IHLP-3232CZ-01
www.vishay.com Vishay Dale
Revision: 07-Jun-17 1Document Number: 34320
For technical questions, contact: magnetics@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IHLP® Commercial Inductors, High Saturation Series
DESIGN SUPPORT TOOLS click logo to get started
Notes
All test data is referenced to 25 °C ambient
Operating temperature range -55 °C to +125 °C
The part temperature (ambient + temp. rise) should not exceed
125 °C under worst case operating conditions. Circuit design,
component placement, PWB trace size and thickness, airflow
and other cooling provisions all affect the part temperature. Part
temperature should be verified in the end application.
Rated operating voltage (across inductor) = 75 V
(1) DC current (A) that will cause an approximate ΔT of 40 °C
(2) DC current (A) that will cause L0 to drop approximately 20 %
FEATURES
Shielded construction
Excellent DC/DC energy storage up to 5 MHz.
Filter inductor applications up to SRF (see
“Standard Electrical Specifications” table)
Operating temperature up to 125 °C
Lowest DCR/μH, in this package size
Handles high transient current spikes without
saturation
Ultra low buzz noise, due to composite construction
IHLP design. PATENT(S): www.vishay.com/patents
Material categorization: for definitions of compliance
please see www.vishay.com/doc?99912
APPLICATIONS
PDA / notebook / desktop / server applications
High current POL converters
Low profile, high current power supplies
Battery powered device
DC/DC converters in distributed power systems
DC/DC converter for Field Programmable Gate Array
(FPGA)
PATENT(S): www.vishay.com/patents
This Vishay product is protected by one or more United States and international patents.
STANDARD ELECTRICAL SPECIFICATIONS
L0
INDUCTANCE
± 20 %
AT 100 kHz,
0.25 V, 0 A
(μH)
DCR
TYP.
25 °C
(mΩ)
DCR
MAX.
25 °C
(mΩ)
HEAT
RATING
CURRENT
DC TYP.
(A) (1)
SATURATION
CURRENT
DC TYP.
(A) (2)
SRF
TYP.
(MHz)
0.22 1.60 1.71 32.0 43.0 104
0.33 2.40 2.57 25.0 32.0 101
0.47 3.11 3.33 21.5 35.0 77
1.0 7.80 8.35 13.7 29.0 51
1.5 12.40 13.30 11.0 24.0 42
2.2 19.00 20.30 9.0 21.0 30
3.3 25.60 27.40 7.2 12.0 27
4.7 32.00 34.20 6.6 10.5 25
5.6 34.70 37.20 6.3 10.0 21
6.8 46.10 49.30 5.3 9.5 19
8.2 55.40 59.30 4.8 9.5 16
10.0 66.50 71.20 4.7 8.2 15
Available
Models
Available
Design Tools
DIMENSIONS in inches [millimeters]
Typical Pad Layout
0.190
[4.826]
0.380
[9.652]
0.210
[5.334]
0.322 ± 0.003
[8.18 ± 0.076]
0.054 ± 0.015
[1.372 ± 0.318]
0.118
[3.0]
Max.
0.200 ± 0.003
[5.08 ± 0.076]
0.322 ± 0.003
[8.18 ± 0.076]
0.340 ± 0.01
[8.64 ± 0.254]
DESCRIPTION
IHLP-3232CZ-01 4.7 μH ± 20 % ER e3
MODEL INDUCTANCE VALUE INDUCTANCE TOLERANCE PACKAGE CODE JEDEC® LEAD (Pb)-FREE STANDARD
GLOBAL PART NUMBER
IHLP3232CZER4R7M01
PRODUCT FAMILY SIZE PACKAGE
CODE
INDUCTANCE
VALUE
TOL. SERIES
IHLP-3232CZ-01
www.vishay.com Vishay Dale
Revision: 07-Jun-17 2Document Number: 34320
For technical questions, contact: magnetics@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
PERFORMANCE GRAPHS
0.22 μH
0.00
0.05
0.10
0.15
0.25
020 50
0
20
60
80
100
DC CURRENT (A)
INDUCTANCE (μH)
TEMPERATURE (°C)
0.20
40
40
L
ΔT °C
10 30
0.33 μH
0.0
0.1
0.2
0.3
0.5
01020 40
0
20
60
80
100
INDUCTANCE (μH)
0.4
40
30
TEMPERATURE (°C)
DC CURRENT (A)
ΔT °C
L
0.47 μH
0.00
0.15
0.30
0.45
0.75
01020 40
0
20
60
80
100
INDUCTANCE (μH)
0.60
40
30
TEMPERATURE (°C)
DC CURRENT (A)
ΔT °C
L
1.0 μH
0.00
0.25
0.50
0.75
1.25
010 30
0
20
60
80
100
DC CURRENT (A)
INDUCTANCE (μH)
TEMPERATURE (°C)
1.00
40
20
L
ΔT °C
51525
1.5 μH
0.0
0.4
0.8
1.2
2.0
010 25
0
20
60
80
100
DC CURRENT (A)
INDUCTANCE (μH)
TEMPERATURE (°C)
1.6
40
20
L
ΔT °C
515
2.2 μH
0.0
0.5
1.0
1.5
2.5
010 25
0
20
60
80
100
DC CURRENT (A)
INDUCTANCE (μH)
TEMPERATURE (°C)
2.0
40
20
L
ΔT °C
515
3.3 μH
0
1
2
3
5
04 12
0
20
60
80
100
DC CURRENT (A)
INDUCTANCE (μH)
TEMPERATURE (°C)
4
40
8
L
ΔT °C
2610
4.7 μH
0
1
2
3
5
04 12
0
20
60
80
100
DC CURRENT (A)
INDUCTANCE (μH)
TEMPERATURE (°C)
4
40
8
L
ΔT °C
2610
IHLP-3232CZ-01
www.vishay.com Vishay Dale
Revision: 07-Jun-17 3Document Number: 34320
For technical questions, contact: magnetics@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
PERFORMANCE GRAPHS
5.6 μH
0.0
1.5
3.0
4.5
7.5
04 12
0
20
60
80
100
DC CURRENT (A)
INDUCTANCE (μH)
TEMPERATURE (°C)
6.0
40
8
L
ΔT °C
2610
6.8 μH
0
2
4
6
10
04 10
0
20
60
80
100
DC CURRENT (A)
INDUCTANCE (μH)
TEMPERATURE (°C)
8
40
8
L
ΔT °C
26
8.2 μH
0
2
4
6
10
04 10
0
20
60
80
100
DC CURRENT (A)
INDUCTANCE (μH)
TEMPERATURE (°C)
8
40
8
L
ΔT °C
26
10 μH
0
2
4
6
10
04 10
0
20
60
80
100
DC CURRENT (A)
INDUCTANCE (μH)
TEMPERATURE (°C)
8
40
8
L
ΔT °C
26
IHLP-3232CZ-01
www.vishay.com Vishay Dale
Revision: 07-Jun-17 4Document Number: 34320
For technical questions, contact: magnetics@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
PERFORMANCE GRAPHS: INDUCTANCE AND Q VS. FREQUENCY
0.22 μH
0.0
0.1
0.2
0.3
0.5
0.1 1 10 1000
0
20
60
80
100
FREQUENCY (MHz)
INDUCTANCE (μH)
Q
0.4
40
L
100
Q
0.33 μH
0.00
0.16
0.32
0.48
0.80
0.1 1 10 1000
0
20
60
80
100
FREQUENCY (MHz)
INDUCTANCE (μH)
Q
0.64
40
L
100
Q
0.47 μH
0.00
0.32
0.64
0.96
1.60
0.1 1 10 100
0
20
60
80
100
FREQUENCY (MHz)
INDUCTANCE (μH)
Q
1.28
40
QL
1.0 μH
0.0
0.8
1.6
2.4
4.0
0.1 1 10 100
0
20
60
80
100
FREQUENCY (MHz)
INDUCTANCE (μH)
Q
3.2
40
QL
1.5 μH
0
1
2
3
5
0.1 1 10 100
0
20
60
80
100
FREQUENCY (MHz)
INDUCTANCE (μH)
Q
4
40
QL
2.2 μH
0
2
4
6
10
0.1 1 10 100
0
20
60
80
100
FREQUENCY (MHz)
INDUCTANCE (μH)
Q
8
40
QL
3.3 μH
0.0
2.4
4.8
7.2
12.0
0.1 1 10 100
0
20
60
80
100
FREQUENCY (MHz)
INDUCTANCE (μH)
Q
9.6
40
Q
L
4.7 μH
0
4
8
12
20
0.1 1 10 100
0
20
60
80
100
FREQUENCY (MHz)
INDUCTANCE (μH)
Q
16
40
Q
L
IHLP-3232CZ-01
www.vishay.com Vishay Dale
Revision: 07-Jun-17 5Document Number: 34320
For technical questions, contact: magnetics@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
PERFORMANCE GRAPHS: INDUCTANCE AND Q VS. FREQUENCY
5.6 μH
0
5
10
15
25
0.1 1 10 100
0
20
60
80
100
FREQUENCY (MHz)
INDUCTANCE (μH)
Q
20
40
Q
L
6.8 μH
0
8
16
24
40
0.1 1 10 100
0
20
60
80
100
FREQUENCY (MHz)
INDUCTANCE (μH)
Q
32
40
QL
8.2 μH
0
10
20
30
50
0.1 1 10 100
0
20
60
80
100
FREQUENCY (MHz)
INDUCTANCE (μH)
Q
40
40
Q
L
10 μH
0
8
16
24
40
0.1 1 10 100
0
20
60
80
100
FREQUENCY (MHz)
INDUCTANCE (μH)
Q
32
40
Q
L
Legal Disclaimer Notice
www.vishay.com Vishay
Revision: 08-Feb-17 1Document Number: 91000
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of
typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding
statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a
particular product with the properties described in the product specification is suitable for use in a particular application.
Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over
time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk.
Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for
such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document
or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
© 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED