'VO = 'iL x (RESR + 1
8 x fS x CO)
IRMS-IN = IO x D x r2
12
1-D +
16
LM2734-Q1
SNVSB80 –SEPTEMBER 2018
www.ti.com
Product Folder Links: LM2734-Q1
Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated
There is no need to specify the saturation or peak current of the inductor at the 1.7-A typical switch current limit.
The difference in inductor size is a factor of 5. Because of the operating frequency of the LM2734-Q1, ferrite
based inductors are preferred to minimize core losses. This presents little restriction because the variety of ferrite
based inductors is huge. Lastly, inductors with lower series resistance (DCR) will provide better operating
efficiency. For recommended inductors see example circuits.
8.2.1.2.3 Input Capacitor
An input capacitor is necessary to ensure that VIN does not drop excessively during switching transients. The
primary specifications of the input capacitor are capacitance, voltage, RMS current rating, and ESL (Equivalent
Series Inductance). The recommended input capacitance is 10 µF, although 4.7 µF is sufficient for input voltages
below 6 V. The input voltage rating is specifically stated by the capacitor manufacturer. Make sure to check any
recommended deratings and also verify if there is any significant change in capacitance at the operating input
voltage and the operating temperature. The input capacitor maximum RMS input current rating (IRMS-IN) must be
greater than:
(21)
From Equation 21 from the above equation that maximum RMS capacitor current occurs when D = 0.5. Always
calculate the RMS at the point where the duty cycle, D, is closest to 0.5. The ESL of an input capacitor is usually
determined by the effective cross sectional area of the current path. A large leaded capacitor will have high ESL
and a 0805 ceramic chip capacitor will have very low ESL. At the operating frequencies of the LM2734-Q1
device, certain capacitors may have an ESL so large that the resulting impedance (2πfL) will be higher than that
required to provide stable operation. As a result, surface-mount capacitors are strongly recommended. Sanyo
POSCAP, Tantalum or Niobium, Panasonic SP or Cornell Dubilier ESR, and multilayer ceramic capacitors
(MLCC) are all good choices for both input and output capacitors and have very low ESL. For MLCCs it is
recommended to use X7R or X5R dielectrics. Consult the capacitor manufacturer data sheet to see how rated
capacitance varies over operating conditions.
8.2.1.2.4 Output Capacitor
The output capacitor is selected based upon the desired output ripple and transient response. The initial current
of a load transient is provided mainly by the output capacitor. The output ripple of the converter is:
(22)
When using MLCCs, the ESR is typically so low that the capacitive ripple may dominate. When this occurs, the
output ripple will be approximately sinusoidal and 90° phase shifted from the switching action. Given the
availability and quality of MLCCs and the expected output voltage of designs using the LM2734-Q1 device, there
is really no need to review any other capacitor technologies. Another benefit of ceramic capacitors is their ability
to bypass high frequency noise. A certain amount of switching edge noise will couple through parasitic
capacitances in the inductor to the output. A ceramic capacitor will bypass this noise while a tantalum will not.
Because the output capacitor is one of the two external components that control the stability of the regulator
control loop, most applications will require a minimum at 10 µF of output capacitance. Capacitance can be
increased significantly with little detriment to the regulator stability. Like the input capacitor, recommended
multilayer ceramic capacitors are X7R or X5R. Again, verify actual capacitance at the desired operating voltage
and temperature.
Check the RMS current rating of the capacitor. The RMS current rating of the capacitor chosen must also meet
the following condition:
(23)
8.2.1.2.5 Catch Diode
The catch diode (D1) conducts during the switch off-time. A Schottky diode is recommended for its fast switching
times and low forward voltage drop. The catch diode should be chosen so that its current rating is greater than:
ID1 = IOx (1-D) (24)