NXP Semiconductors
Data Sheet: Technical Data
Document Number: IMX8MMCEC
Rev. 1, 07/2020
Ordering Information
See Table 2 on page 6
MIMX8MM6DVTLZAA MIMX8MM5DVTLZAA
MIMX8MM5DVTLZCA MIMX8MM5DVTLZDA
MIMX8MM4DVTLZAA MIMX8MM3DVTLZAA
MIMX8MM2DVTLZAA MIMX8MM1DVTLZAA
Package Information
Plastic Package
FCBGA 14 x 14 mm, 0.5 mm pitch
NXP reserves the right to change the production detail specifications as may be required
to permit improvements in the design of its products.
1 i.MX 8M Mini introduction
The i.MX 8M Mini applications processor represents
NXP’s latest video and audio experience combining
state-of-the-art media-specific features with
high-performance processing while optimized for lowest
power consumption.
The i.MX 8M Mini family of processors features
advanced implementation of a quad Arm® Cor-
tex®-A53 core, which operates at speeds of up to
1.8 GHz. A general purpose Cortex®-M4 400 MHz
core processor is for low-power processing. The DRAM
controller supports 32-bit/16-bit LPDDR4, DDR4, and
DDR3L memory. A wide range of audio interfaces are
available, including I2S, AC97, TDM, and S/PDIF.
There are a number of other interfaces for connecting
peripherals, such as USB, PCIe, and Ethernet.
i.MX 8M Mini Applications
Processor Datasheet for
Consumer Products
1. i.MX 8M Mini introduction . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2. Ordering information . . . . . . . . . . . . . . . . . . . . . . . 6
2. Modules list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1. Recommended connections for unused input/output 12
3. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1. Chip-level conditions . . . . . . . . . . . . . . . . . . . . . . 14
3.2. Power supplies requirements and restrictions . . . 23
3.3. PLL electrical characteristics . . . . . . . . . . . . . . . . 26
3.4. On-chip oscillators . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6. I/O AC parameters . . . . . . . . . . . . . . . . . . . . . . . 29
3.5. General purpose I/O (GPIO) DC parameters . . . 28
3.7. Output buffer impedance parameters . . . . . . . . . 30
3.8. System modules timing . . . . . . . . . . . . . . . . . . . . 32
3.9. External peripheral interface parameters . . . . . . 33
4. Boot mode configuration . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1. Boot mode configuration pins . . . . . . . . . . . . . . . 68
4.2. Boot device interface allocation . . . . . . . . . . . . . . 69
5. Package information and contact assignments . . . . . . . 70
5.1. 14 x 14 mm package information . . . . . . . . . . . . 70
5.2. DDR pin function list . . . . . . . . . . . . . . . . . . . . . . 87
6. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
2NXP Semiconductors
i.MX 8M Mini introduction
Table 1. Features
Subsystem Features
Arm Cortex-A53 MPCore platform Quad symmetric Cortex-A53 processors
32 KB L1 Instruction Cache
32 KB L1 Data Cache
Media Processing Engine (MPE) with NEON technology supporting the Advanced
Single Instruction Multiple Data architecture:
Floating Point Unit (FPU) with support of the VFPv4-D16 architecture
Support of 64-bit Armv8-A architecture
512 KB unified L2 cache
Arm Cortex-M4 core platform Low power microcontroller available for customer application:
low power standby mode
IoT features including Weave
Manage IR or Wireless Remote
Cortex M4 CPU:
16 KB L1 Instruction Cache
16 KB L1 Data Cache
256 KB tightly coupled memory (TCM)
Connectivity One PCI Express (PCIe)
Single lane supporting PCIe Gen2
Dual mode operation to function as root complex or endpoint
Integrated PHY interface
Support L1 low power sub-state
Two USB 2.0 OTG controllers with integrated PHY interfaces:
Spread spectrum clock support
Three Ultra Secure Digital Host Controller (uSDHC) interfaces:
MMC 5.1 compliance with HS400 DDR signaling to support up to 400 MB/sec
SD/SDIO 3.0 compliance with 200 MHz SDR signaling to support up to 100
MB/sec
Support for SDXC (extended capacity)
One Gigabit Ethernet controller with support for Energy Efficient Ethernet (EEE),
Ethernet AVB, and IEEE 1588
Four Universal Asynchronous Receiver/Transmitter (UART) modules
Four I2C modules
Three ECSPI modules
On-chip memory Boot ROM (256 KB)
On-chip RAM (256 KB + 32 KB)
GPIO and pin multiplexing General-purpose input/output (GPIO) modules with interrupt capability
Input/output multiplexing controller (IOMUXC) to provide centralized pad control
Power management Temperature sensor with programmable trip points
Flexible power domain partitioning with internal power switches to support efficient
power management
i.MX 8M Mini introduction
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 3
External memory interface 32/16-bit DRAM interfaces:
LPDDR4 (up to 1.5 GHz)
DDR4-2400
DDR3L-1600
8-bit NAND-Flash, including support for Raw MLC/SLC devices, BCH ECC up to
62-bit, and ONFi3.2 compliance (clock rates up to 100 MHz and data rates up to 200
MB/sec)
eMMC 5.1 Flash (2 interfaces, uSDHC1 and uSDHC3)
SPI NOR Flash (3 interfaces)
FlexSPI with support for XIP (for ME in low-power mode) and parallel read mode of
two identical FLASH devices
Multimedia Video Processing Unit:
1080p60 VP9 Profile 0, 2 (10-bit)
1080p60 HEVC/H.265 Decoder
1080p60 AVC/H.264 Baseline, Main, High decoder
1080p60 VP8
1080p60 AVC/H.264 Encoder
1080p60 VP8
TrustZone support
Graphic Processing Unit:
GCNanoUltra for 3D acceleration
GC320 for 2D acceleration
LCDIF Display Controller:
Support up to 2 layers of overlay
Support up to 1080p60 display through MIPI DSI
MIPI Interface:
4-lane MIPI CSI interface
4-lane MIPI DSI interface
Audio:
S/PDIF input and output, including a new Raw Capture input mode
Five synchronous audio interface (SAI) modules supporting I2S, AC97, TDM,
codec/DSP, and DSD interfaces, including one SAI with 8 Tx and 8 Rx lanes, one
SAI with 4 Tx and 4 Rx lanes, two SAI with 2 Tx and 2 Rx lanes, and one SAI with
1 Tx and 1Rx lane. Support over 20 channels of audio subject to I/O limitations.
8-Channel Pulse Density Modulation (PDM) input
System debug Arm CoreSight debug and trace architecture
Trace Port Interface Unit (TPIU) to support off-chip real-time trace
Embedded Trace FIFO (ETF) with 4 KB internal storage to provide trace buffering
Unified trace capability for Quad Cortex-A53 and Cortex-M4 CPUs
Cross Triggering Interface (CTI)
Support for 5-pin (JTAG) debug interface
Table 1. Features (continued)
Subsystem Features
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
4NXP Semiconductors
i.MX 8M Mini introduction
NOTE
The actual feature set depends on the part numbers as described in Table 2.
Functions such as display and camera interfaces, and connectivity
interfaces, may not be enabled for specific part numbers.
Security Resource Domain Controller (RDC) supports four domains and up to eight regions of
DDR
Arm TrustZone (TZ) architecture:
Support Arm Cortex-A53 MPCore TrustZone
On-chip RAM (OCRAM) secure region protection using OCRAM controller
High Assurance Boot (HAB)
Cryptographic acceleration and assurance (CAAM) module and Assurance Module:
Support Widevine and PlayReady content protection
Public Key Cryptography (PKHA) with RSA and Elliptic Curve (ECC) algorithms
Real-time integrity checker (RTIC)
DRM support for RSA, AES, 3DES, DES
Side channel attack resistance
True random number generation (RNG)
Manufacturing protection support
Secure non-volatile storage (SNVS):
Secure real-time clock (RTC)
Secure JTAG controller (SJC)
Table 1. Features (continued)
Subsystem Features
i.MX 8M Mini introduction
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 5
1.1 Block diagram
Figure 1 shows the functional modules in the i.MX 8M Mini applications processor system.
Figure 1. i.MX 8M Mini system block diagram
System Control
3x Smart DMA
Temperature Sensor
Secure JTAG
3x Watchdog
Low Power, Security CPU
Connectivity and I/O
1 GB Ethernet
(IEEE1588, EEE, and AVB)
4x PWM
Multimedia
2x USB 2.0 OTG and PHY
S/PDIF Rx and Tx
External Memory
Security
TrustZone
DRM Ciphers
Secure Clock
eFuse Key Storage
Random Number
32 KB Secure RAM
Main CPU Platform
Quad Cortex-A53
32 KB I-cache 32 KB D-cache
NEON FPU
512 KB L2 Cache
Cortex-M4
16 KB I-cache 16 KB D-cache
256 KB TCM
3D Graphics: GC NanoUltra
LPDDR4/DDR4/DDR3L
1x FlexSPI
PDM
4x I2C, 3x ECSPI
4x UART
1x PCIe 2.0 (1-lane)
5x I2S/SAI
6x Timer
XTAL
PLLs
2x eMMC 5.1/3x SD 3.0
NAND CTL (BCH62)
2D Graphics: GC320
1080p60 H265, VP9 decoder
1080p60 H.264, VP8 encoder
4-lane MIPI-CSI Interface
4-lane MIPI-DSI Interface
1080p60 H264, VP8 decoder
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
6NXP Semiconductors
i.MX 8M Mini introduction
1.2 Ordering information
Table 2 shows examples of orderable sample part numbers covered by this data sheet. This table does not
include all possible orderable part numbers. If your desired part number is not listed in the table, or you
have questions about available parts, contact your NXP representative.
Figure 2 describes the part number nomenclature so that the users can identify the characteristics of the
specific part number.
Contact an NXP representative for additional details.
Table 2. Orderable part numbers
Family Part number Part differentiator
Cortex-A53
CPU speed
grade
Qualification
tier
Temperat
ure Tj (C) Package
i.MX 8M Mini
Quad
MIMX8MM6DVTLZAA 4x A53, M4, GPU, VPU 1.8 GHz Consumer 0 to +95 14 x 14 mm,
0.5 mm pitch
i.MX 8M Mini
QuadLite
MIMX8MM5DVTLZAA 4x A53, M4, GPU 1.8 GHz Consumer 0 to +95 14 x 14 mm,
0.5 mm pitch
i.MX 8M Mini
QuadLite
MIMX8MM5DVTLZCA 4x A53, M4, GPU,
Immersiv3D with Dolby
ATMOS support1
1Supply of this Implementation of Dolby technology does not convey a license nor imply a right under any patent, or any other
industrial or intellectual property right of Dolby Laboratories, to use this Implementation in any finished end-user or
ready-to-use final product. It is hereby notified that a license for such use is required from Dolby Laboratories.
1.8 GHz Consumer 0 to +95 14 x 14 mm,
0.5 mm pitch
i.MX 8M Mini
QuadLite
MIMX8MM5DVTLZDA 4x A53, M4, GPU,
Immersiv3D with Dolby
ATMOS and DTS
support1
1.8 GHz Consumer 0 to +95 14 x 14 mm,
0.5 mm pitch
i.MX 8M Mini
Dual
MIMX8MM4DVTLZAA 2x A53, M4, GPU, VPU 1.8 GHz Consumer 0 to +95 14 x 14 mm,
0.5 mm pitch
i.MX 8M Mini
DualLite
MIMX8MM3DVTLZAA 2x A53, M4, GPU 1.8 GHz Consumer 0 to +95 14 x 14 mm,
0.5 mm pitch
i.MX 8M Mini
Solo
MIMX8MM2DVTLZAA 1x A53, M4, GPU, VPU 1.8 GHz Consumer 0 to +95 14 x 14 mm,
0.5 mm pitch
i.MX 8M Mini
SoloLite
MIMX8MM1DVTLZAA 1x A53, M4, GPU 1.8 GHz Consumer 0 to +95 14 x 14 mm,
0.5 mm pitch
i.MX 8M Mini introduction
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 7
Figure 2. Part number nomenclature—i.MX 8M Mini family of processors
Part number series
Qualification tier Tj
Primary core frequency
Part differentiator
Silicon revision
Fusing options
Qualification level
Package type – all ROHS
MIMX8MM@+VT$$%A
Part differentiator @
i.MX 8M Mini Quad
4x A53, M4, GPU, VPU
6
i.MX 8M Mini QuadLite
4x A53, M4, GPU
5
i.MX 8M Mini Dual
2x A53, M4, GPU, VPU
4
i.MX 8M Mini DualLite
2x A53, M4, GPU
3
i.MX 8M Mini Solo
1x A53, M4, GPU, VPU
2
i.MX 8M Mini SoloLite
1x A53, M4, GPU
1
Temperature Tj +
Consumer: 0 to +95oCD
Industrial: -40 to 105oCC
Frequency $$
1.8 GHz LZ
1.6 GHz KZ
Package Type ROHS
FCBGA486
14 x 14 mm, 0.5 mm pitch
VT
Qualification Level
Samples P
Mass Production M
Part number series Name
IMX8MM i.MX 8M Mini
Silicon rev A
Rev A0 A
Fusing %
Default A
Immersiv3D enabled w/Dolby Atmos C
Immersiv3D enabled w/Dolby Atmos
and DTS
D
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
8NXP Semiconductors
Modules list
2 Modules list
The i.MX 8M Mini family of processors contains a variety of digital and analog modules. Table 3
describes these modules in alphabetical order.
Table 3. i.MX 8M Mini modules list
Block mnemonic Block name Brief description
32k Oscillator Clock system 32 KHz oscillator is used as the clock source for RTC and internal
low speed clock. It can be supplied by external 32.768 KHz oscillator.
APBH-DMA NAND Flash and BCH ECC
DMA Controller
DMA controller used for GPMI2 operation.
Arm Arm Platform The Arm Core Platform includes a quad Cortex-A53 core and a
Cortex-M4 core. The Cortex-A53 core includes associated
sub-blocks, such as the Level 2 Cache Controller, Snoop Control
Unit (SCU), General Interrupt Controller (GIC), private timers,
watchdog, and CoreSight debug modules. The Cortex-M4 core is
used as a customer microcontroller.
BCH Binary-BCH ECC Processor The BCH module provides up to 62-bit ECC encryption/decryption
for NAND Flash controller (GPMI)
CAAM Cryptographic accelerator and
assurance module
CAAM is a cryptographic accelerator and assurance module. CAAM
implements several encryption and hashing functions, a run-time
integrity checker, entropy source generator, and a Pseudo Random
Number Generator (PRNG). The PRNG is certifiable by the
Cryptographic Algorithm Validation Program (CAVP) of the National
Institute of Standards and Technology (NIST).
CAAM also implements a Secure Memory mechanism. In i.MX 8M
Mini processors, the secure memory provided is 32 KB.
CCM
GPC
SRC
Clock Control Module, General
Power Controller, System Reset
Controller
These modules are responsible for clock and reset distribution in the
system, and also for the system power management.
CSU Central Security Unit The Central Security Unit (CSU) is responsible for setting
comprehensive security policy within the i.MX 8M Mini platform.
CTI-0
CTI-1
CTI-2
CTI-3
CTI-4
Cross Trigger Interface Cross Trigger Interface (CTI) allows cross-triggering based on inputs
from masters attached to CTIs. The CTI module is internal to the
Cortex-A53 core platform.
DAP Debug Access Port The DAP provides real-time access for the debugger without halting
the core to access:
System memory and peripheral registers
All debug configuration registers
The DAP also provides debugger access to JTAG scan chains.
DDRC Double Data Rate Controller The DDR Controller has the following features:
Supports 32/16-bit LPDDR4 (up to 1.5 GHz), DDR4-2400, and
DDR3L-1600
Supports up to 8 Gbyte DDR memory space
eCSPI1
eCSPI2
eCSPI3
Configurable SPI Full-duplex enhanced Synchronous Serial Interface, with data rate
up to 52 Mbit/s. Configurable to support Master/Slave modes, only
one chip select is supported.
Modules list
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 9
ENET1 Ethernet Controller The Ethernet Media Access Controller (MAC) is designed to support
10/100/1000 Mbps Ethernet/IEEE 802.3 networks. An external
transceiver interface and transceiver function are required to
complete the interface to the media. The module has dedicated
hardware to support the IEEE 1588 standard. See the ENET chapter
of the i.MX 8M Mini Applications Processor Reference Manual
(IMX8MMRM) for details.
FlexSPI FlexSPI The FlexSPI module acts as an interface to external serial flash
devices. This module contains the following features:
Flexible sequence engine to support various flash vendor devices
Single pad/Dual pad/Quad pad mode of operation
Single Data Rate/Double Data Rate mode of operation
Parallel Flash mode
DMA support
Memory mapped read access to connected flash devices
Multi master access with priority and flexible and configurable
buffer for each master
GIC Generic Interrupt Controller The GIC handles all interrupts from the various subsystems and is
ready for virtualization.
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5
General Purpose I/O Modules Used for general purpose input/output to external ICs. Each GPIO
module supports up to 32 bits of I/O.
GPMI General Purpose Memory
Interface
The GPMI module supports up to 8x NAND devices and 62-bit ECC
encryption/decryption for NAND Flash Controller (GPMI2). GPMI
supports separate DMA channels for each NAND device.
GPT1
GPT2
GPT3
GPT4
GPT5
GPT6
General Purpose Timer Each GPT is a 32-bit “free-running” or “set-and-forget” mode timer
with programmable prescaler and compare and capture register. A
timer counter value can be captured using an external event and can
be configured to trigger a capture event on either the leading or
trailing edges of an input pulse. When the timer is configured to
operate in “set-and-forget” mode, it is capable of providing precise
interrupts at regular intervals with minimal processor intervention.
The counter has output compare logic to provide the status and
interrupt at comparison. This timer can be configured to run either on
an external clock or on an internal clock.
GPU3D Graphics Processing Unit-3D The GPU3D provides hardware acceleration for 3D graphics
algorithms with sufficient processor power to run desktop quality
interactive graphics applications on displays.
I2C1
I2C2
I2C3
I2C4
I2C Interface I2C provides serial interface for external devices. Data rates of up to
320 kbps are supported.
IOMUXC IOMUX Control This module enables flexible I/O multiplexing. Each IO pad has a
default as well as several alternate functions. The alternate functions
are software configurable.
Table 3. i.MX 8M Mini modules list (continued)
Block mnemonic Block name Brief description
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
10 NXP Semiconductors
Modules list
MIPI CSI2 (four-lane) MIPI Camera Serial Interface This module provides one four-lane MIPI camera serial interfaces,
which operates up to a maximum bit rate of 1.5 Gbps.
MIPI DSI (four-lane) MIPI Display Serial Interface This module provides a four-lane MIPI display serial interface
operating up to a maximum bit rate of 1.5 Gbps.
OCOTP_CTRL OTP Controller The On-Chip OTP controller (OCOTP_CTRL) provides an interface
for reading, programming, and/or overriding identification and control
information stored in on-chip fuse elements. The module supports
electrically programmable poly fuses (eFUSEs). The OCOTP_CTRL
also provides a set of volatile software-accessible signals that can be
used for software control of hardware elements, not requiring non
volatility. The OCOTP_CTRL provides the primary user-visible
mechanism for interfacing with on-chip fuse elements. Among the
uses for the fuses are unique chip identifiers, mask revision
numbers, cryptographic keys, JTAG secure mode, boot
characteristics, and various control signals requiring permanent non
volatility.
OCRAM On-Chip Memory controller The On-Chip Memory controller (OCRAM) module is designed as an
interface between the system’s AXI bus and the internal (on-chip)
SRAM memory module.
In i.MX 8M Mini processors, the OCRAM is used for controlling the
256 KB multimedia RAM through a 64-bit AXI bus.
PCIe1 PCI Express 2.0 The PCIe IP provides PCI Express Gen 2.0 functionality.
PDM Pulse Density Modulation The PDM supports up to 8-channels (4 lanes).
PMU Power Management Unit Integrated power management unit. Used to provide power to
various SoC domains.
PWM1
PWM2
PWM3
PWM4
Pulse Width Modulation The pulse-width modulator (PWM) has a 16-bit counter and is
optimized to generate sound from stored sample audio images. It
can also generate tones. It uses 16-bit resolution and a 4x16 data
FIFO to generate sound.
SAI1
SAI2
SAI3
SAI5
SAI6
Synchronous Audio Interface The SAI module provides a synchronous audio interface (SAI) that
supports full duplex serial interfaces with frame synchronization,
such as I2S, AC97, TDM, and codec/DSP interfaces.
Table 3. i.MX 8M Mini modules list (continued)
Block mnemonic Block name Brief description
Modules list
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 11
SDMA Smart Direct Memory Access The SDMA is a multichannel flexible DMA engine. It helps in
maximizing system performance by offloading the various cores in
dynamic data routing. It has the following features:
Powered by a 16-bit Instruction-Set micro-RISC engine
Multi channel DMA supporting up to 32 time-division multiplexed
DMA channels
48 events with total flexibility to trigger any combination of
channels
Memory accesses including linear, FIFO, and 2D addressing
Shared peripherals between Arm and SDMA
Very fast Context-Switching with 2-level priority based preemptive
multi tasking
DMA units with auto-flush and prefetch capability
Flexible address management for DMA transfers (increment,
decrement, and no address changes on source and destination
address)
DMA ports can handle unidirectional and bidirectional flows (Copy
mode)
Up to 8-word buffer for configurable burst transfers for EMIv2.5
Support of byte-swapping and CRC calculations
Library of Scripts and API is available
SJC Secure JTAG Controller The SJC provides JTAG interface (designed to be compatible with
JTAG TAP standards) to internal logic. The i.MX 8M Mini family of
processors uses JTAG port for production, testing, and system
debugging. Additionally, the SJC provides BSR (Boundary Scan
Register) standard support, designed to be compatible with IEEE
1149. 1.
The JTAG port must be accessible during platform initial laboratory
bring-up, for manufacturing tests and troubleshooting, as well as for
software debugging by authorized entities. The i.MX 8M Mini SJC
incorporates three security modes for protecting against
unauthorized accesses. Modes are selected through eFUSE
configuration.
SNVS Secure Non-Volatile Storage Secure Non-Volatile Storage, including Secure Real Time Clock,
Security State Machine, Master Key Control, and Violation/Tamper
Detection and reporting.
SPDIF1 Sony Philips Digital
Interconnect Format
A standard audio file transfer format, developed jointly by the Sony
and Phillips corporations. It supports Transmitter and Receiver
functionality.
TEMPSENSOR Temperature Sensor Temperature sensor
TZASC Trust-Zone Address Space
Controller
The TZASC (TZC-380 by Arm) provides security address region
control functions required for intended application. It is used on the
path to the DRAM controller.
Table 3. i.MX 8M Mini modules list (continued)
Block mnemonic Block name Brief description
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
12 NXP Semiconductors
Modules list
2.1 Recommended connections for unused input/output
If a function of the i.MX 8M Mini is not in use, the I/Os and power rails of that function can be terminated
to reduce overall board power.
Table 4 shows the recommended connections for unused power supply rails.
UART1
UART2
UART3
UART4
UART Interface Each of the UARTv2 modules supports the following serial data
transmit/receive protocols and configurations:
7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even,
odd, or none)
Programmable baud rates up to 4 Mbps. This is a higher max
baud rate relative to the 1.875 MHz, which is stated by the
TIA/EIA-232-F standard.
32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting
auto-baud
uSDHC1
uSDHC2
uSDHC3
SD/MMC and SDXC
Enhanced Multi-Media Card /
Secure Digital Host Controller
i.MX 8M Mini SoC characteristics:
All the MMC/SD/SDIO controller IPs are based on the uSDHC IP.
They are designed to support:
SD/SDIO standard, up to version 3.0.
MMC standard, up to version 5.1.
1.8 V and 3.3 V operation, but do not support 1.2 V operation.
1-bit/4-bit SD and SDIO modes, 1-bit/4-bit/8-bit MMC mode.
Two uSDHC controllers (uSDHC1 and uSDHC3) can support up to
an 8-bit interface, the other controller (uSDHC2) can only support up
to a 4-bit interface.
USB1
USB2
2x USB 2.0 controllers and
PHYs
Two USB controllers and PHYs that support USB 2.0. Each USB
instance contains:
USB 2.0 core, which can operate in 2.0 mode
VPU Video Processing Unit A high performing video processing unit (VPU), which covers many
SD-level and HD-level video decoders. See the i.MX 8M Mini
Applications Processor Reference Manual (IMX8MMRM) for a
complete list of the VPU’s decoding and encoding capabilities.
WDOG1
WDOG2
WDOG3
Watchdog The watchdog (WDOG) timer supports two comparison points
during each counting period. Each of the comparison points is
configurable to evoke an interrupt to the Arm core, and a second
point evokes an external event on the WDOG line.
XTALOSC Crystal Oscillator interface The XTALOSC module enables connectivity to an external crystal
oscillator device. In a typical application use case, it is used for a 24
MHz oscillator.
Table 4. Recommended connections for unused power supply rails
Function Ball Name Recommendations
if Unused
MIP-CSI and
MIPI-DSI
VDD_MIPI_0P9, VDD_MIPI_1P2, VDD_MIPI_1P8 Leave unconnected
PCIe VDD_PCI_0P8, VDD_PCI_1P8 Leave unconnected
Table 3. i.MX 8M Mini modules list (continued)
Block mnemonic Block name Brief description
Modules list
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 13
Table 5 shows recommended connections for unused signal contacts/interfaces.
USB1 and USB2 VDD_USB_0P8, VDD_USB_1P8, VDD_USB_3P3 Leave unconnected
VPU VDD_VPU Leave unconnected
GPU VDD_GPU Leave unconnected
Digital I/O
supplies
NVCC_CLK, NVCC_ECSPI, NVCC_ENET, NVCC_GPIO1, NVCC_I2C,
NVCC_JTAG, NVCC_NAND, NVCC_SAI1, NVCC_SAI2, NVCC_SAI3, NVCC_SAI5,
NVCC_SD1, NVCC_SD2, NVCC_UART, NVCC_SNVS_1P8, PVCC0_1P8,
PVCC1_1P8, PVCC2_1P8
All digital I/O
supplies listed in this
table must be
powered under
normal conditions
whether the
associated I/O pins
are in use or not, and
associated I/O pins
need to enable pull
in pad control
register to limit any
floating gate current.
Table 5. Recommended connections for unused signal contacts/interfaces
Function Ball Name Recommendations
if Unused
MIPI-CSI MIPI_CSI_CLK_P, MIPI_CSI_CLK_N, MIPI_CSI_Dx_P, MIPI_CSI_Dx_N Tie all signals to
ground
MIPI-DSI MIPI_VREG_CAP, MIPI_DSI_CLK_P, MIPI_DSI_CLK_N, MIPI_DSI_Dx_P,
MIPI_DSI_Dx_N
Leave unconnected
PCIe PCIE_CLK_P, PCIE_CLK_N, PCIE_TXN_P, PCIE_TXN_N, PCIE_RXN_P,
PCIE_RXN_N, PCIE_RESREF
Leave unconnected
USB1 USB1_VBUS, USB1_DN, USB1_DP, USB1_ID, USB1_TXRTUNE Leave unconnected
USB2 USB2_VBUS, USB2_DN, USB2_DP, USB2_ID, USB2_TXRTUNE Leave unconnected
Table 4. Recommended connections for unused power supply rails (continued)
Function Ball Name Recommendations
if Unused
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
14 NXP Semiconductors
Electrical characteristics
3 Electrical characteristics
This section provides the device and module-level electrical characteristics for the i.MX 8M Mini family
of processors.
3.1 Chip-level conditions
This section provides the device-level electrical characteristics for the IC. See Table 6 for a quick reference
to the individual tables and sections.
3.1.1 Absolute maximum ratings
CAUTION
Stresses beyond those listed under Table 7 may affect reliability or cause
permanent damage to the device. These are stress ratings only. Functional
operation of the device at these or any other conditions beyond those
indicated in the operating ranges or parameters tables is not implied.
Table 6. i.MX 8M Mini chip-level conditions
For these characteristics, Topic appears …
Absolute maximum ratings on page 14
FCBGA package thermal resistance on page 16
Operating ranges on page 17
External clock sources on page 19
Maximum supply currents on page 20
Table 7. Absolute maximum ratings
Parameter description Symbol Min Max Unit Notes
Core supply voltages VDD_ARM
VDD_SOC
-0.3 1.15 V
Power supply for GPU VDD_GPU -0.3 1.15 V
Power supply for VPU VDD_VPU -0.3 1.15 V
DDR PHY supply voltage VDD_DRAM -0.3 1.15 V
DDR I/O supply voltage NVCC_DRAM -0.3 1.575 V
DRAM PLL supply voltage VDD_DRAM_PLL_0P8 -0.3 1.15 V
VDD_DRAM_PLL_1P8 -0.3 2.15 V
SNVS IO supply voltage NVCC_SNVS_1V8 -0.3 2.15 V
VDD_SNVS supply voltage VDD_SNVS_0V8 -0.3 0.95 V
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 15
GPIO supply voltage NVCC_JTAG,
NVCCGPIO1,
NVCC_ENET,
NVCC_SD1,
NVCC_SD2,
NVCC_NAND,
NVCC_SA1,
NVCC_SAI2,
NVCC_SAI3,
NVCC_SAI5,
NVCC_ECSPI,
NVCC_I2C,
NVCC_UART,
NVCC_CLK
-0.3 3.8 V
GPIO pre-driver supply voltage PVCC0_1P8,
PVCC1_1P8,
PVCC2_1P8
-0.3 2.15 V
Isolated core supply voltage VDD_ANA_0P8 -0.3 1.15 V
Analog core supply voltage VDD_ANA0_1P8 -0.3 2.15 V
VDD_ANA1_1P8 -0.3 2.15 V
Arm PLL supply voltage VDD_ARM_PLL_0P8 -0.3 0.95 V
VDD_ARM_PLL_1P8 -0.3 2.15 V
MIPI PHY supply voltage
VDD_MIPI_0P9 -0.3 1.05 V
VDD_MIPI_1P2 -0.3 1.45 V
VDD_MIPI_1P8 -0.3 2.15 V
PCIe PHY supply voltage VDD_PCIE_0P8 -0.3 0.95 V
VDD_PCIE_1P8 -0.3 2.15 V
USB PHY supply voltage
VDD_USB_0P8 -0.3 0.95 V
VDD_USB_1P8 -0.3 2.15 V
VDD_USB_3P3 -0.3 3.95 V
USB_VBUS input detected USB1_VBUS,
USB2_VBUS
-0.3 3.95 V
XTAL supply voltage VDD_24M_XTAL_1P8 -0.3 2.15 V
Storage temperature range TSTORAGE -40 150 oC—
Table 7. Absolute maximum ratings (continued)
Parameter description Symbol Min Max Unit Notes
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
16 NXP Semiconductors
Electrical characteristics
3.1.2 Thermal resistance
3.1.2.1 FCBGA package thermal resistance
Table 9 displays the FCBGA package thermal resistance data.
Table 8. Electrostatic discharge and latch up ratings
Parameter description Rating Reference Comment
Electrostatic Discharge
(ESD)
Human Body Model (HBM) ±1000 V JS-001-2017
Charged Device Model (CDM) ±250 V JS-002-2018
Latch UP (LU) Immunity level:
Class I@ 25 oC ambient
temperature
Class II @ 105 oC ambient
temperature
A
A
JESD78E
Table 9. Thermal resistance data
Rating Test conditions Symbol Value Unit Notes
Junction to Ambient
Natural Convection
Single layer board (1s) RJA 30 oC/W 1, 2
1Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.
2Per SEMI G38-87 and JESD51-2 with the single layer board horizontal.
Junction to Ambient
Natural Convection
Four layer board (2s2p) RJA 22.9 oC/W 1, 2, 3
3Per JEDEC JESD51-6 with the board horizontal.
Junction to Ambient (@200 ft/min) Single layer board (1s) RJMA 24 oC/W 1, 3
Junction to Ambient (@200 ft/min) Four layer board (2s2p) RJMA 18.5 oC/W 1, 3
Junction to Board RJB 7.8 oC/W 4
4Thermal resistance between the die and printed circuit board per JEDEC JESD51-8. Board temperature is measured on the
top surface of the board near the package.
Junction to Case RJC 4oC/W 5
5Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method
1012.1).
Junction to Package Top Natural Convection JT 0.2 oC/W 6
6Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written
as Psi-JT.
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 17
3.1.3 Operating ranges
Table 10 provides the operating ranges of the i.MX 8M Mini applications processor. For details on the
chip's power structure, see the “Power Management Unit (PMU)” chapter of the i.MX 8M Mini
Applications Processor Reference Manual (IMX8MMRM).
Table 10. Operating ranges1
Symbol Min Typ Max2,3 Unit Comment
VDD_ARM 0.805 0.850 0.950 V Power supply for Quad-A53, 1.2 GHz
0.900 0.950 1.000 V Power supply for Quad-A53, 1.6 GHz
0.950 1.000 1.050 V Power supply for Quad-A53, 1.8 GHz4
VDD_SOC without PCIE 0.780 0.820 0.900 V Power supply for SoC logic5
VDD_SOC with PCIE 0.805 0.850 0.900 V Power supply for SoC logic5
VDD_GPU 0.805 0.850 0.900 V Power supply for 3D GPU,
nominal mode, 800 MHz
0.855 0.900 1.000 V Power supply for 3D GPU,
overdrive mode, 1000 MHz
VDD_VPU Block
G2/G1/H1
0.805 0.850 0.900 V Power supply for VPU, 450/450/450 MHz
0.855 0.900 0.950 V Power supply for VPU, 600/650/650 MHz
0.900 0.950 1.000 V Power supply for VPU, 700/750/750 MHz
VDD_DRAM 0.805 0.850 0.900 V Power supply for DDRC, 0.85 V supports
up to 1.0 GHz (DDR clock)
0.855 0.900 0.950 V Power supply for DDRC, 0.9 V supports
up to 1.2 GHz (DDR clock)
0.900 0.950 1.000 V Power supply for DDRC, 0.95 V supports
up to 1.5 GHz (DDR clock)
VDD_SNVS_0P8 0.760 0.800 0.900 V Power supply for SNVS core logic
NVCC_SNVS_1P8 1.620 1.800 1.980 V Power supply for GPIO pre-driver in
SNVS bank
NVCC_JTAG,
NVCC_GPIO1,
NVCC_ENET, NVCC_SD1,
NVCC_SD2, NVCC_NAND,
NVCC_SAI1, NVCC_SAI2,
NVCC_SAI3, NVCC_SAI5,
NVCC_ECSPI, NVCC_I2C,
NVCC_UART,
NVCC_CLK
1.650 1.800 1.950 V Power supply for GPIO when it is in 1.8 V
mode
3.000 3.300 3.600 V Power supply for GPIO when it is in 3.3 V
mode
NVCC_ENET 2.250 2.500 2.750 V Power supply for GPIO when it is in 2.5 V
mode
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
18 NXP Semiconductors
Electrical characteristics
PVCC0_1P8,
PVCC1_1P8,
PVCC2_1P8
1.650 1.800 1.950 V Power supply for GPIO pre-driver
VSS V Ground for all core logic and I/O
NVCC_DRAM 1.283 1.35 1.425 V DDR3L
1.14 1.2 1.26 V DDR4
1.06 1.1 1.17 V LPDDR4
DRAM_VREF 0.49 x
NVCC_DRAM
0.5 x
NVCC_DRAM
0.51 x
NVCC_DRAM
V Internal output, no connection is needed.
VDD_DRAM_PLL_0P8 0.805 0.850 1.000 V 0.8 V logic power supply for DSM. It
should be connected to the separate
logic power.
VDD_ANA0_1P8
VDD_ANA1_1P8
1.71 1.8 1.89 V Analog 1.8 V core power
VDD_ANA_0P8 0.780 0.820 0.900 V Isolated 0.8 V core power
VDD_ARM_PLL_0P8 0.780 0.820 0.900 V Arm PLL 0.8 V power
VDD_ARM_PLL_1P8 1.71 1.8 1.89 V Arm PLL 1.8 V power
VDD_24M_XTAL_1P8 1.71 1.8 1.89 V XTAL 1.8 V power
VDD_DRAM_PLL_1P8 1.71 1.8 1.89 V Analog 1.8 V core power
VDD_MIPI_0P9 0.855 0.9 1.000 V 0.9 V power for PLL and internal logic
VDD_MIPI_1P2 1.14 1.2 1.26 V 1.2 V power for analog
VDD_MIPI_1P8 1.71 1.8 1.89 V 1.8 V power for PLL and analog
VDD_PCI_0P86,7 0.805 0.850 0.900 V Digital supply for PCIe PHY
VDD_PCI_1P861.71 1.800 1.890 V 1.8 V supply for PCIe PHY
VDD_USB_0P8 0.780 0.820 0.900 V Digital power supply from PHY’s I/O
power pads
VDD_USB_1P8 1.71 1.80 1.89 V 1.8 V analog power supply
VDD_USB_3P3 3.069 3.30 3.6 V 3.3 V analog power supply
USB1_VBUS
USB2_VBUS
0.800 1.40 3.60 V USB_VBUS input detect signal
Temperature Sensor
Accuracy8
±3 ±5 °C Sensing temperature range 10°C to
105°C
TJ0—+95
oC See Table 2 for complete list of junction
temperature capabilities.
1The BD71847MWV PMIC does not support 0.950 V for VDD_GPU, VDD_VPU, and VDD_DRAM. For this PMIC, 0.975 V
typical is acceptable and supported.
2Applying the maximum voltage results in maximum power consumption and heat generation. A voltage set point = (Vmin + the
supply tolerance) is recommended. This results in an optimized power/speed ratio.
Table 10. Operating ranges1 (continued)
Symbol Min Typ Max2,3 Unit Comment
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 19
3.1.4 External clock sources
Each i.MX 8M Mini processor has two external input system clocks: a low frequency (RTC_XTALI) and
a high frequency (XTALI).
The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit,
power-down real time clock operation, and slow system and watch-dog counters. The clock input can only
be connected to an external oscillator. RTC_XTALO should be directly connected to VDD_SNVS_0P8.
The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other
peripherals. The system clock input can be connected to either an external oscillator or a crystal using
internal oscillator amplifier.
Table 11 shows the interface frequency requirements.
Table 12 shows the external input clock for OSC32K.
3Overdrive maximum voltage includes all the nominal frequencies.
450% duty cycle for 5 years
5Booting VDD_SOC at 0.800 V ±5% is acceptable (Vmin = 0.760 V). Software is expected to program the VDD_SOC voltage
to the typical value in this table prior to first DRAM memory access.
6Ensure the VDD_PCI_1P8 does not have more than 40 mVpp AC power supply noise superimposed on the high power supply
voltage for the PHY core (1.8 V nominal DC value). Simultaneously, the VDD_PCI_0P8 should have no more than 20 mVpp
AC power supply noise superimposed on the low power supply voltage for th PHY core (0.9 V nominal DC value for the
overdrive).
7It can be min 0.78 V when supplied but not operating PCIe.
8“EN” of TMU Enable Register (TMU_TER) is required to be always enabled for the part to operate correctly.
Table 11. External input clock frequency
Parameter Description Symbol Min Typ Max Unit
RTC_XTALI Oscillator1
1The required frequency stability of this clock source is application dependent.
fckil 32.7682
2Recommended nominal frequency 32.768 kHz.
—kHz
XTALI Oscillator1,3
3External oscillator or a fundamental frequency crystal appropriately coupled to the internal oscillator amplifier.
The typical values shown in Table 11 are required for use with NXP software to ensure precise time
keeping and USB operation. For RTC_XTALI operation, an external oscillator is necessary. RTC_XTALO
should be directly connected to VDD_SNVS_0P8 when using an external 32.768 kHz oscillator.
NOTE
There is no internal RC oscillator.
fxtal 24 MHz
Table 12. External input clock for OSC32K
Symbol Min Typ Max Unit
Frequency f 32.768 kHz
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
20 NXP Semiconductors
Electrical characteristics
3.1.5 Maximum supply currents
Power consumption is highly dependent on the application. Estimating the maximum supply currents
required for power supply design is difficult because the use cases that requires maximum supply current
is not a realistic use cases.
To help illustrate the effect of the application on power consumption, data was collected while running
consumer standard benchmarks that are designed to be compute and graphic intensive. The results
provided are intended to be used as guidelines for power supply design.
RTC_XTALI VIH 0.7 x NVCC_SNVS_1P8 NVCC_SNVS_1P8 V
VIL 0 0.3 x NVCC_SNVS_1P8 V
Table 13. Maximum supply currents
Power rail Max current Unit
VDD_ARM 2200 mA
VDD_SOC 1000 mA
VDD_GPU 500 mA
VDD_VPU 1000 mA
VDD_DRAM 1000 mA
VDD_ANA_0P8 50 mA
VDD_ANA0_1P8
VDD_ANA1_1P8
250 mA
NVCC_SNVS_1P8 3 mA
VDD_ARM_PLL_1P8
VDD_24M_XTAL_1P8
100 mA
PVCCx_1P8 3mA
NVCC_<XXX> Imax = N x C x V x (0.5 x F)
Where:
N—Number of IO pins supplied by the power line
C—Equivalent external capacitive load
V—IO voltage
(0.5 x F)—Data change rate. Up to 0.5 of the clock
rate (F).
In this equation, Imax is in Amps, C in Farads, V in
Volts, and F in Hertz.
NVCC_DRAM
DRAM_VFEF 10 mA
Table 12. External input clock for OSC32K
Symbol Min Typ Max Unit
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 21
3.1.6 Power modes
The i.MX 8M Mini processors support the following power modes:
RUN Mode: All external power rails are on, CPU is active and running; other internal modules can
be on/off based on application.
IDLE Mode: When there is no thread running and all high-speed devices are not active, the CPU
can automatically enter this mode. The CPU can be in the power-gated state but with L2 data
retained, DRAM and the bus clock are reduced. Most of the internal logic is clock gated but still
remains powered. The M4 core can remain running. Compared with RUN mode, all the external
power rails from the PMIC remain the same, and most of the modules still remain in their state.
SUSPEND Mode: The most efficient power saving mode where all the clocks are off and all the
unnecessary power supplies are off.
SNVS Mode: This mode is also called RTC mode. Only the power for the SNVS domain remains
on to keep RTC and SNVS logic alive.
OFF Mode: All power rails are off.
Table 14. Chip power in different LP mode
Mode Supply Typ.1
1All the power numbers defined in the table are for information only. These numbers are based on typical silicon at 25oC, under
non-OS environment and use case dependent. For power numbers with OS and real use cases, see Power consumption
measurement application note for more details.
Unit
SNVS VDD_SNVS_0P8 (0.8 V) 0.02
mW
NVCC_SNVS_1P8 (1.8 V) 0.09
Total2
2Sum of the listed supply rails.
0.11
SUSPEND NVCC (1.8 V) 1.20
mW
NVCC_DRAM (1.1 V) 0.50
NVCC_ENET (1.8 V) 0.10
NVCC_SNVS_1P8 (1.8 V) 0.10
PVCC (1.8 V) 0.60
VDD_MIPI_0P9 (0.9 V) 2.20
VDD_SNVS_0P8 (0.8 V) 0.10
VDD_SOC (0.82 V) 4.00
VDD_ARM_0P8 (0.82 V) 0.10
VDDA_PCIE_USB_0P8 (0.82 V) 3.00
Total211.90
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
22 NXP Semiconductors
Electrical characteristics
Table 15 summarizes the external power supply states in all the power modes.
Table 15. The power supply states
Power rail OFF SNVS SUSPEND IDLE RUN
VDD_ARM OFF OFF OFF ON ON
VDD_SOC OFF OFF ON ON ON
VDD_GPU OFF OFF OFF OFF ON/OFF
VDD_VPU OFF OFF OFF OFF ON/OFF
VDD_DRAM OFF OFF OFF ON ON
Misc_1P81
1See Table 16
OFF OFF ON ON ON
Misc_0P81OFF OFF ON ON ON
VDD_MIPI_1P2 OFF OFF OFF ON ON
VDD_MIPI_0P9 OFF OFF OFF ON ON
VDD_DRAM_PLL_0P8 OFF OFF ON ON ON
VDD_SNVS_0P8 OFF ON ON ON ON
NVCC_SNVS_1P8 OFF ON ON ON ON
NVCC_<XXX> OFF OFF ON ON ON
PVCCx_1P8 OFF OFF ON ON ON
NVCC_DRAM OFF OFF ON ON ON
Table 16. Group name
Misc_1P8 VDD_24M_XTAL_1P8
VDD_ANA0_1P8
VDD_ANA1_1P8
VDD_ARM_PLL_1P8
VDD_DRAM_PLL_1P8
VDD_MIPI_1P8
VDD_PCI_1P8
VDD_USB_1P8
Misc_0P8 VDD_ANA_0P8
VDD_ARM_PLL_0P8
VDD_PCI_0P8
VDD_USB_0P8
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 23
3.2 Power supplies requirements and restrictions
The system design must comply with power-up sequence, power-down sequence, and steady state
guidelines as described in this section to guarantee the reliable operation of the device. Any deviation
from these sequences may result in the following situations:
Excessive current during power-up phase
Prevention of the device from booting
Irreversible damage to the processor (worst-case scenario)
3.2.1 Power-up sequence
Figure 5 illustrates the power-up sequence of i.MX 8M Mini processor.
Figure 3. The power-up sequence
NVCC_SNVS_1P8
VDD_SNVS_0P8
RTC_RESET_B
32K RTC_XTALI
PMIC_ON_REQ
VDD_SOC,VDD_ANA_0P8,VDD_ARM_PLL_0P8
VDD_PCI_0P8,VDD_USB_0P8
VDD_GPU,VDD_VPU,VDD_DRAM,
VDD_DRAM_PLL_0P8
VDD_MIPI_0P9
VDD_ARM
VDD_ANAx_1P8,VDD_DRAM_PLL_1P8,VDD_MIPI_1P8,
VDD_24M_XTAL_1P8,VDD_USB_1P8,VDD_PCI_1P8
PVCCx_1P8, NVCC_xxx (1.8 V)
NVCC_DRAM
NVCC_xxx (2.5 and 3.3 V),VDD_USB_3P3
VDD_MIPI_1P2
POR_B
T1
T2
T3
t1
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13
VDD_ARM_PLL_1P8
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
24 NXP Semiconductors
Electrical characteristics
Table 17 represents the timing parameters of the power-up sequence.
3.2.2 Power-down sequence
Figure 5 illustrates the power-down sequence of i.MX 8M Mini processor.
Table 17. Power-up sequence
Description Min Typ Max Unit
T1 Delay from NVCC_SNVS_1P8 to VDD_SNVS_0P8 0 2 ms
T2 Delay from VDD_SNVS_0P8 high or RTC_SET_B de-assert 0 10 ms
T3 Delay from RTC_RESET_B de-assert to stable 32 k existed 40 100 s
T4 Delay from PMIC_ON_REQ assert to analog 0.8 V on 0 0.2 ms
T5 Delay from analog 0.8 V on to analog 0.8/0/9 V on 0 2 ms
T6 Delay from analog 0.8/0.9 V on to PHY 0.9 V on 0 15 s
T7 Delay from PHY 0.9 V on to VDD_ARM on 0 2 ms
T8 Delay from VDD_ARM on to analog 1.8 V on 0 15 s
T9 Delay from analog 1.8 V on to digital 1.8 V on 0 2 ms
T10 Delay from digital 1.8 V on to NVCC_DRAM on 0 2 ms
T11 Delay from NVCC_DRAM on to digital 2.5 V and 3.3 V on 0 2 ms
T12 Delay from digital 2.5 V and 3.3 V on to PHY 1.2 V on 0 2 ms
T131
1The values of T13 depend on T2. RTC_RESET_B must be de-assert before POR_B de-asserts.
Delay from PHY 1.2 V on to POR_B de-assert 0 20 ms
t1 Uncertain period before PMIC_ON_REQ assert during VDD_SNVS_0P8 ramp up.
For ramp up requirement, only VDD_ANA0_1P8 has 5 s minimum requirement, others do not have such
requirement.
During power-up, make sure NVCC_xxx - PVCCx_1P8 < 2 V.
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 25
Figure 4. The power-down sequence
VDD_MIPI_1P2
NVCC_xxx (2.5 and 3.3 V)
NVCC_DRAM
PVCCx_1P8, NVCC_xxx (1.8V)
VDD_ANAx_1P8, VDD_DRAM_PLL_1P8,VDD_MIPI_1P8
VDD_24M_XTAL_1P8,VDD_USB_1P8,VCC_PCI_1P8
VDD_ARM
VDD_MIPI_0P9
VDD_GPU, VDD_VPU, VDD_DRAM
VDD_DRAM_PLL_0P8
VDD_SOC, VDD_ANA_0P8
VDD_PCI_0P8, VDD_USB_0P8
32K RTC_XTALI
RTC_RESET_B
VDD_SNVS_0P8
NVCC_SNVS_1P8
T5
T6
T7
T8
T9
T10
T11
T12
T1
T2
T3
T4
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
26 NXP Semiconductors
Electrical characteristics
Table 18 represents the timing parameters of the power-down sequence.
3.3 PLL electrical characteristics
Table 19 shows PLL electrical characteristics.
Table 18. Power-down sequence
Description Min Typ Max Unit
T1 Delay from PHY 1.2 V off to digital 2.5 V and 3.3 V off 0 10 ms
T2 Delay from digital 2.5 V and 3.3 V off to NVCC_DRAM off 0 10 ms
T3 Delay from NVCC_DRAM off to digital 1.8 V off 0 10 ms
T4 Delay from digital 1.8 V off to analog 1.8 V off 0 10 ms
T5 Delay from analog 1.8 V off to VDD_ARM off 0 10 ms
T6 Delay from VDD_ARM off to PHY 0.9 V off 0 10 ms
T7 Delay from PHY 0.9 V off to analog 0.8/0.9 V off 0 10 ms
T8 Delay from analog 0.8/0.9 V off to analog 0.8 V off 0 10 ms
T9 Delay from analog 0.8 V off to 32k off 0 10 ms
T10 Delay from 32k off to RTC_RESET_B assert 0 10 ms
T11 Delay from RTC_RESET_B assert to VDD_SNVS_0P8 off 0 10 ms
T12 Delay from VDD_SNVS_0P8 off to NVCC_SNVS_1P8 off 0 10 ms
During power-down, make sure NVCC_xxx - PVCCx_1P8 < 2 V.
Table 19. PLL electrical parameters
PLL type Parameter Value
AUDIO_PLL1 Clock output range Maximum 650 MHz
Reference clock 24 MHz
Lock time 375 s
AUDIO_PLL2 Clock output range Maximum 650 MHz
Reference clock 24 MHz
Lock time 375 s
VIDEO_PLL1 Clock output range Maximum 650 MHz
Reference clock 24 MHz
Lock time 375 s
SYS_PLL1 Clock output range 800 MHz
Reference clock 24 MHz
Lock time 25 s
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 27
3.4 On-chip oscillators
3.4.1 OSC24M
A 24 MHz oscillator is used as the primary clock source for the PLLs to generate the clock for the CPU,
BUS, and high-speed interfaces. For fractional PLLs, the 24 MHz clock from the oscillator can be used as
the PLL reference clock directly.
SYS_PLL2 Clock output range 1 GHz
Reference clock 24 MHz
Lock time 25 s
SYS_PLL3 Clock output range 600 MHz ~ 1 GHz
Reference clock 24 MHz
Lock time 25 s
ARM_PLL Clock output range 800 MHz ~1.6 GHz
Reference clock 24 MHz
Lock time 25 s
DRAM_PLL Clock output range Maximum 750 MHz
Reference clock 24 MHz
Lock time 375 s
GPU_PLL Clock output range Maximum 1 GHz
Reference clock 24 MHz
Lock time 25 s
VPU_PLL Clock output range 400 MHz ~ 800 MHz
Reference clock 24 MHz
Lock time 25 s
Table 20. Crystal specifications1
Parameter Description Min Typ Max Unit
Frequency 24 MHz
Cload 12 pF
Drive level 100 ——W
ESR 80
Table 19. PLL electrical parameters (continued)
PLL type Parameter Value
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
28 NXP Semiconductors
Electrical characteristics
3.4.2 OSC32K
An external 32.768 kHz oscillator is necessary.
3.5 General purpose I/O (GPIO) DC parameters
Table 21 shows DC parameters for GPIO pads. The parameters in Table 21 are guaranteed per the
operating ranges in Table 10, unless otherwise noted.
1Actual working drive level is depend on real design. Please contact crystal vendor for selecting drive level of crystal.
Table 21. GPIO DC parameters
Parameter Symbol Test Conditions Min Typ Max Unit
High-level output voltage VOH (1.8 V) IOH = 1.6/3.2/6.4/9.6 mA (1.8 V)
IOH = 2/4/8/12 mA (3.3 V)
0.8 x VDD VDD V
VOH (3.3 V) 0.8 x VDD VDD V
Low-level output voltage VOL (1.8 V) IOL = 1.6/3.2/6.4/9.6 mA (1.8 V)
IOL = 2/4/8/12 mA (3.3 V)
00.2 x VDD V
VOL (3.3 V) 00.2 x VDD V
High-level input voltage VIH 0.7 x VDD VDD + 0.3 V
Low-level input voltage VIL -0.3 0.3 x VDD V
Pull-up resistor VDD = 1.65 - 1.95V
Temp = 0 - 95 oC
12 22 49 K
Pull-down resistor 13 23 48 K
Pull-up resistor VDD = 2.25 - 2.75V
Temp = 0 - 95 oC
13 24 69 K
Pull-down resistor 9.1 33 69 K
Pull-up resistor1
1Does not support internal pull-up or pull-down for 3.3 V IOs.
—V
DD = 3.0 - 3.6V
Temp = 0 - 95 oC
——K
Pull-down resistor1——K
High level input current IIH -4 4A
Low level input current IIL -0.7 0.7 A
Table 22. Additional leakage parameters
Parameter Symbol Pins Min Max Unit
High level input current IIH
PCIE_RXN, USBx_Dx -30 30
A
PCIE_CLK -8 8
MIPI_CSI -4 4
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 29
3.5.1 DDR I/O DC electrical characteristics
The DDR I/O pads support LPDDR 4, DDR4, and DDR3L operational modes. The DDR Memory
Controller (DDRMC) is designed to be compatible with JEDEC-compliant SDRAMs.
DDRMC operation is contingent upon the board’s DDR design adherence to the DDR design and layout
requirements stated in the hardware development guide for the i.MX 8M Mini applications processor.
3.6 I/O AC parameters
This section includes the AC parameters of the following I/O types:
General Purpose I/O (GPIO)
The GPIO load circuit and output transition time waveforms are shown in Figure 5 and Figure 6.
Figure 5. Load circuit for output
Figure 6. Output transition time waveform
3.6.1 General purpose I/O AC parameters
This section presents the I/O AC parameters for GPIO in different modes.
Low level input current IIL
JTAG_TRST_B, USBx_ID -200 200
A
PCIE_CLK, USBx_Dx -6 6
PCIE_RXN -2.5 2.5
MIPI_CSI, ONOFF, POR_B -0.7 0.7
Table 22. Additional leakage parameters (continued)
Parameter Symbol Pins Min Max Unit
Test Poi n t
From Output
Under Test
CL
CL includes package, probe and fixture capacitance
0V
OVDD
20%
80% 80%
20%
tr tf
Output (at pad)
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
30 NXP Semiconductors
Electrical characteristics
3.7 Output buffer impedance parameters
This section defines the I/O impedance parameters of the i.MX 8M Mini family of processors for the
following I/O types:
NOTE
DDR I/O output driver impedance is measured with “long” transmission
line of impedance Ztl attached to I/O pad and incident wave launched into
transmission line. Rpu/Rpd and Ztl form a voltage divider that defines
specific voltage of incident wave relative to OVDD. Output driver
impedance is calculated from this voltage divider (see Figure 7).
Table 23. Maximum frequency of operation for input
Maximum frequency (MHz)
VDD = 1.8 V, CL = 50 pF VDD = 3.3 V, CL = 50 pF
450 440
Table 24. Maximum frequency of operation for output
Parameter
Maximum Frequency (MHz)
VDD = 1.8 V VDD = 3.3 V
dse[2:0] sre[1:0] Driver type CL = 10 pF CL = 20 pF CL = 10 pF CL = 20 pF
00X 0X 1x Slow Slew 150 80 120 65
00X 1X 1x Fast Slew 150 80 120 65
10X 0X 2x Slow Slew 160 90 150 80
10X 1X 2x Fast Slew 160 90 150 80
01X 0X 4x Slow Slew 200 100 180 90
01X 1X 4x Fast Slew 200 100 180 90
11X 0X 6x Slow Slew 250 130 200 100
11X 1X 6x Fast Slew 250 130 200 100
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 31
Figure 7. Impedance matching load for measurement
ipp_do
Cload = 1p
Ztl W, L = 20 inches
predriver
PMOS (Rpu)
NMOS (Rpd)
pad
OVDD
OVSS
t,(ns)
0
U,(V)
OVDD
t,(ns)
0
VDD
Vin (do)
Vout (pad)
U,(V)
Vref
Rpu = Vovdd - Vref1
Vref1 x Ztl
Rpd = x Ztl
Vref2
Vovdd - Vref2
Vref1 Vref2
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
32 NXP Semiconductors
Electrical characteristics
3.7.1 DDR I/O output buffer impedance
Table 25 shows DDR I/O output buffer impedance of i.MX 8M Mini family of processors.
Note:
1. Output driver impedance is controlled across PVTs using ZQ calibration procedure.
2. Calibration is done against 240 external reference resistor.
3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs.
3.8 System modules timing
This section contains the timing and electrical parameters for the modules in each i.MX 8M Mini
processor.
3.8.1 Reset timings parameters
Figure 8 shows the reset timing and Table 26 lists the timing parameters.
Figure 8. Reset timing diagram
Table 25. DDR I/O output buffer impedance
Parameter Symbol Test Conditions DSE
(Drive Strength)
Typical
Unit
NVCC_DRAM = 1.35
V (DDR3L)
NVCC_DRAM = 1.2
V (DDR4)
NVCC_DRAM = 1.1
V (LPDDR4)
Output Driver
Impedance
Rdrv 000000 Hi-Z Hi-Z Hi-Z
000010 240 240 240
001000 120 120 120
001010 80 80 80
011000 60 60 60
011010 48 48 48
111000 40 40 40
111010 34 34 34
Table 26. Reset timing parameters
ID Parameter Min Max Unit
CC1 Duration of POR_B to be qualified as valid. 1 RTC_XTALI cycle
POR_B
CC1
(Input)
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 33
3.8.2 WDOG Reset timing parameters
Figure 9 shows the WDOG reset timing and Table 27 lists the timing parameters.
Figure 9. WDOGx_B timing diagram
NOTE
RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or
approximately 30 s.
NOTE
WDOGx_B output signals (for each one of the Watchdog modules) do not
have dedicated pins, but are muxed out through the IOMUX. See the
IOMUXC chapter of the i.MX 8M Mini Applications Processor Reference
Manual (IMX8MMRM) for detailed information.
3.9 External peripheral interface parameters
The following subsections provide information on external peripheral interfaces.
3.9.1 ECSPI timing parameters
This section describes the timing parameters of the ECSPI blocks. The ECSPI have separate timing
parameters for master and slave modes.
Table 27. WDOGx_B timing parameters
ID Parameter Min Max Unit
CC3 Duration of WDOGx_B Assertion 1 RTC_XTALI cycle
WDOGx_B
CC3
(Output)
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
34 NXP Semiconductors
Electrical characteristics
3.9.1.1 ECSPI Master mode timing
Figure 10 depicts the timing of ECSPI in master mode. Table 28 lists the ECSPI master mode timing
characteristics.
Figure 10. ECSPI Master mode timing diagram
Table 28. ECSPI Master mode timing parameters
ID Parameter Symbol Min Max Unit
CS1 ECSPIx_SCLK Cycle Time–Read
ECSPIx_SCLK Cycle Time–Write
tclk 43
15
—ns
CS2 ECSPIx_SCLK High or Low Time–Read
ECSPIx_SCLK High or Low Time–Write
tSW 21.5
7
—ns
CS3 ECSPIx_SCLK Rise or Fall1
1See specific I/O AC parameters Section 3.6, I/O AC parameters.”
tRISE/FALL ——ns
CS4 ECSPIx_SS_B pulse width tCSLH Half ECSPIx_SCLK period ns
CS5 ECSPIx_SS_B Lead Time (CS setup time) tSCS Half ECSPIx_SCLK period - 4 ns
CS6 ECSPIx_SS_B Lag Time (CS hold time) tHCS Half ECSPIx_SCLK period - 2 ns
CS7 ECSPIx_MOSI Propagation Delay (CLOAD =20pF) t
PDmosi -1 1 ns
CS8 ECSPIx_MISO Setup Time tSmiso 18 ns
CS9 ECSPIx_MISO Hold Time tHmiso 0—ns
CS10 RDY to ECSPIx_SS_B Time2
2SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals.
tSDRY 5—ns
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 35
3.9.1.2 ECSPI Slave mode timing
Figure 11 depicts the timing of ECSPI in Slave mode. Table 29 lists the ECSPI Slave mode timing
characteristics.
Figure 11. ECSPI Slave mode timing diagram
Table 29. ECSPI Slave mode timing parameters
ID Parameter Symbol Min Max Unit
CS1 ECSPIx_SCLK Cycle Time–Read
ECSPI_SCLK Cycle Time–Write
tclk 15
43
—ns
CS2 ECSPIx_SCLK High or Low Time–Read
ECSPIx_SCLK High or Low Time–Write
tSW 7
21.5
—ns
CS4 ECSPIx_SS_B pulse width tCSLH Half ECSPIx_SCLK period ns
CS5 ECSPIx_SS_B Lead Time (CS setup time) tSCS 5—ns
CS6 ECSPIx_SS_B Lag Time (CS hold time) tHCS 5—ns
CS7 ECSPIx_MOSI Setup Time tSmosi 4—ns
CS8 ECSPIx_MOSI Hold Time tHmosi 4—ns
CS9 ECSPIx_MISO Propagation Delay (CLOAD =20pF) t
PDmiso 419ns
CS1
CS7 CS8
CS2
CS2
CS4
CS6 CS5
CS9
ECSPIx_SCLK
ECSPIx_SS_B
ECSPIx_MISO
ECSPIx_MOSI
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
36 NXP Semiconductors
Electrical characteristics
3.9.2 Ultra-high-speed SD/SDIO/MMC host interface (uSDHC) AC
timing
This section describes the electrical information of the uSDHC, which includes SD/eMMC 5.1 (single data
rate) timing, eMMC 5.1/SD3.0 (dual data rate) AC timing, and SDR50/SDR104 AC timing.
3.9.2.1 SD3.0/eMMC 5.1 (single data rate) AC timing
Figure 12 depicts the timing of SD3.0/eMMC5.1 (SDR), and Table 30 lists the SD3.0/eMMC5.1 (SDR)
timing characteristics.
Figure 12. SD3.0/eMMC5.1 (SDR) timing
Table 30. SD3.0/eMMC5.1 (SDR) interface timing specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency (Low Speed) fPP10 400 kHz
Clock Frequency (SD/SDIO Full Speed/High Speed) fPP20 25/50 MHz
Clock Frequency (MMC Full Speed/High Speed) fPP30 20/52 MHz
Clock Frequency (Identification Mode) fOD 100 400 kHz
SD2 Clock Low Time tWL 7—ns
SD3 Clock High Time tWH 7—ns
SD4 Clock Rise Time tTLH —3ns
SD5 Clock Fall Time tTHL —3ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)
SD6 uSDHC Output Delay tOD 6.6 3.6 ns
SD1
SD3
SD5
SD4
SD7
SDx_CLK
SD2
SD8
SD6
Output from uSDHC to card
Input from card to uSDHC
SDx_DATA[7:0]
SDx_DATA[7:0]
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 37
3.9.2.2 eMMC 5.1/SD3.0 (dual data rate) AC timing
Figure 13 depicts the timing of eMMC 5.1/SD3.0 (DDR). Table 31 lists the eMMC 5.1/SD3.0 (DDR)
timing characteristics. Be aware that only DATA is sampled on both edges of the clock (not applicable to
CMD).
Figure 13. eMMC5.1/SD3.0 (DDR) timing
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)
SD7 uSDHC Input Setup Time tISU 2.5 ns
SD8 uSDHC Input Hold Time4tIH 1.5 ns
1In Low-Speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.
2In Normal (Full) -Speed mode for SD/SDIO card, clock frequency can be any value between 025 MHz. In High-speed mode,
clock frequency can be any value between 050 MHz.
3In Normal (Full) -Speed mode for MMC card, clock frequency can be any value between 020 MHz. In High-speed mode,
clock frequency can be any value between 052 MHz.
4To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.
Table 31. eMMC5.1/SD3.0 (DDR) interface timing specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency (eMMC5.1 DDR) fPP 052MHz
SD1 Clock Frequency (SD3.0 DDR) fPP 050MHz
uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)
SD2 uSDHC Output Delay tOD 2.7 6.9 ns
uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)
Table 30. SD3.0/eMMC5.1 (SDR) interface timing specification (continued)
ID Parameter Symbols Min Max Unit
SD1
SD2
SD3
Output from eSDHCv3 to card
Input from card to eSDHCv3
SDx_DATA[7:0]
SDx_CLK
SD4
SD2
......
......
SDx_DATA[7:0]
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
38 NXP Semiconductors
Electrical characteristics
3.9.2.3 HS400 DDR AC timing
Figure 14 depicts the timing of HS400 mode, and Table 32 lists the HS400 timing characteristics. Be
aware that only data is sampled on both edges of the clock (not applicable to CMD). The CMD
input/output timing for HS400 mode is the same as CMD input/output timing for SDR104 mode. Check
SD5, SD6, and SD7 parameters in Table 34 SDR50/SDR104 Interface Timing Specification for CMD
input/output timing for HS400 mode.
Figure 14. HS400 timing
SD3 uSDHC Input Setup Time tISU 2.4 ns
SD4 uSDHC Input Hold Time tIH 1.3 ns
Table 32. HS400 interface timing specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock frequency fPP 0 200 MHz
SD2 Clock low time tCL 0.46 x tCLK 0.54 x tCLK ns
SD3 Clock high time tCH 0.46 x tCLK 0.54 x tCLK ns
uSDHC Output/Card Inputs DAT (Reference to SCK)
SD4 Output skew from data of edge of SCK tOSkew1 0.45 ns
SD5 Output skew from edge of SCk to data tOSkew2 0.45 ns
uSDHC Input/Card Outputs DAT (Reference to Strobe)
Table 31. eMMC5.1/SD3.0 (DDR) interface timing specification (continued)
ID Parameter Symbols Min Max Unit
SD7
SD1
SD5 SD5
SD6
SCK
Output from
Strobe
Input from
uSDHC to eMMC
eMMC to uSDHC
DAT0
DAT1
DAT7
...
DAT0
DAT1
DAT7
...
SD4
SD4
SD3
SD2
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 39
3.9.2.4 HS200 Mode AC timing
Figure 15 depicts the timing of HS200 mode, and Table 33 lists the HS200 timing characteristics.
Figure 15. HS200 timing
iti
SD6 uSDHC input skew tRQ —0.45ns
SD7 uSDHC hold skew tRQH —0.45ns
Table 33. HS200 interface timing specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency Period tCLK 5.0 ns
SD2 Clock Low Time tCL 0.3 x tCLK 0.7 x tCLK ns
SD3 Clock High Time tCH 0.3 x tCLK 0.7 x tCLK ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)
SD5 uSDHC Output Delay tOD -1.6 1 ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1
1HS200 is for 8 bits while SDR104 is for 4 bits.
SD8 uSDHC Output Data Window tODW 0.5 x tCLK —ns
Table 32. HS400 interface timing specification (continued)
ID Parameter Symbols Min Max Unit
SCK
8-bit output from uSDHC to eMMC
8-bit input from eMMC to uSDHC
SD8
SD4/SD5
SD2 SD3
SD1
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
40 NXP Semiconductors
Electrical characteristics
3.9.2.5 SDR50/SDR104 AC timing
Figure 16 depicts the timing of SDR50/SDR104, and Table 34 lists the SDR50/SDR104 timing
characteristics.
Figure 16. SDR50/SDR104 timing
3.9.2.6 Bus operation condition for 3.3 V and 1.8 V signaling
Signaling level of SD/eMMC4.5/5.0/5.1 can be 1.8 V or 3.3 V depending on the working mode. The DC
parameters for the NVCC_SD1, NVCC_SD2 and NVCC_SD3 supplies are identical to those shown in
Table 21, "GPIO DC parameters," on page 28.
Table 34. SDR50/SDR104 interface timing specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency Period tCLK 5—ns
SD2 Clock Low Time tCL 0.46 x tCLK 0.54 x tCLK ns
SD3 Clock High Time tCH 0.46 x tCLK 0.54 x tCLK ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)
SD4 uSDHC Output Delay tOD -3 1 ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)
SD5 uSDHC Output Delay tOD -1.6 1 ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)
SD6 uSDHC Input Setup Time tISU 2.4 ns
SD7 uSDHC Input Hold Time tIH 1.4 ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1
1Data window in SDR100 mode is variable.
SD8 uSDHC Output Data Window tODW 0.5 x tCLK —ns
SCK
8-bit output from uSDHC to eMMC
8-bit input from eMMC to uSDHC
SD8
SD7
SD6
SD4/SD5
SD2 SD3
SD1
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 41
3.9.3 Ethernet controller (ENET) AC electrical specifications
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive
at timing specs/constraints for the physical interface.
Table 35. ENET signal mapping
Pad name Description Mode Alt mode Direction Comments
ENET_MDC enet1.MDC RMII/RGMII ALT0 O
ENET_MDIO enet1.MDIO RMII/RGMII ALT0 I/O
ENET_TD3 RGMII.TD3 RGMII ALT0 O Only used for RGMII
ENET_TD2 RMII.CLK;
RGMII.TD2
RMII/RGMII ALT0 I/O Used as RMII clock and RGMII data, there
are two RGMII clock schemes.
MAC generate output 50M reference clock
for PHY, and MAC also use this 50M clock.
MAC use external 50M clock.
ENET_TD1 RMII and
RGMII.TD1
RMII/RGMII ALT0 O
ENET_TD0 RMII and
RGMII.TD0
RMII/RGMII ALT0 O
ENET_TX_CTL RMII.TX_EN;
RGMII.TX_CTL
RMII/RGMII ALT0 O
ENET_TXC RMII.TX_ERR;
RGMII. TX_CLK
RGMII ALT0/ALT1 O For RMII—ENET_TXC works as
RMII.TX_ERR need to work in the ALT1
mode.
For RGMII—ENET_TXC works as
RGMII.TX_CLK need to work in the ALT0
mode.
ENET_RX_CTL RMII.RX_EN
(CRS_DV);
RGMII.RC_CTL
RMII/RGMII ALT0 I
ENET_RXC RMII.RX_ERR;
RGMII.RX_CLK
RGMII ALT0/ALT1 I For RMII—ENET_RXC works as
RMII.RX_ERR need to work in the ALT1
mode.
For RGMII—ENET_RXC works as
RGMII.RX_CLK need to work in the ALT0
mode.
ENET_RD0 RMII and
RGMII.RD0
RMII/RGMII ALT0 I
ENET_RD1 RMII and
RGMII.RD1
RMII/RGMII ALT0 I
ENET_RD2 RGMII.RD2 RGMII ALT0 I
ENET_RD3 RGMII.RD3 RGMII ALT0 I
GPIO1_IO06 enet1.MDC RMII/RGMII ALT1 O
GPIO1_IO07 enet1.MDIO RMII/RGMII ALT1 I/O
I2C1_SCL enet1.MDC RMII/RGMII ALT1 O
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
42 NXP Semiconductors
Electrical characteristics
3.9.3.1 RMII mode timing
Figure 17 shows RMII mode timings. Table 36 describes the timing parameters (M16–M21) shown in the
figure.
I2C1_SDA enet1.MDIO RMII/RGMII ALT1 I/O
I2C2_SCL enet1.1588_EV
ENT1_IN
RMII/RGMII ALT1 O
I2C2_SDA enet1.1588_EV
ENT1_OUT
RMII/RGMII ALT1 I/O
GPIO1_IO00 ENET_PHY_RE
F_CLK_ROOT
RGMII ALT1 O Reference clock for PHY.
GPIO1_IO08 enet1.1588_EV
ENT0_IN
RMII/RGMII ALT1 I Capture/compare block input/output event
bus signal. When configured for capture and
a rising edge is detected, the current timer
value is latched and transferred into the
corresponding ENET_TCCRn register for
inspection by software. When configured for
compare, the corresponding signal
1588_EVENT is asserted for one cycle when
the timer reaches the compare value
programmed in register ENET_TCCRn. An
interrupt or DMA request can be triggered if
the corresponding bit in ENET_TCSRn[TIE]
or ENET_TSCRn[TDRE] is set.
GPIO1_IO09 enet1.1588_EV
ENT0_OUT
RMII/RGMII ALT1 O
Table 35. ENET signal mapping (continued)
Pad name Description Mode Alt mode Direction Comments
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 43
Figure 17. RMII mode signal timing diagram
3.9.3.2 RGMII signal switching specifications
The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver
devices.
Table 36. RMII signal timing
ID Characteristic Min. Max. Unit
M16 ENET_CLK pulse width high 35% 65% ENET_CLK period
M17 ENET_CLK pulse width low 35% 65% ENET_CLK period
M18 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid 4 ns
M19 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid 15 ns
M20 ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to
ENET_CLK setup
4— ns
M21 ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER hold 2 ns
Table 37. RGMII signal switching specifications1
Symbol Description Min. Max. Unit
Tcyc2Clock cycle duration 7.2 8.8 ns
TskewT3Data to clock output skew at transmitter -500 500 ps
TskewR3Data to clock input skew at receiver 1 2.6 ns
Duty_G4Duty cycle for Gigabit 45 55 %
Duty_T4Duty cycle for 10/100T 40 60 %
Tr/Tf Rise/fall time (20–80%) 0.75 ns
ENET_CLK (input)
ENET_TX_EN
M16
M17
M18
M19
M20 M21
ENET_RX_DATA[1:0]
ENET_TX_DATA (output)
ENET_RX_ER
ENET_RX_EN (input)
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
44 NXP Semiconductors
Electrical characteristics
Figure 18. RGMII transmit signal timing diagram original
Figure 19. RGMII receive signal timing diagram original
1The timings assume the following configuration:
DDR_SEL = (11)b
DSE (drive-strength) = (111)b
2For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns ±40 ns and 40 ns ±4 ns respectively.
3For all versions of RGMII prior to 2.0; this implies that PC board design will require clocks to be routed such that an additional
trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value
is unspecified.
4Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long
as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned
between.
2'-))?48#ATTRANSMITTER
2'-))?48$NNTO
2'-))?48?#4,
2'-))?48#ATRECEIVER
4SKEW4
48%. 48%22
4SKEW2
2'-))?28#ATTRANSMITTER
2'-))?28$NNTO
2'-))?28?#4,
2'-))?28#ATRECEIVER
4SKEW4
28$6 28%22
4SKEW2
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 45
Figure 20. RGMII receive signal timing diagram with internal delay
3.9.4 General-purpose media interface (GPMI) timing
The i.MX 8M Mini GPMI controller is a flexible interface NAND Flash controller with 8-bit data width,
up to 200 MB/s I/O speed and individual chip select.
It supports Asynchronous Timing mode, Source Synchronous Timing mode and Toggle Timing mode
separately, as described in the following subsections.
3.9.4.1 Asynchronous mode AC timing (ONFI 1.0 compatible)
Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The
maximum I/O speed of GPMI in Asynchronous mode is about 50 MB/s. Figure 21 through Figure 24
depicts the relative timing between GPMI signals at the module level for different operations under
Asynchronous mode. Table 38 describes the timing parameters (NF1–NF17) that are shown in the figures.
Figure 21. Command Latch cycle timing diagram
2'-))?28#SOURCEOFDATA
2'-))?28$NNTO
2'-))?28?#4,
2'-))?28#ATRECEIVER
)NTERNALDELAY
4SETUP4 4HOLD4
4SETUP2 4HOLD2
28$6 28%22
Command
.!.$?#,%
.!.$?#%?"
.!.$?7%?"
.!.$?!,%
.!.$?$!4!XX
NF8 NF9
NF7
NF6
NF5
NF2
NF1
NF3 NF4
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
46 NXP Semiconductors
Electrical characteristics
Figure 22. Address Latch cycle timing diagram
Figure 23. Write Data Latch cycle timing diagram
Figure 24. Read Data Latch cycle timing diagram (Non-EDO Mode)
Figure 25. Read Data Latch cycle timing diagram (EDO mode)
Address
NF10
NF11
NF9NF8
NF7
NF6
NF5
NF1
NF3
.!.$?#,%
.!.$?#%?"
.!.$?7%?"
.!.$?!,%
NAND_DATAxx
Data to NF
NF10
NF11
NF7
NF6
NF5
NF1
NF3
.!.$?#,%
.!.$?#%?"
.!.$?7%?"
.!.$?!,%
.!.$?$!4!XX
NF9
NF8
Data from NF
NF14
NF15
NF17
NF16
NF12
NF13
.!.$?#,%
.!.$?#%?"
.!.$?2%?"
.!.$?2%!$9?"
.!.$?$!4!XX
Data from NF
NF14
NF15
NF17
NF16
NF12
NF13
.!.$?#,%
.!.$?#%?"
.!.$?2%?"
.!.$?2%!$9?"
NAND_DATAxx
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 47
In EDO mode (Figure 24), NF16/NF17 are different from the definition in non-EDO mode (Figure 23).
They are called tREA/tRHOH (RE# access time/RE# HIGH to output hold). The typical values for them
are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI samples
NAND_DATAxx at the rising edge of delayed NAND_RE_B provided by an internal DPLL. The delay
value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX 8M Mini
Applications Processor Reference Manual [IMX8MMRM]). The typical value of this control register is
0x8 at 50 MT/s EDO mode. But if the board delay is big enough and cannot be ignored, the delay value
should be made larger to compensate the board delay.
Table 38. Asynchronous mode timing parameters1
1GPMI’s Asynchronous mode output timing can be controlled by the module’s internal registers
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min. Max.
NF1 NAND_CLE setup time tCLS (AS + DS) T - 0.12 [see notes2,3]
2 AS minimum value can be 0, while DS/DH minimum value is 1.
3T = GPMI clock period -0.075 ns (half of maximum p-p jitter).
ns
NF2 NAND_CLE hold time tCLH DH T - 0.72 [see note2]ns
NF3 NAND_CE0_B setup time tCS (AS + DS + 1) T [see notes3,2]ns
NF4 NAND_CE0_B hold time tCH (DH+1) T - 1 [see note2]ns
NF5 NAND_WE_B pulse width tWP DS T [see note2]ns
NF6 NAND_ALE setup time tALS (AS + DS) T - 0.49 [see notes3,2]ns
NF7 NAND_ALE hold time tALH DH T - 0.42 [see note2]ns
NF8 Data setup time tDS DS T - 0.26 [see note2]ns
NF9 Data hold time tDH DH T - 1.37 [see note2]ns
NF10 Write cycle time tWC (DS + DH) T [see note2]ns
NF11 NAND_WE_B hold time tWH DH T [see note2]ns
NF12 Ready to NAND_RE_B low tRR4
4NF12 is guaranteed by the design.
(AS + 2) T [see 3,2]—ns
NF13 NAND_RE_B pulse width tRP DS T [see note2]ns
NF14 READ cycle time tRC (DS + DH) T [see note2]ns
NF15 NAND_RE_B high hold time tREH DH T [see note2]ns
NF16 Data setup on read tDSR (DS T -0.67)/18.38 [see
notes5,6]
5Non-EDO mode.
6EDO mode, GPMI clock 100 MHz
(AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0).
ns
NF17 Data hold on read tDHR 0.82/11.83 [see notes5,6]—ns
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
48 NXP Semiconductors
Electrical characteristics
3.9.4.2 Source synchronous mode AC timing (ONFI 2.x compatible)
Figure 26 to Figure 28 show the write and read timing of Source Synchronous mode.
Figure 26. Source Synchronous mode command and address timing diagram
NF18
NF25 NF26
NF25 NF26
NF20
NF21
NF20
NF23
NF24
NF19
NF22
NF21
CMD ADD
.!.$?#%?"
NAND_CLE
NAND_ALE
NAND_WE/RE_B
NAND_CLK
NAND_DQS
NAND_DQS
Output enable
NAND_DATA[7:0]
NAND_DATA[7:0]
Output enable
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 49
Figure 27. Source Synchronous mode data write timing diagram
Figure 28. Source Synchronous mode data read timing diagram
NF23
NF18
NF25
NF26
NF27
NF25
NF26
NF28 NF28
NF29 NF29
NF23 NF24
NF24
NF19
NF27
NF22
.!.$?#%?"
.!.$?#,%
.!.$?!,%
NAND_WE/RE_B
.!.$?#,+
.!.$?$13
.!.$?$13
Output enable
.!.$?$1;=
.!.$?$1;=
Output enable
NF23
NF18
NF25
NF26
NF25
NF26
NF23 NF24
NF24
NF19
NF22
NF25
NF26
.!.$?#%?"
.!.$?#,%
NAND_ALE
.!.$?7%2%
.!.$?#,+
.!.$?$13
.!.$?$13
/UTPUTENABLE
.!.$?$!4!;=
.!.$?$!4!;=
/UTPUTENABLE
NF25
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
50 NXP Semiconductors
Electrical characteristics
Figure 29. NAND_DQS/NAND_DQ read valid window
For DDR Source Synchronous mode, Figure 29 shows the timing diagram of
NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 0.85 ns (max) and 1 ns
(max) for tQHS at 200 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of an
delayed NAND_DQS signal, which can be provided by an internal DPLL. The delay value can be
controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI
chapter of the i.MX 8M Mini Applications Processor Reference Manual [IMX8MMRM]). Generally, the
typical delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. But if the
board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the
board delay.
Table 39. Source Synchronous mode timing parameters1
1GPMI’s Source Synchronous mode output timing can be controlled by the module’s internal registers
GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing depends
on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings.
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min. Max.
NF18 NAND_CE0_B access time tCE CE_DELAY T - 0.79 [see note2]
2T = tCK(GPMI clock period) –0.075 ns (half of maximum p-p jitter).
ns
NF19 NAND_CE0_B hold time tCH 0.5 tCK - 0.63 [see note2]ns
NF20 Command/address NAND_DATAxx setup time tCAS 0.5 tCK - 0.05 ns
NF21 Command/address NAND_DATAxx hold time tCAH 0.5 tCK - 1.23 ns
NF22 clock period tCK ns
NF23 preamble delay tPRE PRE_DELAY T - 0.29 [see note2]ns
NF24 postamble delay tPOST POST_DELAY T - 0.78 [see note2]ns
NF25 NAND_CLE and NAND_ALE setup time tCALS 0.5 tCK - 0.86 ns
NF26 NAND_CLE and NAND_ALE hold time tCALH 0.5 tCK - 0.37 ns
NF27 NAND_CLK to first NAND_DQS latching transition tDQSS T - 0.41 [see note2]ns
NF28 Data write setup 0.25 tCK - 0.35
NF29 Data write hold 0.25 tCK - 0.85
NF30 NAND_DQS/NAND_DQ read setup skew 2.06
NF31 NAND_DQS/NAND_DQ read hold skew 1.95
D0 D1 D2 D3
.!.$?$13
.!.$?$!4!;=
NF30
NF31
NF30
NF31
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 51
3.9.4.3 ONFI NV-DDR2 mode (ONFI 3.2 compatible)
3.9.4.3.1 Command and address timing
ONFI 3.2 mode command and address timing is the same as ONFI 1.0 compatible Async mode AC timing.
See Section 3.9.4.1, Asynchronous mode AC timing (ONFI 1.0 compatible),” for details.
3.9.4.3.2 Read and write timing
ONFI 3.2 mode read and write timing is the same as Toggle mode AC timing. See Section 3.9.4.4, Toggle
mode AC Timing,” for details.
3.9.4.4 Toggle mode AC Timing
3.9.4.4.1 Command and address timing
NOTE
Toggle mode command and address timing is the same as ONFI 1.0
compatible Asynchronous mode AC timing. See Section 3.9.4.1,
Asynchronous mode AC timing (ONFI 1.0 compatible),” for details.
3.9.4.4.2 Read and write timing
Figure 30. Toggle mode data write timing
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
52 NXP Semiconductors
Electrical characteristics
Figure 31. Toggle mode data read timing
Table 40. Toggle mode timing parameters
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min. Max.
NF1 NAND_CLE setup time tCLS (AS + DS) T - 0.12 [see note1s,2]
NF2 NAND_CLE hold time tCLH DH T - 0.72 [see note2]
NF3 NAND_CE0_B setup time tCS (AS + DS) T - 0.58 [see notes,2]
NF4 NAND_CE0_B hold time tCH DH T - 1 [see note2]
NF5 NAND_WE_B pulse width tWP DS T [see note2]
NF6 NAND_ALE setup time tALS (AS + DS) T - 0.49 [see notes,2]
NF7 NAND_ALE hold time tALH DH T - 0.42 [see note2]
NF8 Command/address NAND_DATAxx setup time tCAS DS T - 0.26 [see note2]
NF9 Command/address NAND_DATAxx hold time tCAH DH T - 1.37 [see note2]
NF18 NAND_CEx_B access time tCE CE_DELAY T [see notes3, 2]—ns
NF22 clock period tCK ns
NF23 preamble delay tPRE PRE_DELAY T [see notes4,2]— ns
DEV?CLK
.!.$?#%X?"
.!.$?#,%
.!.$?!,%
.!.$?7%?"
.!.$?2%?"
.!.$?$13
.!.$?$!4!;=
.&
T#+
T#+
.&
T#+
T#+
.& T#+
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 53
For DDR Toggle mode, Figure 29 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid
window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI
samples NAND_DATA[7:0] at both the rising and falling edges of a delayed NAND_DQS signal, which
is provided by an internal DPLL. The delay value of this register can be controlled by the GPMI register
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 8M Mini
Applications Processor Reference Manual [IMX8MMRM]). Generally, the typical delay value is equal to
0x7, which means a 1/4 clock cycle delay is expected. But if the board delay is big enough and cannot be
ignored, the delay value should be made larger to compensate the board delay.
3.9.5 I2C bus characteristics
The Inter-Integrated Circuit (I2C) provides functionality of a standard I2C master and slave. The I2C is
designed to be compatible with the I2C Bus Specification, version 2.1, by Philips Semiconductor (now
NXP Semiconductors).
3.9.6 MIPI D-PHY timing parameters
MIPI D-PHY electrical specifications are compliance.
NF24 postamble delay tPOST POST_DELAY T + 0.43 [see
note2]
—ns
NF28 Data write setup tDS50.25 tCK - 0.32 ns
NF29 Data write hold tDH50.25 tCK - 0.79 ns
NF30 NAND_DQS/NAND_DQ read setup skew tDQSQ6—3.18ns
NF31 NAND_DQS/NAND_DQ read hold skew tQHS6—3.27ns
1 AS minimum value can be 0, while DS/DH minimum value is 1.
2T = tCK (GPMI clock period) -0.075 ns (half of maximum p-p jitter).
3CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started
with enough time of ALE/CLE assertion to low level.
4PRE_DELAY+1 (AS+DS)
5Shown in Figure 30.
6Shown in Figure 31.
Table 40. Toggle mode timing parameters (continued)
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min. Max.
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
54 NXP Semiconductors
Electrical characteristics
3.9.7 PCIe PHY parameters
The PCIe interface is designed to be compatible with PCIe specification Gen2 x1 lane and supports the
PCI Express 1.1/2.0 standard.
3.9.7.1 PCIE_RESREF reference resistor connection
The impedance calibration process requires connection of reference resistor 8.2 k 1% precision resistor
on PCIE_RESREF pads to ground. It is used for termination impedance calibration.
3.9.8 PDM timing parameters
Figure 32 illustrates the input timing of the PDM.
Table 41. MIPI PHY worst power dissipation1
1M4 indicates MIPI DSI have 4 data lane enable (at least 1 clock lane enable). S4 indicates MIPI CSI have 4 data lane enable
(at least 1 clock lane enable).
MODE Power consume on
VDD_MIPI_0P9 (mW)
Power consume on
VDD_MIPI_1P2 (mW)
Power consume on
VDD_MIPI_1P8 (mW)
Total power
consume (mW)
2.1 Gbps
M4 on
S4 on
226.1 4.1 35.6 265.8
M4 on
S4 off
164.7 4.03 28.6 197.33
M4 off
S4 on
63.02 0 15.8 78.82
ULPS 4.26 0.0367 0.0584 4.36
Table 42. PCIe DC electrical characteristics
Parameter Description Min Typ Max Unit
PD Power Consumption Normal Gen2 129.5 mW
Partial Mode 98.2 mW
Slumber Mode 4.9 mW
Full Powerdown 0.1 mW
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 55
Figure 32. PDM input timing
PDM clock operative range is from 500 kHz to 6 MHz. Within range, only need to configure ipg_clk_app
rate and CLKDIV without I/O timing concerns.
3.9.9 Pulse width modulator (PWM) timing parameters
This section describes the electrical information of the PWM. The PWM can be programmed to select one
of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before
being input to the counter. The output is available at the pulse-width modulator output (PWMO) external
pin.
Figure 33 depicts the timing of the PWM, and Table 43 lists the PWM timing parameters.
Figure 33. PWM timing
Table 43. PWM output timing parameters
ID Parameter Min Max Unit
PWM Module Clock Frequency 0 66 (ipg_clk) MHz
P1 PWM output pulse width high 12 ns
P2 PWM output pulse width low 12 ns
PDM Clock
PDM Bitstream
ipg_clk_app
Pulse right
pre_channel_1
ipg_dee_clk
Channel 1
Channel 0
07-N?/54
0 0
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
56 NXP Semiconductors
Electrical characteristics
3.9.10 FlexSPI timing parameters
Measurements are with a load of 15 pF and an input slew rate of 1 V/ns.
3.9.10.1 FlexSPI input/read timing
There are three sources for the internal sample clock for FlexSPI read data:
Dummy read strobe generated by FlexSPI controller and looped back internally
(FlexSPIn_MCR0[RXCLKSRC] = 0x0)
Dummy read strobe generated by FlexSPI controller and looped back through the DQS pad
(FlexSPIn_MCR0[RXCLKSRC] = 0x1)
Read strobe provided by memory device and input from DQS pad
(FlexSPIn_MCR0[RXCLKSRC] = 0x3)
The following sections describe input signal timing for each of these four internal sample clock sources.
3.9.10.1.1 SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1
Figure 34. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1
Table 44. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0
Symbol Parameter Min. Max. Unit Notes
[D:] Frequency of operation 66 MHz
F1 [D:] Setup time for incoming data 8.67 ns 1
1The setup specification here assumes the data learning feature is not used. If data learning is enabled, then TIS can be
decreased by up to 2ns.
F2 [D:] Hold time for incoming data 0 ns
Table 45. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1
Symbol Parameter Min. Max. Unit Notes
[D:] Frequency of operation 133 MHz
F1 [D:] Setup time for incoming data 1.5 ns 1
1The setup specification here assumes the data learning feature is not used. If data learning is enabled, then TIS can be
decreased by up to 2ns.
F2 [D:] Hold time for incoming data 1 ns
F1 F2 F1 F2
FLEXSPI_SCLK
FLEXSPI_DATA[7:0]
Internal Sample Clock
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 57
NOTE
Timing shown is based on the memory generating read data on the SCK
falling edge, and FlexSPI controller sampling read data on the falling edge.
3.9.10.1.2 SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3
There are two cases when the memory provides both read data and the read strobe in SDR mode:
•A1Memory generates both read data and read strobe on SCK rising edge (or falling edge)
•A2Memory generates read data on SCK falling edge and generates read strobe on SCK rising
edge
Figure 35. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A1)
NOTE
Timing shown is based on the memory generating read data and read strobe
on the SCK rising edge. The FlexSPI controller samples read data on the
DQS falling edge.
Table 46. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A1)
Symbol Parameter Min. Max. Unit
[D:] Frequency of operation 166 MHz
F3 [D:] Time from SCK to data valid ns
F4 [D:] Time from SCK to DQS ns
[D:] Time delta between TSCKD and
TSCKDQS
-2 2 ns
Table 47. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A2)
Symbol Parameter Min. Max. Unit
[D:] Frequency of operation 166 MHz
F5 [D:] Time from SCK to data valid ns
F6 [D:] Time from SCK to DQS ns
[D:] Time delta between TSCKD and
TSCKDQS
-2 2 ns
F3 F3
F4 F4
FLEXSPI_SCLK
FLEXSPI_DATA[7:0]
FLEXSPI_DQS
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
58 NXP Semiconductors
Electrical characteristics
Figure 36. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A2)
NOTE
Timing shown is based on the memory generating read data on the SCK
falling edge and read strobe on the SCK rising edge. The FlexSPI controller
samples read data on a half-cycle delayed DQS falling edge.
3.9.10.1.3 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1
Figure 37. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1
Table 48. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0
Symbol Parameter Min. Max. Unit Notes
[D:] Frequency of operation 33 MHz
F1 [D:] Setup time for incoming data 8.67 ns 1
1The setup specification here assumes the data learning feature is not used. If data learning is enabled, then TIS can be
decreased by up to 2ns.
F2 [D:] Hold time for incoming data 0 ns
Table 49. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1
Symbol Parameter Min. Max. Unit Notes
[D:] Frequency of operation 66 MHz
F1 [D:] Setup time for incoming data 1.5 ns 1
1The setup specification here assumes the data learning feature is not used. If data learning is enabled, then TIS can be
decreased by up to 2ns.
F2 [D:] Hold time for incoming data 1 ns
F5
F6
F5
F6
F5
F6
FLEXSPI_SCLK
FLEXSPI_DATA[7:0]
FLEXSPI_DQS
Internal Sample Clock
F1 F2
F1 F2
SCLK
SIO[0:7]
Internal Sample Clocks
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 59
3.9.10.1.4 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3
Figure 38. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3
3.9.10.2 FlexSPI output/write timing
The following sections describe output signal timing for the FlexSPI controller including control signals
and data outputs.
3.9.10.2.1 SDR mode
Table 50. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case 1)
Symbol Parameter Min. Max. Unit
[D:] Frequency of operation 166 MHz
TSCKD [D:] Time from SCK to data valid ns
TSCKDQS [D:] Time from SCK to DQS ns
TSCKD - TSCKDQS [D:] Time delta between TSCKD and
TSCKDQS
-0.6 0.6 ns
Table 51. FlexSPI output timing in SDR mode
Symbol Parameter Min. Max. Unit
[D:] Frequency of operation1—166MHz
TCK [D:] SCK clock period 6.02 ns
TDSO [D:] Output data setup time 2 ns
TDHO [D:] Output data hold time 2 ns
TCSS [D:] Chip select output setup time 3 x TCK - 1 ns
TCSH [D:] Chip select output hold time 3 x TCK - 1 ns
TSCKD
TSCKDQS
SCK
SIO[0:7]
DQS
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
60 NXP Semiconductors
Electrical characteristics
Figure 39. FlexSPI output timing in SDR mode
3.9.10.2.2 DDR mode
1The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. See the
FlexSPI SDR input timing specifications.
NOTE
TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1 register, the
default values are shown above. See the i.MX 8M Mini Applications
Processor Reference Manual (IMX8MMRM) for more details.
Table 52. FlexSPI output timing in DDR mode
Symbol Parameter Min. Max. Unit
[D:] Frequency of operation1
1The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. See the
FlexSPI SDR input timing specifications.
NOTE
TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1 register, the
default values are shown above. See the i.MX 8M Mini Applications
Processor Reference Manual (IMX8MMRM) for more details.
—166MHz
TCK [D:] SCK clock period 6.02 ns
TDSO [D:] Output data setup time 0.6 ns
TDHO [D:] Output data hold time 0.6 ns
TCSS [D:] Chip select output setup time 3 x TCK - 1.075 ns
TCSH [D:] Chip select output hold time 3 x TCK - 1.075 ns
T
CSS
T
CK
T
CSH
T
DVO
T
DHO
T
DVO
T
DHO
SCK
CS
SIO[0:7]
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 61
Figure 40. FlexSPI output timing in DDR mode
3.9.11 SAI/I2S switching specifications
This section provides the AC timings for the SAI in Master (clocks driven) and Slave (clocks input) modes.
All timings are given for non inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP]
= 0) and non inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock
and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal
(SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below.
Table 53. Master mode SAI timing (50 MHz)1
1To achieve 50 MHz for BCLK operation, clock must be set in feedback mode.
Num Characteristic Min Max Unit
S1 SAI_MCLK cycle time 20 ns
S2 SAI_MCLK pulse width high/low 40% 60% MCLK period
S3 SAI_BCLK cycle time 20 ns
S4 SAI_BCLK pulse width high/low 40% 60% BCLK period
S5 SAI_BCLK to SAI_FS output valid 2 ns
S6 SAI_BCLK to SAI_FS output invalid 0 ns
S7 SAI_BCLK to SAI_TXD valid 2 ns
S8 SAI_BCLK to SAI_TXD invalid 0 ns
S9 SAI_RXD/SAI_FS input setup before SAI_BCLK 2 ns
S10 SAI_RXD/SAI_FS input hold after SAI_BCLK 0 ns
Table 54. Master mode SAI timing (25 MHz)
Num Characteristic Min Max Unit
S1 SAI_MCLK cycle time 40 ns
S2 SAI_MCLK pulse width high/low 40% 60% MCLK period
S3 SAI_BCLK cycle time 40 ns
S4 SAI_BCLK pulse width high/low 40% 60% BCLK period
S5 SAI_BCLK to SAI_FS output valid 2 ns
T
CSS
T
CK
T
DVO
T
DHO
T
DVO
T
DHO
T
CSH
SCK
CS
SIO[0:7]
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
62 NXP Semiconductors
Electrical characteristics
Figure 41. SAI timing—Master modes
S6 SAI_BCLK to SAI_FS output invalid 0 ns
S7 SAI_BCLK to SAI_TXD valid 2 ns
S8 SAI_BCLK to SAI_TXD invalid 0 ns
S9 SAI_RXD/SAI_FS input setup before SAI_BCLK 12 ns
S10 SAI_RXD/SAI_FS input hold after SAI_BCLK 0 ns
Table 55. Slave mode SAI timing (50 MHz)1
1TX does not support 50 MHz operation in Slave mode.
Num Characteristic Min Max Unit
S11 SAI_BCLK cycle time (input) 20 ns
S12 SAI_BCLK pulse width high/low (input) 40% 60% BCLK period
S13 SAI_FS input setup before SAI_BCLK 2 ns
S14 SAI_FA input hold after SAI_BCLK 2 ns
S17 SAI_RXD setup before SAI_BCLK 2 ns
S18 SAI_RXD hold after SAI_BCLK 2 ns
Table 56. Slave mode SAI timing (25 MHz)
Num Characteristic Min Max Unit
S11 SAI_BCLK cycle time (input) 40 ns
S12 SAI_BCLK pulse width high/low (input) 40% 60% BCLK period
Table 54. Master mode SAI timing (25 MHz) (continued)
Num Characteristic Min Max Unit
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 63
Figure 42. SAI Timing — Slave Modes
3.9.12 SPDIF timing parameters
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When
encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.
Table 57 and Figure 43 and Figure 44 show SPDIF timing parameters for the Sony/Philips Digital
Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for
SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.
S13 SAI_FS input setup before SAI_BCLK 12 ns
S14 SAI_FA input hold after SAI_BCLK 2 ns
S15 SAI_BCLK to SAI_TXD/SAI_FS output valid 7 ns
S16 SAI_BCLK to SAI_TXD/SAI_FS output invalid 0 ns
S17 SAI_RXD setup before SAI_BCLK 12 ns
S18 SAI_RXD hold after SAI_BCLK 2 ns
Table 57. SPDIF timing parameters
Parameter Symbol
Timing Parameter Range
Unit
Min Max
SPDIF_IN Skew: asynchronous inputs, no specs apply 0.7 ns
SPDIF_OUT output (Load = 50 pf)
Skew
Transition rising
Transition falling
1.5
24.2
31.3
ns
Table 56. Slave mode SAI timing (25 MHz) (continued)
Num Characteristic Min Max Unit
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
64 NXP Semiconductors
Electrical characteristics
Figure 43. SPDIF_SR_CLK timing diagram
Figure 44. SPDIF_ST_CLK timing diagram
SPDIF_OUT output (Load = 30 pf)
Skew
Transition rising
Transition falling
1.5
13.6
18.0
ns
Modulating Rx clock (SPDIF_SR_CLK) period srckp 40.0 ns
SPDIF_SR_CLK high period srckph 16.0 ns
SPDIF_SR_CLK low period srckpl 16.0 ns
Modulating Tx clock (SPDIF_ST_CLK) period stclkp 40.0 ns
SPDIF_ST_CLK high period stclkph 16.0 ns
SPDIF_ST_CLK low period stclkpl 16.0 ns
Table 57. SPDIF timing parameters (continued)
Parameter Symbol
Timing Parameter Range
Unit
Min Max
SPDIF_SR_CLK
(Output)
VMVM
srckp
srckph
srckpl
SPDIF_ST_CLK
(Input)
VMVM
stclkp
stclkph
stclkpl
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 65
3.9.13 UART I/O configuration and timing parameters
3.9.13.1 UART RS-232 I/O configuration in different modes
The i.MX 8M Mini UART interfaces can serve both as DTE or DCE device. This can be configured by
the DCEDTE control bit (default 0—DCE mode). Table 58 shows the UART I/O configuration based on
the enabled mode.
3.9.13.2 UART RS-232 Serial mode timing
This section describes the electrical information of the UART module in the RS-232 mode.
3.9.13.2.1 UART transmitter
Figure 45 depicts the transmit timing of UART in the RS-232 Serial mode, with 8 data bit/1 stop bit
format. Table 59 lists the UART RS-232 Serial mode transmit timing characteristics.
Figure 45. UART RS-232 Serial mode transmit timing diagram
Table 58. UART I/O configuration vs. mode
Port
DTE Mode DCE Mode
Direction Description Direction Description
UARTx_RTS_B Output UARTx_RTS_B from DTE to DCE Input UARTx_RTS_B from DTE to DCE
UARTx_CTS_B Input UARTx_CTS_B from DCE to DTE Output UARTx_CTS_B from DCE to DTE
UARTx_TX_ DATA Input Serial data from DCE to DTE Output Serial data from DCE to DTE
UARTx_RX _DATA Output Serial data from DTE to DCE Input Serial data from DTE to DCE
Table 59. RS-232 Serial mode transmit timing parameters
ID Parameter Symbol Min Max Unit
UA1 Transmit Bit Time tTbit 1/Fbaud_rate1 - Tref_clk2
1Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.
2Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).
1/Fbaud_rate + Tref_clk
Start
Bit Bit 1 Bit 2Bit 0 Bit 4 Bit 5 Bit 6 Bit 7
UARTx_TX_DATA
(output) Bit 3 STOP
BIT
Next
Start
Bit
Possible
Parity
Bit
Par Bit
UA1
UA1 UA1
UA1
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
66 NXP Semiconductors
Electrical characteristics
3.9.13.2.2 UART receiver
Figure 46 depicts the RS-232 Serial mode receive timing with 8 data bit/1 stop bit format. Table 60 lists
Serial mode receive timing characteristics.
Figure 46. UART RS-232 Serial mode receive timing diagram
3.9.14 USB PHY parameters
This section describes the USB-OTG PHY parameters.
3.9.14.1 Pad/Package/Board connections
The USBx_VBUS pin cannot directly connect to the 5 V VBUS voltage on the USB2.0 link.
Each USBx_VBUS pin must be isolated by an external 30 K1% precision resistor.
The USB 2.0 PHY uses USBx_TXRTUNE and an external resistor to calibrate the USBx_DP/DN 45
source impedance. The external resistor value is 200 1% precision on each of USBx_TXRTUNE pad to
ground.
3.9.14.2 USB PHY worst power consumption
Table 61 shows the USB 2.0 PHY worst power dissipation.
Table 60. RS-232 Serial mode receive timing parameters
ID Parameter Symbol Min Max Unit
UA2 Receive Bit Time1
1The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not
exceed 3/(16 x Fbaud_rate).
tRbit 1/Fbaud_rate2 - 1/(16
x Fbaud_rate)
2Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.
1/Fbaud_rate +
1/(16 x Fbaud_rate)
Bit 1 Bit 2Bit 0 Bit 4 Bit 5 Bit 6 Bit 7
UARTx_RX_DATA
(output)
Bit 3
Start
Bit STOP
BIT
Next
Start
Bit
Possible
Parity
Bit
Par Bit
UA2 UA2
UA2 UA2
Electrical characteristics
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 67
Table 61. USB 2.0 PHY worst power dissipation
Mode VDD_USB_0P8 VDD_USB_3P3 VDD_USB_1P8 Total Power
HS TX 8.286
mA
4.63
mA
23.409
mA
70.448
mW
FS TX 6.767 12.52 5.968 63.22
LS TX 7.001 13.58 6.224 67.779
Suspend 0.752 0.164 0.106 1.465
Sleep 0.761 0.163 0.106 1.472
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
68 NXP Semiconductors
Boot mode configuration
4 Boot mode configuration
This section provides information on Boot mode configuration pins allocation and boot devices interfaces
allocation.
4.1 Boot mode configuration pins
Table 62 provides boot options, functionality, fuse values, and associated pins. Several input pins are also
sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse.
The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an
unblown fuse). For detailed Boot mode options configured by the Boot mode pins, see the “System Boot,
Fusemap, and eFuse” chapter in the i.MX 8M Mini Applications Processor Reference Manual
(IMX8MMRM).
Table 62. Fuses and associated pins used for boot
Pin
Directio
n
at Reset
eFuse name
State during reset
(POR_B
asserted)
State after reset
(POR_B
deasserted)
Details
BOOT_MODE0 Input N/A Input with pull down Input with pull down Boot mode selection
BOOT_MODE1 Input N/A Input with pull down Input with pull down
SAI1_RXD0 Input BOOT_CFG[0] Input with pull down Input with pull down Boot options pin value
overrides fuse settings for
BT_FUSE_SEL = “0“. Signal
configuration as fuse override
input at power up. These are
special I/O lines that control
the boot configuration during
product development. In
production, the boot
configuration can be
controlled by fuses.
SAI1_RXD1 Input BOOT_CFG[1] Input with pull down Input with pull down
SAI1_RXD2 Input BOOT_CFG[2] Input with pull down Input with pull down
SAI1_RXD3 Input BOOT_CFG[3] Input with pull down Input with pull down
SAI1_RXD4 Input BOOT_CFG[4] Input with pull down Input with pull down
SAI1_RXD5 Input BOOT_CFG[5] Input with pull down Input with pull down
SAI1_RXD6 Input BOOT_CFG[6] Input with pull down Input with pull down
SAI1_RXD7 Input BOOT_CFG[7] Input with pull down Input with pull down
SAI1_TXD0 Input BOOT_CFG[8] Input with pull down Input with pull down
SAI1_TXD1 Input BOOT_CFG[9] Input with pull down Input with pull down
SAI1_TXD2 Input BOOT_CFG[10] Input with pull down Input with pull down
SAI1_TXD3 Input BOOT_CFG[11] Input with pull down Input with pull down
SAI1_TXD4 Input BOOT_CFG[12] Input with pull down Input with pull down
SAI1_TXD5 Input BOOT_CFG[13] Input with pull down Input with pull down
SAI1_TXD6 Input BOOT_CFG[14] Input with pull down Input with pull down
Boot mode configuration
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 69
4.2 Boot device interface allocation
Table 63 lists the interfaces that can be used by the boot process in accordance with the specific Boot
mode configuration. The table also describes the interface’s specific modes and IOMUXC allocation,
which are configured during boot when appropriate.
Table 63. Interface allocation during boot
Interface IP Instance Allocated Pads During Boot Comment
SPI ECSPI-1 ECSPI1_SCLK, ECSPI1_MOSI, ECSPI1_MISO,
ECSPI1_SS0
The chip-select pin used depends
on the fuse “CS select (SPI only)“.
SPI ECSPI-2 ECSPI2_SCLK, ECSPI2_MOSI, ECSPI2_MISO,
ECSPI2_SS0
The chip-select pin used depends
on the fuse “CS select (SPI only)“.
SPI ECSPI-3 UART1_RXD, UART1_TXD, UART2_RXD,
UART2_TXD
The chip-select pin used depends
on the fuse “CS select (SPI only)“.
NAND Flash GPMI NAND_ALE, NAND_CE0_B, NAND_CLE,
NAND_DATA00, NAND_DATA01, NAND_DATA02 ,
NAND_DATA03, NAND_DATA04, NAND_DATA05 ,
NAND_DATA06, NAND_DATA07, NAND_DQS,
NAND_RE_B, NAND_READY_B, NAND_WE_B,
NAND_WP_B
8-bit, only CS0 is supported.
SD/MMC USDHC-1 GPIO1_IO03, GPIO1_IO06, GPIO1_IO07,
SD1_RESET_B, SD1_CLK, SD1_CMD,
SD1_STROBE, SD1_DATA0, SD1_DATA1,
SD1_DATA2, SD1_DATA3, SD1_DATA4,
SD1_DATA5, SD1_DATA6, SD1_DATA7
1, 4, or 8-bit
SD/MMC USDHC-2 GPIO1_IO04, GPIO1_IO08, GPIO1_IO07,
SD2_RESET_B, SD2_WP, SD2_CLK, SD2_CMD,
SD2_DATA0, SD2_DATA1, SD2_DATA2,
SD2_DATA3
1 or 4-bit
SD/MMC USDHC-3 NAND_CE1_B, NAND_CE2_B, NAND_CE3_B,
NAND_CLE, NAND_DATA02, NAND_DATA03,
NAND_DATA04, NAND_DATA05, NAND_DATA06 ,
NAND_DATA07, NAND_RE_B, NAND_READY_B,
NAND_WE_B, NAND_WP_B
1, 4, or 8-bit
FlexSPI FlexSPI NAND_ALE, NAND_CE0_B, NAND_CE1_B,
NAND_CE2_B, NAND_CE3_B, NAND_CLE,
NAND_DATA00, NAND_DATA01, NAND_DATA02 ,
NAND_DATA03, NAND_DATA04, NAND_DATA05 ,
NAND_DATA06, NAND_DATA07, NAND_DQS,
NAND_RE_B
For FlexSPI flash
USB USB_OTG PHY Dedicated USB pins
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
70 NXP Semiconductors
Package information and contact assignments
5 Package information and contact assignments
This section includes the contact assignment information and mechanical package drawing.
5.1 14 x 14 mm package information
5.1.1 14 x 14 mm, 0.5 mm pitch, ball matrix
Figure 47 shows the top, bottom, and side views of the 14 × 14 mm FCBGA package.
Package information and contact assignments
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 71
Figure 47. 14 X 14 MM BGA, case x package top, bottom, and side views
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
72 NXP Semiconductors
Package information and contact assignments
5.1.2 14 x 14 mm supplies contact assignments and functional contact
assignments
Table 64 shows supplies contact assignments for the 14 x 14 mm package.
Table 64. i.MX 8M Mini 14 x 14 mm supplies contact assignments
Supply Rail Name Ball(s) Position(s) Remark
NC J18
NVCC_CLK M19 Supply for CLK interface
NVCC_DRAM P7, K8, N8, R8, V8, K9, L9, M9, N9, R9, T9,
U9, V9
Supply for DRAM interface
NVCC_ECSPI H10 Supply for ESCPI interface
NVCC_ENET W22 Supply for ENET interface
NVCC_GPIO1 W12 Supply for GPIO1 interface
NVCC_I2C J11 Supply for I2C interface
NVCC_JTAG L19 Supply for JTAG interface
NVCC_NAND U19 Supply for NAND interface
NVCC_SAI1 W18 Supply for SAI interface
NVCC_SAI2 V19 Supply for SAI interface
NVCC_SAI3 Y10 Supply for SAI interface
NVCC_SAI5 W17 Supply for SAI interface
NVCC_SD1 V20 Supply for SD interface
NVCC_SD2 V22 Supply for SD interface
NVCC_SNVS_1P8 J22 Supply for SNVS interface
NVCC_UART J12 Supply for UART interface
PVCC0_1P8 AB13 Digital IO pre-drive
PVCC1_1P8 T19 Digital IO pre-drive
PVCC2_1P8 J13 Digital IO pre-drive
VDD_24M_XTAL_1P8 N19 Supply for XTAL
VDD_ANA_0P8 L17, N17 Supply for Analog logic
VDD_ANA0_1P8 AA14, Y15 Supply for Analog logic
VDD_ANA1_1P8 P19, N20 Supply for Analog logic
VDD_ARM R13, T13, U13, V13, W13, T14, W14, R15,
T15, U15, V15, W15, V16, W16
Supply for ARM
VDD_ARM_PLL_0P8 P16 Supply for ARM PLL
VDD_ARM_PLL_1P8 R19 Supply for ARM PLL
VDD_DRAM J10, L10, N10, R10, U10, W10 Supply for DRAM module
Package information and contact assignments
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 73
Table 65 shows an alpha-sorted list of functional contact assignments for the 14 x 14 mm package.
VDD_DRAM_PLL_0P8 P9 Supply for DRAM PLL
VDD_DRAM_PLL_1P8 P5 Supply for DRAM PLL
VDD_GPU R11, U11, W11, P12, V12 Supply for GPU
VDD_MIPI_0P9 J14 Supply for MIPI PHY
VDD_MIPI_1P2 J15 Supply for MIPI PHY
VDD_MIPI_1P8 H13 Supply for MIPI PHY
VDD_PCI_0P8 J16 Supply for PCIe PHY
VDD_PCI_1P8 G14 Supply for PCIe PHY
VDD_SNVS_0P8 K22 Supply for SNVS logic
VDD_SOC N13, K15, L15, M15, N15, K16, R17, U17, L18,
N18, R18, U18
Supply for SOC logic
VDD_USB_0P8 J17 Supply for USB PHY
VDD_USB_1P8 H15 Supply for USB PHY
VDD_USB_3P3 K19 Supply for USB PHY
VDD_VPU L11, N11, K12, K13, L13, M13, M14 Supply for VPU
VSS A1, AG1, C2, H2, Y2, AE2, B3, E3, F3, J3, K3,
N3, P3, R3, V3, W3, AB3, AC3, AF3, C5, AE5,
C6, AE6, G7, J7, K7, N7, R7, V7, W7, AA7, C9,
G9, AA9, AE9, C10, G10, AA10, AE10, L12,
M12, N12, R12, T12, U12, C13, G13, P13,
Y13, AA13, AE13, C14, AE14, C15, G15, P15,
AA15, AE15, L16, M16, N16, R16, T16, U16,
C18, G18, H18, Y18, AA18, AE18, C19, G19,
AA19, AE19, K20, R20, G21, J21, K21, N21,
P21, R21, V21, W21, AA21, C22, AE22, C23,
AE23, E25, F25, J25, K25, N25, P25, R25,
V25, W25, AB25, AC25, B26, A27, AG27
Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments
Ball name Ball Power group Ball type
Reset condition
Default
mode Default function
Input/
Output
status
24M_XTALI B27 VDD_24M_XTAL_
1P8
ANALOG Input
24M_XTALO C26 VDD_24M_XTAL_
1P8
ANALOG Output
BOOT_MODE0 G26 NVCC_JTAG GPIO ALT0 ccmsrcgpcmix.BOOT_MODE[0] Input with PD
BOOT_MODE1 G27 NVCC_JTAG GPIO ALT0 ccmsrcgpcmix.BOOT_MODE[1] Input with PD
Table 64. i.MX 8M Mini 14 x 14 mm supplies contact assignments (continued)
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
74 NXP Semiconductors
Package information and contact assignments
CLKIN1 H27 NVCC_CLK GPIO Input without
PU/PD
CLKIN2 J27 NVCC_CLK GPIO Input without
PU/PD
CLKOUT1 H26 NVCC_CLK GPIO Output low
without
PU/PD
CLKOUT2 J26 NVCC_CLK GPIO Output low
without
PU/PD
DRAM_AC00 F4 NVCC_DRAM DDR Output low
DRAM_AC01 F5 NVCC_DRAM DDR Output low
DRAM_AC02 K4 NVCC_DRAM DDR Input
DRAM_AC03 J4 NVCC_DRAM DDR Input
DRAM_AC04 L2 NVCC_DRAM DDR Input
DRAM_AC05 L1 NVCC_DRAM DDR Input
DRAM_AC06 F6 NVCC_DRAM DDR Input
DRAM_AC07 J5 NVCC_DRAM DDR Input
DRAM_AC08 J6 NVCC_DRAM DDR Input
DRAM_AC09 K6 NVCC_DRAM DDR Input
DRAM_AC10 E4 NVCC_DRAM DDR Input
DRAM_AC11 D5 NVCC_DRAM DDR Input
DRAM_AC12 N4 NVCC_DRAM DDR Input
DRAM_AC13 N5 NVCC_DRAM DDR Input
DRAM_AC14 K5 NVCC_DRAM DDR Input
DRAM_AC15 N6 NVCC_DRAM DDR Input
DRAM_AC16 M1 NVCC_DRAM DDR Input
DRAM_AC17 M2 NVCC_DRAM DDR Input
DRAM_AC19 N2 NVCC_DRAM DDR Input
DRAM_AC20 AB4 NVCC_DRAM DDR Output low
DRAM_AC21 AB5 NVCC_DRAM DDR Output low
DRAM_AC22 W4 NVCC_DRAM DDR Input
DRAM_AC23 V4 NVCC_DRAM DDR Input
Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)
Ball name Ball Power group Ball type
Reset condition
Default
mode Default function
Input/
Output
status
Package information and contact assignments
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 75
DRAM_AC24 U2 NVCC_DRAM DDR Input
DRAM_AC25 U1 NVCC_DRAM DDR Input
DRAM_AC26 N1 NVCC_DRAM DDR Input
DRAM_AC27 R6 NVCC_DRAM DDR Input
DRAM_AC28 W6 NVCC_DRAM DDR Input
DRAM_AC29 V6 NVCC_DRAM DDR Input
DRAM_AC30 AC4 NVCC_DRAM DDR Input
DRAM_AC31 AD5 NVCC_DRAM DDR Input
DRAM_AC32 R4 NVCC_DRAM DDR Input
DRAM_AC33 R5 NVCC_DRAM DDR Input
DRAM_AC34 T1 NVCC_DRAM DDR Input
DRAM_AC35 T2 NVCC_DRAM DDR Input
DRAM_AC36 V5 NVCC_DRAM DDR Input
DRAM_AC37 W5 NVCC_DRAM DDR Input
DRAM_AC38 AB6 NVCC_DRAM DDR Input
DRAM_ALERT_N R2 NVCC_DRAM DDR Input
DRAM_DM0 A4 NVCC_DRAM DDR Input
DRAM_DM1 F1 NVCC_DRAM DDR Input
DRAM_DM2 AB1 NVCC_DRAM DDR Input
DRAM_DM3 AG4 NVCC_DRAM DDR Input
DRAM_DQ00 A5 NVCC_DRAM DDR Input
DRAM_DQ01 B5 NVCC_DRAM DDR Input
DRAM_DQ02 D2 NVCC_DRAM DDR Input
DRAM_DQ03 D1 NVCC_DRAM DDR Input
DRAM_DQ04 C1 NVCC_DRAM DDR Input
DRAM_DQ05 B1 NVCC_DRAM DDR Input
DRAM_DQ06 A3 NVCC_DRAM DDR Input
DRAM_DQ07 B4 NVCC_DRAM DDR Input
DRAM_DQ08 F2 NVCC_DRAM DDR Input
DRAM_DQ09 G2 NVCC_DRAM DDR Input
Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)
Ball name Ball Power group Ball type
Reset condition
Default
mode Default function
Input/
Output
status
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
76 NXP Semiconductors
Package information and contact assignments
DRAM_DQ10 J1 NVCC_DRAM DDR Input
DRAM_DQ11 J2 NVCC_DRAM DDR Input
DRAM_DQ12 K2 NVCC_DRAM DDR Input
DRAM_DQ13 K1 NVCC_DRAM DDR Input
DRAM_DQ14 E1 NVCC_DRAM DDR Input
DRAM_DQ15 E2 NVCC_DRAM DDR Input
DRAM_DQ16 AB2 NVCC_DRAM DDR Input
DRAM_DQ17 AA2 NVCC_DRAM DDR Input
DRAM_DQ18 W1 NVCC_DRAM DDR Input
DRAM_DQ19 W2 NVCC_DRAM DDR Input
DRAM_DQ20 V2 NVCC_DRAM DDR Input
DRAM_DQ21 V1 NVCC_DRAM DDR Input
DRAM_DQ22 AC1 NVCC_DRAM DDR Input
DRAM_DQ23 AC2 NVCC_DRAM DDR Input
DRAM_DQ24 AG5 NVCC_DRAM DDR Input
DRAM_DQ25 AF5 NVCC_DRAM DDR Input
DRAM_DQ26 AD2 NVCC_DRAM DDR Input
DRAM_DQ27 AD1 NVCC_DRAM DDR Input
DRAM_DQ28 AE1 NVCC_DRAM DDR Input
DRAM_DQ29 AF1 NVCC_DRAM DDR Input
DRAM_DQ30 AG3 NVCC_DRAM DDR Input
DRAM_DQ31 AF4 NVCC_DRAM DDR Input
DRAM_DQS0_N B2 NVCC_DRAM Input
DRAM_DQS0_P A2 NVCC_DRAM DDRCLK Input
DRAM_DQS1_N H1 NVCC_DRAM Input
DRAM_DQS1_P G1 NVCC_DRAM DDRCLK Input
DRAM_DQS2_N Y1 NVCC_DRAM Input
DRAM_DQS2_P AA1 NVCC_DRAM DDRCLK Input
DRAM_DQS3_N AF2 NVCC_DRAM Input
DRAM_DQS3_P AG2 NVCC_DRAM DDRCLK Input
Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)
Ball name Ball Power group Ball type
Reset condition
Default
mode Default function
Input/
Output
status
Package information and contact assignments
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 77
DRAM_RESET_N R1 NVCC_DRAM DDR Output low
DRAM_VREF P1 NVCC_DRAM DDR
DRAM_ZN P2 NVCC_DRAM DDR
ECSPI1_MISO A7 NVCC_ECSPI GPIO ALT5 GPIO5.IO[8] Input with PD
ECSPI1_MOSI B7 NVCC_ECSPI GPIO ALT5 GPIO5.IO[7] Input with PD
ECSPI1_SCLK D6 NVCC_ECSPI GPIO ALT5 GPIO5.IO[6] Input with PD
ECSPI1_SS0 B6 NVCC_ECSPI GPIO ALT5 GPIO5.IO[9] Input with PD
ECSPI2_MISO A8 NVCC_ECSPI GPIO ALT5 GPIO5.IO[12] Input with PD
ECSPI2_MOSI B8 NVCC_ECSPI GPIO ALT5 GPIO5.IO[11] Input with PD
ECSPI2_SCLK E6 NVCC_ECSPI GPIO ALT5 GPIO5.IO[10] Input with PD
ECSPI2_SS0 A6 NVCC_ECSPI GPIO ALT5 GPIO5.IO[13] Input with PD
ENET_MDC AC27 NVCC_ENET GPIO ALT5 GPIO1.IO[16] Input with PD
ENET_MDIO AB27 NVCC_ENET GPIO ALT5 GPIO1.IO[17] Input with PD
ENET_RD0 AE27 NVCC_ENET GPIO ALT5 GPIO1.IO[26] Input with PD
ENET_RD1 AD27 NVCC_ENET GPIO ALT5 GPIO1.IO[27] Input with PD
ENET_RD2 AD26 NVCC_ENET GPIO ALT5 GPIO1.IO[28] Input with PD
ENET_RD3 AC26 NVCC_ENET GPIO ALT5 GPIO1.IO[29] Input with PD
ENET_RXC AE26 NVCC_ENET GPIO ALT5 GPIO1.IO[25] Input with PD
ENET_RX_CTL AF27 NVCC_ENET GPIO ALT5 GPIO1.IO[24] Input with PD
ENET_TD0 AG26 NVCC_ENET GPIO ALT5 GPIO1.IO[21] Input with PD
ENET_TD1 AF26 NVCC_ENET GPIO ALT5 GPIO1.IO[20] Input with PD
ENET_TD2 AG25 NVCC_ENET GPIO ALT5 GPIO1.IO[19] Input with PD
ENET_TD3 AF25 NVCC_ENET GPIO ALT5 GPIO1.IO[18] Input with PD
ENET_TXC AG24 NVCC_ENET GPIO ALT5 GPIO1.IO[23] Input with PD
ENET_TX_CTL AF24 NVCC_ENET GPIO ALT5 GPIO1.IO[22] Input with PD
GPIO1_IO00 AG14 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[0] Input with PD
GPIO1_IO011AF14 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[1] Output low
GPIO1_IO02 AG13 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[2] Input with PU
GPIO1_IO03 AF13 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[3] Input with PD
GPIO1_IO04 AG12 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[4] Input with PD
Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)
Ball name Ball Power group Ball type
Reset condition
Default
mode Default function
Input/
Output
status
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
78 NXP Semiconductors
Package information and contact assignments
GPIO1_IO052AF12 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[5] Output high
GPIO1_IO06 AG11 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[6] Input with PD
GPIO1_IO07 AF11 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[7] Input with PU
GPIO1_IO08 AG10 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[8] Input with PD
GPIO1_IO09 AF10 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[9] Input with PD
GPIO1_IO10 AD10 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[10] Input with PD
GPIO1_IO11 AC10 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[11] Input with PD
GPIO1_IO12 AB10 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[12] Input with PD
GPIO1_IO13 AD9 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[13] Input with PD
GPIO1_IO14 AC9 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[14] Input with PD
GPIO1_IO15 AB9 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[15] Input with PD
I2C1_SCL E9 NVCC_I2C GPIO ALT5 GPIO5.IO[14] Input with PD
I2C1_SDA F9 NVCC_I2C GPIO ALT5 GPIO5.IO[15] Input with PD
I2C2_SCL D10 NVCC_I2C GPIO ALT5 GPIO5.IO[16] Input with PD
I2C2_SDA D9 NVCC_I2C GPIO ALT5 GPIO5.IO[17] Input with PD
I2C3_SCL E10 NVCC_I2C GPIO ALT5 GPIO5.IO[18] Input with PD
I2C3_SDA F10 NVCC_I2C GPIO ALT5 GPIO5.IO[19] Input with PD
I2C4_SCL D13 NVCC_I2C GPIO ALT5 GPIO5.IO[20] Input with PD
I2C4_SDA E13 NVCC_I2C GPIO ALT5 GPIO5.IO[21] Input with PD
JTAG_MOD D27 NVCC_JTAG GPIO ALT0 cjtag_wrapper.MOD Input with PD
JTAG_TCK F26 NVCC_JTAG GPIO ALT0 cjtag_wrapper.TCK Input with PU
JTAG_TDI E27 NVCC_JTAG GPIO ALT0 cjtag_wrapper.TDI Input with PU
JTAG_TDO E26 NVCC_JTAG GPIO ALT0 cjtag_wrapper.TDO Input with PU
JTAG_TMS F27 NVCC_JTAG GPIO ALT0 cjtag_wrapper.TMS Input with PU
JTAG_TRST_B C27 NVCC_JTAG GPIO ALT0 cjtag_wrapper.TRST_B Input with PU
MIPI_CSI_CLK_N A16 VDD_MIPI_1P8 PHY Input
MIPI_CSI_CLK_P B16 VDD_MIPI_1P8 PHY Input
MIPI_CSI_D0_N A14 VDD_MIPI_1P8 PHY Input
MIPI_CSI_D0_P B14 VDD_MIPI_1P8 PHY Input
MIPI_CSI_D1_N A15 VDD_MIPI_1P8 PHY Input
Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)
Ball name Ball Power group Ball type
Reset condition
Default
mode Default function
Input/
Output
status
Package information and contact assignments
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 79
MIPI_CSI_D1_P B15 VDD_MIPI_1P8 PHY Input
MIPI_CSI_D2_N A17 VDD_MIPI_1P8 PHY Input
MIPI_CSI_D2_P B17 VDD_MIPI_1P8 PHY Input
MIPI_CSI_D3_N A18 VDD_MIPI_1P8 PHY Input
MIPI_CSI_D3_P B18 VDD_MIPI_1P8 PHY Input
MIPI_DSI_CLK_N A11 VDD_MIPI_1P8 PHY Output low
MIPI_DSI_CLK_P B11 VDD_MIPI_1P8 PHY Output low
MIPI_DSI_D0_N A9 VDD_MIPI_1P8 PHY Output low
MIPI_DSI_D0_P B9 VDD_MIPI_1P8 PHY Output low
MIPI_DSI_D1_N A10 VDD_MIPI_1P8 PHY Output low
MIPI_DSI_D1_P B10 VDD_MIPI_1P8 PHY Output low
MIPI_DSI_D2_N A12 VDD_MIPI_1P8 PHY Output low
MIPI_DSI_D2_P B12 VDD_MIPI_1P8 PHY Output low
MIPI_DSI_D3_N A13 VDD_MIPI_1P8 PHY Output low
MIPI_DSI_D3_P B13 VDD_MIPI_1P8 PHY Output low
MIPI_VREG_CAP D15 0.35 - 0.45 V PHY Output
NAND_ALE N22 NVCC_NAND GPIO ALT5 GPIO3.IO[0] Input with PD
NAND_CE0_B N24 NVCC_NAND GPIO ALT5 GPIO3.IO[1] Input with PU
NAND_CE1_B P27 NVCC_NAND GPIO ALT5 GPIO3.IO[2] Input with PD
NAND_CE2_B M27 NVCC_NAND GPIO ALT5 GPIO3.IO[3] Input with PD
NAND_CE3_B L27 NVCC_NAND GPIO ALT5 GPIO3.IO[4] Input with PD
NAND_CLE K27 NVCC_NAND GPIO ALT5 GPIO3.IO[5] Input with PD
NAND_DATA00 P23 NVCC_NAND GPIO ALT5 GPIO3.IO[6] Input with PD
NAND_DATA01 K24 NVCC_NAND GPIO ALT5 GPIO3.IO[7] Input with PD
NAND_DATA02 K23 NVCC_NAND GPIO ALT5 GPIO3.IO[8] Input with PD
NAND_DATA03 N23 NVCC_NAND GPIO ALT5 GPIO3.IO[9] Input with PD
NAND_DATA04 M26 NVCC_NAND GPIO ALT5 GPIO3.IO[10] Input with PD
NAND_DATA05 L26 NVCC_NAND GPIO ALT5 GPIO3.IO[11] Input with PD
NAND_DATA06 K26 NVCC_NAND GPIO ALT5 GPIO3.IO[12] Input with PD
NAND_DATA07 N26 NVCC_NAND GPIO ALT5 GPIO3.IO[13] Input with PD
Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)
Ball name Ball Power group Ball type
Reset condition
Default
mode Default function
Input/
Output
status
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
80 NXP Semiconductors
Package information and contact assignments
NAND_DQS R22 NVCC_NAND GPIO ALT5 GPIO3.IO[14] Input with PD
NAND_RE_B N27 NVCC_NAND GPIO ALT5 GPIO3.IO[15] Input with PU
NAND_READY_B P26 NVCC_NAND GPIO ALT5 GPIO3.IO[16] Input with PD
NAND_WE_B R26 NVCC_NAND GPIO ALT5 GPIO3.IO[17] Input with PD
NAND_WP_B R27 NVCC_NAND GPIO ALT5 GPIO3.IO[18] Input with PD
ONOFF A25 NVCC_SNVS_1P8 GPIO ALT0 snvsmix.ONOFF Input without
PU/PD
PCIE_CLK_N A21 VDD_PCI_1P8 PHY High-Z
PCIE_CLK_P B21 VDD_PCI_1P8 PHY High-Z
PCIE_RESREF D19 VDD_PCI_1P8 PHY High-Z
PCIE_RXN_N A19 VDD_PCI_1P8 PHY Input, High-Z
PCIE_RXN_P B19 VDD_PCI_1P8 PHY Input, High-Z
PCIE_TXN_N A20 VDD_PCI_1P8 PHY Output,
High-Z
PCIE_TXN_P B20 VDD_PCI_1P8 PHY Output,
High-Z
PMIC_ON_REQ A24 NVCC_SNVS_1P8 GPIO ALT0 snvsmix.PMIC_ON_REQ Open-drain
output high
with PU
PMIC_STBY_REQ E24 NVCC_SNVS_1P8 GPIO ALT0 ccmsrcgpcmix.PMIC_STBY_RE
Q
Output low
with PD
POR_B B24 NVCC_SNVS_1P8 GPIO ALT0 snvsmix.POR_B Input without
PU/PD
RTC_XTALI A26 NVCC_SNVS_1P8 ANALOG Input
RTC_XTALO B25 NVCC_SNVS_1P8 ANALOG Output,
inverted of
RTC_XTALI
RTC_RESET_B F24 NVCC_SNVS_1P8 GPIO ALT0 snvsmix.RTC_POR_B Input without
PU/PD
SAI1_MCLK AB18 NVCC_SAI1 GPIO ALT5 GPIO4.IO[20] Input with PD
SAI1_RXC AF16 NVCC_SAI1 GPIO ALT5 GPIO4.IO[1] Input with PD
SAI1_RXD0 AG15 NVCC_SAI1 GPIO ALT5 GPIO4.IO[2] Input with PD
SAI1_RXD1 AF15 NVCC_SAI1 GPIO ALT5 GPIO4.IO[3] Input with PD
SAI1_RXD2 AG17 NVCC_SAI1 GPIO ALT5 GPIO4.IO[4] Input with PD
Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)
Ball name Ball Power group Ball type
Reset condition
Default
mode Default function
Input/
Output
status
Package information and contact assignments
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 81
SAI1_RXD3 AF17 NVCC_SAI1 GPIO ALT5 GPIO4.IO[5] Input with PD
SAI1_RXD4 AG18 NVCC_SAI1 GPIO ALT5 GPIO4.IO[6] Input with PD
SAI1_RXD5 AF18 NVCC_SAI1 GPIO ALT5 GPIO4.IO[7] Input with PD
SAI1_RXD6 AG19 NVCC_SAI1 GPIO ALT5 GPIO4.IO[8] Input with PD
SAI1_RXD7 AF19 NVCC_SAI1 GPIO ALT5 GPIO4.IO[9] Input with PD
SAI1_RXFS AG16 NVCC_SAI1 GPIO ALT5 GPIO4.IO[0] Input with PD
SAI1_TXC AC18 NVCC_SAI1 GPIO ALT5 GPIO4.IO[11] Input with PD
SAI1_TXD0 AG20 NVCC_SAI1 GPIO ALT5 GPIO4.IO[12] Input with PD
SAI1_TXD1 AF20 NVCC_SAI1 GPIO ALT5 GPIO4.IO[13] Input with PD
SAI1_TXD2 AG21 NVCC_SAI1 GPIO ALT5 GPIO4.IO[14] Input with PD
SAI1_TXD3 AF21 NVCC_SAI1 GPIO ALT5 GPIO4.IO[15] Input with PD
SAI1_TXD4 AG22 NVCC_SAI1 GPIO ALT5 GPIO4.IO[16] Input with PD
SAI1_TXD5 AF22 NVCC_SAI1 GPIO ALT5 GPIO4.IO[17] Input with PD
SAI1_TXD6 AG23 NVCC_SAI1 GPIO ALT5 GPIO4.IO[18] Input with PD
SAI1_TXD7 AF23 NVCC_SAI1 GPIO ALT5 GPIO4.IO[19] Input with PD
SAI1_TXFS AB19 NVCC_SAI1 GPIO ALT5 GPIO4.IO[10] Input with PD
SAI2_MCLK AD19 NVCC_SAI2 GPIO ALT5 GPIO4.IO[27] Input with PD
SAI2_RXC AB22 NVCC_SAI2 GPIO ALT5 GPIO4.IO[22] Input with PD
SAI2_RXD0 AC24 NVCC_SAI2 GPIO ALT5 GPIO4.IO[23] Input with PD
SAI2_RXFS AC19 NVCC_SAI2 GPIO ALT5 GPIO4.IO[21] Input with PD
SAI2_TXC AD22 NVCC_SAI2 GPIO ALT5 GPIO4.IO[25] Input with PD
SAI2_TXD0 AC22 NVCC_SAI2 GPIO ALT5 GPIO4.IO[26] Input with PD
SAI2_TXFS AD23 NVCC_SAI2 GPIO ALT5 GPIO4.IO[24] Input with PD
SAI3_MCLK AD6 NVCC_SAI3 GPIO ALT5 GPIO5.IO[2] Input with PD
SAI3_RXC AG7 NVCC_SAI3 GPIO ALT5 GPIO4.IO[29] Input with PD
SAI3_RXD AF7 NVCC_SAI3 GPIO ALT5 GPIO4.IO[30] Input with PD
SAI3_RXFS AG8 NVCC_SAI3 GPIO ALT5 GPIO4.IO[28] Input with PD
SAI3_TXC AG6 NVCC_SAI3 GPIO ALT5 GPIO5.IO[0] Input with PD
SAI3_TXD AF6 NVCC_SAI3 GPIO ALT5 GPIO5.IO[1] Input with PD
SAI3_TXFS AC6 NVCC_SAI3 GPIO ALT5 GPIO4.IO[31] Input with PD
Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)
Ball name Ball Power group Ball type
Reset condition
Default
mode Default function
Input/
Output
status
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
82 NXP Semiconductors
Package information and contact assignments
SAI5_MCLK3AD15 NVCC_SAI5 GPIO ALT5 GPIO3.IO[25] Input without
PU/PD
SAI5_RXC AC15 NVCC_SAI5 GPIO ALT5 GPIO3.IO[20] Input with PD
SAI5_RXD0 AD18 NVCC_SAI5 GPIO ALT5 GPIO3.IO[21] Input with PD
SAI5_RXD1 AC14 NVCC_SAI5 GPIO ALT5 GPIO3.IO[22] Input with PD
SAI5_RXD2 AD13 NVCC_SAI5 GPIO ALT5 GPIO3.IO[23] Input with PD
SAI5_RXD3 AC13 NVCC_SAI5 GPIO ALT5 GPIO3.IO[24] Input with PD
SAI5_RXFS AB15 NVCC_SAI5 GPIO ALT5 GPIO3.IO[19] Input with PD
SD1_CLK V26 NVCC_SD1 GPIO ALT5 GPIO2.IO[0] Input with PD
SD1_CMD V27 NVCC_SD1 GPIO ALT5 GPIO2.IO[1] Input with PD
SD1_DATA0 Y27 NVCC_SD1 GPIO ALT5 GPIO2.IO[2] Input with PD
SD1_DATA1 Y26 NVCC_SD1 GPIO ALT5 GPIO2.IO[3] Input with PD
SD1_DATA2 T27 NVCC_SD1 GPIO ALT5 GPIO2.IO[4] Input with PD
SD1_DATA3 T26 NVCC_SD1 GPIO ALT5 GPIO2.IO[5] Input with PD
SD1_DATA4 U27 NVCC_SD1 GPIO ALT5 GPIO2.IO[6] Input with PD
SD1_DATA5 U26 NVCC_SD1 GPIO ALT5 GPIO2.IO[7] Input with PD
SD1_DATA6 W27 NVCC_SD1 GPIO ALT5 GPIO2.IO[8] Input with PD
SD1_DATA7 W26 NVCC_SD1 GPIO ALT5 GPIO2.IO[9] Input with PD
SD1_RESET_B R23 NVCC_SD1 GPIO ALT5 GPIO2.IO[10] Input with PD
SD1_STROBE R24 NVCC_SD1 GPIO ALT5 GPIO2.IO[11] Input with PD
SD2_CD_B AA26 NVCC_SD2 GPIO ALT5 GPIO2.IO[12] Input with PD
SD2_CLK W23 NVCC_SD2 GPIO ALT5 GPIO2.IO[13] Input with PD
SD2_CMD W24 NVCC_SD2 GPIO ALT5 GPIO2.IO[14] Input with PD
SD2_DATA0 AB23 NVCC_SD2 GPIO ALT5 GPIO2.IO[15] Input with PD
SD2_DATA1 AB24 NVCC_SD2 GPIO ALT5 GPIO2.IO[16] Input with PD
SD2_DATA2 V24 NVCC_SD2 GPIO ALT5 GPIO2.IO[17] Input with PD
SD2_DATA3 V23 NVCC_SD2 GPIO ALT5 GPIO2.IO[18] Input with PD
SD2_RESET_B AB26 NVCC_SD2 GPIO ALT5 GPIO2.IO[19] Input with PD
SD2_WP AA27 NVCC_SD2 GPIO ALT5 GPIO2.IO[20] Input with PD
SPDIF_EXT_CLK AF8 NVCC_SAI3 GPIO ALT5 GPIO5.IO[5] Input with PD
SPDIF_RX AG9 NVCC_SAI3 GPIO ALT5 GPIO5.IO[4] Input with PD
Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)
Ball name Ball Power group Ball type
Reset condition
Default
mode Default function
Input/
Output
status
Package information and contact assignments
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 83
5.1.3 i.MX 8M Mini 14 x14 mm 0.5 mm pitch ball map
Table 66 shows the i.MX 8M Mini 14 x14 mm 0.5 mm pitch ball map.
SPDIF_TX AF9 NVCC_SAI3 GPIO ALT5 GPIO5.IO[3] Input with PD
TEST_MODE D26 NVCC_JTAG GPIO ALT0 tcu.TEST_MODE Input with PD
TSENSOR_TEST_
OUT
J23 VDD_ANA1_1P8 ANALOG Output low
TSENSOR_REST_
EXT
J24 VDD_ANA1_1P8 ANALOG
UART1_RXD E14 NVCC_UART GPIO ALT5 GPIO5.IO[22] Input with PD
UART1_TXD F13 NVCC_UART GPIO ALT5 GPIO5.IO[23] Input with PD
UART2_RXD F15 NVCC_UART GPIO ALT5 GPIO5.IO[24] Input with PD
UART2_TXD E15 NVCC_UART GPIO ALT5 GPIO5.IO[25] Input with PD
UART3_RXD E18 NVCC_UART GPIO ALT5 GPIO5.IO[26] Input with PD
UART3_TXD D18 NVCC_UART GPIO ALT5 GPIO5.IO[27] Input with PD
UART4_RXD F19 NVCC_UART GPIO ALT5 GPIO5.IO[28] Input with PD
UART4_TXD F18 NVCC_UART GPIO ALT5 GPIO5.IO[29] Input with PD
USB1_DN A22 VDD_USB_3P3 PHY Input
USB1_DP B22 VDD_USB_3P3 PHY Input
USB1_ID D22 VDD_USB_1P8 PHY Input
USB1_TXRTUNE E19 VDD_USB_1P8 PHY
USB1_VBUS F22 VDD_USB_3P3 PHY
USB2_DN A23 VDD_USB_3P3 PHY Input
USB2_DP B23 VDD_USB_3P3 PHY Input
USB2_ID D23 VDD_USB_1P8 PHY Input
USB2_TXRTUNE E22 VDD_USB_1P8 PHY
USB2_VBUS F23 VDD_USB_3P3 PHY
1Works as JTAG Active output when the internal reset is asserted, default is output low. After the internal reset is deasserted,
it becomes input with PD.
2Works as INT_BOOT output when the internal reset is asserted, default is output high. After the internal reset is deasserted,
it becomes input with PU.
3Works as TESTER_ACK input when the internal reset is asserted, default is input without PU/PD. After the internal reset is
deasserted, it becomes input with PD.
Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)
Ball name Ball Power group Ball type
Reset condition
Default
mode Default function
Input/
Output
status
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
84 NXP Semiconductors
Package information and contact assignments
Table 66. 14 x 14 mm, 0.5 mm pitch ball map
1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627
A
VSS
DRAM_DQS0_P
DRAM_DQ06
DRAM_DM0
DRAM_DQ00
ECSPI2_SS0
ECSPI1_MISO
ECSPI2_MISO
MIPI_DSI_D0_N
MIPI_DSI_D1_N
MIPI_DSI_CLK_N
MIPI_DSI_D2_N
MIPI_DSI_D3_N
MIPI_CSI_D0_N
MIPI_CSI_D1_N
MIPI_CSI_CLK_N
MIPI_CSI_D2_N
MIPI_CSI_D3_N
PCIE_RXN_N
PCIE_TXN_N
PCIE_CLK_N
USB1_DN
USB2_DN
PMIC_ON_REQ
ONOFF
RTC_XTALI
VSS
B
DRAM_DQ05
DRAM_DQS0_N
VSS
DRAM_DQ07
DRAM_DQ01
ECSPI1_SS0
ECSPI1_MOSI
ECSPI2_MOSI
MIPI_DSI_D0_P
MIPI_DSI_D1_P
MIPI_DSI_CLK_P
MIPI_DSI_D2_P
MIPI_DSI_D3_P
MIPI_CSI_D0_P
MIPI_CSI_D1_P
MIPI_CSI_CLK_P
MIPI_CSI_D2_P
MIPI_CSI_D3_P
PCIE_PXN_P
PCIE_TXN_P
PCIE_CLK_P
USB1_DP
USB2_DP
POR_B
RTC_XTALO
VSS
24M_XTALI
C
DRAM_DQ04
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
24M_XTALO
JTAG_TRST_B
D
DRAM_DQ03
DRAM_DQ02
DRAM_AC11
ECSPI1_SCLK
I2C2_SDA
I2C2_SCL
I2C4_SCL
MIPI_VREG_CAP
UART3_TXD
PCIE_RESREF
USB1_ID
USB2_ID
TEST_MODE
JTAG_MOD
E
DRAM_DQ14
DRAM_DQ15
VSS
DRAM_AC10
ECSPI2_SCLK
I2C1_SCL
I2C3_SCL
I2C4_SDA
UART1_RXD
UART2_TXD
UART3_RXD
USB1_TXRTUNE
USB2_TXRTUNE
PMIC_STBY_REQ
VSS
JTAG_TDO
JTAG_TDI
F
DRAM_DM1
DRAM_DQ08
VSS
DRAM_AC00
DRAM_AC01
DRAM_AC06
I2C1_SDA
I2C3_SDA
UART1_TXD
UART2_RXD
UART4_TXD
UART4_RXD
USB1_VBUS
USB2_VBUS
RTC_RESET_B
VSS
JTAG_TCK
JTAG_TMS
G
DRAM_DQS1_P
DRAM_DQ09
VSS
VSS
VSS
VSS
VDD_PCI_1P8
VSS
VSS
VSS
VSS
BOOT_MODE0
BOOT_MODE1
Package information and contact assignments
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 85
H
DRAM_DQS1_N
VSS
NVCC_ECSPI
VDD_MIPI_1P8
VDD_USB_1P8
VSS
CLKOUT1
CLKIN1
J
DRAM_DQ10
DRAM_DQ11
VSS
DRAM_AC03
DRAM_AC07
DRAM_AC08
VSS
VDD_DRAM
NVCC_I2C
NVCC_UART
PVCC2_1P8
VDD_MIPI_0P9
VDD_MIPI_1P2
VDD_PCI_0P8
VDD_USB_0P8
NC_J18
VSS
NVCC_SNVS_1P8
TSENSOR_TEST_OUT
TESENSOR_RES_EXT
VSS
CLKOUT2
CLKIN2
K
DRAM_DQ13
DRAM_DQ12
VSS
DRAM_AC02
DRAM_AC14
DRAM_AC09
VSS
NVCC_DRAM
NVCC_DRAM
VDD_VPU
VDD_VPU
VDD_SOC
VDD_SOC
VDD_USB_3P3
VSS
VSS
VDD_SNVS_0P8
NAND_DATA02
NAND_DATA01
VSS
NAND_DATA06
NAND_CLE
L
DRAM_AC05
DRAM_AC04
NVCC_DRAM
VDD_DRAM
VDD_VPU
VSS
VDD_VPU
VDD_SOC
VSS
VDD_ANA_0P8
VDD_SOC
NVCC_JTAG
NAND_DATA05
NAND_CE3_B
M
DRAM_AC16
DRAM_AC17
NVCC_DRAM
VSS
VDD_VPU
VDD_VPU
VDD_SOC
VSS
NVCC_CLK
NAND_DATA04
NAND_CE2_B
N
DRAM_AC26
DRAM_AC19
VSS
DRAM_AC12
DRAM_AC13
DRAM_AC15
VSS
NVCC_DRAM
NVCC_DRAM
VDD_DRAM
VDD_VPU
VSS
VDD_SOC
VDD_SOC
VSS
VDD_ANA_0P8
VDD_SOC
VDD_24M_XTAL_1P8
VDD_ANA1_1P8
VSS
NAND_ALE
NAND_DATA03
NAND_CE0_B
VSS
NAND_DATA07
NAND_RE_B
P
DRAM_VREF
DRAM_ZN
VSS
VDD_DRAM_PLL_1P8
NVCC_DRAM
VDD_DRAM_PLL_0P8
VDD_GPU
VSS
VSS
VDD_ARM_PLL_0P8
VDD_ANA1_1P8
VSS
NAND_DATA00
VSS
NAND_READY_B
NAND_CE1_B
Table 66. 14 x 14 mm, 0.5 mm pitch ball map (continued)
1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
86 NXP Semiconductors
Package information and contact assignments
R
DRAM_RESET_N
DRAM_ALERT_N
VSS
DRAM_AC32
DRAM_AC33
DRAM_AC27
VSS
NVCC_DRAM
NVCC_DRAM
VDD_DRAM
VDD_GPU
VSS
VDD_ARM
VDD_ARM
VSS
VDD_SOC
VDD_SOC
VDD_ARM_PLL_1P8
VSS
VSS
NAND_DQS
SD1_RESET_B
SD1_STROBE
VSS
NAND_WE_B
NAND_WP_B
T
DRAM_AC34
DRAM_AC35
NVCC_DRAM
VSS
VDD_ARM
VDD_ARM
VDD-ARM
VSS
PVCC1_1P8
SD1_DATA3
SD1_DATA2
U
DRAM_AC25
DRAM_AC24
NVCC_DRAM
VDD_DRAM
VDD_GPU
VSS
VDD_ARM
VDD_ARM
VSS
VDD_SOC
VDD_SOC
NVCC_NAND
SD1_DATA5
SD1_DATA4
V
DRAM_DQ21
DRAM_DQ20
VSS
DRAM_AC23
DRAM_AC36
DRAM_AC29
VSS
NVCC_DRAM
NVCC_DRAM
VDD_GPU
VDD_ARM
VDD_ARM
VDD_ARM
NVCC_SAI2
NVCC_SD1
VSS
NVCC_SD2
SD2_DATA3
SD2_DATA2
VSS
SD1_CLK
SD1_CMD
W
DRAM_DQ18
DRAM_DQ19
VSS
DRAM_AC22
DRAM_AC37
DRAM_AC28
VSS
VDD_DRAM
VDD_GPU
NVCC_GPIO1
VDD_ARM
VDD_ARM
VDD_ARM
VDD_ARM
NVCC_SAI5
NVCC_SAI1
VSS
NVCC_ENET
SD2_CLK
SD2_CMD
VSS
SD1_DATA7
SD1_DATA6
Y
DRAM_DQS2_N
VSS
NVCC_SAI3
VSS
VDD_ANA0_1P8
VSS
SD1_DATA1
SD1_DATA0
AA
DRAM_DQS2_P
DRAM_DQ17
VSS
VSS
VSS
VSS
VDD_ANA0_1P8
VSS
VSS
VSS
VSS
SD2_CD_B
SD2_WP
AB
DRAM_DM2
DRAM_DQ16
VSS
DRAM_AC20
DRAM_AC21
DRAM_AC38
GPIO1_IO15
GPIO1_IO12
PVCC0_1P8
SAI5_RXFS
SAI1_MCLK
SAI1_TXFS
SAI2_RXC
SD2_DATA0
SD2_DATA1
VSS
SD2_RESET_B
ENET_MDIO
Table 66. 14 x 14 mm, 0.5 mm pitch ball map (continued)
1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627
Package information and contact assignments
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 87
5.2 DDR pin function list
Table 67 shows the DDR pin function list.
AC
DRAM_DQ22
DRAM_DQ23
VSS
DRAM_AC30
SAI3_TXFS
GPIO1_IO14
GPIO1_IO11
SAI5_RXD3
SAI5_RXD1
SAI5_RXC
SAI1_TXC
SAI2_RXFS
SAI2_TXD0
SAI2_RXD0
VSS
ENENT_RD3
ENET_MDC
AD
DRAM_DQ27
DRAM_DQ26
DRAM_AC31
SAI3_MCLK
GPIO1_IO13
GPIO1_IO10
SAI5_RXD2
SAI5_MCLK
SAI5_RXD0
SAI2_MCLK
SAI2_TXC
SAI2_TXFS
ENET_RD2
ENET_RD1
AE
DRAM_DQ28
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
ENET_RXC
ENET_RD0
AF
DRAM_DQ29
DRAM_DQS3_N
VSS
DRAM_DQ31
DRAM_DQ25
SAI3_TXD
SAI3_RXD
SPDIF_EXT_CLK
SPDIF_TX
GPIO1_IO09
GPIO1_IO07
GPIO1_IO05
GPIO1_IO03
GPIO1_IO01
SAI1_RXD1
SAI1_RXC
SAI1_RXD3
SAI1_RXD5
SAI1_RXD7
SAI1_TXD1
SAI1_TXD3
SAI1_TXD5
SAI1_TXD7
ENET_TX_CTL
ENET_TD3
ENET_TD1
ENET_RX_CTL
AG
VSS
DRAM_DQS3_P
DRAM_DQ30
DRAM_DM3
DRAM_DQ24
SAI3_TXC
SAI3_RXC
SAI3_RXFS
SPDIF_RX
GPIO1_IO08
GPIO1_IO06
GPIO1_IO04
GPIO1_IO02
GPIO1_IO00
SAI1_RXD0
SAI1_RXFS
SAI1_RXD2
SAI1_RXD4
SAI1_RXD6
SAI1_TXD0
SAI1_TXD2
SAI1_TXD4
SAI1_TXD6
ENET_TXC
ENET_TD2
ENET_TD0
VSS
Table 67. DDR pin function list
Ball name LPDDR4 DDR4 DDR3/3L
DRAM_DQS0_P DQS0_t_A DQSL_t_A DQSL_A
DRAM_DQS0_N DQS0_c_A DQSL_c_A DQSL#_A
DRAM_DM0 DMI0_A DML_n_A / DBIL_n_A DML_A
DRAM_DQ00 DQ0_A DQL0_A DQL0_A
DRAM_DQ01 DQ1_A DQL1_A DQL1_A
DRAM_DQ02 DQ2_A DQL2_A DQL2_A
DRAM_DQ03 DQ3_A DQL3_A DQL3_A
DRAM_DQ04 DQ4_A DQL4_A DQL4_A
DRAM_DQ05 DQ5_A DQL5_A DQL5_A
Table 66. 14 x 14 mm, 0.5 mm pitch ball map (continued)
1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
88 NXP Semiconductors
Package information and contact assignments
DRAM_DQ06 DQ6_A DQL6_A DQL6_A
DRAM_DQ07 DQ7_A DQL7_A DQL7_A
DRAM_DQS1_P DQS1_t_A DQSU_t_A DQSU_A
DRAM_DQS1_N DQS1_c_A DQSU_c_A DQSU#_A
DRAM_DM1 DMI1_A DMU_n_A / DBIU_n_A DMU_A
DRAM_DQ08 DQ08_A DQU0_A DQU0_A
DRAM_DQ09 DQ09_A DQU1_A DQU1_A
DRAM_DQ10 DQ10_A DQU2_A DQU2_A
DRAM_DQ11 DQ11_A DQU3_A DQU3_A
DRAM_DQ12 DQ12_A DQU4_A DQU4_A
DRAM_DQ13 DQ13_A DQU5_A DQU5_A
DRAM_DQ14 DQ14_A DQU6_A DQU6_A
DRAM_DQ15 DQ15_A DQU7_A DQU7_A
DRAM_DQS2_P DQS0_t_B DQSL_t_B DQSL_B
DRAM_DQS2_N DQS0_c_B DQSL_c_B DQSL#_B
DRAM_DM2 DMI0_B DML_n_B / DBIL_n_B DML_B
DRAM_DQ16 DQ0_B DQL0_B DQL0_B
DRAM_DQ17 DQ1_B DQL1_B DQL1_B
DRAM_DQ18 DQ2_B DQL2_B DQL2_B
DRAM_DQ19 DQ3_B DQL3_B DQL3_B
DRAM_DQ20 DQ4_B DQL4_B DQL4_B
DRAM_DQ20 DQ4_B DQL4_B DQL4_B
DRAM_DQ21 DQ5_B DQL5_B DQL5_B
DRAM_DQ22 DQ6_B DQL6_B DQL6_B
DRAM_DQ23 DQ7_B DQL7_B DQL7_B
DRAM_DQS3_P DQS1_t_B DQSU_t_B DQSU_B
DRAM_DQS3_N DQS1_c_B DQSU_c_B DQSU#_B
DRAM_DM3 DMI1_B DMU_n_B / DBIU_n_B DMU_B
DRAM_DQ24 DQ08_B DQU0_B DQU0_B
DRAM_DQ25 DQ09_B DQU1_B DQU1_B
DRAM_DQ26 DQ10_B DQU2_B DQU2_B
DRAM_DQ27 DQ11_B DQU3_B DQU3_B
DRAM_DQ28 DQ12_B DQU4_B DQU4_B
DRAM_DQ29 DQ13_B DQU5_B DQU5_B
Table 67. DDR pin function list (continued)
Package information and contact assignments
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 89
DRAM_DQ30 DQ14_B DQU6_B DQU6_B
DRAM_DQ31 DQ15_B DQU7_B DQU7_B
DRAM_RESET_N RESET_N RESET_n RESET#
DRAM_ALERT_N MTEST1 ALERT_n / MTEST1 MTEST1
DRAM_AC00 CKE0_A CKE0 CKE0
DRAM_AC01 CKE1_A CKE1 CKE1
DRAM_AC02 CS0_A CS0_n CS0#
DRAM_AC03 CS1_A C0
DRAM_AC04 CK_t_A BG0 BA2
DRAM_AC05 CK_c_A BG1 A14
DRAM_AC06 ACT_n A15
DRAM_AC07 A9 A9
DRAM_AC08 CA0_A A12 A12 / BC#
DRAM_AC09 CA1_A A11 A11
DRAM_AC10 CA2_A A7 A7
DRAM_AC11 CA3_A A8 A8
DRAM_AC12 CA4_A A6 A6
DRAM_AC13 CA5_A A5 A5
DRAM_AC14 A4 A4
DRAM_AC15 A3 A3
DRAM_AC16 CK_t_A CK_A
DRAM_AC17 CK_c_A CK#_A
DRAM_AC19 MTEST MTEST MTEST
DRAM_AC20 CKE0_B CK_t_B CK_B
DRAM_AC21 CKE1_B CK_c_B CK#_B
DRAM_AC22 CS1_B
DRAM_AC23 CS0_B
DRAM_AC24 CK_t_B A2 A2
DRAM_AC25 CK_c_B A1 A1
DRAM_AC26 BA1 BA1
DRAM_AC27 PARITY
DRAM_AC28 CA0_B A13 A13
DRAM_AC29 CA1_B BA0 BA0
DRAM_AC30 CA2_B A10 / AP A10 / AP
Table 67. DDR pin function list (continued)
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
90 NXP Semiconductors
Package information and contact assignments
DRAM_AC31 CA3_B A0 A0
DRAM_AC32 CA4_B C2
DRAM_AC33 CA5_B CAS_n / A15 CAS#
DRAM_AC34 WE_n / A14 WE#
DRAM_AC35 RAS_n / A16 RAS#
DRAM_AC36 ODT0 ODT0
DRAM_AC37 ODT1 ODT1
DRAM_AC38 CS1_n CS1#
DRAM_ZN ZQ ZQ ZQ
DRAM_VREF VREF VREF VREF
Table 67. DDR pin function list (continued)
Revision history
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020
NXP Semiconductors 91
6 Revision history
Table 68 provides a revision history for this data sheet.
Table 68. Revision history
Rev.
number Date Substantive change(s)
Rev. 1 07/2020 Updated the eMMC descriptions in the Table 1, "Features"
Updated numbers of SD 3.0 in the Figure 1, "i.MX 8M Mini system block diagram"
Added two part numbers and updated the part differentiator in the Table 2, "Orderable part
numbers"
Updated the part differentiator and Fusing in the Figure 2, "Part number nomenclature—i.MX 8M
Mini family of processors"
Updated eCSPI, SJC, and uSDHC descriptions in the Table 3, "i.MX 8M Mini modules list"
Updated a typo for NVCC_ENET in the Table 4, "Recommended connections for unused power
supply rails"
Updated the min values and a typo in the Table 7, "Absolute maximum ratings"; removed ESD
parameters from the Table 7, "Absolute maximum ratings"
Added the Table 8, "Electrostatic discharge and latch up ratings"
Added a footnote in the Table 10, "Operating ranges"
Added VDD_24M_XTAL_1P8, VDD_ARM_PLL_1P8, and PVCCx_1P8 in the Table 13, "Maximum
supply currents"
Updated the Table 14, "Chip power in different LP mode"
Updated the suspend mode state of VDD_MIPI_0P9 and VDD_MIPI_1P2 in the Table 15, "The
power supply states"
Updated the maximum values of T1, T2, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13 and minimum
value of T3 in the Table 17, "Power-up sequence"
Updated the maximum values in the Table 18, "Power-down sequence"
Removed the USBx_ID, ONOFF, and POR_B from the Table 22, "Additional leakage parameters"
Added GPIO1_09, I2C2_SCL, and I2C2_SDA in the Table 35, "ENET signal mapping"
Removed 0x2 from the Section 3.9.10.1.1, SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0,
0x1 and Section 3.9.10.1.3, DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1
Updated the parameters of GPIO1_IO00, GPIO1_IO01, GPIO1_IO05, GPIO1_IO09, and
SAI5_MCLK in the Table 65, "i.MX 8M Mini 14 x 14 mm functional contact assignments"
Fixed typos in the Table 66, "14 x 14 mm, 0.5 mm pitch ball map"
Rev. 0.2 04/2019 Updated numbers of eMMC and FlexSPI in the Figure 1, "i.MX 8M Mini system block diagram"
Updated the descriptions about USB and uSDHC in the Table 3, "i.MX 8M Mini modules list"
Updated the comment of VDD_VPU and the LPDDR4 maximum value of NVCC_DRAM in the
Table 10, "Operating ranges"
Rev. 0.1 02/2019 Updated the SNVS states in the Table 15, "The power supply states"
Rev. 0 02/2019 Initial version
Document Number: IMX8MMCEC
Rev. 1
07/2020
Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.
NXP makes no warranty, representation, or guarantee regarding the suitability of its
products for any particular purpose, nor does NXP assume any liability arising out of the
application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that
may be provided in NXP data sheets and/or specifications can and do vary in different
applications, and actual performance may vary over time. All operating parameters,
including “typicals” must be validated for each customer application by customer‚
customer’s technical experts. NXP does not convey any license under its patent rights nor
the rights of others. NXP sells products pursuant to standard terms and conditions of sale,
which can be found at the following address: nxp.com/SalesTermsandConditions.
While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s
applications and products, and NXP accepts no liability for any vulnerability that is
discovered. Customers should implement appropriate design and operating safeguards to
minimize the risks associated with their applications and products.
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,
COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,
MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS,
MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX,
SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo,
AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient
Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor
Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC,
Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, UMEMS,
EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product
or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,
ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any
or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java
are registered trademarks of Oracle and/or its affiliates.The Power Architecture and
Power.org word marks and the Power and Power.org logos and related marks are
trademarks and service marks licensed by Power.org.
© 2019-2020 NXP B.V.
How to Reach Us:
Home Page:
nxp.com
Web Support:
nxp.com/support