NXP Semiconductors Data Sheet: Technical Data Document Number: IMX8MMCEC Rev. 1, 07/2020 MIMX8MM6DVTLZAA MIMX8MM5DVTLZAA MIMX8MM5DVTLZCA MIMX8MM5DVTLZDA MIMX8MM4DVTLZAA MIMX8MM3DVTLZAA MIMX8MM2DVTLZAA MIMX8MM1DVTLZAA i.MX 8M Mini Applications Processor Datasheet for Consumer Products Package Information Plastic Package FCBGA 14 x 14 mm, 0.5 mm pitch Ordering Information See Table 2 on page 6 1 i.MX 8M Mini introduction The i.MX 8M Mini applications processor represents NXP's latest video and audio experience combining state-of-the-art media-specific features with high-performance processing while optimized for lowest power consumption. The i.MX 8M Mini family of processors features advanced implementation of a quad Arm(R) Cortex(R)-A53 core, which operates at speeds of up to 1.8 GHz. A general purpose Cortex(R)-M4 400 MHz core processor is for low-power processing. The DRAM controller supports 32-bit/16-bit LPDDR4, DDR4, and DDR3L memory. A wide range of audio interfaces are available, including I2S, AC97, TDM, and S/PDIF. There are a number of other interfaces for connecting peripherals, such as USB, PCIe, and Ethernet. NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products. 1. i.MX 8M Mini introduction . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2. Ordering information . . . . . . . . . . . . . . . . . . . . . . . 6 2. Modules list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1. Recommended connections for unused input/output 12 3. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1. Chip-level conditions . . . . . . . . . . . . . . . . . . . . . . 14 3.2. Power supplies requirements and restrictions . . . 23 3.3. PLL electrical characteristics . . . . . . . . . . . . . . . . 26 3.4. On-chip oscillators . . . . . . . . . . . . . . . . . . . . . . . . 27 3.6. I/O AC parameters . . . . . . . . . . . . . . . . . . . . . . . 29 3.5. General purpose I/O (GPIO) DC parameters . . . 28 3.7. Output buffer impedance parameters . . . . . . . . . 30 3.8. System modules timing . . . . . . . . . . . . . . . . . . . . 32 3.9. External peripheral interface parameters . . . . . . 33 4. Boot mode configuration . . . . . . . . . . . . . . . . . . . . . . . . 68 4.1. Boot mode configuration pins . . . . . . . . . . . . . . . 68 4.2. Boot device interface allocation . . . . . . . . . . . . . . 69 5. Package information and contact assignments . . . . . . . 70 5.1. 14 x 14 mm package information . . . . . . . . . . . . 70 5.2. DDR pin function list . . . . . . . . . . . . . . . . . . . . . . 87 6. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 i.MX 8M Mini introduction Table 1. Features Subsystem Arm Cortex-A53 MPCore platform Features Quad symmetric Cortex-A53 processors * 32 KB L1 Instruction Cache * 32 KB L1 Data Cache * Media Processing Engine (MPE) with NEON technology supporting the Advanced Single Instruction Multiple Data architecture: * Floating Point Unit (FPU) with support of the VFPv4-D16 architecture Support of 64-bit Armv8-A architecture 512 KB unified L2 cache Arm Cortex-M4 core platform Low power microcontroller available for customer application: * low power standby mode * IoT features including Weave * Manage IR or Wireless Remote Cortex M4 CPU: * 16 KB L1 Instruction Cache * 16 KB L1 Data Cache * 256 KB tightly coupled memory (TCM) Connectivity One PCI Express (PCIe) * Single lane supporting PCIe Gen2 * Dual mode operation to function as root complex or endpoint * Integrated PHY interface * Support L1 low power sub-state Two USB 2.0 OTG controllers with integrated PHY interfaces: * Spread spectrum clock support Three Ultra Secure Digital Host Controller (uSDHC) interfaces: * MMC 5.1 compliance with HS400 DDR signaling to support up to 400 MB/sec * SD/SDIO 3.0 compliance with 200 MHz SDR signaling to support up to 100 MB/sec * Support for SDXC (extended capacity) One Gigabit Ethernet controller with support for Energy Efficient Ethernet (EEE), Ethernet AVB, and IEEE 1588 Four Universal Asynchronous Receiver/Transmitter (UART) modules Four I2C modules Three ECSPI modules On-chip memory Boot ROM (256 KB) On-chip RAM (256 KB + 32 KB) GPIO and pin multiplexing General-purpose input/output (GPIO) modules with interrupt capability Input/output multiplexing controller (IOMUXC) to provide centralized pad control Power management Temperature sensor with programmable trip points Flexible power domain partitioning with internal power switches to support efficient power management i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 2 NXP Semiconductors i.MX 8M Mini introduction Table 1. Features (continued) Subsystem External memory interface Features 32/16-bit DRAM interfaces: * LPDDR4 (up to 1.5 GHz) * DDR4-2400 * DDR3L-1600 8-bit NAND-Flash, including support for Raw MLC/SLC devices, BCH ECC up to 62-bit, and ONFi3.2 compliance (clock rates up to 100 MHz and data rates up to 200 MB/sec) eMMC 5.1 Flash (2 interfaces, uSDHC1 and uSDHC3) SPI NOR Flash (3 interfaces) FlexSPI with support for XIP (for ME in low-power mode) and parallel read mode of two identical FLASH devices Multimedia Video Processing Unit: * 1080p60 VP9 Profile 0, 2 (10-bit) * 1080p60 HEVC/H.265 Decoder * 1080p60 AVC/H.264 Baseline, Main, High decoder * 1080p60 VP8 * 1080p60 AVC/H.264 Encoder * 1080p60 VP8 * TrustZone support Graphic Processing Unit: * GCNanoUltra for 3D acceleration * GC320 for 2D acceleration LCDIF Display Controller: * Support up to 2 layers of overlay * Support up to 1080p60 display through MIPI DSI MIPI Interface: * 4-lane MIPI CSI interface * 4-lane MIPI DSI interface Audio: * S/PDIF input and output, including a new Raw Capture input mode * Five synchronous audio interface (SAI) modules supporting I2S, AC97, TDM, codec/DSP, and DSD interfaces, including one SAI with 8 Tx and 8 Rx lanes, one SAI with 4 Tx and 4 Rx lanes, two SAI with 2 Tx and 2 Rx lanes, and one SAI with 1 Tx and 1Rx lane. Support over 20 channels of audio subject to I/O limitations. * 8-Channel Pulse Density Modulation (PDM) input System debug Arm CoreSight debug and trace architecture Trace Port Interface Unit (TPIU) to support off-chip real-time trace Embedded Trace FIFO (ETF) with 4 KB internal storage to provide trace buffering Unified trace capability for Quad Cortex-A53 and Cortex-M4 CPUs Cross Triggering Interface (CTI) Support for 5-pin (JTAG) debug interface i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 3 i.MX 8M Mini introduction Table 1. Features (continued) Subsystem Security Features Resource Domain Controller (RDC) supports four domains and up to eight regions of DDR Arm TrustZone (TZ) architecture: * Support Arm Cortex-A53 MPCore TrustZone On-chip RAM (OCRAM) secure region protection using OCRAM controller High Assurance Boot (HAB) Cryptographic acceleration and assurance (CAAM) module and Assurance Module: * Support Widevine and PlayReady content protection * Public Key Cryptography (PKHA) with RSA and Elliptic Curve (ECC) algorithms * Real-time integrity checker (RTIC) * DRM support for RSA, AES, 3DES, DES * Side channel attack resistance * True random number generation (RNG) * Manufacturing protection support Secure non-volatile storage (SNVS): * Secure real-time clock (RTC) Secure JTAG controller (SJC) NOTE The actual feature set depends on the part numbers as described in Table 2. Functions such as display and camera interfaces, and connectivity interfaces, may not be enabled for specific part numbers. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 4 NXP Semiconductors i.MX 8M Mini introduction 1.1 Block diagram Figure 1 shows the functional modules in the i.MX 8M Mini applications processor system. Security TrustZone DRM Ciphers Secure Clock Main CPU Platform Connectivity and I/O 1 GB Ethernet (IEEE1588, EEE, and AVB) Quad Cortex-A53 32 KB I-cache 32 KB D-cache S/PDIF Rx and Tx FPU NEON 5x I2S/SAI eFuse Key Storage 512 KB L2 Cache Random Number 32 KB Secure RAM Low Power, Security CPU 2x USB 2.0 OTG and PHY 1x PCIe 2.0 (1-lane) Cortex-M4 System Control 4x UART 16 KB I-cache 16 KB D-cache 3x Smart DMA 256 KB TCM XTAL 4x I2C, 3x ECSPI PDM Multimedia PLLs 3D Graphics: GC NanoUltra External Memory 3x Watchdog 2D Graphics: GC320 LPDDR4/DDR4/DDR3L 1080p60 H265, VP9 decoder 1080p60 H264, VP8 decoder 2x eMMC 5.1/3x SD 3.0 1080p60 H.264, VP8 encoder NAND CTL (BCH62) 4x PWM 6x Timer Secure JTAG Temperature Sensor 4-lane MIPI-CSI Interface 4-lane MIPI-DSI Interface 1x FlexSPI Figure 1. i.MX 8M Mini system block diagram i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 5 i.MX 8M Mini introduction 1.2 Ordering information Table 2 shows examples of orderable sample part numbers covered by this data sheet. This table does not include all possible orderable part numbers. If your desired part number is not listed in the table, or you have questions about available parts, contact your NXP representative. Table 2. Orderable part numbers 1 Family Part number Part differentiator Cortex-A53 CPU speed grade Qualification tier Temperat ure Tj (C) i.MX 8M Mini Quad MIMX8MM6DVTLZAA 4x A53, M4, GPU, VPU 1.8 GHz Consumer 0 to +95 14 x 14 mm, 0.5 mm pitch i.MX 8M Mini QuadLite MIMX8MM5DVTLZAA 4x A53, M4, GPU 1.8 GHz Consumer 0 to +95 14 x 14 mm, 0.5 mm pitch i.MX 8M Mini QuadLite MIMX8MM5DVTLZCA 4x A53, M4, GPU, Immersiv3D with Dolby ATMOS support1 1.8 GHz Consumer 0 to +95 14 x 14 mm, 0.5 mm pitch i.MX 8M Mini QuadLite MIMX8MM5DVTLZDA 4x A53, M4, GPU, Immersiv3D with Dolby ATMOS and DTS support1 1.8 GHz Consumer 0 to +95 14 x 14 mm, 0.5 mm pitch i.MX 8M Mini Dual MIMX8MM4DVTLZAA 2x A53, M4, GPU, VPU 1.8 GHz Consumer 0 to +95 14 x 14 mm, 0.5 mm pitch i.MX 8M Mini DualLite MIMX8MM3DVTLZAA 2x A53, M4, GPU 1.8 GHz Consumer 0 to +95 14 x 14 mm, 0.5 mm pitch i.MX 8M Mini Solo MIMX8MM2DVTLZAA 1x A53, M4, GPU, VPU 1.8 GHz Consumer 0 to +95 14 x 14 mm, 0.5 mm pitch i.MX 8M Mini SoloLite MIMX8MM1DVTLZAA 1x A53, M4, GPU 1.8 GHz Consumer 0 to +95 14 x 14 mm, 0.5 mm pitch Package Supply of this Implementation of Dolby technology does not convey a license nor imply a right under any patent, or any other industrial or intellectual property right of Dolby Laboratories, to use this Implementation in any finished end-user or ready-to-use final product. It is hereby notified that a license for such use is required from Dolby Laboratories. Figure 2 describes the part number nomenclature so that the users can identify the characteristics of the specific part number. Contact an NXP representative for additional details. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 6 NXP Semiconductors i.MX 8M Mini introduction MIMX8MM@+VT$$%A Silicon revision Qualification level Fusing options Part number series Primary core frequency Package type - all ROHS Part differentiator Qualification tier Tj Qualification Level Part differentiator Samples P Mass Production M Name Part number series IMX8MM i.MX 8M Mini @ i.MX 8M Mini Quad 4x A53, M4, GPU, VPU 6 i.MX 8M Mini QuadLite 4x A53, M4, GPU 5 i.MX 8M Mini Dual 2x A53, M4, GPU, VPU 4 i.MX 8M Mini DualLite 2x A53, M4, GPU 3 i.MX 8M Mini Solo 1x A53, M4, GPU, VPU 2 i.MX 8M Mini SoloLite 1x A53, M4, GPU 1 Temperature Tj + Frequency Consumer: 0 to +95oC D 1.8 GHz LZ Industrial: -40 to 105oC C 1.6 GHz KZ Package Type ROHS Fusing % FCBGA486 14 x 14 mm, 0.5 mm pitch VT $$ Default A Immersiv3D enabled w/Dolby Atmos C Immersiv3D enabled w/Dolby Atmos and DTS D Silicon rev A Rev A0 A Figure 2. Part number nomenclature--i.MX 8M Mini family of processors i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 7 Modules list 2 Modules list The i.MX 8M Mini family of processors contains a variety of digital and analog modules. Table 3 describes these modules in alphabetical order. Table 3. i.MX 8M Mini modules list Block mnemonic Block name Brief description 32k Oscillator Clock system 32 KHz oscillator is used as the clock source for RTC and internal low speed clock. It can be supplied by external 32.768 KHz oscillator. APBH-DMA NAND Flash and BCH ECC DMA Controller Arm Arm Platform The Arm Core Platform includes a quad Cortex-A53 core and a Cortex-M4 core. The Cortex-A53 core includes associated sub-blocks, such as the Level 2 Cache Controller, Snoop Control Unit (SCU), General Interrupt Controller (GIC), private timers, watchdog, and CoreSight debug modules. The Cortex-M4 core is used as a customer microcontroller. BCH Binary-BCH ECC Processor The BCH module provides up to 62-bit ECC encryption/decryption for NAND Flash controller (GPMI) CAAM Cryptographic accelerator and assurance module CAAM is a cryptographic accelerator and assurance module. CAAM implements several encryption and hashing functions, a run-time integrity checker, entropy source generator, and a Pseudo Random Number Generator (PRNG). The PRNG is certifiable by the Cryptographic Algorithm Validation Program (CAVP) of the National Institute of Standards and Technology (NIST). CAAM also implements a Secure Memory mechanism. In i.MX 8M Mini processors, the secure memory provided is 32 KB. CCM GPC SRC DMA controller used for GPMI2 operation. Clock Control Module, General These modules are responsible for clock and reset distribution in the Power Controller, System Reset system, and also for the system power management. Controller CSU Central Security Unit The Central Security Unit (CSU) is responsible for setting comprehensive security policy within the i.MX 8M Mini platform. CTI-0 CTI-1 CTI-2 CTI-3 CTI-4 Cross Trigger Interface Cross Trigger Interface (CTI) allows cross-triggering based on inputs from masters attached to CTIs. The CTI module is internal to the Cortex-A53 core platform. DAP Debug Access Port The DAP provides real-time access for the debugger without halting the core to access: * System memory and peripheral registers * All debug configuration registers The DAP also provides debugger access to JTAG scan chains. DDRC Double Data Rate Controller The DDR Controller has the following features: * Supports 32/16-bit LPDDR4 (up to 1.5 GHz), DDR4-2400, and DDR3L-1600 * Supports up to 8 Gbyte DDR memory space eCSPI1 eCSPI2 eCSPI3 Configurable SPI Full-duplex enhanced Synchronous Serial Interface, with data rate up to 52 Mbit/s. Configurable to support Master/Slave modes, only one chip select is supported. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 8 NXP Semiconductors Modules list Table 3. i.MX 8M Mini modules list (continued) Block mnemonic Block name Brief description ENET1 Ethernet Controller The Ethernet Media Access Controller (MAC) is designed to support 10/100/1000 Mbps Ethernet/IEEE 802.3 networks. An external transceiver interface and transceiver function are required to complete the interface to the media. The module has dedicated hardware to support the IEEE 1588 standard. See the ENET chapter of the i.MX 8M Mini Applications Processor Reference Manual (IMX8MMRM) for details. FlexSPI FlexSPI The FlexSPI module acts as an interface to external serial flash devices. This module contains the following features: * Flexible sequence engine to support various flash vendor devices * Single pad/Dual pad/Quad pad mode of operation * Single Data Rate/Double Data Rate mode of operation * Parallel Flash mode * DMA support * Memory mapped read access to connected flash devices * Multi master access with priority and flexible and configurable buffer for each master GIC Generic Interrupt Controller The GIC handles all interrupts from the various subsystems and is ready for virtualization. GPIO1 GPIO2 GPIO3 GPIO4 GPIO5 General Purpose I/O Modules Used for general purpose input/output to external ICs. Each GPIO module supports up to 32 bits of I/O. GPMI General Purpose Memory Interface The GPMI module supports up to 8x NAND devices and 62-bit ECC encryption/decryption for NAND Flash Controller (GPMI2). GPMI supports separate DMA channels for each NAND device. GPT1 GPT2 GPT3 GPT4 GPT5 GPT6 General Purpose Timer Each GPT is a 32-bit "free-running" or "set-and-forget" mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in "set-and-forget" mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock. GPU3D Graphics Processing Unit-3D I2C1 I2C2 I2C3 I2C4 I2C Interface I2C provides serial interface for external devices. Data rates of up to 320 kbps are supported. IOMUXC IOMUX Control This module enables flexible I/O multiplexing. Each IO pad has a default as well as several alternate functions. The alternate functions are software configurable. The GPU3D provides hardware acceleration for 3D graphics algorithms with sufficient processor power to run desktop quality interactive graphics applications on displays. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 9 Modules list Table 3. i.MX 8M Mini modules list (continued) Block mnemonic Block name Brief description MIPI CSI2 (four-lane) MIPI Camera Serial Interface This module provides one four-lane MIPI camera serial interfaces, which operates up to a maximum bit rate of 1.5 Gbps. MIPI DSI (four-lane) MIPI Display Serial Interface This module provides a four-lane MIPI display serial interface operating up to a maximum bit rate of 1.5 Gbps. OCOTP_CTRL OTP Controller The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically programmable poly fuses (eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible signals that can be used for software control of hardware elements, not requiring non volatility. The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals requiring permanent non volatility. OCRAM On-Chip Memory controller The On-Chip Memory controller (OCRAM) module is designed as an interface between the system's AXI bus and the internal (on-chip) SRAM memory module. In i.MX 8M Mini processors, the OCRAM is used for controlling the 256 KB multimedia RAM through a 64-bit AXI bus. PCIe1 PCI Express 2.0 PDM Pulse Density Modulation The PDM supports up to 8-channels (4 lanes). PMU Power Management Unit Integrated power management unit. Used to provide power to various SoC domains. PWM1 PWM2 PWM3 PWM4 Pulse Width Modulation The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate sound from stored sample audio images. It can also generate tones. It uses 16-bit resolution and a 4x16 data FIFO to generate sound. SAI1 SAI2 SAI3 SAI5 SAI6 Synchronous Audio Interface The SAI module provides a synchronous audio interface (SAI) that supports full duplex serial interfaces with frame synchronization, such as I2S, AC97, TDM, and codec/DSP interfaces. The PCIe IP provides PCI Express Gen 2.0 functionality. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 10 NXP Semiconductors Modules list Table 3. i.MX 8M Mini modules list (continued) Block mnemonic Block name Brief description SDMA Smart Direct Memory Access The SDMA is a multichannel flexible DMA engine. It helps in maximizing system performance by offloading the various cores in dynamic data routing. It has the following features: * Powered by a 16-bit Instruction-Set micro-RISC engine * Multi channel DMA supporting up to 32 time-division multiplexed DMA channels * 48 events with total flexibility to trigger any combination of channels * Memory accesses including linear, FIFO, and 2D addressing * Shared peripherals between Arm and SDMA * Very fast Context-Switching with 2-level priority based preemptive multi tasking * DMA units with auto-flush and prefetch capability * Flexible address management for DMA transfers (increment, decrement, and no address changes on source and destination address) * DMA ports can handle unidirectional and bidirectional flows (Copy mode) * Up to 8-word buffer for configurable burst transfers for EMIv2.5 * Support of byte-swapping and CRC calculations * Library of Scripts and API is available SJC Secure JTAG Controller The SJC provides JTAG interface (designed to be compatible with JTAG TAP standards) to internal logic. The i.MX 8M Mini family of processors uses JTAG port for production, testing, and system debugging. Additionally, the SJC provides BSR (Boundary Scan Register) standard support, designed to be compatible with IEEE 1149. 1. The JTAG port must be accessible during platform initial laboratory bring-up, for manufacturing tests and troubleshooting, as well as for software debugging by authorized entities. The i.MX 8M Mini SJC incorporates three security modes for protecting against unauthorized accesses. Modes are selected through eFUSE configuration. SNVS Secure Non-Volatile Storage Secure Non-Volatile Storage, including Secure Real Time Clock, Security State Machine, Master Key Control, and Violation/Tamper Detection and reporting. SPDIF1 Sony Philips Digital Interconnect Format A standard audio file transfer format, developed jointly by the Sony and Phillips corporations. It supports Transmitter and Receiver functionality. TEMPSENSOR Temperature Sensor Temperature sensor TZASC Trust-Zone Address Space Controller The TZASC (TZC-380 by Arm) provides security address region control functions required for intended application. It is used on the path to the DRAM controller. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 11 Modules list Table 3. i.MX 8M Mini modules list (continued) Block mnemonic Block name Brief description UART1 UART2 UART3 UART4 UART Interface Each of the UARTv2 modules supports the following serial data transmit/receive protocols and configurations: * 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd, or none) * Programmable baud rates up to 4 Mbps. This is a higher max baud rate relative to the 1.875 MHz, which is stated by the TIA/EIA-232-F standard. * 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting auto-baud uSDHC1 uSDHC2 uSDHC3 SD/MMC and SDXC Enhanced Multi-Media Card / Secure Digital Host Controller i.MX 8M Mini SoC characteristics: All the MMC/SD/SDIO controller IPs are based on the uSDHC IP. They are designed to support: * SD/SDIO standard, up to version 3.0. * MMC standard, up to version 5.1. * 1.8 V and 3.3 V operation, but do not support 1.2 V operation. * 1-bit/4-bit SD and SDIO modes, 1-bit/4-bit/8-bit MMC mode. Two uSDHC controllers (uSDHC1 and uSDHC3) can support up to an 8-bit interface, the other controller (uSDHC2) can only support up to a 4-bit interface. USB1 USB2 2x USB 2.0 controllers and PHYs VPU Video Processing Unit WDOG1 WDOG2 WDOG3 Watchdog XTALOSC Crystal Oscillator interface 2.1 Two USB controllers and PHYs that support USB 2.0. Each USB instance contains: * USB 2.0 core, which can operate in 2.0 mode A high performing video processing unit (VPU), which covers many SD-level and HD-level video decoders. See the i.MX 8M Mini Applications Processor Reference Manual (IMX8MMRM) for a complete list of the VPU's decoding and encoding capabilities. The watchdog (WDOG) timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the Arm core, and a second point evokes an external event on the WDOG line. The XTALOSC module enables connectivity to an external crystal oscillator device. In a typical application use case, it is used for a 24 MHz oscillator. Recommended connections for unused input/output If a function of the i.MX 8M Mini is not in use, the I/Os and power rails of that function can be terminated to reduce overall board power. Table 4 shows the recommended connections for unused power supply rails. Table 4. Recommended connections for unused power supply rails Function MIP-CSI and MIPI-DSI PCIe Ball Name Recommendations if Unused VDD_MIPI_0P9, VDD_MIPI_1P2, VDD_MIPI_1P8 Leave unconnected VDD_PCI_0P8, VDD_PCI_1P8 Leave unconnected i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 12 NXP Semiconductors Modules list Table 4. Recommended connections for unused power supply rails (continued) Function Ball Name USB1 and USB2 VDD_USB_0P8, VDD_USB_1P8, VDD_USB_3P3 Recommendations if Unused Leave unconnected VPU VDD_VPU Leave unconnected GPU VDD_GPU Leave unconnected NVCC_CLK, NVCC_ECSPI, NVCC_ENET, NVCC_GPIO1, NVCC_I2C, NVCC_JTAG, NVCC_NAND, NVCC_SAI1, NVCC_SAI2, NVCC_SAI3, NVCC_SAI5, NVCC_SD1, NVCC_SD2, NVCC_UART, NVCC_SNVS_1P8, PVCC0_1P8, PVCC1_1P8, PVCC2_1P8 All digital I/O supplies listed in this table must be powered under normal conditions whether the associated I/O pins are in use or not, and associated I/O pins need to enable pull in pad control register to limit any floating gate current. Digital I/O supplies Table 5 shows recommended connections for unused signal contacts/interfaces. Table 5. Recommended connections for unused signal contacts/interfaces Function Ball Name Recommendations if Unused MIPI-CSI MIPI_CSI_CLK_P, MIPI_CSI_CLK_N, MIPI_CSI_Dx_P, MIPI_CSI_Dx_N Tie all signals to ground MIPI-DSI MIPI_VREG_CAP, MIPI_DSI_CLK_P, MIPI_DSI_CLK_N, MIPI_DSI_Dx_P, MIPI_DSI_Dx_N Leave unconnected PCIe PCIE_CLK_P, PCIE_CLK_N, PCIE_TXN_P, PCIE_TXN_N, PCIE_RXN_P, PCIE_RXN_N, PCIE_RESREF Leave unconnected USB1 USB1_VBUS, USB1_DN, USB1_DP, USB1_ID, USB1_TXRTUNE Leave unconnected USB2 USB2_VBUS, USB2_DN, USB2_DP, USB2_ID, USB2_TXRTUNE Leave unconnected i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 13 Electrical characteristics 3 Electrical characteristics This section provides the device and module-level electrical characteristics for the i.MX 8M Mini family of processors. 3.1 Chip-level conditions This section provides the device-level electrical characteristics for the IC. See Table 6 for a quick reference to the individual tables and sections. Table 6. i.MX 8M Mini chip-level conditions For these characteristics, ... Topic appears ... Absolute maximum ratings on page 14 FCBGA package thermal resistance on page 16 Operating ranges on page 17 External clock sources on page 19 Maximum supply currents on page 20 3.1.1 Absolute maximum ratings CAUTION Stresses beyond those listed under Table 7 may affect reliability or cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operating ranges or parameters tables is not implied. Table 7. Absolute maximum ratings Parameter description Symbol Min Max Unit Notes Core supply voltages VDD_ARM VDD_SOC -0.3 1.15 V -- Power supply for GPU VDD_GPU -0.3 1.15 V -- Power supply for VPU VDD_VPU -0.3 1.15 V -- VDD_DRAM -0.3 1.15 V -- NVCC_DRAM -0.3 1.575 V -- VDD_DRAM_PLL_0P8 -0.3 1.15 V -- VDD_DRAM_PLL_1P8 -0.3 2.15 V -- NVCC_SNVS_1V8 -0.3 2.15 V -- VDD_SNVS_0V8 -0.3 0.95 V -- DDR PHY supply voltage DDR I/O supply voltage DRAM PLL supply voltage SNVS IO supply voltage VDD_SNVS supply voltage i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 14 NXP Semiconductors Electrical characteristics Table 7. Absolute maximum ratings (continued) Parameter description Symbol Min Max Unit Notes NVCC_JTAG, NVCCGPIO1, NVCC_ENET, NVCC_SD1, NVCC_SD2, NVCC_NAND, NVCC_SA1, NVCC_SAI2, NVCC_SAI3, NVCC_SAI5, NVCC_ECSPI, NVCC_I2C, NVCC_UART, NVCC_CLK -0.3 3.8 V -- PVCC0_1P8, PVCC1_1P8, PVCC2_1P8 -0.3 2.15 V -- Isolated core supply voltage VDD_ANA_0P8 -0.3 1.15 V -- Analog core supply voltage VDD_ANA0_1P8 -0.3 2.15 V -- VDD_ANA1_1P8 -0.3 2.15 V -- VDD_ARM_PLL_0P8 -0.3 0.95 V -- VDD_ARM_PLL_1P8 -0.3 2.15 V -- VDD_MIPI_0P9 -0.3 1.05 V -- VDD_MIPI_1P2 -0.3 1.45 V -- VDD_MIPI_1P8 -0.3 2.15 V -- VDD_PCIE_0P8 -0.3 0.95 V -- VDD_PCIE_1P8 -0.3 2.15 V -- VDD_USB_0P8 -0.3 0.95 V -- VDD_USB_1P8 -0.3 2.15 V -- VDD_USB_3P3 -0.3 3.95 V -- USB1_VBUS, USB2_VBUS -0.3 3.95 V -- VDD_24M_XTAL_1P8 -0.3 2.15 V -- TSTORAGE -40 150 oC -- GPIO supply voltage GPIO pre-driver supply voltage Arm PLL supply voltage MIPI PHY supply voltage PCIe PHY supply voltage USB PHY supply voltage USB_VBUS input detected XTAL supply voltage Storage temperature range i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 15 Electrical characteristics Table 8. Electrostatic discharge and latch up ratings Parameter description Rating Reference Comment Electrostatic Discharge (ESD) Human Body Model (HBM) 1000 V JS-001-2017 -- Charged Device Model (CDM) 250 V JS-002-2018 -- Latch UP (LU) Immunity level: * Class I@ 25 oC ambient temperature * Class II @ 105 oC ambient temperature A A JESD78E 3.1.2 3.1.2.1 -- Thermal resistance FCBGA package thermal resistance Table 9 displays the FCBGA package thermal resistance data. Table 9. Thermal resistance data Rating Test conditions Symbol Value Unit Notes Junction to Ambient Natural Convection Single layer board (1s) RJA 30 oC/W 1, 2 Junction to Ambient Natural Convection Four layer board (2s2p) RJA 22.9 oC/W 1, 2, 3 Junction to Ambient (@200 ft/min) Single layer board (1s) RJMA 24 oC/W 1, 3 Junction to Ambient (@200 ft/min) Four layer board (2s2p) RJMA 18.5 oC/W 1, 3 Junction to Board -- RJB 7.8 oC/W 4 Junction to Case -- RJC 4 oC/W 5 Junction to Package Top Natural Convection JT 0.2 oC/W 6 1 2 3 4 5 6 Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Per SEMI G38-87 and JESD51-2 with the single layer board horizontal. Per JEDEC JESD51-6 with the board horizontal. Thermal resistance between the die and printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 16 NXP Semiconductors Electrical characteristics 3.1.3 Operating ranges Table 10 provides the operating ranges of the i.MX 8M Mini applications processor. For details on the chip's power structure, see the "Power Management Unit (PMU)" chapter of the i.MX 8M Mini Applications Processor Reference Manual (IMX8MMRM). Table 10. Operating ranges1 Symbol Min Typ Max2,3 Unit VDD_ARM 0.805 0.850 0.950 V Power supply for Quad-A53, 1.2 GHz 0.900 0.950 1.000 V Power supply for Quad-A53, 1.6 GHz 0.950 1.000 1.050 V Power supply for Quad-A53, 1.8 GHz4 VDD_SOC without PCIE 0.780 0.820 0.900 V Power supply for SoC logic5 VDD_SOC with PCIE 0.805 0.850 0.900 V Power supply for SoC logic5 VDD_GPU 0.805 0.850 0.900 V Power supply for 3D GPU, nominal mode, 800 MHz 0.855 0.900 1.000 V Power supply for 3D GPU, overdrive mode, 1000 MHz -- -- -- -- Block G2/G1/H1 0.805 0.850 0.900 V Power supply for VPU, 450/450/450 MHz 0.855 0.900 0.950 V Power supply for VPU, 600/650/650 MHz 0.900 0.950 1.000 V Power supply for VPU, 700/750/750 MHz 0.805 0.850 0.900 V Power supply for DDRC, 0.85 V supports up to 1.0 GHz (DDR clock) 0.855 0.900 0.950 V Power supply for DDRC, 0.9 V supports up to 1.2 GHz (DDR clock) 0.900 0.950 1.000 V Power supply for DDRC, 0.95 V supports up to 1.5 GHz (DDR clock) VDD_SNVS_0P8 0.760 0.800 0.900 V Power supply for SNVS core logic NVCC_SNVS_1P8 1.620 1.800 1.980 V Power supply for GPIO pre-driver in SNVS bank NVCC_JTAG, NVCC_GPIO1, NVCC_ENET, NVCC_SD1, NVCC_SD2, NVCC_NAND, NVCC_SAI1, NVCC_SAI2, NVCC_SAI3, NVCC_SAI5, NVCC_ECSPI, NVCC_I2C, NVCC_UART, NVCC_CLK 1.650 1.800 1.950 V Power supply for GPIO when it is in 1.8 V mode 3.000 3.300 3.600 V Power supply for GPIO when it is in 3.3 V mode NVCC_ENET 2.250 2.500 2.750 V Power supply for GPIO when it is in 2.5 V mode VDD_VPU VDD_DRAM Comment i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 17 Electrical characteristics Table 10. Operating ranges1 (continued) Symbol Min Typ Max2,3 Unit PVCC0_1P8, PVCC1_1P8, PVCC2_1P8 1.650 1.800 1.950 V Power supply for GPIO pre-driver VSS -- -- -- V Ground for all core logic and I/O NVCC_DRAM 1.283 1.35 1.425 V DDR3L 1.14 1.2 1.26 V DDR4 1.06 1.1 1.17 V LPDDR4 V Internal output, no connection is needed. DRAM_VREF 0.49 x 0.5 x 0.51 x NVCC_DRAM NVCC_DRAM NVCC_DRAM Comment VDD_DRAM_PLL_0P8 0.805 0.850 1.000 V 0.8 V logic power supply for DSM. It should be connected to the separate logic power. VDD_ANA0_1P8 VDD_ANA1_1P8 1.71 1.8 1.89 V Analog 1.8 V core power VDD_ANA_0P8 0.780 0.820 0.900 V Isolated 0.8 V core power VDD_ARM_PLL_0P8 0.780 0.820 0.900 V Arm PLL 0.8 V power VDD_ARM_PLL_1P8 1.71 1.8 1.89 V Arm PLL 1.8 V power VDD_24M_XTAL_1P8 1.71 1.8 1.89 V XTAL 1.8 V power VDD_DRAM_PLL_1P8 1.71 1.8 1.89 V Analog 1.8 V core power VDD_MIPI_0P9 0.855 0.9 1.000 V 0.9 V power for PLL and internal logic VDD_MIPI_1P2 1.14 1.2 1.26 V 1.2 V power for analog VDD_MIPI_1P8 1.71 1.8 1.89 V 1.8 V power for PLL and analog VDD_PCI_0P86,7 0.805 0.850 0.900 V Digital supply for PCIe PHY VDD_PCI_1P86 1.71 1.800 1.890 V 1.8 V supply for PCIe PHY VDD_USB_0P8 0.780 0.820 0.900 V Digital power supply from PHY's I/O power pads VDD_USB_1P8 1.71 1.80 1.89 V 1.8 V analog power supply VDD_USB_3P3 3.069 3.30 3.6 V 3.3 V analog power supply USB1_VBUS USB2_VBUS 0.800 1.40 3.60 V USB_VBUS input detect signal Temperature Sensor Accuracy8 -- 3 5 C Sensing temperature range 10C to 105C T J 0 -- +95 oC See Table 2 for complete list of junction temperature capabilities. 1 The BD71847MWV PMIC does not support 0.950 V for VDD_GPU, VDD_VPU, and VDD_DRAM. For this PMIC, 0.975 V typical is acceptable and supported. 2 Applying the maximum voltage results in maximum power consumption and heat generation. A voltage set point = (Vmin + the supply tolerance) is recommended. This results in an optimized power/speed ratio. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 18 NXP Semiconductors Electrical characteristics 3 4 5 6 7 8 Overdrive maximum voltage includes all the nominal frequencies. 50% duty cycle for 5 years Booting VDD_SOC at 0.800 V 5% is acceptable (Vmin = 0.760 V). Software is expected to program the VDD_SOC voltage to the typical value in this table prior to first DRAM memory access. Ensure the VDD_PCI_1P8 does not have more than 40 mVpp AC power supply noise superimposed on the high power supply voltage for the PHY core (1.8 V nominal DC value). Simultaneously, the VDD_PCI_0P8 should have no more than 20 mVpp AC power supply noise superimposed on the low power supply voltage for th PHY core (0.9 V nominal DC value for the overdrive). It can be min 0.78 V when supplied but not operating PCIe. "EN" of TMU Enable Register (TMU_TER) is required to be always enabled for the part to operate correctly. 3.1.4 External clock sources Each i.MX 8M Mini processor has two external input system clocks: a low frequency (RTC_XTALI) and a high frequency (XTALI). The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit, power-down real time clock operation, and slow system and watch-dog counters. The clock input can only be connected to an external oscillator. RTC_XTALO should be directly connected to VDD_SNVS_0P8. The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other peripherals. The system clock input can be connected to either an external oscillator or a crystal using internal oscillator amplifier. Table 11 shows the interface frequency requirements. Table 11. External input clock frequency Parameter Description Symbol Min Typ Max Unit RTC_XTALI Oscillator1 fckil -- 32.7682 -- kHz XTALI Oscillator1,3 fxtal 24 MHz 1 The required frequency stability of this clock source is application dependent. Recommended nominal frequency 32.768 kHz. 3 External oscillator or a fundamental frequency crystal appropriately coupled to the internal oscillator amplifier. 2 The typical values shown in Table 11 are required for use with NXP software to ensure precise time keeping and USB operation. For RTC_XTALI operation, an external oscillator is necessary. RTC_XTALO should be directly connected to VDD_SNVS_0P8 when using an external 32.768 kHz oscillator. NOTE There is no internal RC oscillator. Table 12 shows the external input clock for OSC32K. Table 12. External input clock for OSC32K Frequency Symbol Min Typ Max Unit f -- 32.768 -- kHz i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 19 Electrical characteristics Table 12. External input clock for OSC32K Symbol Min Typ Max Unit VIH 0.7 x NVCC_SNVS_1P8 -- NVCC_SNVS_1P8 V VIL 0 -- 0.3 x NVCC_SNVS_1P8 V RTC_XTALI 3.1.5 Maximum supply currents Power consumption is highly dependent on the application. Estimating the maximum supply currents required for power supply design is difficult because the use cases that requires maximum supply current is not a realistic use cases. To help illustrate the effect of the application on power consumption, data was collected while running consumer standard benchmarks that are designed to be compute and graphic intensive. The results provided are intended to be used as guidelines for power supply design. Table 13. Maximum supply currents Power rail Max current Unit VDD_ARM 2200 mA VDD_SOC 1000 mA VDD_GPU 500 mA VDD_VPU 1000 mA VDD_DRAM 1000 mA VDD_ANA_0P8 50 mA VDD_ANA0_1P8 VDD_ANA1_1P8 250 mA 3 mA 100 mA 3 mA NVCC_SNVS_1P8 VDD_ARM_PLL_1P8 VDD_24M_XTAL_1P8 PVCCx_1P8 NVCC_ NVCC_DRAM DRAM_VFEF Imax = N x C x V x (0.5 x F) Where: N--Number of IO pins supplied by the power line C--Equivalent external capacitive load V--IO voltage (0.5 x F)--Data change rate. Up to 0.5 of the clock rate (F). In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz. 10 mA i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 20 NXP Semiconductors Electrical characteristics 3.1.6 Power modes The i.MX 8M Mini processors support the following power modes: * RUN Mode: All external power rails are on, CPU is active and running; other internal modules can be on/off based on application. * IDLE Mode: When there is no thread running and all high-speed devices are not active, the CPU can automatically enter this mode. The CPU can be in the power-gated state but with L2 data retained, DRAM and the bus clock are reduced. Most of the internal logic is clock gated but still remains powered. The M4 core can remain running. Compared with RUN mode, all the external power rails from the PMIC remain the same, and most of the modules still remain in their state. * SUSPEND Mode: The most efficient power saving mode where all the clocks are off and all the unnecessary power supplies are off. * SNVS Mode: This mode is also called RTC mode. Only the power for the SNVS domain remains on to keep RTC and SNVS logic alive. * OFF Mode: All power rails are off. Table 14. Chip power in different LP mode Mode SNVS VDD_SNVS_0P8 (0.8 V) 0.02 NVCC_SNVS_1P8 (1.8 V) 0.09 2 SUSPEND Typ.1 Supply Total 0.11 NVCC (1.8 V) 1.20 NVCC_DRAM (1.1 V) 0.50 NVCC_ENET (1.8 V) 0.10 NVCC_SNVS_1P8 (1.8 V) 0.10 PVCC (1.8 V) 0.60 VDD_MIPI_0P9 (0.9 V) 2.20 VDD_SNVS_0P8 (0.8 V) 0.10 VDD_SOC (0.82 V) 4.00 VDD_ARM_0P8 (0.82 V) 0.10 VDDA_PCIE_USB_0P8 (0.82 V) 3.00 2 Total Unit mW mW 11.90 All the power numbers defined in the table are for information only. These numbers are based on typical silicon at 25oC, under non-OS environment and use case dependent. For power numbers with OS and real use cases, see Power consumption measurement application note for more details. 2 Sum of the listed supply rails. 1 i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 21 Electrical characteristics Table 15 summarizes the external power supply states in all the power modes. Table 15. The power supply states Power rail OFF SNVS SUSPEND IDLE RUN VDD_ARM OFF OFF OFF ON ON VDD_SOC OFF OFF ON ON ON VDD_GPU OFF OFF OFF OFF ON/OFF VDD_VPU OFF OFF OFF OFF ON/OFF VDD_DRAM OFF OFF OFF ON ON 1 OFF OFF ON ON ON Misc_0P81 OFF OFF ON ON ON VDD_MIPI_1P2 OFF OFF OFF ON ON VDD_MIPI_0P9 OFF OFF OFF ON ON VDD_DRAM_PLL_0P8 OFF OFF ON ON ON VDD_SNVS_0P8 OFF ON ON ON ON NVCC_SNVS_1P8 OFF ON ON ON ON NVCC_ OFF OFF ON ON ON PVCCx_1P8 OFF OFF ON ON ON NVCC_DRAM OFF OFF ON ON ON Misc_1P8 1 See Table 16 Table 16. Group name Misc_1P8 VDD_24M_XTAL_1P8 VDD_ANA0_1P8 VDD_ANA1_1P8 VDD_ARM_PLL_1P8 VDD_DRAM_PLL_1P8 VDD_MIPI_1P8 VDD_PCI_1P8 VDD_USB_1P8 Misc_0P8 VDD_ANA_0P8 VDD_ARM_PLL_0P8 VDD_PCI_0P8 VDD_USB_0P8 i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 22 NXP Semiconductors Electrical characteristics 3.2 Power supplies requirements and restrictions The system design must comply with power-up sequence, power-down sequence, and steady state guidelines as described in this section to guarantee the reliable operation of the device. Any deviation from these sequences may result in the following situations: * Excessive current during power-up phase * Prevention of the device from booting * Irreversible damage to the processor (worst-case scenario) 3.2.1 Power-up sequence Figure 5 illustrates the power-up sequence of i.MX 8M Mini processor. NVCC_SNVS_1P8 T1 VDD_SNVS_0P8 T2 RTC_RESET_B T3 32K RTC_XTALI t1 PMIC_ON_REQ VDD_SOC,VDD_ANA_0P8,VDD_ARM_PLL_0P8 VDD_PCI_0P8,VDD_USB_0P8 VDD_GPU,VDD_VPU,VDD_DRAM, VDD_DRAM_PLL_0P8 T4 T5 T6 VDD_MIPI_0P9 VDD_ARM VDD_ANAx_1P8,VDD_DRAM_PLL_1P8,VDD_MIPI_1P8, VDD_24M_XTAL_1P8,VDD_USB_1P8,VDD_PCI_1P8 VDD_ARM_PLL_1P8 PVCCx_1P8, NVCC_xxx (1.8 V) NVCC_DRAM NVCC_xxx (2.5 and 3.3 V),VDD_USB_3P3 VDD_MIPI_1P2 T7 T8 T9 T10 T11 T12 T13 POR_B Figure 3. The power-up sequence i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 23 Electrical characteristics Table 17 represents the timing parameters of the power-up sequence. Table 17. Power-up sequence Description Min Typ Max Unit T1 Delay from NVCC_SNVS_1P8 to VDD_SNVS_0P8 0 2 -- ms T2 Delay from VDD_SNVS_0P8 high or RTC_SET_B de-assert 0 10 -- ms T3 Delay from RTC_RESET_B de-assert to stable 32 k existed -- 40 100 s T4 Delay from PMIC_ON_REQ assert to analog 0.8 V on 0 0.2 -- ms T5 Delay from analog 0.8 V on to analog 0.8/0/9 V on 0 2 -- ms T6 Delay from analog 0.8/0.9 V on to PHY 0.9 V on 0 15 -- s T7 Delay from PHY 0.9 V on to VDD_ARM on 0 2 -- ms T8 Delay from VDD_ARM on to analog 1.8 V on 0 15 -- s T9 Delay from analog 1.8 V on to digital 1.8 V on 0 2 -- ms T10 Delay from digital 1.8 V on to NVCC_DRAM on 0 2 -- ms T11 Delay from NVCC_DRAM on to digital 2.5 V and 3.3 V on 0 2 -- ms T12 Delay from digital 2.5 V and 3.3 V on to PHY 1.2 V on 0 2 -- ms T131 Delay from PHY 1.2 V on to POR_B de-assert 0 20 -- ms t1 Uncertain period before PMIC_ON_REQ assert during VDD_SNVS_0P8 ramp up. For ramp up requirement, only VDD_ANA0_1P8 has 5 s minimum requirement, others do not have such requirement. During power-up, make sure NVCC_xxx - PVCCx_1P8 < 2 V. 1 The values of T13 depend on T2. RTC_RESET_B must be de-assert before POR_B de-asserts. 3.2.2 Power-down sequence Figure 5 illustrates the power-down sequence of i.MX 8M Mini processor. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 24 NXP Semiconductors Electrical characteristics VDD_MIPI_1P2 T1 NVCC_xxx (2.5 and 3.3 V) T2 NVCC_DRAM T3 PVCCx_1P8, NVCC_xxx (1.8V) VDD_ANAx_1P8, VDD_DRAM_PLL_1P8,VDD_MIPI_1P8 VDD_24M_XTAL_1P8,VDD_USB_1P8,VCC_PCI_1P8 T4 T5 VDD_ARM T6 VDD_MIPI_0P9 VDD_GPU, VDD_VPU, VDD_DRAM VDD_DRAM_PLL_0P8 T7 T8 VDD_SOC, VDD_ANA_0P8 VDD_PCI_0P8, VDD_USB_0P8 T9 32K RTC_XTALI T10 RTC_RESET_B VDD_SNVS_0P8 T11 NVCC_SNVS_1P8 T12 Figure 4. The power-down sequence i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 25 Electrical characteristics Table 18 represents the timing parameters of the power-down sequence. Table 18. Power-down sequence Description Min Typ Max Unit T1 Delay from PHY 1.2 V off to digital 2.5 V and 3.3 V off 0 10 -- ms T2 Delay from digital 2.5 V and 3.3 V off to NVCC_DRAM off 0 10 -- ms T3 Delay from NVCC_DRAM off to digital 1.8 V off 0 10 -- ms T4 Delay from digital 1.8 V off to analog 1.8 V off 0 10 -- ms T5 Delay from analog 1.8 V off to VDD_ARM off 0 10 -- ms T6 Delay from VDD_ARM off to PHY 0.9 V off 0 10 -- ms T7 Delay from PHY 0.9 V off to analog 0.8/0.9 V off 0 10 -- ms T8 Delay from analog 0.8/0.9 V off to analog 0.8 V off 0 10 -- ms T9 Delay from analog 0.8 V off to 32k off 0 10 -- ms T10 Delay from 32k off to RTC_RESET_B assert 0 10 -- ms T11 Delay from RTC_RESET_B assert to VDD_SNVS_0P8 off 0 10 -- ms T12 Delay from VDD_SNVS_0P8 off to NVCC_SNVS_1P8 off 0 10 -- ms During power-down, make sure NVCC_xxx - PVCCx_1P8 < 2 V. 3.3 PLL electrical characteristics Table 19 shows PLL electrical characteristics. Table 19. PLL electrical parameters PLL type Parameter Value AUDIO_PLL1 Clock output range Maximum 650 MHz Reference clock 24 MHz Lock time 375 s Clock output range Maximum 650 MHz Reference clock 24 MHz Lock time 375 s Clock output range Maximum 650 MHz Reference clock 24 MHz Lock time 375 s Clock output range 800 MHz Reference clock 24 MHz Lock time 25 s AUDIO_PLL2 VIDEO_PLL1 SYS_PLL1 i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 26 NXP Semiconductors Electrical characteristics Table 19. PLL electrical parameters (continued) PLL type Parameter Value SYS_PLL2 Clock output range 1 GHz Reference clock 24 MHz Lock time 25 s Clock output range 600 MHz ~ 1 GHz Reference clock 24 MHz Lock time 25 s Clock output range 800 MHz ~1.6 GHz Reference clock 24 MHz Lock time 25 s Clock output range Maximum 750 MHz Reference clock 24 MHz Lock time 375 s Clock output range Maximum 1 GHz Reference clock 24 MHz Lock time 25 s Clock output range 400 MHz ~ 800 MHz Reference clock 24 MHz Lock time 25 s SYS_PLL3 ARM_PLL DRAM_PLL GPU_PLL VPU_PLL 3.4 3.4.1 On-chip oscillators OSC24M A 24 MHz oscillator is used as the primary clock source for the PLLs to generate the clock for the CPU, BUS, and high-speed interfaces. For fractional PLLs, the 24 MHz clock from the oscillator can be used as the PLL reference clock directly. Table 20. Crystal specifications1 Parameter Description Min Typ Max Unit Frequency -- 24 -- MHz Cload -- 12 -- pF Drive level 100 -- -- W ESR -- -- 80 i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 27 Electrical characteristics 1 Actual working drive level is depend on real design. Please contact crystal vendor for selecting drive level of crystal. 3.4.2 OSC32K An external 32.768 kHz oscillator is necessary. 3.5 General purpose I/O (GPIO) DC parameters Table 21 shows DC parameters for GPIO pads. The parameters in Table 21 are guaranteed per the operating ranges in Table 10, unless otherwise noted. Table 21. GPIO DC parameters Parameter Symbol Test Conditions Min Typ Max Unit High-level output voltage VOH (1.8 V) IOH = 1.6/3.2/6.4/9.6 mA (1.8 V) IOH = 2/4/8/12 mA (3.3 V) 0.8 x VDD -- VDD V 0.8 x VDD -- VDD V 0 -- 0.2 x VDD V 0 -- 0.2 x VDD V VOH (3.3 V) Low-level output voltage VOL (1.8 V) VOL (3.3 V) IOL = 1.6/3.2/6.4/9.6 mA (1.8 V) IOL = 2/4/8/12 mA (3.3 V) High-level input voltage VIH -- 0.7 x VDD -- VDD + 0.3 V Low-level input voltage VIL -- -0.3 -- 0.3 x VDD V Pull-up resistor -- 12 22 49 K Pull-down resistor -- VDD = 1.65 - 1.95V Temp = 0 - 95 oC 13 23 48 K Pull-up resistor -- 13 24 69 K Pull-down resistor -- VDD = 2.25 - 2.75V Temp = 0 - 95 oC 9.1 33 69 K -- -- -- K -- -- -- K Pull-up 1 resistor1 -- VDD = 3.0 - 3.6V Temp = 0 - 95 oC Pull-down resistor1 -- High level input current IIH -- -4 -- 4 A Low level input current IIL -- -0.7 -- 0.7 A Does not support internal pull-up or pull-down for 3.3 V IOs. Table 22. Additional leakage parameters Parameter High level input current Symbol IIH Pins Min Max PCIE_RXN, USBx_Dx -30 30 PCIE_CLK -8 8 MIPI_CSI -4 4 Unit A i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 28 NXP Semiconductors Electrical characteristics Table 22. Additional leakage parameters (continued) Parameter Low level input current 3.5.1 Symbol Pins Min Max JTAG_TRST_B, USBx_ID -200 200 PCIE_CLK, USBx_Dx -6 6 PCIE_RXN -2.5 2.5 MIPI_CSI, ONOFF, POR_B -0.7 0.7 IIL Unit A DDR I/O DC electrical characteristics The DDR I/O pads support LPDDR 4, DDR4, and DDR3L operational modes. The DDR Memory Controller (DDRMC) is designed to be compatible with JEDEC-compliant SDRAMs. DDRMC operation is contingent upon the board's DDR design adherence to the DDR design and layout requirements stated in the hardware development guide for the i.MX 8M Mini applications processor. 3.6 I/O AC parameters This section includes the AC parameters of the following I/O types: * General Purpose I/O (GPIO) The GPIO load circuit and output transition time waveforms are shown in Figure 5 and Figure 6. From Output Under Test Test Point CL CL includes package, probe and fixture capacitance Figure 5. Load circuit for output 80% 80% Output (at pad) 20% tr tf OVDD 20% 0V Figure 6. Output transition time waveform 3.6.1 General purpose I/O AC parameters This section presents the I/O AC parameters for GPIO in different modes. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 29 Electrical characteristics Table 23. Maximum frequency of operation for input Maximum frequency (MHz) VDD = 1.8 V, CL = 50 pF VDD = 3.3 V, CL = 50 pF 450 440 Table 24. Maximum frequency of operation for output Maximum Frequency (MHz) Parameter VDD = 1.8 V VDD = 3.3 V dse[2:0] sre[1:0] Driver type CL = 10 pF CL = 20 pF CL = 10 pF CL = 20 pF 00X 0X 1x Slow Slew 150 80 120 65 00X 1X 1x Fast Slew 150 80 120 65 10X 0X 2x Slow Slew 160 90 150 80 10X 1X 2x Fast Slew 160 90 150 80 01X 0X 4x Slow Slew 200 100 180 90 01X 1X 4x Fast Slew 200 100 180 90 11X 0X 6x Slow Slew 250 130 200 100 11X 1X 6x Fast Slew 250 130 200 100 3.7 Output buffer impedance parameters This section defines the I/O impedance parameters of the i.MX 8M Mini family of processors for the following I/O types: NOTE DDR I/O output driver impedance is measured with "long" transmission line of impedance Ztl attached to I/O pad and incident wave launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that defines specific voltage of incident wave relative to OVDD. Output driver impedance is calculated from this voltage divider (see Figure 7). i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 30 NXP Semiconductors Electrical characteristics OVDD PMOS (Rpu) Ztl W, L = 20 inches ipp_do pad predriver Cload = 1p NMOS (Rpd) OVSS U,(V) Vin (do) VDD t,(ns) 0 U,(V) Vout (pad) OVDD Vref2 Vref1 Vref t,(ns) 0 Rpu = Vovdd - Vref1 x Ztl Vref1 Rpd = Vref2 x Ztl Vovdd - Vref2 Figure 7. Impedance matching load for measurement i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 31 Electrical characteristics 3.7.1 DDR I/O output buffer impedance Table 25 shows DDR I/O output buffer impedance of i.MX 8M Mini family of processors. Table 25. DDR I/O output buffer impedance Parameter Symbol Output Driver Impedance Rdrv Test Conditions DSE (Drive Strength) Typical NVCC_DRAM = 1.35 V (DDR3L) NVCC_DRAM = 1.2 V (DDR4) NVCC_DRAM = 1.1 V (LPDDR4) 000000 Hi-Z Hi-Z Hi-Z 000010 240 240 240 001000 120 120 120 001010 80 80 80 011000 60 60 60 011010 48 48 48 111000 40 40 40 111010 34 34 34 Unit Note: 1. Output driver impedance is controlled across PVTs using ZQ calibration procedure. 2. Calibration is done against 240 external reference resistor. 3. Output driver impedance deviation (calibration accuracy) is 5% (max/min impedance) across PVTs. 3.8 System modules timing This section contains the timing and electrical parameters for the modules in each i.MX 8M Mini processor. 3.8.1 Reset timings parameters Figure 8 shows the reset timing and Table 26 lists the timing parameters. POR_B (Input) CC1 Figure 8. Reset timing diagram Table 26. Reset timing parameters ID CC1 Parameter Duration of POR_B to be qualified as valid. Min Max Unit 1 -- RTC_XTALI cycle i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 32 NXP Semiconductors Electrical characteristics 3.8.2 WDOG Reset timing parameters Figure 9 shows the WDOG reset timing and Table 27 lists the timing parameters. WDOGx_B (Output) CC3 Figure 9. WDOGx_B timing diagram Table 27. WDOGx_B timing parameters ID CC3 Parameter Duration of WDOGx_B Assertion Min Max Unit 1 -- RTC_XTALI cycle NOTE RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or approximately 30 s. NOTE WDOGx_B output signals (for each one of the Watchdog modules) do not have dedicated pins, but are muxed out through the IOMUX. See the IOMUXC chapter of the i.MX 8M Mini Applications Processor Reference Manual (IMX8MMRM) for detailed information. 3.9 External peripheral interface parameters The following subsections provide information on external peripheral interfaces. 3.9.1 ECSPI timing parameters This section describes the timing parameters of the ECSPI blocks. The ECSPI have separate timing parameters for master and slave modes. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 33 Electrical characteristics 3.9.1.1 ECSPI Master mode timing Figure 10 depicts the timing of ECSPI in master mode. Table 28 lists the ECSPI master mode timing characteristics. ECSPIx_RDY_B ECSPIx_SS_B CS10 CS2 CS3 CS1 CS5 CS6 CS4 ECSPIx_SCLK CS7 CS3 CS2 ECSPIx_MOSI CS8 CS9 ECSPIx_MISO Figure 10. ECSPI Master mode timing diagram Table 28. ECSPI Master mode timing parameters ID Parameter Symbol Min Max Unit CS1 ECSPIx_SCLK Cycle Time-Read ECSPIx_SCLK Cycle Time-Write tclk 43 15 -- ns CS2 ECSPIx_SCLK High or Low Time-Read ECSPIx_SCLK High or Low Time-Write tSW 21.5 7 -- ns CS3 ECSPIx_SCLK Rise or Fall1 tRISE/FALL -- -- ns CS4 ECSPIx_SS_B pulse width tCSLH Half ECSPIx_SCLK period -- ns CS5 ECSPIx_SS_B Lead Time (CS setup time) tSCS Half ECSPIx_SCLK period - 4 -- ns CS6 ECSPIx_SS_B Lag Time (CS hold time) tHCS Half ECSPIx_SCLK period - 2 -- ns CS7 ECSPIx_MOSI Propagation Delay (CLOAD = 20 pF) tPDmosi -1 1 ns CS8 ECSPIx_MISO Setup Time tSmiso 18 -- ns CS9 ECSPIx_MISO Hold Time tHmiso 0 -- ns tSDRY 5 -- ns CS10 RDY to ECSPIx_SS_B Time2 1 2 See specific I/O AC parameters Section 3.6, I/O AC parameters." SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 34 NXP Semiconductors Electrical characteristics 3.9.1.2 ECSPI Slave mode timing Figure 11 depicts the timing of ECSPI in Slave mode. Table 29 lists the ECSPI Slave mode timing characteristics. ECSPIx_SS_B CS2 CS1 CS5 CS6 CS4 ECSPIx_SCLK CS2 CS9 ECSPIx_MISO CS7 CS8 ECSPIx_MOSI Figure 11. ECSPI Slave mode timing diagram Table 29. ECSPI Slave mode timing parameters ID Parameter Symbol Min Max Unit CS1 ECSPIx_SCLK Cycle Time-Read ECSPI_SCLK Cycle Time-Write tclk 15 43 -- ns CS2 ECSPIx_SCLK High or Low Time-Read ECSPIx_SCLK High or Low Time-Write tSW 7 21.5 -- ns CS4 ECSPIx_SS_B pulse width tCSLH Half ECSPIx_SCLK period -- ns CS5 ECSPIx_SS_B Lead Time (CS setup time) tSCS 5 -- ns CS6 ECSPIx_SS_B Lag Time (CS hold time) tHCS 5 -- ns CS7 ECSPIx_MOSI Setup Time tSmosi 4 -- ns CS8 ECSPIx_MOSI Hold Time tHmosi 4 -- ns CS9 ECSPIx_MISO Propagation Delay (CLOAD = 20 pF) tPDmiso 4 19 ns i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 35 Electrical characteristics 3.9.2 Ultra-high-speed SD/SDIO/MMC host interface (uSDHC) AC timing This section describes the electrical information of the uSDHC, which includes SD/eMMC 5.1 (single data rate) timing, eMMC 5.1/SD3.0 (dual data rate) AC timing, and SDR50/SDR104 AC timing. 3.9.2.1 SD3.0/eMMC 5.1 (single data rate) AC timing Figure 12 depicts the timing of SD3.0/eMMC5.1 (SDR), and Table 30 lists the SD3.0/eMMC5.1 (SDR) timing characteristics. SD4 SD2 SD1 SD5 SDx_CLK SD3 SD6 Output from uSDHC to card SDx_DATA[7:0] SD7 SD8 Input from card to uSDHC SDx_DATA[7:0] Figure 12. SD3.0/eMMC5.1 (SDR) timing Table 30. SD3.0/eMMC5.1 (SDR) interface timing specification ID Parameter Symbols Min Max Unit Clock Frequency (Low Speed) fPP1 0 400 kHz Clock Frequency (SD/SDIO Full Speed/High Speed) fPP2 0 25/50 MHz Clock Frequency (MMC Full Speed/High Speed) fPP3 0 20/52 MHz Clock Frequency (Identification Mode) fOD 100 400 kHz SD2 Clock Low Time tWL 7 -- ns SD3 Clock High Time tWH 7 -- ns SD4 Clock Rise Time tTLH -- 3 ns SD5 Clock Fall Time tTHL -- 3 ns 3.6 ns Card Input Clock SD1 uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK) SD6 uSDHC Output Delay tOD 6.6 i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 36 NXP Semiconductors Electrical characteristics Table 30. SD3.0/eMMC5.1 (SDR) interface timing specification (continued) ID Parameter Symbols Min Max Unit uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK) SD7 uSDHC Input Setup Time SD8 4 uSDHC Input Hold Time tISU 2.5 -- ns tIH 1.5 -- ns 1 In Low-Speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V. In Normal (Full) -Speed mode for SD/SDIO card, clock frequency can be any value between 0-25 MHz. In High-speed mode, clock frequency can be any value between 0-50 MHz. 3 In Normal (Full) -Speed mode for MMC card, clock frequency can be any value between 0-20 MHz. In High-speed mode, clock frequency can be any value between 0-52 MHz. 4 To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns. 2 3.9.2.2 eMMC 5.1/SD3.0 (dual data rate) AC timing Figure 13 depicts the timing of eMMC 5.1/SD3.0 (DDR). Table 31 lists the eMMC 5.1/SD3.0 (DDR) timing characteristics. Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD). SD1 SDx_CLK SD2 SD2 Output from eSDHCv3 to card SDx_DATA[7:0] ...... SD3 SD4 Input from card to eSDHCv3 SDx_DATA[7:0] ...... Figure 13. eMMC5.1/SD3.0 (DDR) timing Table 31. eMMC5.1/SD3.0 (DDR) interface timing specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency (eMMC5.1 DDR) fPP 0 52 MHz SD1 Clock Frequency (SD3.0 DDR) fPP 0 50 MHz 6.9 ns uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK) SD2 uSDHC Output Delay tOD 2.7 uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK) i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 37 Electrical characteristics Table 31. eMMC5.1/SD3.0 (DDR) interface timing specification (continued) ID Parameter Symbols Min Max Unit SD3 uSDHC Input Setup Time tISU 2.4 -- ns SD4 uSDHC Input Hold Time tIH 1.3 -- ns 3.9.2.3 HS400 DDR AC timing Figure 14 depicts the timing of HS400 mode, and Table 32 lists the HS400 timing characteristics. Be aware that only data is sampled on both edges of the clock (not applicable to CMD). The CMD input/output timing for HS400 mode is the same as CMD input/output timing for SDR104 mode. Check SD5, SD6, and SD7 parameters in Table 34 SDR50/SDR104 Interface Timing Specification for CMD input/output timing for HS400 mode. SD1 SD3 SD2 SCK SD4 SD5 DAT0 DAT1 ... SD4 SD5 Output from uSDHC to eMMC DAT7 Strobe Input from eMMC to uSDHC SD6 DAT0 DAT1 ... SD7 DAT7 Figure 14. HS400 timing Table 32. HS400 interface timing specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock frequency fPP 0 200 MHz SD2 Clock low time tCL 0.46 x tCLK 0.54 x tCLK ns SD3 Clock high time tCH 0.46 x tCLK 0.54 x tCLK ns uSDHC Output/Card Inputs DAT (Reference to SCK) SD4 Output skew from data of edge of SCK tOSkew1 0.45 -- ns SD5 Output skew from edge of SCk to data tOSkew2 0.45 -- ns uSDHC Input/Card Outputs DAT (Reference to Strobe) i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 38 NXP Semiconductors Electrical characteristics Table 32. HS400 interface timing specification (continued) ID Parameter Symbols Min Max Unit SD6 uSDHC input skew tRQ -- 0.45 ns SD7 uSDHC hold skew tRQH -- 0.45 ns 3.9.2.4 HS200 Mode AC timing Figure 15 depicts the timing of HS200 mode, and Table 33 lists the HS200 timing characteristics. SD1 SD2 SD3 SCK SD4/SD5 8-bit output from uSDHC to eMMC 8-bit input from eMMC to uSDHC SD8 Figure 15. HS200 timing iti Table 33. HS200 interface timing specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency Period tCLK 5.0 -- ns SD2 Clock Low Time tCL 0.3 x tCLK 0.7 x tCLK ns SD3 Clock High Time tCH 0.3 x tCLK 0.7 x tCLK ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK) SD5 uSDHC Output Delay tOD -1.6 1 ns -- ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1 SD8 1 uSDHC Output Data Window tODW 0.5 x tCLK HS200 is for 8 bits while SDR104 is for 4 bits. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 39 Electrical characteristics 3.9.2.5 SDR50/SDR104 AC timing Figure 16 depicts the timing of SDR50/SDR104, and Table 34 lists the SDR50/SDR104 timing characteristics. SD1 SD2 SD3 SCK SD4/SD5 8-bit output from uSDHC to eMMC SD6 SD7 8-bit input from eMMC to uSDHC SD8 Figure 16. SDR50/SDR104 timing Table 34. SDR50/SDR104 interface timing specification ID Parameter Symbols Min Max Unit 5 -- ns Card Input Clock SD1 Clock Frequency Period tCLK SD2 Clock Low Time tCL 0.46 x tCLK 0.54 x tCLK ns SD3 Clock High Time tCH 0.46 x tCLK 0.54 x tCLK ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK) SD4 uSDHC Output Delay tOD -3 1 ns 1 ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK) SD5 uSDHC Output Delay tOD -1.6 uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK) SD6 uSDHC Input Setup Time tISU 2.4 -- ns SD7 uSDHC Input Hold Time tIH 1.4 -- ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1 SD8 1 uSDHC Output Data Window tODW 0.5 x tCLK -- ns Data window in SDR100 mode is variable. 3.9.2.6 Bus operation condition for 3.3 V and 1.8 V signaling Signaling level of SD/eMMC4.5/5.0/5.1 can be 1.8 V or 3.3 V depending on the working mode. The DC parameters for the NVCC_SD1, NVCC_SD2 and NVCC_SD3 supplies are identical to those shown in Table 21, "GPIO DC parameters," on page 28. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 40 NXP Semiconductors Electrical characteristics 3.9.3 Ethernet controller (ENET) AC electrical specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. Table 35. ENET signal mapping Pad name Description Mode Alt mode Direction Comments ENET_MDC enet1.MDC RMII/RGMII ALT0 O -- ENET_MDIO enet1.MDIO RMII/RGMII ALT0 I/O -- ENET_TD3 RGMII.TD3 RGMII ALT0 O Only used for RGMII ENET_TD2 RMII.CLK; RGMII.TD2 RMII/RGMII ALT0 I/O Used as RMII clock and RGMII data, there are two RGMII clock schemes. * MAC generate output 50M reference clock for PHY, and MAC also use this 50M clock. * MAC use external 50M clock. ENET_TD1 RMII and RGMII.TD1 RMII/RGMII ALT0 O -- ENET_TD0 RMII and RGMII.TD0 RMII/RGMII ALT0 O -- ENET_TX_CTL RMII.TX_EN; RGMII.TX_CTL RMII/RGMII ALT0 O -- ENET_TXC RMII.TX_ERR; RGMII. TX_CLK RGMII ALT0/ALT1 O For RMII--ENET_TXC works as RMII.TX_ERR need to work in the ALT1 mode. For RGMII--ENET_TXC works as RGMII.TX_CLK need to work in the ALT0 mode. ENET_RX_CTL RMII.RX_EN (CRS_DV); RGMII.RC_CTL RMII/RGMII ALT0 I -- ENET_RXC RMII.RX_ERR; RGMII.RX_CLK RGMII ALT0/ALT1 I For RMII--ENET_RXC works as RMII.RX_ERR need to work in the ALT1 mode. For RGMII--ENET_RXC works as RGMII.RX_CLK need to work in the ALT0 mode. ENET_RD0 RMII and RGMII.RD0 RMII/RGMII ALT0 I -- ENET_RD1 RMII and RGMII.RD1 RMII/RGMII ALT0 I -- ENET_RD2 RGMII.RD2 RGMII ALT0 I -- ENET_RD3 RGMII.RD3 RGMII ALT0 I -- GPIO1_IO06 enet1.MDC RMII/RGMII ALT1 O -- GPIO1_IO07 enet1.MDIO RMII/RGMII ALT1 I/O -- I2C1_SCL enet1.MDC RMII/RGMII ALT1 O -- i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 41 Electrical characteristics Table 35. ENET signal mapping (continued) Pad name Description Mode Alt mode Direction I2C1_SDA enet1.MDIO RMII/RGMII ALT1 I/O -- I2C2_SCL enet1.1588_EV ENT1_IN RMII/RGMII ALT1 O -- I2C2_SDA enet1.1588_EV ENT1_OUT RMII/RGMII ALT1 I/O -- GPIO1_IO00 ENET_PHY_RE F_CLK_ROOT RGMII ALT1 O Reference clock for PHY. GPIO1_IO08 enet1.1588_EV ENT0_IN RMII/RGMII ALT1 I Capture/compare block input/output event bus signal. When configured for capture and a rising edge is detected, the current timer value is latched and transferred into the corresponding ENET_TCCRn register for inspection by software. When configured for compare, the corresponding signal 1588_EVENT is asserted for one cycle when the timer reaches the compare value programmed in register ENET_TCCRn. An interrupt or DMA request can be triggered if the corresponding bit in ENET_TCSRn[TIE] or ENET_TSCRn[TDRE] is set. GPIO1_IO09 enet1.1588_EV ENT0_OUT RMII/RGMII ALT1 O -- 3.9.3.1 Comments RMII mode timing Figure 17 shows RMII mode timings. Table 36 describes the timing parameters (M16-M21) shown in the figure. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 42 NXP Semiconductors Electrical characteristics M16 M17 ENET_CLK (input) M18 ENET_TX_DATA (output) ENET_TX_EN M19 ENET_RX_EN (input) ENET_RX_DATA[1:0] ENET_RX_ER M20 M21 Figure 17. RMII mode signal timing diagram Table 36. RMII signal timing ID Characteristic Min. Max. Unit M16 ENET_CLK pulse width high 35% 65% ENET_CLK period M17 ENET_CLK pulse width low 35% 65% ENET_CLK period M18 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid 4 -- ns M19 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid -- 15 ns M20 ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to ENET_CLK setup 4 -- ns M21 ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER hold 2 -- ns 3.9.3.2 RGMII signal switching specifications The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver devices. Table 37. RGMII signal switching specifications1 Symbol Tcyc2 Description Clock cycle duration TskewT3 Data to clock output skew at transmitter TskewR3 Tr/Tf Max. Unit 7.2 8.8 ns -500 500 ps Data to clock input skew at receiver 1 2.6 ns 4 Duty cycle for Gigabit 45 55 % 4 Duty cycle for 10/100T 40 60 % Rise/fall time (20-80%) -- 0.75 ns Duty_G Duty_T Min. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 43 Electrical characteristics 1 The timings assume the following configuration: DDR_SEL = (11)b DSE (drive-strength) = (111)b 2 For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns 40 ns and 40 ns 4 ns respectively. 3 For all versions of RGMII prior to 2.0; this implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value is unspecified. 4 Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned between. 2'-))?48#ATTRANSMITTER 4SKEW4 2'-))?48$NNTO 2'-))?48?#4, 48%. 48%22 4SKEW2 2'-))?48#ATRECEIVER Figure 18. RGMII transmit signal timing diagram original 2'-))?28#ATTRANSMITTER 4SKEW4 2'-))?28$NNTO 2'-))?28?#4, 28$6 28%22 4SKEW2 2'-))?28#ATRECEIVER Figure 19. RGMII receive signal timing diagram original i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 44 NXP Semiconductors Electrical characteristics 2'-))?28#SOURCEOFDATA )NTERNALDELAY 4SETUP4 4HOLD4 4SETUP2 4HOLD2 2'-))?28$NNTO 28$6 2'-))?28?#4, 28%22 2'-))?28#ATRECEIVER Figure 20. RGMII receive signal timing diagram with internal delay 3.9.4 General-purpose media interface (GPMI) timing The i.MX 8M Mini GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up to 200 MB/s I/O speed and individual chip select. It supports Asynchronous Timing mode, Source Synchronous Timing mode and Toggle Timing mode separately, as described in the following subsections. 3.9.4.1 Asynchronous mode AC timing (ONFI 1.0 compatible) Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The maximum I/O speed of GPMI in Asynchronous mode is about 50 MB/s. Figure 21 through Figure 24 depicts the relative timing between GPMI signals at the module level for different operations under Asynchronous mode. Table 38 describes the timing parameters (NF1-NF17) that are shown in the figures. .!.$?#%?" .!.$?7%?" .!.$?!,% NF2 NF1 .!.$?#,% NF3 NF4 NF5 NF6 NF8 .!.$?$!4!XX NF7 NF9 Command Figure 21. Command Latch cycle timing diagram i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 45 Electrical characteristics NF1 .!.$?#,% NF3 .!.$?#%?" NF10 .!.$?7%?" NF5 .!.$?!,% NF11 NF7 NF6 NF8 NAND_DATAxx NF9 Address Figure 22. Address Latch cycle timing diagram .!.$?#,% .!.$?#%?" NF1 NF3 NF10 NF5 .!.$?7%?" .!.$?!,% NF11 NF7 NF6 NF9 NF8 .!.$?$!4!XX Data to NF Figure 23. Write Data Latch cycle timing diagram .!.$?#,% .!.$?#%?" NF14 .!.$?2%?" .!.$?2%!$9?" NF15 NF13 NF12 NF16 .!.$?$!4!XX NF17 Data from NF Figure 24. Read Data Latch cycle timing diagram (Non-EDO Mode) .!.$?#,% .!.$?#%?" NF14 NF13 .!.$?2%?" .!.$?2%!$9?" NF12 NF15 NF17 NF16 NAND_DATAxx Data from NF Figure 25. Read Data Latch cycle timing diagram (EDO mode) i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 46 NXP Semiconductors Electrical characteristics Table 38. Asynchronous mode timing parameters1 ID Parameter Timing T = GPMI Clock Cycle Symbol Unit Min. NF1 NF2 NF3 NF4 NF5 NF6 NF7 NF8 NF9 NF10 NF11 NF12 NF13 NF14 1 2 3 4 5 6 NAND_CLE setup time NAND_CLE hold time NAND_CE0_B setup time NAND_CE0_B hold time NAND_WE_B pulse width NAND_ALE setup time tCLS (AS + DS) T - 0.12 [see DH T - 0.72 [see note ] (AS + DS + 1) T [see notes (DH+1) T - 1 [see tCH ns ns 3,2 ns ] ns ] note2 DS T [see note ] 2 tWP tALS ] 2 tCLH tCS Max. notes2,3 ns (AS + DS) T - 0.49 [see notes 3,2 ] ns tALH DH T - 0.42 [see note2 ] ns tDS DS T - 0.26 [see note2] ns tDH DH T - 1.37 [see note2] ns tWC (DS + DH) T [see note2] ns NAND_WE_B hold time tWH DH T [see Ready to NAND_RE_B low tRR4 NAND_ALE hold time Data setup time Data hold time Write cycle time NAND_RE_B pulse width READ cycle time (AS + 2) T [see note2] 3,2] ns -- tRP DS T [see tRC (DS + DH) T [see DH T [see note2] ns ns note2] ns note2] NF15 NAND_RE_B high hold time tREH ns NF16 Data setup on read tDSR -- (DS T -0.67)/18.38 [see notes5,6] ns NF17 Data hold on read tDHR 0.82/11.83 [see notes5,6] -- ns GPMI's Asynchronous mode output timing can be controlled by the module's internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings. AS minimum value can be 0, while DS/DH minimum value is 1. T = GPMI clock period -0.075 ns (half of maximum p-p jitter). NF12 is guaranteed by the design. Non-EDO mode. EDO mode, GPMI clock 100 MHz (AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0). In EDO mode (Figure 24), NF16/NF17 are different from the definition in non-EDO mode (Figure 23). They are called tREA/tRHOH (RE# access time/RE# HIGH to output hold). The typical values for them are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI samples NAND_DATAxx at the rising edge of delayed NAND_RE_B provided by an internal DPLL. The delay value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX 8M Mini Applications Processor Reference Manual [IMX8MMRM]). The typical value of this control register is 0x8 at 50 MT/s EDO mode. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 47 Electrical characteristics 3.9.4.2 Source synchronous mode AC timing (ONFI 2.x compatible) Figure 26 to Figure 28 show the write and read timing of Source Synchronous mode. .!.$?#%?" NF19 NF18 NF23 NAND_CLE NF25 NF26 NF24 NAND_ALE NF25 NF26 NAND_WE/RE_B NF22 NAND_CLK NAND_DQS NAND_DQS Output enable NF20 NF20 NF21 NF21 NAND_DATA[7:0] CMD ADD NAND_DATA[7:0] Output enable Figure 26. Source Synchronous mode command and address timing diagram i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 48 NXP Semiconductors Electrical characteristics .!.$?#%?" NF19 NF18 NF23 .!.$?#,% NF23 .!.$?!,% NF25 NF26 NF25 NF26 NF24 NF24 NAND_WE/RE_B NF22 .!.$?#,+ NF27 NF27 .!.$?$13 .!.$?$13 Output enable NF29 NF29 .!.$?$1;= NF28 NF28 .!.$?$1;= Output enable Figure 27. Source Synchronous mode data write timing diagram .!.$?#%?" NF18 NF19 NF23 .!.$?#,% NAND_ALE .!.$?7%2% NF23 NF25 NF26 NF25 NF26 NF24 NF24 NF25 NF25 NF22 NF26 .!.$?#,+ .!.$?$13 .!.$?$13 /UTPUTENABLE .!.$?$!4!;= .!.$?$!4!;= /UTPUTENABLE Figure 28. Source Synchronous mode data read timing diagram i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 49 Electrical characteristics .!.$?$13 NF30 .!.$?$!4!;= D0 NF30 D1 D2 D3 NF31 NF31 Figure 29. NAND_DQS/NAND_DQ read valid window Table 39. Source Synchronous mode timing parameters1 ID Parameter Symbol Timing T = GPMI Clock Cycle Min. NF18 NAND_CE0_B access time NF19 NAND_CE0_B hold time tCE tCH Unit Max. CE_DELAY T - 0.79 [see note 2] 0.5 tCK - 0.63 [see note2] ns ns NF20 Command/address NAND_DATAxx setup time tCAS 0.5 tCK - 0.05 ns NF21 Command/address NAND_DATAxx hold time tCAH 0.5 tCK - 1.23 ns tCK -- NF22 clock period ns tPRE PRE_DELAY T - 0.29 [see NF24 postamble delay tPOST POST_DELAY T - 0.78 [see NF25 NAND_CLE and NAND_ALE setup time tCALS 0.5 tCK - 0.86 ns NF26 NAND_CLE and NAND_ALE hold time tCALH 0.5 tCK - 0.37 ns NF23 preamble delay NF27 NAND_CLK to first NAND_DQS latching transition tDQSS T - 0.41 [see note2] note2] note2] NF28 Data write setup -- 0.25 tCK - 0.35 NF29 Data write hold -- 0.25 tCK - 0.85 NF30 NAND_DQS/NAND_DQ read setup skew -- -- 2.06 NF31 NAND_DQS/NAND_DQ read hold skew -- -- 1.95 ns ns ns 1 GPMI's Source Synchronous mode output timing can be controlled by the module's internal registers GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing depends on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings. 2 T = tCK(GPMI clock period) -0.075 ns (half of maximum p-p jitter). For DDR Source Synchronous mode, Figure 29 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 0.85 ns (max) and 1 ns (max) for tQHS at 200 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which can be provided by an internal DPLL. The delay value can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 8M Mini Applications Processor Reference Manual [IMX8MMRM]). Generally, the typical delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 50 NXP Semiconductors Electrical characteristics 3.9.4.3 3.9.4.3.1 ONFI NV-DDR2 mode (ONFI 3.2 compatible) Command and address timing ONFI 3.2 mode command and address timing is the same as ONFI 1.0 compatible Async mode AC timing. See Section 3.9.4.1, Asynchronous mode AC timing (ONFI 1.0 compatible)," for details. 3.9.4.3.2 Read and write timing ONFI 3.2 mode read and write timing is the same as Toggle mode AC timing. See Section 3.9.4.4, Toggle mode AC Timing," for details. 3.9.4.4 3.9.4.4.1 Toggle mode AC Timing Command and address timing NOTE Toggle mode command and address timing is the same as ONFI 1.0 compatible Asynchronous mode AC timing. See Section 3.9.4.1, Asynchronous mode AC timing (ONFI 1.0 compatible)," for details. 3.9.4.4.2 Read and write timing Figure 30. Toggle mode data write timing i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 51 Electrical characteristics DEV?CLK .!.$?#%X?" .& .!.$?#,% .!.$?!,% .!.$?7%?" T#+ .& T#+ .& .!.$?2%?" T#+ T#+ T#+ .!.$?$13 .!.$?$!4!;= Figure 31. Toggle mode data read timing Table 40. Toggle mode timing parameters ID Parameter Symbol Timing T = GPMI Clock Cycle Min. Unit Max. NF1 NAND_CLE setup time tCLS (AS + DS) T - 0.12 [see note1s,2] NF2 NAND_CLE hold time tCLH DH T - 0.72 [see note2] NF3 NAND_CE0_B setup time tCS (AS + DS) T - 0.58 [see notes,2] NF4 NAND_CE0_B hold time tCH DH T - 1 [see note2] NF5 NAND_WE_B pulse width tWP DS T [see note2] NF6 NAND_ALE setup time tALS (AS + DS) T - 0.49 [see notes,2] NF7 NAND_ALE hold time tALH DH T - 0.42 [see note2] NF8 Command/address NAND_DATAxx setup time tCAS DS T - 0.26 [see note2] NF9 Command/address NAND_DATAxx hold time tCAH DH T - 1.37 [see note2] NF18 NAND_CEx_B access time tCE CE_DELAY T [see notes3,2] -- ns NF22 clock period tCK -- -- ns tPRE PRE_DELAY T [see notes4,2] -- ns NF23 preamble delay i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 52 NXP Semiconductors Electrical characteristics Table 40. Toggle mode timing parameters (continued) ID Parameter 2 3 4 5 6 Unit Min. Max. NF24 postamble delay tPOST POST_DELAY T + 0.43 [see note2] -- ns NF28 Data write setup tDS5 0.25 tCK - 0.32 -- ns 0.25 tCK - 0.79 -- ns -- 3.18 ns -- 3.27 ns NF29 Data write hold 1 Symbol Timing T = GPMI Clock Cycle 5 tDH 6 NF30 NAND_DQS/NAND_DQ read setup skew tDQSQ NF31 NAND_DQS/NAND_DQ read hold skew tQHS6 AS minimum value can be 0, while DS/DH minimum value is 1. T = tCK (GPMI clock period) -0.075 ns (half of maximum p-p jitter). CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started with enough time of ALE/CLE assertion to low level. PRE_DELAY+1 (AS+DS) Shown in Figure 30. Shown in Figure 31. For DDR Toggle mode, Figure 29 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI samples NAND_DATA[7:0] at both the rising and falling edges of a delayed NAND_DQS signal, which is provided by an internal DPLL. The delay value of this register can be controlled by the GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 8M Mini Applications Processor Reference Manual [IMX8MMRM]). Generally, the typical delay value is equal to 0x7, which means a 1/4 clock cycle delay is expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay. 3.9.5 I2C bus characteristics The Inter-Integrated Circuit (I2C) provides functionality of a standard I2C master and slave. The I2C is designed to be compatible with the I2C Bus Specification, version 2.1, by Philips Semiconductor (now NXP Semiconductors). 3.9.6 MIPI D-PHY timing parameters MIPI D-PHY electrical specifications are compliance. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 53 Electrical characteristics Table 41. MIPI PHY worst power dissipation1 Power consume on Power consume on Power consume on VDD_MIPI_0P9 (mW) VDD_MIPI_1P2 (mW) VDD_MIPI_1P8 (mW) MODE 2.1 Gbps M4 on S4 on 226.1 4.1 35.6 265.8 M4 on S4 off 164.7 4.03 28.6 197.33 M4 off S4 on 63.02 0 15.8 78.82 4.26 0.0367 0.0584 4.36 ULPS 1 Total power consume (mW) M4 indicates MIPI DSI have 4 data lane enable (at least 1 clock lane enable). S4 indicates MIPI CSI have 4 data lane enable (at least 1 clock lane enable). 3.9.7 PCIe PHY parameters The PCIe interface is designed to be compatible with PCIe specification Gen2 x1 lane and supports the PCI Express 1.1/2.0 standard. Table 42. PCIe DC electrical characteristics Parameter PD 3.9.7.1 Description Power Consumption Min Typ Max Unit Normal Gen2 -- 129.5 -- mW Partial Mode -- 98.2 -- mW Slumber Mode -- 4.9 -- mW Full Powerdown -- 0.1 -- mW PCIE_RESREF reference resistor connection The impedance calibration process requires connection of reference resistor 8.2 k 1% precision resistor on PCIE_RESREF pads to ground. It is used for termination impedance calibration. 3.9.8 PDM timing parameters Figure 32 illustrates the input timing of the PDM. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 54 NXP Semiconductors Electrical characteristics PDM Clock PDM Bitstream ipg_clk_app Pulse right pre_channel_1 ipg_dee_clk Channel 1 Channel 0 Figure 32. PDM input timing PDM clock operative range is from 500 kHz to 6 MHz. Within range, only need to configure ipg_clk_app rate and CLKDIV without I/O timing concerns. 3.9.9 Pulse width modulator (PWM) timing parameters This section describes the electrical information of the PWM. The PWM can be programmed to select one of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin. Figure 33 depicts the timing of the PWM, and Table 43 lists the PWM timing parameters. 0 0 07-N?/54 Figure 33. PWM timing Table 43. PWM output timing parameters ID Parameter Min Max Unit PWM Module Clock Frequency 0 66 (ipg_clk) MHz P1 PWM output pulse width high 12 -- ns P2 PWM output pulse width low 12 -- ns i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 55 Electrical characteristics 3.9.10 FlexSPI timing parameters Measurements are with a load of 15 pF and an input slew rate of 1 V/ns. 3.9.10.1 FlexSPI input/read timing There are three sources for the internal sample clock for FlexSPI read data: * Dummy read strobe generated by FlexSPI controller and looped back internally (FlexSPIn_MCR0[RXCLKSRC] = 0x0) * Dummy read strobe generated by FlexSPI controller and looped back through the DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x1) * Read strobe provided by memory device and input from DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x3) The following sections describe input signal timing for each of these four internal sample clock sources. 3.9.10.1.1 SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1 Table 44. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0 Symbol Parameter Min. Max. Unit Notes -- 66 MHz -- -- [D:] Frequency of operation F1 [D:] Setup time for incoming data 8.67 -- ns 1 F2 [D:] Hold time for incoming data 0 -- ns -- 1 The setup specification here assumes the data learning feature is not used. If data learning is enabled, then TIS can be decreased by up to 2ns. Table 45. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1 Symbol Parameter Min. Max. Unit Notes -- [D:] Frequency of operation -- 133 MHz -- F1 [D:] Setup time for incoming data 1.5 -- ns 1 F2 [D:] Hold time for incoming data 1 -- ns -- 1 The setup specification here assumes the data learning feature is not used. If data learning is enabled, then TIS can be decreased by up to 2ns. FLEXSPI_SCLK F1 F2 F1 F2 FLEXSPI_DATA[7:0] Internal Sample Clock Figure 34. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1 i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 56 NXP Semiconductors Electrical characteristics NOTE Timing shown is based on the memory generating read data on the SCK falling edge, and FlexSPI controller sampling read data on the falling edge. 3.9.10.1.2 SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3 There are two cases when the memory provides both read data and the read strobe in SDR mode: * A1--Memory generates both read data and read strobe on SCK rising edge (or falling edge) * A2--Memory generates read data on SCK falling edge and generates read strobe on SCK rising edge Table 46. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A1) Symbol Parameter Min. Max. Unit -- [D:] Frequency of operation -- 166 MHz F3 [D:] Time from SCK to data valid -- -- ns F4 [D:] Time from SCK to DQS -- -- ns -- [D:] Time delta between TSCKD and TSCKDQS -2 2 ns FLEXSPI_SCLK F3 F3 FLEXSPI_DATA[7:0] F4 F4 FLEXSPI_DQS Figure 35. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A1) NOTE Timing shown is based on the memory generating read data and read strobe on the SCK rising edge. The FlexSPI controller samples read data on the DQS falling edge. Table 47. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A2) Symbol Parameter Min. Max. Unit -- [D:] Frequency of operation -- 166 MHz F5 [D:] Time from SCK to data valid -- -- ns F6 [D:] Time from SCK to DQS -- -- ns -- [D:] Time delta between TSCKD and TSCKDQS -2 2 ns i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 57 Electrical characteristics FLEXSPI_SCLK F5 F5 F5 FLEXSPI_DATA[7:0] F6 F6 F6 FLEXSPI_DQS Internal Sample Clock Figure 36. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A2) NOTE Timing shown is based on the memory generating read data on the SCK falling edge and read strobe on the SCK rising edge. The FlexSPI controller samples read data on a half-cycle delayed DQS falling edge. 3.9.10.1.3 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1 Table 48. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0 Symbol Parameter Min. Max. Unit Notes -- 33 MHz -- -- [D:] Frequency of operation F1 [D:] Setup time for incoming data 8.67 -- ns 1 F2 [D:] Hold time for incoming data 0 -- ns -- 1 The setup specification here assumes the data learning feature is not used. If data learning is enabled, then TIS can be decreased by up to 2ns. Table 49. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1 Symbol Parameter Min. Max. Unit Notes -- [D:] Frequency of operation -- 66 MHz -- F1 [D:] Setup time for incoming data 1.5 -- ns 1 F2 [D:] Hold time for incoming data 1 -- ns -- 1 The setup specification here assumes the data learning feature is not used. If data learning is enabled, then TIS can be decreased by up to 2ns. SCLK F1 F2 F1 F2 SIO[0:7] Internal Sample Clocks Figure 37. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1 i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 58 NXP Semiconductors Electrical characteristics 3.9.10.1.4 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3 Table 50. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case 1) Symbol Parameter Min. Max. Unit -- [D:] Frequency of operation -- 166 MHz TSCKD [D:] Time from SCK to data valid -- -- ns TSCKDQS [D:] Time from SCK to DQS -- -- ns TSCKD - TSCKDQS [D:] Time delta between TSCKD and TSCKDQS -0.6 0.6 ns SCK TSCKD SIO[0:7] TSCKDQS DQS Figure 38. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 3.9.10.2 FlexSPI output/write timing The following sections describe output signal timing for the FlexSPI controller including control signals and data outputs. 3.9.10.2.1 SDR mode Table 51. FlexSPI output timing in SDR mode Symbol Parameter Min. Max. Unit -- 166 MHz 6.02 -- ns -- [D:] Frequency of operation1 TCK [D:] SCK clock period TDSO [D:] Output data setup time 2 -- ns TDHO [D:] Output data hold time 2 -- ns TCSS [D:] Chip select output setup time 3 x TCK - 1 -- ns TCSH [D:] Chip select output hold time 3 x TCK - 1 -- ns i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 59 Electrical characteristics 1 The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. See the FlexSPI SDR input timing specifications. NOTE TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1 register, the default values are shown above. See the i.MX 8M Mini Applications Processor Reference Manual (IMX8MMRM) for more details. SCK TCK TCSS TCSH CS TDVO TDVO SIO[0:7] TDHO TDHO Figure 39. FlexSPI output timing in SDR mode 3.9.10.2.2 DDR mode Table 52. FlexSPI output timing in DDR mode Symbol Parameter Min. Max. Unit -- 166 MHz 6.02 -- ns -- [D:] Frequency of operation1 TCK [D:] SCK clock period TDSO [D:] Output data setup time -- 0.6 ns TDHO [D:] Output data hold time 0.6 -- ns TCSS [D:] Chip select output setup time 3 x TCK - 1.075 -- ns TCSH [D:] Chip select output hold time 3 x TCK - 1.075 -- ns 1 The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. See the FlexSPI SDR input timing specifications. NOTE TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1 register, the default values are shown above. See the i.MX 8M Mini Applications Processor Reference Manual (IMX8MMRM) for more details. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 60 NXP Semiconductors Electrical characteristics SCK TCSS TCK TCSH CS TDVO SIO[0:7] TDHO TDVO TDHO Figure 40. FlexSPI output timing in DDR mode 3.9.11 SAI/I2S switching specifications This section provides the AC timings for the SAI in Master (clocks driven) and Slave (clocks input) modes. All timings are given for non inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP] = 0) and non inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below. Table 53. Master mode SAI timing (50 MHz)1 Num Characteristic Min Max Unit S1 SAI_MCLK cycle time 20 -- ns S2 SAI_MCLK pulse width high/low 40% 60% MCLK period S3 SAI_BCLK cycle time 20 -- ns S4 SAI_BCLK pulse width high/low 40% 60% BCLK period S5 SAI_BCLK to SAI_FS output valid -- 2 ns S6 SAI_BCLK to SAI_FS output invalid 0 -- ns S7 SAI_BCLK to SAI_TXD valid -- 2 ns S8 SAI_BCLK to SAI_TXD invalid 0 -- ns S9 SAI_RXD/SAI_FS input setup before SAI_BCLK 2 -- ns S10 SAI_RXD/SAI_FS input hold after SAI_BCLK 0 -- ns 1 To achieve 50 MHz for BCLK operation, clock must be set in feedback mode. Table 54. Master mode SAI timing (25 MHz) Num Characteristic Min Max Unit S1 SAI_MCLK cycle time 40 -- ns S2 SAI_MCLK pulse width high/low 40% 60% MCLK period S3 SAI_BCLK cycle time 40 -- ns S4 SAI_BCLK pulse width high/low 40% 60% BCLK period S5 SAI_BCLK to SAI_FS output valid -- 2 ns i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 61 Electrical characteristics Table 54. Master mode SAI timing (25 MHz) (continued) Num Characteristic Min Max Unit S6 SAI_BCLK to SAI_FS output invalid 0 -- ns S7 SAI_BCLK to SAI_TXD valid -- 2 ns S8 SAI_BCLK to SAI_TXD invalid 0 -- ns S9 SAI_RXD/SAI_FS input setup before SAI_BCLK 12 -- ns S10 SAI_RXD/SAI_FS input hold after SAI_BCLK 0 -- ns Figure 41. SAI timing--Master modes Table 55. Slave mode SAI timing (50 MHz)1 Num Characteristic Min Max Unit S11 SAI_BCLK cycle time (input) 20 -- ns S12 SAI_BCLK pulse width high/low (input) 40% 60% BCLK period S13 SAI_FS input setup before SAI_BCLK 2 -- ns S14 SAI_FA input hold after SAI_BCLK 2 -- ns S17 SAI_RXD setup before SAI_BCLK 2 -- ns S18 SAI_RXD hold after SAI_BCLK 2 -- ns 1 TX does not support 50 MHz operation in Slave mode. Table 56. Slave mode SAI timing (25 MHz) Num Characteristic Min Max Unit S11 SAI_BCLK cycle time (input) 40 -- ns S12 SAI_BCLK pulse width high/low (input) 40% 60% BCLK period i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 62 NXP Semiconductors Electrical characteristics Table 56. Slave mode SAI timing (25 MHz) (continued) Num Characteristic Min Max Unit S13 SAI_FS input setup before SAI_BCLK 12 -- ns S14 SAI_FA input hold after SAI_BCLK 2 -- ns S15 SAI_BCLK to SAI_TXD/SAI_FS output valid -- 7 ns S16 SAI_BCLK to SAI_TXD/SAI_FS output invalid 0 -- ns S17 SAI_RXD setup before SAI_BCLK 12 -- ns S18 SAI_RXD hold after SAI_BCLK 2 -- ns Figure 42. SAI Timing -- Slave Modes 3.9.12 SPDIF timing parameters The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal. Table 57 and Figure 43 and Figure 44 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode. Table 57. SPDIF timing parameters Timing Parameter Range Parameter Symbol Unit Min Max SPDIF_IN Skew: asynchronous inputs, no specs apply -- -- 0.7 ns SPDIF_OUT output (Load = 50 pf) * Skew * Transition rising * Transition falling -- -- -- -- -- -- 1.5 24.2 31.3 ns i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 63 Electrical characteristics Table 57. SPDIF timing parameters (continued) Timing Parameter Range Parameter Symbol Unit Min SPDIF_OUT output (Load = 30 pf) * Skew * Transition rising * Transition falling Max 1.5 13.6 18.0 ns 40.0 -- ns srckph 16.0 -- ns SPDIF_SR_CLK low period srckpl 16.0 -- ns Modulating Tx clock (SPDIF_ST_CLK) period stclkp 40.0 -- ns SPDIF_ST_CLK high period stclkph 16.0 -- ns SPDIF_ST_CLK low period stclkpl 16.0 -- ns -- -- -- -- -- -- Modulating Rx clock (SPDIF_SR_CLK) period srckp SPDIF_SR_CLK high period srckp SPDIF_SR_CLK srckpl srckph VM VM (Output) Figure 43. SPDIF_SR_CLK timing diagram stclkp SPDIF_ST_CLK stclkpl VM stclkph VM (Input) Figure 44. SPDIF_ST_CLK timing diagram i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 64 NXP Semiconductors Electrical characteristics 3.9.13 3.9.13.1 UART I/O configuration and timing parameters UART RS-232 I/O configuration in different modes The i.MX 8M Mini UART interfaces can serve both as DTE or DCE device. This can be configured by the DCEDTE control bit (default 0--DCE mode). Table 58 shows the UART I/O configuration based on the enabled mode. Table 58. UART I/O configuration vs. mode DTE Mode DCE Mode Port Direction Description Direction Description UARTx_RTS_B Output UARTx_RTS_B from DTE to DCE Input UARTx_RTS_B from DTE to DCE UARTx_CTS_B Input UARTx_CTS_B from DCE to DTE Output UARTx_CTS_B from DCE to DTE UARTx_TX_ DATA Input Serial data from DCE to DTE Output Serial data from DCE to DTE UARTx_RX_DATA Output Serial data from DTE to DCE Input Serial data from DTE to DCE 3.9.13.2 UART RS-232 Serial mode timing This section describes the electrical information of the UART module in the RS-232 mode. 3.9.13.2.1 UART transmitter Figure 45 depicts the transmit timing of UART in the RS-232 Serial mode, with 8 data bit/1 stop bit format. Table 59 lists the UART RS-232 Serial mode transmit timing characteristics. UA1 UARTx_TX_DATA (output) Possible Parity Bit UA1 Start Bit Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Par Bit STOP BIT Next Start Bit UA1 UA1 Figure 45. UART RS-232 Serial mode transmit timing diagram Table 59. RS-232 Serial mode transmit timing parameters ID UA1 1 2 Parameter Transmit Bit Time Symbol Min Max Unit tTbit 1/Fbaud_rate1 - Tref_clk2 1/Fbaud_rate + Tref_clk -- Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider). i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 65 Electrical characteristics 3.9.13.2.2 UART receiver Figure 46 depicts the RS-232 Serial mode receive timing with 8 data bit/1 stop bit format. Table 60 lists Serial mode receive timing characteristics. UA2 UARTx_RX_DATA (output) Start Bit Possible Parity Bit UA2 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Par Bit STOP BIT Next Start Bit UA2 UA2 Figure 46. UART RS-232 Serial mode receive timing diagram Table 60. RS-232 Serial mode receive timing parameters ID Parameter Symbol Min Max Unit UA2 Receive Bit Time1 tRbit 1/Fbaud_rate2 - 1/(16 x Fbaud_rate) 1/Fbaud_rate + 1/(16 x Fbaud_rate) -- 1 The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/(16 x Fbaud_rate). 2 F baud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. 3.9.14 USB PHY parameters This section describes the USB-OTG PHY parameters. 3.9.14.1 Pad/Package/Board connections The USBx_VBUS pin cannot directly connect to the 5 V VBUS voltage on the USB2.0 link. Each USBx_VBUS pin must be isolated by an external 30 K1% precision resistor. The USB 2.0 PHY uses USBx_TXRTUNE and an external resistor to calibrate the USBx_DP/DN 45 source impedance. The external resistor value is 200 1% precision on each of USBx_TXRTUNE pad to ground. 3.9.14.2 USB PHY worst power consumption Table 61 shows the USB 2.0 PHY worst power dissipation. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 66 NXP Semiconductors Electrical characteristics Table 61. USB 2.0 PHY worst power dissipation Mode VDD_USB_0P8 HS TX 8.286 FS TX 6.767 VDD_USB_3P3 4.63 23.409 12.52 mA 13.58 VDD_USB_1P8 70.448 5.968 mA 6.224 Total Power 63.22 mA LS TX 7.001 67.779 Suspend 0.752 0.164 0.106 1.465 Sleep 0.761 0.163 0.106 1.472 mW i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 67 Boot mode configuration 4 Boot mode configuration This section provides information on Boot mode configuration pins allocation and boot devices interfaces allocation. 4.1 Boot mode configuration pins Table 62 provides boot options, functionality, fuse values, and associated pins. Several input pins are also sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse. The boot option pins are in effect when BT_FUSE_SEL fuse is `0' (cleared, which is the case for an unblown fuse). For detailed Boot mode options configured by the Boot mode pins, see the "System Boot, Fusemap, and eFuse" chapter in the i.MX 8M Mini Applications Processor Reference Manual (IMX8MMRM). Table 62. Fuses and associated pins used for boot Pin Directio n at Reset eFuse name State during reset (POR_B asserted) State after reset (POR_B deasserted) BOOT_MODE0 Input N/A Input with pull down Input with pull down Boot mode selection BOOT_MODE1 Input N/A Input with pull down Input with pull down SAI1_RXD0 Input BOOT_CFG[0] Input with pull down SAI1_RXD1 Input BOOT_CFG[1] Input with pull down SAI1_RXD2 Input BOOT_CFG[2] Input with pull down SAI1_RXD3 Input BOOT_CFG[3] Input with pull down SAI1_RXD4 Input BOOT_CFG[4] Input with pull down SAI1_RXD5 Input BOOT_CFG[5] Input with pull down SAI1_RXD6 Input BOOT_CFG[6] Input with pull down Input with pull down Boot options pin value overrides fuse settings for Input with pull down BT_FUSE_SEL = "0". Signal Input with pull down configuration as fuse override input at power up. These are Input with pull down special I/O lines that control the boot configuration during Input with pull down product development. In Input with pull down production, the boot configuration can be Input with pull down controlled by fuses. SAI1_RXD7 Input BOOT_CFG[7] Input with pull down Input with pull down SAI1_TXD0 Input BOOT_CFG[8] Input with pull down Input with pull down SAI1_TXD1 Input BOOT_CFG[9] Input with pull down Input with pull down SAI1_TXD2 Input BOOT_CFG[10] Input with pull down Input with pull down SAI1_TXD3 Input BOOT_CFG[11] Input with pull down Input with pull down SAI1_TXD4 Input BOOT_CFG[12] Input with pull down Input with pull down SAI1_TXD5 Input BOOT_CFG[13] Input with pull down Input with pull down SAI1_TXD6 Input BOOT_CFG[14] Input with pull down Input with pull down Details i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 68 NXP Semiconductors Boot mode configuration 4.2 Boot device interface allocation Table 63 lists the interfaces that can be used by the boot process in accordance with the specific Boot mode configuration. The table also describes the interface's specific modes and IOMUXC allocation, which are configured during boot when appropriate. Table 63. Interface allocation during boot Interface IP Instance Allocated Pads During Boot Comment SPI ECSPI-1 ECSPI1_SCLK, ECSPI1_MOSI, ECSPI1_MISO, ECSPI1_SS0 The chip-select pin used depends on the fuse "CS select (SPI only)". SPI ECSPI-2 ECSPI2_SCLK, ECSPI2_MOSI, ECSPI2_MISO, ECSPI2_SS0 The chip-select pin used depends on the fuse "CS select (SPI only)". SPI ECSPI-3 UART1_RXD, UART1_TXD, UART2_RXD, UART2_TXD The chip-select pin used depends on the fuse "CS select (SPI only)". NAND Flash GPMI SD/MMC USDHC-1 GPIO1_IO03, GPIO1_IO06, GPIO1_IO07, SD1_RESET_B, SD1_CLK, SD1_CMD, SD1_STROBE, SD1_DATA0, SD1_DATA1, SD1_DATA2, SD1_DATA3, SD1_DATA4, SD1_DATA5, SD1_DATA6, SD1_DATA7 SD/MMC USDHC-2 GPIO1_IO04, GPIO1_IO08, GPIO1_IO07, 1 or 4-bit SD2_RESET_B, SD2_WP, SD2_CLK, SD2_CMD, SD2_DATA0, SD2_DATA1, SD2_DATA2, SD2_DATA3 SD/MMC USDHC-3 NAND_CE1_B, NAND_CE2_B, NAND_CE3_B, 1, 4, or 8-bit NAND_CLE, NAND_DATA02, NAND_DATA03, NAND_DATA04, NAND_DATA05, NAND_DATA06, NAND_DATA07, NAND_RE_B, NAND_READY_B, NAND_WE_B, NAND_WP_B FlexSPI FlexSPI USB USB_OTG PHY NAND_ALE, NAND_CE0_B, NAND_CLE, 8-bit, only CS0 is supported. NAND_DATA00, NAND_DATA01, NAND_DATA02, NAND_DATA03, NAND_DATA04, NAND_DATA05, NAND_DATA06, NAND_DATA07, NAND_DQS, NAND_RE_B, NAND_READY_B, NAND_WE_B, NAND_WP_B 1, 4, or 8-bit NAND_ALE, NAND_CE0_B, NAND_CE1_B, For FlexSPI flash NAND_CE2_B, NAND_CE3_B, NAND_CLE, NAND_DATA00, NAND_DATA01, NAND_DATA02, NAND_DATA03, NAND_DATA04, NAND_DATA05, NAND_DATA06, NAND_DATA07, NAND_DQS, NAND_RE_B Dedicated USB pins -- i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 69 Package information and contact assignments 5 Package information and contact assignments This section includes the contact assignment information and mechanical package drawing. 5.1 5.1.1 14 x 14 mm package information 14 x 14 mm, 0.5 mm pitch, ball matrix Figure 47 shows the top, bottom, and side views of the 14 x 14 mm FCBGA package. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 70 NXP Semiconductors Package information and contact assignments Figure 47. 14 X 14 MM BGA, case x package top, bottom, and side views i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 71 Package information and contact assignments 5.1.2 14 x 14 mm supplies contact assignments and functional contact assignments Table 64 shows supplies contact assignments for the 14 x 14 mm package. Table 64. i.MX 8M Mini 14 x 14 mm supplies contact assignments Supply Rail Name Ball(s) Position(s) Remark NC J18 -- NVCC_CLK M19 Supply for CLK interface NVCC_DRAM P7, K8, N8, R8, V8, K9, L9, M9, N9, R9, T9, U9, V9 Supply for DRAM interface NVCC_ECSPI H10 Supply for ESCPI interface NVCC_ENET W22 Supply for ENET interface NVCC_GPIO1 W12 Supply for GPIO1 interface NVCC_I2C J11 Supply for I2C interface NVCC_JTAG L19 Supply for JTAG interface NVCC_NAND U19 Supply for NAND interface NVCC_SAI1 W18 Supply for SAI interface NVCC_SAI2 V19 Supply for SAI interface NVCC_SAI3 Y10 Supply for SAI interface NVCC_SAI5 W17 Supply for SAI interface NVCC_SD1 V20 Supply for SD interface NVCC_SD2 V22 Supply for SD interface NVCC_SNVS_1P8 J22 Supply for SNVS interface NVCC_UART J12 Supply for UART interface PVCC0_1P8 AB13 Digital IO pre-drive PVCC1_1P8 T19 Digital IO pre-drive PVCC2_1P8 J13 Digital IO pre-drive VDD_24M_XTAL_1P8 N19 Supply for XTAL VDD_ANA_0P8 L17, N17 Supply for Analog logic VDD_ANA0_1P8 AA14, Y15 Supply for Analog logic VDD_ANA1_1P8 P19, N20 Supply for Analog logic VDD_ARM R13, T13, U13, V13, W13, T14, W14, R15, T15, U15, V15, W15, V16, W16 Supply for ARM VDD_ARM_PLL_0P8 P16 Supply for ARM PLL VDD_ARM_PLL_1P8 R19 Supply for ARM PLL VDD_DRAM J10, L10, N10, R10, U10, W10 Supply for DRAM module i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 72 NXP Semiconductors Package information and contact assignments Table 64. i.MX 8M Mini 14 x 14 mm supplies contact assignments (continued) VDD_DRAM_PLL_0P8 P9 Supply for DRAM PLL VDD_DRAM_PLL_1P8 P5 Supply for DRAM PLL VDD_GPU R11, U11, W11, P12, V12 Supply for GPU VDD_MIPI_0P9 J14 Supply for MIPI PHY VDD_MIPI_1P2 J15 Supply for MIPI PHY VDD_MIPI_1P8 H13 Supply for MIPI PHY VDD_PCI_0P8 J16 Supply for PCIe PHY VDD_PCI_1P8 G14 Supply for PCIe PHY VDD_SNVS_0P8 K22 Supply for SNVS logic VDD_SOC N13, K15, L15, M15, N15, K16, R17, U17, L18, Supply for SOC logic N18, R18, U18 VDD_USB_0P8 J17 Supply for USB PHY VDD_USB_1P8 H15 Supply for USB PHY VDD_USB_3P3 K19 Supply for USB PHY VDD_VPU L11, N11, K12, K13, L13, M13, M14 Supply for VPU VSS A1, AG1, C2, H2, Y2, AE2, B3, E3, F3, J3, K3, -- N3, P3, R3, V3, W3, AB3, AC3, AF3, C5, AE5, C6, AE6, G7, J7, K7, N7, R7, V7, W7, AA7, C9, G9, AA9, AE9, C10, G10, AA10, AE10, L12, M12, N12, R12, T12, U12, C13, G13, P13, Y13, AA13, AE13, C14, AE14, C15, G15, P15, AA15, AE15, L16, M16, N16, R16, T16, U16, C18, G18, H18, Y18, AA18, AE18, C19, G19, AA19, AE19, K20, R20, G21, J21, K21, N21, P21, R21, V21, W21, AA21, C22, AE22, C23, AE23, E25, F25, J25, K25, N25, P25, R25, V25, W25, AB25, AC25, B26, A27, AG27 Table 65 shows an alpha-sorted list of functional contact assignments for the 14 x 14 mm package. Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status 24M_XTALI B27 VDD_24M_XTAL_ 1P8 ANALOG -- -- Input 24M_XTALO C26 VDD_24M_XTAL_ 1P8 ANALOG -- -- Output BOOT_MODE0 G26 NVCC_JTAG GPIO ALT0 ccmsrcgpcmix.BOOT_MODE[0] Input with PD BOOT_MODE1 G27 NVCC_JTAG GPIO ALT0 ccmsrcgpcmix.BOOT_MODE[1] Input with PD i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 73 Package information and contact assignments Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status CLKIN1 H27 NVCC_CLK GPIO -- -- Input without PU/PD CLKIN2 J27 NVCC_CLK GPIO -- -- Input without PU/PD CLKOUT1 H26 NVCC_CLK GPIO -- -- Output low without PU/PD CLKOUT2 J26 NVCC_CLK GPIO -- -- Output low without PU/PD DRAM_AC00 F4 NVCC_DRAM DDR -- -- Output low DRAM_AC01 F5 NVCC_DRAM DDR -- -- Output low DRAM_AC02 K4 NVCC_DRAM DDR -- -- Input DRAM_AC03 J4 NVCC_DRAM DDR -- -- Input DRAM_AC04 L2 NVCC_DRAM DDR -- -- Input DRAM_AC05 L1 NVCC_DRAM DDR -- -- Input DRAM_AC06 F6 NVCC_DRAM DDR -- -- Input DRAM_AC07 J5 NVCC_DRAM DDR -- -- Input DRAM_AC08 J6 NVCC_DRAM DDR -- -- Input DRAM_AC09 K6 NVCC_DRAM DDR -- -- Input DRAM_AC10 E4 NVCC_DRAM DDR -- -- Input DRAM_AC11 D5 NVCC_DRAM DDR -- -- Input DRAM_AC12 N4 NVCC_DRAM DDR -- -- Input DRAM_AC13 N5 NVCC_DRAM DDR -- -- Input DRAM_AC14 K5 NVCC_DRAM DDR -- -- Input DRAM_AC15 N6 NVCC_DRAM DDR -- -- Input DRAM_AC16 M1 NVCC_DRAM DDR -- -- Input DRAM_AC17 M2 NVCC_DRAM DDR -- -- Input DRAM_AC19 N2 NVCC_DRAM DDR -- -- Input DRAM_AC20 AB4 NVCC_DRAM DDR -- -- Output low DRAM_AC21 AB5 NVCC_DRAM DDR -- -- Output low DRAM_AC22 W4 NVCC_DRAM DDR -- -- Input DRAM_AC23 V4 NVCC_DRAM DDR -- -- Input i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 74 NXP Semiconductors Package information and contact assignments Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status DRAM_AC24 U2 NVCC_DRAM DDR -- -- Input DRAM_AC25 U1 NVCC_DRAM DDR -- -- Input DRAM_AC26 N1 NVCC_DRAM DDR -- -- Input DRAM_AC27 R6 NVCC_DRAM DDR -- -- Input DRAM_AC28 W6 NVCC_DRAM DDR -- -- Input DRAM_AC29 V6 NVCC_DRAM DDR -- -- Input DRAM_AC30 AC4 NVCC_DRAM DDR -- -- Input DRAM_AC31 AD5 NVCC_DRAM DDR -- -- Input DRAM_AC32 R4 NVCC_DRAM DDR -- -- Input DRAM_AC33 R5 NVCC_DRAM DDR -- -- Input DRAM_AC34 T1 NVCC_DRAM DDR -- -- Input DRAM_AC35 T2 NVCC_DRAM DDR -- -- Input DRAM_AC36 V5 NVCC_DRAM DDR -- -- Input DRAM_AC37 W5 NVCC_DRAM DDR -- -- Input DRAM_AC38 AB6 NVCC_DRAM DDR -- -- Input DRAM_ALERT_N R2 NVCC_DRAM DDR -- -- Input DRAM_DM0 A4 NVCC_DRAM DDR -- -- Input DRAM_DM1 F1 NVCC_DRAM DDR -- -- Input DRAM_DM2 AB1 NVCC_DRAM DDR -- -- Input DRAM_DM3 AG4 NVCC_DRAM DDR -- -- Input DRAM_DQ00 A5 NVCC_DRAM DDR -- -- Input DRAM_DQ01 B5 NVCC_DRAM DDR -- -- Input DRAM_DQ02 D2 NVCC_DRAM DDR -- -- Input DRAM_DQ03 D1 NVCC_DRAM DDR -- -- Input DRAM_DQ04 C1 NVCC_DRAM DDR -- -- Input DRAM_DQ05 B1 NVCC_DRAM DDR -- -- Input DRAM_DQ06 A3 NVCC_DRAM DDR -- -- Input DRAM_DQ07 B4 NVCC_DRAM DDR -- -- Input DRAM_DQ08 F2 NVCC_DRAM DDR -- -- Input DRAM_DQ09 G2 NVCC_DRAM DDR -- -- Input i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 75 Package information and contact assignments Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status DRAM_DQ10 J1 NVCC_DRAM DDR -- -- Input DRAM_DQ11 J2 NVCC_DRAM DDR -- -- Input DRAM_DQ12 K2 NVCC_DRAM DDR -- -- Input DRAM_DQ13 K1 NVCC_DRAM DDR -- -- Input DRAM_DQ14 E1 NVCC_DRAM DDR -- -- Input DRAM_DQ15 E2 NVCC_DRAM DDR -- -- Input DRAM_DQ16 AB2 NVCC_DRAM DDR -- -- Input DRAM_DQ17 AA2 NVCC_DRAM DDR -- -- Input DRAM_DQ18 W1 NVCC_DRAM DDR -- -- Input DRAM_DQ19 W2 NVCC_DRAM DDR -- -- Input DRAM_DQ20 V2 NVCC_DRAM DDR -- -- Input DRAM_DQ21 V1 NVCC_DRAM DDR -- -- Input DRAM_DQ22 AC1 NVCC_DRAM DDR -- -- Input DRAM_DQ23 AC2 NVCC_DRAM DDR -- -- Input DRAM_DQ24 AG5 NVCC_DRAM DDR -- -- Input DRAM_DQ25 AF5 NVCC_DRAM DDR -- -- Input DRAM_DQ26 AD2 NVCC_DRAM DDR -- -- Input DRAM_DQ27 AD1 NVCC_DRAM DDR -- -- Input DRAM_DQ28 AE1 NVCC_DRAM DDR -- -- Input DRAM_DQ29 AF1 NVCC_DRAM DDR -- -- Input DRAM_DQ30 AG3 NVCC_DRAM DDR -- -- Input DRAM_DQ31 AF4 NVCC_DRAM DDR -- -- Input DRAM_DQS0_N B2 NVCC_DRAM -- -- -- Input DRAM_DQS0_P A2 NVCC_DRAM DDRCLK -- -- Input DRAM_DQS1_N H1 NVCC_DRAM -- -- -- Input DRAM_DQS1_P G1 NVCC_DRAM DDRCLK -- -- Input DRAM_DQS2_N Y1 NVCC_DRAM -- -- -- Input DRAM_DQS2_P AA1 NVCC_DRAM DDRCLK -- -- Input DRAM_DQS3_N AF2 NVCC_DRAM -- -- -- Input DRAM_DQS3_P AG2 NVCC_DRAM DDRCLK -- -- Input i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 76 NXP Semiconductors Package information and contact assignments Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status DRAM_RESET_N R1 NVCC_DRAM DDR -- -- Output low DRAM_VREF P1 NVCC_DRAM DDR -- -- -- DRAM_ZN P2 NVCC_DRAM DDR -- -- -- ECSPI1_MISO A7 NVCC_ECSPI GPIO ALT5 GPIO5.IO[8] Input with PD ECSPI1_MOSI B7 NVCC_ECSPI GPIO ALT5 GPIO5.IO[7] Input with PD ECSPI1_SCLK D6 NVCC_ECSPI GPIO ALT5 GPIO5.IO[6] Input with PD ECSPI1_SS0 B6 NVCC_ECSPI GPIO ALT5 GPIO5.IO[9] Input with PD ECSPI2_MISO A8 NVCC_ECSPI GPIO ALT5 GPIO5.IO[12] Input with PD ECSPI2_MOSI B8 NVCC_ECSPI GPIO ALT5 GPIO5.IO[11] Input with PD ECSPI2_SCLK E6 NVCC_ECSPI GPIO ALT5 GPIO5.IO[10] Input with PD ECSPI2_SS0 A6 NVCC_ECSPI GPIO ALT5 GPIO5.IO[13] Input with PD ENET_MDC AC27 NVCC_ENET GPIO ALT5 GPIO1.IO[16] Input with PD ENET_MDIO AB27 NVCC_ENET GPIO ALT5 GPIO1.IO[17] Input with PD ENET_RD0 AE27 NVCC_ENET GPIO ALT5 GPIO1.IO[26] Input with PD ENET_RD1 AD27 NVCC_ENET GPIO ALT5 GPIO1.IO[27] Input with PD ENET_RD2 AD26 NVCC_ENET GPIO ALT5 GPIO1.IO[28] Input with PD ENET_RD3 AC26 NVCC_ENET GPIO ALT5 GPIO1.IO[29] Input with PD ENET_RXC AE26 NVCC_ENET GPIO ALT5 GPIO1.IO[25] Input with PD ENET_RX_CTL AF27 NVCC_ENET GPIO ALT5 GPIO1.IO[24] Input with PD ENET_TD0 AG26 NVCC_ENET GPIO ALT5 GPIO1.IO[21] Input with PD ENET_TD1 AF26 NVCC_ENET GPIO ALT5 GPIO1.IO[20] Input with PD ENET_TD2 AG25 NVCC_ENET GPIO ALT5 GPIO1.IO[19] Input with PD ENET_TD3 AF25 NVCC_ENET GPIO ALT5 GPIO1.IO[18] Input with PD ENET_TXC AG24 NVCC_ENET GPIO ALT5 GPIO1.IO[23] Input with PD ENET_TX_CTL AF24 NVCC_ENET GPIO ALT5 GPIO1.IO[22] Input with PD GPIO1_IO00 AG14 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[0] Input with PD GPIO1_IO011 AF14 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[1] Output low GPIO1_IO02 AG13 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[2] Input with PU GPIO1_IO03 AF13 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[3] Input with PD GPIO1_IO04 AG12 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[4] Input with PD i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 77 Package information and contact assignments Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status GPIO1_IO052 AF12 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[5] Output high GPIO1_IO06 AG11 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[6] Input with PD GPIO1_IO07 AF11 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[7] Input with PU GPIO1_IO08 AG10 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[8] Input with PD GPIO1_IO09 AF10 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[9] Input with PD GPIO1_IO10 AD10 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[10] Input with PD GPIO1_IO11 AC10 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[11] Input with PD GPIO1_IO12 AB10 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[12] Input with PD GPIO1_IO13 AD9 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[13] Input with PD GPIO1_IO14 AC9 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[14] Input with PD GPIO1_IO15 AB9 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[15] Input with PD I2C1_SCL E9 NVCC_I2C GPIO ALT5 GPIO5.IO[14] Input with PD I2C1_SDA F9 NVCC_I2C GPIO ALT5 GPIO5.IO[15] Input with PD I2C2_SCL D10 NVCC_I2C GPIO ALT5 GPIO5.IO[16] Input with PD I2C2_SDA D9 NVCC_I2C GPIO ALT5 GPIO5.IO[17] Input with PD I2C3_SCL E10 NVCC_I2C GPIO ALT5 GPIO5.IO[18] Input with PD I2C3_SDA F10 NVCC_I2C GPIO ALT5 GPIO5.IO[19] Input with PD I2C4_SCL D13 NVCC_I2C GPIO ALT5 GPIO5.IO[20] Input with PD I2C4_SDA E13 NVCC_I2C GPIO ALT5 GPIO5.IO[21] Input with PD JTAG_MOD D27 NVCC_JTAG GPIO ALT0 cjtag_wrapper.MOD Input with PD JTAG_TCK F26 NVCC_JTAG GPIO ALT0 cjtag_wrapper.TCK Input with PU JTAG_TDI E27 NVCC_JTAG GPIO ALT0 cjtag_wrapper.TDI Input with PU JTAG_TDO E26 NVCC_JTAG GPIO ALT0 cjtag_wrapper.TDO Input with PU JTAG_TMS F27 NVCC_JTAG GPIO ALT0 cjtag_wrapper.TMS Input with PU JTAG_TRST_B C27 NVCC_JTAG GPIO ALT0 cjtag_wrapper.TRST_B Input with PU MIPI_CSI_CLK_N A16 VDD_MIPI_1P8 PHY -- -- Input MIPI_CSI_CLK_P B16 VDD_MIPI_1P8 PHY -- -- Input MIPI_CSI_D0_N A14 VDD_MIPI_1P8 PHY -- -- Input MIPI_CSI_D0_P B14 VDD_MIPI_1P8 PHY -- -- Input MIPI_CSI_D1_N A15 VDD_MIPI_1P8 PHY -- -- Input i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 78 NXP Semiconductors Package information and contact assignments Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status MIPI_CSI_D1_P B15 VDD_MIPI_1P8 PHY -- -- Input MIPI_CSI_D2_N A17 VDD_MIPI_1P8 PHY -- -- Input MIPI_CSI_D2_P B17 VDD_MIPI_1P8 PHY -- -- Input MIPI_CSI_D3_N A18 VDD_MIPI_1P8 PHY -- -- Input MIPI_CSI_D3_P B18 VDD_MIPI_1P8 PHY -- -- Input MIPI_DSI_CLK_N A11 VDD_MIPI_1P8 PHY -- -- Output low MIPI_DSI_CLK_P B11 VDD_MIPI_1P8 PHY -- -- Output low MIPI_DSI_D0_N A9 VDD_MIPI_1P8 PHY -- -- Output low MIPI_DSI_D0_P B9 VDD_MIPI_1P8 PHY -- -- Output low MIPI_DSI_D1_N A10 VDD_MIPI_1P8 PHY -- -- Output low MIPI_DSI_D1_P B10 VDD_MIPI_1P8 PHY -- -- Output low MIPI_DSI_D2_N A12 VDD_MIPI_1P8 PHY -- -- Output low MIPI_DSI_D2_P B12 VDD_MIPI_1P8 PHY -- -- Output low MIPI_DSI_D3_N A13 VDD_MIPI_1P8 PHY -- -- Output low MIPI_DSI_D3_P B13 VDD_MIPI_1P8 PHY -- -- Output low MIPI_VREG_CAP D15 0.35 - 0.45 V PHY -- -- Output NAND_ALE N22 NVCC_NAND GPIO ALT5 GPIO3.IO[0] Input with PD NAND_CE0_B N24 NVCC_NAND GPIO ALT5 GPIO3.IO[1] Input with PU NAND_CE1_B P27 NVCC_NAND GPIO ALT5 GPIO3.IO[2] Input with PD NAND_CE2_B M27 NVCC_NAND GPIO ALT5 GPIO3.IO[3] Input with PD NAND_CE3_B L27 NVCC_NAND GPIO ALT5 GPIO3.IO[4] Input with PD NAND_CLE K27 NVCC_NAND GPIO ALT5 GPIO3.IO[5] Input with PD NAND_DATA00 P23 NVCC_NAND GPIO ALT5 GPIO3.IO[6] Input with PD NAND_DATA01 K24 NVCC_NAND GPIO ALT5 GPIO3.IO[7] Input with PD NAND_DATA02 K23 NVCC_NAND GPIO ALT5 GPIO3.IO[8] Input with PD NAND_DATA03 N23 NVCC_NAND GPIO ALT5 GPIO3.IO[9] Input with PD NAND_DATA04 M26 NVCC_NAND GPIO ALT5 GPIO3.IO[10] Input with PD NAND_DATA05 L26 NVCC_NAND GPIO ALT5 GPIO3.IO[11] Input with PD NAND_DATA06 K26 NVCC_NAND GPIO ALT5 GPIO3.IO[12] Input with PD NAND_DATA07 N26 NVCC_NAND GPIO ALT5 GPIO3.IO[13] Input with PD i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 79 Package information and contact assignments Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status NAND_DQS R22 NVCC_NAND GPIO ALT5 GPIO3.IO[14] Input with PD NAND_RE_B N27 NVCC_NAND GPIO ALT5 GPIO3.IO[15] Input with PU NAND_READY_B P26 NVCC_NAND GPIO ALT5 GPIO3.IO[16] Input with PD NAND_WE_B R26 NVCC_NAND GPIO ALT5 GPIO3.IO[17] Input with PD NAND_WP_B R27 NVCC_NAND GPIO ALT5 GPIO3.IO[18] Input with PD ONOFF A25 NVCC_SNVS_1P8 GPIO ALT0 snvsmix.ONOFF Input without PU/PD PCIE_CLK_N A21 VDD_PCI_1P8 PHY -- -- High-Z PCIE_CLK_P B21 VDD_PCI_1P8 PHY -- -- High-Z PCIE_RESREF D19 VDD_PCI_1P8 PHY -- -- High-Z PCIE_RXN_N A19 VDD_PCI_1P8 PHY -- -- Input, High-Z PCIE_RXN_P B19 VDD_PCI_1P8 PHY -- -- Input, High-Z PCIE_TXN_N A20 VDD_PCI_1P8 PHY -- -- Output, High-Z PCIE_TXN_P B20 VDD_PCI_1P8 PHY -- -- Output, High-Z PMIC_ON_REQ A24 NVCC_SNVS_1P8 GPIO ALT0 snvsmix.PMIC_ON_REQ Open-drain output high with PU PMIC_STBY_REQ E24 NVCC_SNVS_1P8 GPIO ALT0 ccmsrcgpcmix.PMIC_STBY_RE Q Output low with PD POR_B B24 NVCC_SNVS_1P8 GPIO ALT0 snvsmix.POR_B Input without PU/PD RTC_XTALI A26 NVCC_SNVS_1P8 ANALOG -- -- Input RTC_XTALO B25 NVCC_SNVS_1P8 ANALOG -- -- Output, inverted of RTC_XTALI RTC_RESET_B F24 NVCC_SNVS_1P8 GPIO ALT0 snvsmix.RTC_POR_B Input without PU/PD SAI1_MCLK AB18 NVCC_SAI1 GPIO ALT5 GPIO4.IO[20] Input with PD SAI1_RXC AF16 NVCC_SAI1 GPIO ALT5 GPIO4.IO[1] Input with PD SAI1_RXD0 AG15 NVCC_SAI1 GPIO ALT5 GPIO4.IO[2] Input with PD SAI1_RXD1 AF15 NVCC_SAI1 GPIO ALT5 GPIO4.IO[3] Input with PD SAI1_RXD2 AG17 NVCC_SAI1 GPIO ALT5 GPIO4.IO[4] Input with PD i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 80 NXP Semiconductors Package information and contact assignments Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status SAI1_RXD3 AF17 NVCC_SAI1 GPIO ALT5 GPIO4.IO[5] Input with PD SAI1_RXD4 AG18 NVCC_SAI1 GPIO ALT5 GPIO4.IO[6] Input with PD SAI1_RXD5 AF18 NVCC_SAI1 GPIO ALT5 GPIO4.IO[7] Input with PD SAI1_RXD6 AG19 NVCC_SAI1 GPIO ALT5 GPIO4.IO[8] Input with PD SAI1_RXD7 AF19 NVCC_SAI1 GPIO ALT5 GPIO4.IO[9] Input with PD SAI1_RXFS AG16 NVCC_SAI1 GPIO ALT5 GPIO4.IO[0] Input with PD SAI1_TXC AC18 NVCC_SAI1 GPIO ALT5 GPIO4.IO[11] Input with PD SAI1_TXD0 AG20 NVCC_SAI1 GPIO ALT5 GPIO4.IO[12] Input with PD SAI1_TXD1 AF20 NVCC_SAI1 GPIO ALT5 GPIO4.IO[13] Input with PD SAI1_TXD2 AG21 NVCC_SAI1 GPIO ALT5 GPIO4.IO[14] Input with PD SAI1_TXD3 AF21 NVCC_SAI1 GPIO ALT5 GPIO4.IO[15] Input with PD SAI1_TXD4 AG22 NVCC_SAI1 GPIO ALT5 GPIO4.IO[16] Input with PD SAI1_TXD5 AF22 NVCC_SAI1 GPIO ALT5 GPIO4.IO[17] Input with PD SAI1_TXD6 AG23 NVCC_SAI1 GPIO ALT5 GPIO4.IO[18] Input with PD SAI1_TXD7 AF23 NVCC_SAI1 GPIO ALT5 GPIO4.IO[19] Input with PD SAI1_TXFS AB19 NVCC_SAI1 GPIO ALT5 GPIO4.IO[10] Input with PD SAI2_MCLK AD19 NVCC_SAI2 GPIO ALT5 GPIO4.IO[27] Input with PD SAI2_RXC AB22 NVCC_SAI2 GPIO ALT5 GPIO4.IO[22] Input with PD SAI2_RXD0 AC24 NVCC_SAI2 GPIO ALT5 GPIO4.IO[23] Input with PD SAI2_RXFS AC19 NVCC_SAI2 GPIO ALT5 GPIO4.IO[21] Input with PD SAI2_TXC AD22 NVCC_SAI2 GPIO ALT5 GPIO4.IO[25] Input with PD SAI2_TXD0 AC22 NVCC_SAI2 GPIO ALT5 GPIO4.IO[26] Input with PD SAI2_TXFS AD23 NVCC_SAI2 GPIO ALT5 GPIO4.IO[24] Input with PD SAI3_MCLK AD6 NVCC_SAI3 GPIO ALT5 GPIO5.IO[2] Input with PD SAI3_RXC AG7 NVCC_SAI3 GPIO ALT5 GPIO4.IO[29] Input with PD SAI3_RXD AF7 NVCC_SAI3 GPIO ALT5 GPIO4.IO[30] Input with PD SAI3_RXFS AG8 NVCC_SAI3 GPIO ALT5 GPIO4.IO[28] Input with PD SAI3_TXC AG6 NVCC_SAI3 GPIO ALT5 GPIO5.IO[0] Input with PD SAI3_TXD AF6 NVCC_SAI3 GPIO ALT5 GPIO5.IO[1] Input with PD SAI3_TXFS AC6 NVCC_SAI3 GPIO ALT5 GPIO4.IO[31] Input with PD i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 81 Package information and contact assignments Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status SAI5_MCLK3 AD15 NVCC_SAI5 GPIO ALT5 GPIO3.IO[25] Input without PU/PD SAI5_RXC AC15 NVCC_SAI5 GPIO ALT5 GPIO3.IO[20] Input with PD SAI5_RXD0 AD18 NVCC_SAI5 GPIO ALT5 GPIO3.IO[21] Input with PD SAI5_RXD1 AC14 NVCC_SAI5 GPIO ALT5 GPIO3.IO[22] Input with PD SAI5_RXD2 AD13 NVCC_SAI5 GPIO ALT5 GPIO3.IO[23] Input with PD SAI5_RXD3 AC13 NVCC_SAI5 GPIO ALT5 GPIO3.IO[24] Input with PD SAI5_RXFS AB15 NVCC_SAI5 GPIO ALT5 GPIO3.IO[19] Input with PD SD1_CLK V26 NVCC_SD1 GPIO ALT5 GPIO2.IO[0] Input with PD SD1_CMD V27 NVCC_SD1 GPIO ALT5 GPIO2.IO[1] Input with PD SD1_DATA0 Y27 NVCC_SD1 GPIO ALT5 GPIO2.IO[2] Input with PD SD1_DATA1 Y26 NVCC_SD1 GPIO ALT5 GPIO2.IO[3] Input with PD SD1_DATA2 T27 NVCC_SD1 GPIO ALT5 GPIO2.IO[4] Input with PD SD1_DATA3 T26 NVCC_SD1 GPIO ALT5 GPIO2.IO[5] Input with PD SD1_DATA4 U27 NVCC_SD1 GPIO ALT5 GPIO2.IO[6] Input with PD SD1_DATA5 U26 NVCC_SD1 GPIO ALT5 GPIO2.IO[7] Input with PD SD1_DATA6 W27 NVCC_SD1 GPIO ALT5 GPIO2.IO[8] Input with PD SD1_DATA7 W26 NVCC_SD1 GPIO ALT5 GPIO2.IO[9] Input with PD SD1_RESET_B R23 NVCC_SD1 GPIO ALT5 GPIO2.IO[10] Input with PD SD1_STROBE R24 NVCC_SD1 GPIO ALT5 GPIO2.IO[11] Input with PD SD2_CD_B AA26 NVCC_SD2 GPIO ALT5 GPIO2.IO[12] Input with PD SD2_CLK W23 NVCC_SD2 GPIO ALT5 GPIO2.IO[13] Input with PD SD2_CMD W24 NVCC_SD2 GPIO ALT5 GPIO2.IO[14] Input with PD SD2_DATA0 AB23 NVCC_SD2 GPIO ALT5 GPIO2.IO[15] Input with PD SD2_DATA1 AB24 NVCC_SD2 GPIO ALT5 GPIO2.IO[16] Input with PD SD2_DATA2 V24 NVCC_SD2 GPIO ALT5 GPIO2.IO[17] Input with PD SD2_DATA3 V23 NVCC_SD2 GPIO ALT5 GPIO2.IO[18] Input with PD SD2_RESET_B AB26 NVCC_SD2 GPIO ALT5 GPIO2.IO[19] Input with PD SD2_WP AA27 NVCC_SD2 GPIO ALT5 GPIO2.IO[20] Input with PD SPDIF_EXT_CLK AF8 NVCC_SAI3 GPIO ALT5 GPIO5.IO[5] Input with PD SPDIF_RX AG9 NVCC_SAI3 GPIO ALT5 GPIO5.IO[4] Input with PD i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 82 NXP Semiconductors Package information and contact assignments Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status SPDIF_TX AF9 NVCC_SAI3 GPIO ALT5 GPIO5.IO[3] Input with PD TEST_MODE D26 NVCC_JTAG GPIO ALT0 tcu.TEST_MODE Input with PD TSENSOR_TEST_ OUT J23 VDD_ANA1_1P8 ANALOG -- -- Output low TSENSOR_REST_ EXT J24 VDD_ANA1_1P8 ANALOG -- -- -- UART1_RXD E14 NVCC_UART GPIO ALT5 GPIO5.IO[22] Input with PD UART1_TXD F13 NVCC_UART GPIO ALT5 GPIO5.IO[23] Input with PD UART2_RXD F15 NVCC_UART GPIO ALT5 GPIO5.IO[24] Input with PD UART2_TXD E15 NVCC_UART GPIO ALT5 GPIO5.IO[25] Input with PD UART3_RXD E18 NVCC_UART GPIO ALT5 GPIO5.IO[26] Input with PD UART3_TXD D18 NVCC_UART GPIO ALT5 GPIO5.IO[27] Input with PD UART4_RXD F19 NVCC_UART GPIO ALT5 GPIO5.IO[28] Input with PD UART4_TXD F18 NVCC_UART GPIO ALT5 GPIO5.IO[29] Input with PD USB1_DN A22 VDD_USB_3P3 PHY -- -- Input USB1_DP B22 VDD_USB_3P3 PHY -- -- Input USB1_ID D22 VDD_USB_1P8 PHY -- -- Input USB1_TXRTUNE E19 VDD_USB_1P8 PHY -- -- -- USB1_VBUS F22 VDD_USB_3P3 PHY -- -- -- USB2_DN A23 VDD_USB_3P3 PHY -- -- Input USB2_DP B23 VDD_USB_3P3 PHY -- -- Input USB2_ID D23 VDD_USB_1P8 PHY -- -- Input USB2_TXRTUNE E22 VDD_USB_1P8 PHY -- -- -- USB2_VBUS F23 VDD_USB_3P3 PHY -- -- -- 1 Works as JTAG Active output when the internal reset is asserted, default is output low. After the internal reset is deasserted, it becomes input with PD. 2 Works as INT_BOOT output when the internal reset is asserted, default is output high. After the internal reset is deasserted, it becomes input with PU. 3 Works as TESTER_ACK input when the internal reset is asserted, default is input without PU/PD. After the internal reset is deasserted, it becomes input with PD. 5.1.3 i.MX 8M Mini 14 x 14 mm 0.5 mm pitch ball map Table 66 shows the i.MX 8M Mini 14 x 14 mm 0.5 mm pitch ball map. i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 83 84 VSS DRAM_AC10 VSS DRAM_AC00 UART4_RXD VSS USB2_TXRTUNE USB1_TXRTUNE JTAG_TCK JTAG_TMS BOOT_MODE0 BOOT_MODE1 VSS JTAG_TDI JTAG_TDO VSS RTC_RESET_B PMIC_STBY_REQ USB2_VBUS USB1_VBUS UART4_TXD VSS VSS UART2_TXD UART2_RXD VSS UART3_RXD UART1_RXD I2C4_SDA VDD_PCI_1P8 UART1_TXD VSS JTAG_MOD TEST_MODE USB2_ID USB1_ID PCIE_RESREF UART3_TXD MIPI_VREG_CAP I2C4_SCL I2C2_SCL JTAG_TRST_B 24M_XTALO VSS VSS VSS VSS VSS VSS VSS VSS MIPI_DSI_D1_N MIPI_DSI_D0_N MIPI_CSI_D1_N MIPI_CSI_D0_N MIPI_DSI_D3_N MIPI_DSI_D2_N 24M_XTALI VSS RTC_XTALO POR_B USB2_DP USB1_DP VSS RTC_XTALI ONOFF PMIC_ON_REQ USB2_DN USB1_DN PCIE_CLK_N PCIE_TXN_N PCIE_TXN_P PCIE_CLK_P PCIE_RXN_N MIPI_CSI_D3_N MIPI_CSI_D2_N PCIE_PXN_P MIPI_CSI_D3_P MIPI_CSI_D2_P MIPI_CSI_CLK_P MIPI_CSI_CLK_N MIPI_CSI_D1_P MIPI_CSI_D0_P MIPI_DSI_D3_P MIPI_DSI_D2_P MIPI_DSI_CLK_P MIPI_DSI_CLK_N MIPI_DSI_D1_P MIPI_DSI_D0_P 9 I2C3_SCL VSS 8 I2C3_SDA I2C2_SDA ECSPI2_MISO ECSPI2_MOSI 7 VSS I2C1_SCL ECSPI1_MISO ECSPI2_SS0 ECSPI1_MOSI ECSPI1_SS0 6 I2C1_SDA VSS DRAM_DQ00 5 VSS ECSPI1_SCLK ECSPI2_SCLK DRAM_DQ01 DRAM_DM0 DRAM_DQ06 DRAM_DQS0_P VSS A 4 DRAM_AC06 VSS DRAM_DQ07 VSS DRAM_DQS0_N DRAM_DQ05 B 3 DRAM_AC11 VSS DRAM_DQ04 C 2 DRAM_AC01 DRAM_DQ02 DRAM_DQ03 D 1 VSS DRAM_DQ15 DRAM_DQ08 DRAM_DQ09 DRAM_DQ14 DRAM_DM1 DRAM_DQS1_P E F G Package information and contact assignments Table 66. 14 x 14 mm, 0.5 mm pitch ball map 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors DRAM_AC02 DRAM_AC12 NXP Semiconductors NAND_DATA07 NAND_RE_B NAND_READY_B NAND_DATA04 NAND_DATA05 NAND_CE1_B NAND_CE2_B NAND_CE3_B NAND_CLE NAND_DATA06 VSS NAND_DATA01 NAND_CE0_B VSS NAND_DATA02 NAND_DATA03 VDD_SNVS_0P8 NAND_ALE VSS VDD_USB_3P3 VSS VSS NAND_DATA00 NVCC_JTAG VDD_SOC VDD_SOC VDD_VPU VDD_VPU NVCC_DRAM VSS VDD_ANA1_1P8 VDD_24M_XTAL_1P8 NVCC_CLK VSS VDD_SOC VSS VDD_SOC VDD_SOC VSS VDD_ARM_PLL_0P8 VDD_SOC VDD_VPU VDD_ANA_0P8 VDD_SOC VSS VDD_VPU VDD_VPU VSS VDD_ANA_0P8 VDD_SOC VSS VSS VDD_VPU VDD_VPU VSS VDD_DRAM VDD_DRAM VDD_GPU VSS NVCC_DRAM CLKIN2 CLKOUT2 VSS TESENSOR_RES_EXT TSENSOR_TEST_OUT NVCC_SNVS_1P8 VSS NC_J18 VDD_USB_0P8 VDD_PCI_0P8 VDD_MIPI_1P2 VDD_MIPI_0P9 PVCC2_1P8 NVCC_UART NVCC_I2C VDD_DRAM CLKIN1 CLKOUT1 VSS VDD_USB_1P8 VDD_MIPI_1P8 NVCC_ECSPI 9 VDD_ANA1_1P8 NVCC_DRAM 8 NVCC_DRAM NVCC_DRAM NVCC_DRAM VSS 7 VDD_DRAM_PLL_0P8 VSS 6 VSS DRAM_AC08 5 NVCC_DRAM DRAM_AC09 DRAM_AC15 DRAM_AC07 VSS 4 DRAM_AC14 DRAM_AC03 VSS DRAM_DQ11 DRAM_DQS1_N 3 DRAM_AC13 DRAM_DQ12 DRAM_DQ10 H 2 VDD_DRAM_PLL_1P8 VSS VSS VSS DRAM_AC04 DRAM_DQ13 J 1 DRAM_AC17 DRAM_AC05 DRAM_AC19 DRAM_AC16 DRAM_ZN K DRAM_AC26 L DRAM_VREF M N P Package information and contact assignments Table 66. 14 x 14 mm, 0.5 mm pitch ball map (continued) 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 85 86 Y W V U VSS PVCC0_1P8 VSS VSS SAI1_MCLK SAI1_TXFS VSS SD1_DATA7 SD2_CD_B SD2_WP VSS SD2_RESET_B ENET_MDIO SD1_DATA6 SD2_CMD SD2_DATA1 SD1_DATA0 SD2_CLK SD2_DATA0 VSS NVCC_SAI1 SD1_CMD SD1_CLK VSS SD2_DATA2 SD2_DATA3 NVCC_SD2 VSS NVCC_SD1 NVCC_SAI2 VDD_ARM VDD_ARM NVCC_SAI5 VDD_ARM VDD_ARM NVCC_ENET SD1_DATA1 VSS VDD_ANA0_1P8 VDD_ARM VDD_ARM SD1_DATA4 SD1_DATA5 NVCC_NAND VDD_SOC VDD_SOC VSS VDD_ARM VDD_ARM VSS NVCC_GPIO1 VDD_ARM VDD_GPU VDD_GPU VDD_GPU VDD_DRAM VDD_DRAM SAI2_RXC VSS VSS SAI5_RXFS VSS NVCC_SAI3 SD1_DATA2 SD1_DATA3 PVCC1_1P8 VSS VDD-ARM VDD_ARM VDD_ARM VSS NAND_WP_B NAND_WE_B VSS SD1_STROBE SD1_RESET_B NAND_DQS VSS VSS VDD_ARM_PLL_1P8 VDD_SOC VDD_SOC VSS VDD_ARM VDD_ARM VSS VDD_GPU VDD_DRAM 9 VDD_ANA0_1P8 VSS GPIO1_IO12 NVCC_DRAM 8 NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM 7 VSS VSS DRAM_AC27 6 VSS DRAM_AC29 5 GPIO1_IO15 DRAM_AC28 DRAM_AC38 DRAM_AC33 DRAM_AC32 VSS DRAM_ALERT_N 4 DRAM_AC36 DRAM_AC23 DRAM_AC35 DRAM_RESET_N R 3 VSS DRAM_AC37 DRAM_AC21 VSS DRAM_AC22 DRAM_AC20 VSS DRAM_DQ19 DRAM_DQ20 DRAM_AC24 VSS VSS DRAM_AC34 T 2 VSS DRAM_DQ17 DRAM_DQS2_P DRAM_DQS2_N DRAM_DQ18 DRAM_DQ21 DRAM_AC25 AA 1 DRAM_DQ16 DRAM_DM2 AB Package information and contact assignments Table 66. 14 x 14 mm, 0.5 mm pitch ball map (continued) 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors DRAM_DQ29 VSS 5.2 NXP Semiconductors SAI1_RXD5 SAI1_RXD7 SAI1_TXD1 SAI1_TXD3 SAI1_TXD5 SAI1_TXD7 ENET_TX_CTL ENET_TD3 ENET_TD1 ENET_RX_CTL SAI1_RXD6 SAI1_TXD0 SAI1_TXD2 SAI1_TXD4 SAI1_TXD6 ENET_TXC ENET_TD2 ENET_TD0 VSS SAI1_RXC SAI1_RXFS SAI1_RXD4 SAI1_RXD1 SAI1_RXD0 SAI1_RXD3 GPIO1_IO01 GPIO1_IO00 SAI1_RXD2 GPIO1_IO03 Ball name LPDDR4 DDR4 DDR3/3L DRAM_DQS0_P DQS0_t_A DQSL_t_A DQSL_A DRAM_DQS0_N DQS0_c_A DQSL_c_A DQSL#_A DRAM_DM0 DMI0_A DML_n_A / DBIL_n_A DML_A DRAM_DQ00 DQ0_A DQL0_A DQL0_A DRAM_DQ01 DQ1_A DQL1_A DQL1_A DRAM_DQ02 DQ2_A DQL2_A DQL2_A DRAM_DQ03 DQ3_A DQL3_A DQL3_A DRAM_DQ04 DQ4_A DQL4_A DQL4_A DRAM_DQ05 DQ5_A DQL5_A DQL5_A ENET_RD0 ENET_RXC VSS VSS VSS VSS VSS VSS VSS VSS VSS ENET_RD1 ENET_RD2 SAI2_TXFS SAI2_TXC SAI2_MCLK SAI5_RXD0 SAI5_MCLK SAI5_RXD2 GPIO1_IO10 GPIO1_IO13 ENET_MDC ENENT_RD3 VSS SAI2_RXD0 SAI2_TXD0 SAI2_RXFS SAI1_TXC SAI5_RXC SAI5_RXD1 SAI5_RXD3 GPIO1_IO11 GPIO1_IO14 9 GPIO1_IO02 SPDIF_TX SPDIF_RX SAI3_TXFS 8 GPIO1_IO05 SPDIF_EXT_CLK SAI3_RXFS SAI3_MCLK 7 GPIO1_IO04 SAI3_RXD SAI3_RXC VSS DRAM_AC31 6 GPIO1_IO07 SAI3_TXD SAI3_TXC VSS 5 GPIO1_IO06 DRAM_DQ25 DRAM_DQ24 DRAM_AC30 VSS DRAM_DQ26 DRAM_DQ23 4 GPIO1_IO09 DRAM_DQ31 DRAM_DM3 VSS 3 GPIO1_IO08 VSS AC 2 DRAM_DQ30 AD DRAM_DQ28 DRAM_DQ27 DRAM_DQ22 AE 1 DRAM_DQS3_P DRAM_DQS3_N AF AG Package information and contact assignments Table 66. 14 x 14 mm, 0.5 mm pitch ball map (continued) 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 DDR pin function list Table 67 shows the DDR pin function list. Table 67. DDR pin function list i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 87 Package information and contact assignments Table 67. DDR pin function list (continued) DRAM_DQ06 DQ6_A DQL6_A DQL6_A DRAM_DQ07 DQ7_A DQL7_A DQL7_A DRAM_DQS1_P DQS1_t_A DQSU_t_A DQSU_A DRAM_DQS1_N DQS1_c_A DQSU_c_A DQSU#_A DRAM_DM1 DMI1_A DMU_n_A / DBIU_n_A DMU_A DRAM_DQ08 DQ08_A DQU0_A DQU0_A DRAM_DQ09 DQ09_A DQU1_A DQU1_A DRAM_DQ10 DQ10_A DQU2_A DQU2_A DRAM_DQ11 DQ11_A DQU3_A DQU3_A DRAM_DQ12 DQ12_A DQU4_A DQU4_A DRAM_DQ13 DQ13_A DQU5_A DQU5_A DRAM_DQ14 DQ14_A DQU6_A DQU6_A DRAM_DQ15 DQ15_A DQU7_A DQU7_A DRAM_DQS2_P DQS0_t_B DQSL_t_B DQSL_B DRAM_DQS2_N DQS0_c_B DQSL_c_B DQSL#_B DRAM_DM2 DMI0_B DML_n_B / DBIL_n_B DML_B DRAM_DQ16 DQ0_B DQL0_B DQL0_B DRAM_DQ17 DQ1_B DQL1_B DQL1_B DRAM_DQ18 DQ2_B DQL2_B DQL2_B DRAM_DQ19 DQ3_B DQL3_B DQL3_B DRAM_DQ20 DQ4_B DQL4_B DQL4_B DRAM_DQ20 DQ4_B DQL4_B DQL4_B DRAM_DQ21 DQ5_B DQL5_B DQL5_B DRAM_DQ22 DQ6_B DQL6_B DQL6_B DRAM_DQ23 DQ7_B DQL7_B DQL7_B DRAM_DQS3_P DQS1_t_B DQSU_t_B DQSU_B DRAM_DQS3_N DQS1_c_B DQSU_c_B DQSU#_B DRAM_DM3 DMI1_B DMU_n_B / DBIU_n_B DMU_B DRAM_DQ24 DQ08_B DQU0_B DQU0_B DRAM_DQ25 DQ09_B DQU1_B DQU1_B DRAM_DQ26 DQ10_B DQU2_B DQU2_B DRAM_DQ27 DQ11_B DQU3_B DQU3_B DRAM_DQ28 DQ12_B DQU4_B DQU4_B DRAM_DQ29 DQ13_B DQU5_B DQU5_B i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 88 NXP Semiconductors Package information and contact assignments Table 67. DDR pin function list (continued) DRAM_DQ30 DQ14_B DQU6_B DQU6_B DRAM_DQ31 DQ15_B DQU7_B DQU7_B DRAM_RESET_N RESET_N RESET_n RESET# DRAM_ALERT_N MTEST1 ALERT_n / MTEST1 MTEST1 DRAM_AC00 CKE0_A CKE0 CKE0 DRAM_AC01 CKE1_A CKE1 CKE1 DRAM_AC02 CS0_A CS0_n CS0# DRAM_AC03 CS1_A C0 -- DRAM_AC04 CK_t_A BG0 BA2 DRAM_AC05 CK_c_A BG1 A14 DRAM_AC06 -- ACT_n A15 DRAM_AC07 -- A9 A9 DRAM_AC08 CA0_A A12 A12 / BC# DRAM_AC09 CA1_A A11 A11 DRAM_AC10 CA2_A A7 A7 DRAM_AC11 CA3_A A8 A8 DRAM_AC12 CA4_A A6 A6 DRAM_AC13 CA5_A A5 A5 DRAM_AC14 -- A4 A4 DRAM_AC15 -- A3 A3 DRAM_AC16 -- CK_t_A CK_A DRAM_AC17 -- CK_c_A CK#_A DRAM_AC19 MTEST MTEST MTEST DRAM_AC20 CKE0_B CK_t_B CK_B DRAM_AC21 CKE1_B CK_c_B CK#_B DRAM_AC22 CS1_B -- -- DRAM_AC23 CS0_B -- -- DRAM_AC24 CK_t_B A2 A2 DRAM_AC25 CK_c_B A1 A1 DRAM_AC26 -- BA1 BA1 DRAM_AC27 -- PARITY -- DRAM_AC28 CA0_B A13 A13 DRAM_AC29 CA1_B BA0 BA0 DRAM_AC30 CA2_B A10 / AP A10 / AP i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 89 Package information and contact assignments Table 67. DDR pin function list (continued) DRAM_AC31 CA3_B A0 A0 DRAM_AC32 CA4_B C2 -- DRAM_AC33 CA5_B CAS_n / A15 CAS# DRAM_AC34 -- WE_n / A14 WE# DRAM_AC35 -- RAS_n / A16 RAS# DRAM_AC36 -- ODT0 ODT0 DRAM_AC37 -- ODT1 ODT1 DRAM_AC38 -- CS1_n CS1# DRAM_ZN ZQ ZQ ZQ DRAM_VREF VREF VREF VREF i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 90 NXP Semiconductors Revision history 6 Revision history Table 68 provides a revision history for this data sheet. Table 68. Revision history Rev. number Date Substantive change(s) Rev. 1 07/2020 * Updated the eMMC descriptions in the Table 1, "Features" * Updated numbers of SD 3.0 in the Figure 1, "i.MX 8M Mini system block diagram" * Added two part numbers and updated the part differentiator in the Table 2, "Orderable part numbers" * Updated the part differentiator and Fusing in the Figure 2, "Part number nomenclature--i.MX 8M Mini family of processors" * Updated eCSPI, SJC, and uSDHC descriptions in the Table 3, "i.MX 8M Mini modules list" * Updated a typo for NVCC_ENET in the Table 4, "Recommended connections for unused power supply rails" * Updated the min values and a typo in the Table 7, "Absolute maximum ratings"; removed ESD parameters from the Table 7, "Absolute maximum ratings" * Added the Table 8, "Electrostatic discharge and latch up ratings" * Added a footnote in the Table 10, "Operating ranges" * Added VDD_24M_XTAL_1P8, VDD_ARM_PLL_1P8, and PVCCx_1P8 in the Table 13, "Maximum supply currents" * Updated the Table 14, "Chip power in different LP mode" * Updated the suspend mode state of VDD_MIPI_0P9 and VDD_MIPI_1P2 in the Table 15, "The power supply states" * Updated the maximum values of T1, T2, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13 and minimum value of T3 in the Table 17, "Power-up sequence" * Updated the maximum values in the Table 18, "Power-down sequence" * Removed the USBx_ID, ONOFF, and POR_B from the Table 22, "Additional leakage parameters" * Added GPIO1_09, I2C2_SCL, and I2C2_SDA in the Table 35, "ENET signal mapping" * Removed 0x2 from the Section 3.9.10.1.1, SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1 and Section 3.9.10.1.3, DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1 * Updated the parameters of GPIO1_IO00, GPIO1_IO01, GPIO1_IO05, GPIO1_IO09, and SAI5_MCLK in the Table 65, "i.MX 8M Mini 14 x 14 mm functional contact assignments" * Fixed typos in the Table 66, "14 x 14 mm, 0.5 mm pitch ball map" Rev. 0.2 04/2019 * Updated numbers of eMMC and FlexSPI in the Figure 1, "i.MX 8M Mini system block diagram" * Updated the descriptions about USB and uSDHC in the Table 3, "i.MX 8M Mini modules list" * Updated the comment of VDD_VPU and the LPDDR4 maximum value of NVCC_DRAM in the Table 10, "Operating ranges" Rev. 0.1 02/2019 * Updated the SNVS states in the Table 15, "The power supply states" Rev. 0 02/2019 * Initial version i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 NXP Semiconductors 91 How to Reach Us: Information in this document is provided solely to enable system and software implementers Home Page: nxp.com to use NXP products. There are no express or implied copyright licenses granted hereunder Web Support: nxp.com/support reserves the right to make changes without further notice to any products herein. to design or fabricate any integrated circuits based on the information in this document. NXP NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals" must be validated for each customer application by customer customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, Vision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates.The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. (c) 2019-2020 NXP B.V. Document Number: IMX8MMCEC Rev. 1 07/2020