT
BIT 6 . . . 1
4
4
9
11 12
10
(CPOL = 0)
(CPOL = 1)
SS
(INPUT)
212 11
3
SLAVE
7
8
Device User Guide — 9S12DT128DGV2/D V02.15
132 Freescale Semiconductor
Table A-19 SPI Slave Mode Timing Characteristics
Conditions are shown in (Table A-4) unless otherwise noted, CLOAD = 200pF on all outputs
Num C Rating Symbol Min Typ Max Unit
1 P Operating Frequency fop DC 1/4fbus
1 P SCK Period tsck = 1./fop tsck 4 2048 tbus
2 D Enable Lead Time tlead 1tcyc
3 D Enable Lag Time tlag 1tcyc
4 D Clock (SCK) High or Low Time twsck tcyc 30 ns
5 D Data Setup Time (Inputs) tsu 25 ns
6 D Data Hold Time (Inputs) thi 25 ns
7 D Slave Access Time ta1tcyc
8 D Slave MISO Disable Time tdis 1tcyc
9 D Data Valid (after SCK Edge) tv25 ns
10 D Data Hold Time (Outputs) tho 0 ns
11 D Rise Time Inputs and Outputs tr25 ns
12 D Fall Time Inputs and Outputs tf25 ns
Device User Guide — 9S12DT128DGV2/D V02.15
133
Freescale Semiconductor
A.8 External Bus Timing
A timing diagram of the external multiplexed-bus is illustrated in Figure A-10 with the actual timing
values shown on table (Table A-20). All major bus signals are included in the diagram. While both a data
write and data read cycle are shown, only one or the other would occur on a particular bus cycle.
A.8.1 General Multiplexed Bus Timing
The expanded bus timings are highly dependent on the load conditions. The timing parameters shown
assume a balanced load across all outputs.
Device User Guide — 9S12DT128DGV2/D V02.15
134 Freescale Semiconductor
Figure A-10 General External Bus Timing
Addr/Data
(read)
Addr/Data
(write)
addr data
data
5 10 11
8
166
ECLK
1, 2
3 4
addr data
data
12
159
7
14 13
ECS
2120 22 23
Non-Multiplexed
17
19
LSTRB
29
NOACC
32
PIPO0
PIPO1, PE6,5
35
18
27
28
30
33 36
31
34
R/W
24
26
25
Addresses
PE4
PA, PB
PA, PB
PK5:0
PK7
PE2
PE3
PE7
Device User Guide — 9S12DT128DGV2/D V02.15
135
Freescale Semiconductor
Table A-20 Expanded Bus Timing Characteristics
Conditions are shown in (Table A-4) unless otherwise noted, CLOAD = 50pF
Num C Rating Symbol Min Typ Max Unit
1 P Frequency of operation (E-clock) fo0 25.0 MHz
2 P Cycle time tcyc 40 ns
3 D Pulse width, E low PWEL 19 ns
4 D Pulse width, E high1PWEH 19 ns
5 D Address delay time tAD 8 ns
6 D Address valid time to E rise (PWEL–tAD) tAV 11 ns
7 D Muxed address hold time tMAH 2 ns
8 D Address hold to data valid tAHDS 7 ns
9 D Data hold to address tDHA 2 ns
10 D Read data setup time tDSR 13 ns
11 D Read data hold time tDHR 0 ns
12 D Write data delay time tDDW 7 ns
13 D Write data hold time tDHW 2 ns
14 D Write data setup time(1) (PWEH–tDDW)tDSW 12 ns
15 D Address access time(1) (tcyc–tAD–tDSR)tACCA 19 ns
16 D E high access time(1) (PWEH–tDSR)tACCE 6 ns
17 D Non-multiplexed address delay time tNAD 6 ns
18 D Non-muxed address valid to E rise (PWEL–tNAD) tNAV 15 ns
19 D Non-multiplexed address hold time tNAH 2 ns
20 D Chip select delay time tCSD 16 ns
21 D Chip select access time(1) (tcyc–tCSD–tDSR)tACCS 11 ns
22 D Chip select hold time tCSH 2 ns
23 D Chip select negated time tCSN 8 ns
24 D Read/write delay time tRWD 7 ns
25 D Read/write valid time to E rise (PWEL–tRWD) tRWV 14 ns
26 D Read/write hold time tRWH 2 ns
27 D Low strobe delay time tLSD 7 ns
28 D Low strobe valid time to E rise (PWEL–tLSD) tLSV 14 ns
29 D Low strobe hold time tLSH 2 ns
30 D NOACC strobe delay time tNOD 7 ns
31 D NOACC valid time to E rise (PWEL–tNOD) tNOV 14 ns
Device User Guide — 9S12DT128DGV2/D V02.15
136 Freescale Semiconductor
32 D NOACC hold time tNOH 2 ns
33 D IPIPO[1:0] delay time tP0D 2 7 ns
34 D IPIPO[1:0] valid time to E rise (PWEL–tP0D) tP0V 11 ns
35 D IPIPO[1:0] delay time(1) (PWEH-tP1V)tP1D 2 25 ns
36 D IPIPO[1:0] valid time to E fall tP1V 11 ns
NOTES:
1. Affected by clock stretch: add N x tcyc where N=0,1,2 or 3, depending on the number of clock stretches.
Table A-20 Expanded Bus Timing Characteristics
Conditions are shown in (Table A-4) unless otherwise noted, CLOAD = 50pF
Num C Rating Symbol Min Typ Max Unit
Device User Guide — 9S12DT128DGV2/D V02.15
137
Freescale Semiconductor
Appendix B Package Information
B.1 General
This section provides the physical dimensions of the MC9S12DT128 packages.
Device User Guide — 9S12DT128DGV2/D V02.15
138 Freescale Semiconductor
B.2 112-pin LQFP package
Figure 23-6 112-pin LQFP mechanical dimensions (case no. 987)
DIM
A
MIN MAX
20.000 BSC
MILLIMETERS
A1 10.000 BSC
B20.000 BSC
B1 10.000 BSC
C--- 1.600
C1 0.050 0.150
C2 1.350 1.450
D0.270 0.370
E0.450 0.750
F0.270 0.330
G0.650 BSC
J0.090 0.170
K0.500 REF
P0.325 BSC
R1 0.100 0.200
R2 0.100 0.200
S22.000 BSC
S1 11.000 BSC
V22.000 BSC
V1 11.000 BSC
Y0.250 REF
Z1.000 REF
AA 0.090 0.160
θ
θ
θ
θ11 °
11 °13 °
7 °
13 °
VIEW Y
L-M0.20 N
T
4X 4X 28 TIPS
PIN 1
IDENT
1
112 85
84
28 57
29 56
BV
V1
B1
A1
S1
A
S
VIEW AB
0.10
3
CC2
θ
2θ
0.050
SEATING
PLANE
GAGE PLANE
1θ
θ
VIEW AB
C1
(Z)
(Y) E
(K)
R2
R1 0.25
J1
VIEW Y
J1
P
G
108X
4X
SECTION J1-J1
BASE
ROTATED 90 COUNTERCLOCKWISE
°
METAL
JAA
F
D
L-M
M
0.13 NT
1
2
3
C
L
L-M0.20 NT
L
N
M
T
T
112X
X
X=L, M OR N
R
R
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. DIMENSIONS IN MILLIMETERS.
3. DATUMS L, M AND N TO BE DETERMINED AT
SEATING PLANE, DATUM T.
4. DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE, DATUM T.
5. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS
A AND B INCLUDE MOLD MISMATCH.
6. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL NOT CAUSE THE D
DIMENSION TO EXCEED 0.46.
8 °
3 °
0 °
Device User Guide — 9S12DT128DGV2/D V02.15
139
Freescale Semiconductor
B.3 80-pin QFP package
Figure 1 80-pin QFP Mechanical Dimensions (case no. 841B)
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF
LEAD AND IS COINCIDENT WITH THE
LEAD WHERE THE LEAD EXITS THE PLASTIC
BODY AT THE BOTTOM OF THE PARTING LINE.
4. DATUMS -A-, -B- AND -D- TO BE
DETERMINED AT DATUM PLANE -H-.
5. DIMENSIONS S AND V TO BE DETERMINED
AT SEATING PLANE -C-.
6. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS
A AND B DO INCLUDE MOLD MISMATCH
AND ARE DETERMINED AT DATUM PLANE -H-.
7. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 TOTAL IN
EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION. DAMBAR CANNOT
BE LOCATED ON THE LOWER RADIUS OR
THE FOOT.
SECTION B-B
61 60
DETAIL A
L
41
40
80
-A-
L
-D-
A
S
A-B
M
0.20 D S
H
0.05 A-B
S
120
21
-B-
BV
J
F
N
D
VIEW ROTATED 90 °
DETAIL A
B
BP
-A-,-B-,-D-
E
H
GM
MDETAIL C
SEATING
PLANE
-C-
CDATUM
PLANE
0.10
-H-
DATUM
PLANE -H-
U
T
R
Q
K
WX
DETAIL C
DIM MIN MAX
MILLIMETERS
A13.90 14.10
B13.90 14.10
C2.15 2.45
D0.22 0.38
E2.00 2.40
F0.22 0.33
G0.65 BSC
H--- 0.25
J0.13 0.23
K0.65 0.95
L12.35 REF
M5 10
N0.13 0.17
P0.325 BSC
Q0 7
R0.13 0.30
S16.95 17.45
T0.13 ---
U0 ---
V16.95 17.45
W0.35 0.45
X1.6 REF
°°
°°
°
S
A-B
M
0.20 D S
C
S
A-B
M
0.20 D S
H
0.05 D
S
A-B
M
0.20 D S
C
S
A-B
M
0.20 D S
C
Device User Guide — 9S12DT128DGV2/D V02.15
140 Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.15
141
Freescale Semiconductor
User Guide End Sheet
9S12DT128DGV2/D
V02.15, 05 JUL 2005
How to Reach Us:
USA/Europe/Locations not listed:
Freescale Semiconductor Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-800-521-6274 or 480-768-2130
Japan:
Freescale Semiconductor Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu
Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569
Asia/Pacific:
Freescale Semiconductor H.K. Ltd.
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
852-26668334
Learn More:
For more information about Freescale
Semiconductor products, please visit
http://www.freescale.com
Information in this document is provided solely to enab le system and softw are implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the inf ormation
in this document.
F reescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for an y particular purpose, nor does F reescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability , including without limitation consequential or incidental damages. “Typical” parameters
which may be provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating parameters,
including “Typicals” must be validated f or each customer application by customer’ s technical experts.
F reescale Semiconductor does not conve y any license under its patent rights nor the rights of others.
F reescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
F reescale Semiconductor products for an y such unintended or unauthorized application, Buyer shall
indemnify and hold F reescale Semiconductor and its officers, employ ees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004.
FINAL PAGE OF
142
PAGES
RoHS-compliant and/or Pb- free versions of Freescale products have the functionality
and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.
For information on Freescale.s Environmental Products program, go to
http://www.freescale.com/epp.