SWITCHMODE Series
NPN Silicon Power Darlington
Transistor with Base-Emitter
Speedup Diode
The MJ10009 Darlington transistor is designed for high–voltage,
high–speed, power switching in Inductive circuits where fall time is
critical. It is particularly suited for line operated switchmode
applications such as:
Switching Regulators
Inverters
Solenoid and Relay Drivers
Motor Controls
Deflection Circuits
Fast Turn–Off Times
1.6 µs (max) Inductive Crossover Time – 10 A, 100C
3.5 µs (max) Inductive Storage Time – 10 A, 100C
Operating Temperature Range –65 to +200C
100C Performance Specified for:
Reversed Biased SOA with Inductive Loads
Switching Times with Inductive Loads
Saturation Voltages
Leakage Currents
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Rating
ÎÎÎÎÎ
ÎÎÎÎÎ
Symbol
ÎÎÎÎÎ
ÎÎÎÎÎ
Value
ÎÎÎÎ
ÎÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Voltage
ÎÎÎÎÎ
ÎÎÎÎÎ
VCEO
ÎÎÎÎÎ
ÎÎÎÎÎ
500
ÎÎÎÎ
ÎÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Voltage
ÎÎÎÎÎ
ÎÎÎÎÎ
VCEX
ÎÎÎÎÎ
ÎÎÎÎÎ
500
ÎÎÎÎ
ÎÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Voltage
ÎÎÎÎÎ
ÎÎÎÎÎ
VCEV
ÎÎÎÎÎ
ÎÎÎÎÎ
700
ÎÎÎÎ
ÎÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Base Voltage
ÎÎÎÎÎ
ÎÎÎÎÎ
VEB
ÎÎÎÎÎ
ÎÎÎÎÎ
8
ÎÎÎÎ
ÎÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Current Continuous
Peak (1)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
IC
ICM
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
20
30
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Base Current Continuous
Peak (1)
ÎÎÎÎÎ
ÎÎÎÎÎ
IB
IBM
ÎÎÎÎÎ
ÎÎÎÎÎ
2.5
5
ÎÎÎÎ
ÎÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Total Power Dissipation @ TC = 25C
@ TC = 100C
Derate above 25C
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
PD
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
175
100
1
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
Watts
W/C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Operating and Storage Junction Temperature Range
ÎÎÎÎÎ
ÎÎÎÎÎ
TJ, Tstg
ÎÎÎÎÎ
ÎÎÎÎÎ
–65 to +200
ÎÎÎÎ
ÎÎÎÎ
C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
THERMAL CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎÎ
ÎÎÎÎÎ
Symbol
ÎÎÎÎÎ
ÎÎÎÎÎ
Max
ÎÎÎÎ
ÎÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Thermal Resistance, Junction to Case
ÎÎÎÎÎ
ÎÎÎÎÎ
RθJC
ÎÎÎÎÎ
ÎÎÎÎÎ
1
ÎÎÎÎ
ÎÎÎÎ
C/W
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Maximum Lead Temperature for Soldering Purposes: 1/8 from Case for 5 Seconds
ÎÎÎÎÎ
ÎÎÎÎÎ
TL
ÎÎÎÎÎ
ÎÎÎÎÎ
275
ÎÎÎÎ
ÎÎÎÎ
C
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%.
Preferred devices are ON Semiconductor recommended choices for future use and best overall value.
ON Semiconductor
Semiconductor Components Industries, LLC, 2001
March, 2001 – Rev. 4 1Publication Order Number:
MJ10009/D
20 AMPERE
NPN SILICON
POWER DARLINGTON
TRANSISTORS
450 and 500 VOLTS
175 WATTS
MJ10009
CASE 1–07
TO–204AA
(TO–3)
*
*ON Semiconductor Preferred Device
100 15
MJ10009
http://onsemi.com
2
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25C unless otherwise noted)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎÎ
ÎÎÎÎÎ
Symbol
ÎÎÎÎ
ÎÎÎÎ
Min
ÎÎÎ
ÎÎÎ
Typ
ÎÎÎÎ
ÎÎÎÎ
Max
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
OFF CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Emitter Sustaining Voltage (Table 1)
(IC = 100 mA, IB = 0, Vclamp = Rated VCEO)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VCEO(sus)
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
500
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
Î
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Emitter Sustaining Voltage (Table 1, Figure 12)
(IC = 2 A, Vclamp = Rated VCEX, TC = 100C, VBE(off) = 5 V)
(IC = 10 A, Vclamp = Rated VCEX, TC = 100C, VBE(off) = 5 V)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VCEX(sus)
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
500
375
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
Î
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Cutoff Current
(VCEV = Rated Value, VBE(off) = 1.5 Vdc)
(VCEV = Rated Value, VBE(off) = 1.5 Vdc, TC = 150C)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
ICEV
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
0.25
5
Î
Î
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Cutoff Current
(VCE = Rated VCEV, RBE = 50 , TC = 100C)
ÎÎÎÎÎ
ÎÎÎÎÎ
ICER
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
5
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Cutoff Current
(VEB = 2 Vdc, IC = 0)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
IEBO
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
175
Î
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SECOND BREAKDOWN
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Second Breakdown Collector Current with base forward biased
ÎÎÎÎÎ
ÎÎÎÎÎ
IS/b
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
See Figure 11
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ON CHARACTERISTICS (2)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DC Current Gain
(IC = 5 Adc, VCE = 5 Vdc)
(IC = 10 Adc, VCE = 5 Vdc)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
hFE
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
40
30
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
400
300
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Saturation Voltage
(IC = 10 Adc, IB = 500 mAdc)
(IC = 20 Adc, IB = 2 Adc)
(IC = 10 Adc, IB = 500 mAdc, TC = 100C)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VCE(sat)
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
2
3.5
2.5
Î
Î
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Base–Emitter Saturation Voltage
(IC = 10 Adc, IB = 500 mAdc)
(IC = 10 Adc, IB = 500 mAdc, TC = 100C)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VBE(sat)
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
2.5
2.5
Î
Î
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Diode Forward Voltage (1)
(IF = 10 Adc)
ÎÎÎÎÎ
ÎÎÎÎÎ
Vf
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
3
ÎÎÎÎ
ÎÎÎÎ
5
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DYNAMIC CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Small–Signal Current Gain
(IC = 1 Adc, VCE = 10 Vdc, ftest = 1 MHz)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
hfe
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
8
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Output Capacitance
(VCB = 10 Vdc, IE = 0, ftest = 100 kHz)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
Cob
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
100
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
325
Î
pF
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SWITCHING CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Resistive Load (Table 1)
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Delay Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
td
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.12
ÎÎÎÎ
ÎÎÎÎ
0.25
µs
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Rise Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
(VCC = 250 Vdc, IC = 10 A,
IB1 = 500 mA VBE( ff) = 5 Vdc t =25µs
ÎÎÎÎÎ
ÎÎÎÎÎ
tr
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.5
ÎÎÎÎ
ÎÎÎÎ
1.5
µs
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
IB1 = 500 mA, VBE(off) = 5 Vdc, tp = 25 µs
Duty Cycle 2%).
ÎÎÎÎÎ
ÎÎÎÎÎ
ts
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.8
ÎÎÎÎ
ÎÎÎÎ
2.0
µs
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Fall Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Duty
Cycle
2%).
ÎÎÎÎÎ
ÎÎÎÎÎ
tf
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.2
ÎÎÎÎ
ÎÎÎÎ
0.6
µs
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Inductive Load, Clamped (Table 1)
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
(IC = 10 A(pk), Vclamp = 250 V, IB1 = 500 mA,
ÎÎÎÎÎ
ÎÎÎÎÎ
tsv
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
1.5
ÎÎÎÎ
ÎÎÎÎ
3.5
µs
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Crossover Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
(IC
10
A( k)
,
Vclam
250
V
,
IB1
500
mA
,
VBE(off) = 5 Vdc, TC = 100C)
ÎÎÎÎÎ
ÎÎÎÎÎ
tc
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.36
ÎÎÎÎ
ÎÎÎÎ
1.6
µs
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
(IC = 10 A(pk), Vclamp = 250 V, IB1 = 500 mA,
ÎÎÎÎÎ
ÎÎÎÎÎ
tsv
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.8
ÎÎÎÎ
ÎÎÎÎ
µs
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Crossover Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
(IC
10
A( k)
,
Vclam
250
V
,
IB1
500
mA
,
VBE(off) = 5 Vdc)
ÎÎÎÎÎ
ÎÎÎÎÎ
tc
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.18
ÎÎÎÎ
ÎÎÎÎ
µs
(1) The internal Collector–to–Emitter diode can eliminate the need for an external diode to clamp inductive loads.
(1) Tests have shown that the Forward Recovery Voltage (Vf) of this diode is comparable to that of typical fast recovery rectifiers.
(2) Pulse Test: PW = 300 µs, Duty Cycle 2%.
MJ10009
http://onsemi.com
3
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 1. DC Current Gain
IC, COLLECTOR CURRENT (AMP)
20 0.2 1 2
200
100
60
Figure 2. Collector Saturation Region
3
0.03
IB, BASE CURRENT (AMP)
10.05 0.1 0.2 0.5 1 2 3
2.6
2.2
1.8
1.4 TJ = 25°C
400
hFE, DC CURRENT GAIN
TJ = 150°C
VCE = 5 V
40
0.5 5 10 20
25°C
IC = 5 A 10 A 20 A
V, VOLTAGE (VOLTS)
VBE, BASE-EMITTER VOLTAGE (VOLTS)
104
103
102
101
100
0 +0.2-0.2
VCE = 250 V
TJ = 125°C
100°C
25°C
Figure 3. Collector–Emitter Saturation Voltage
2.4
0.2
IC, COLLECTOR CURRENT (AMP)
0.4 0.3 0.5 0.7 1 2 5 20
2
1.6
1.2
0.8
IC/IB = 10
TJ = - 55°C
73
Figure 4. Base-Emitter Voltage
2.8
IC, COLLECTOR CURRENT (AMP)
0.80.2 0.3 0.5 0.7
2.4
2
1.6
1.2
Figure 5. Collector Cutoff Region
0.4
Figure 6. Output Capacitance
VR, REVERSE VOLTAGE (VOLTS)
50 1 2 20 60100.6
200
70
TJ = 25°C
Cob
1000
500
100
100 200 400
V, VOLTAGE (VOLTS)
10
25°C
150°C
25 2073101
25°C
150°C
25°C
TJ = - 55°C
VBE(sat) @ IC/IB = 10
VBE(on) @ VCE = 3 V
75°C
µ
10-1
+0.4 +0.8+0.6 46 40
700
300
Cob, OUTPUT CAPACITANCE (pF)
REVERSE FORWARD
TYPICAL CHARACTERISTICS
MJ10009
http://onsemi.com
4
IC(pk)
t
t1tf
t
IC
VCE
TEST CIRCUITS CIRCUIT
VALUES INPUT
CONDITIONS
VCEO(sus) RBSOA AND INDUCTIVE SWITCHING RESISTIVE SWITCHING
Lcoil = 10 mH, VCC = 10 V
Rcoil = 0.7
Vclamp = VCEO(sus)
Lcoil = 180 µH
Rcoil = 0.05
VCC = 20 V
Vclamp = Rated VCEX Value
VCC = 250 V
RL = 25
Pulse Width = 25 µs
t2
TIME
tf CLAMPED
VCE or
Vclamp
tf UNCLAMPED t2
20 1
0
PW Varied to Attain
IC = 100 mA
2
DRIVER SCHEMATIC
INDUCTIVE TEST CIRCUIT
t1 Adjusted to
Obtain IC
Test Equipment
Scope — Tektronix
475 or Equivalent
RESISTIVE TEST CIRCUITOUTPUT WAVEFORMS
For inductive loads pulse width
is adjusted to obtain specified IC
+
10 µF
0.05 µF
1
2
HP214
- 38 V
PG
IN
50
10
1000
0.005 µF
10
2.0 µF
2N3762
10
100
+ V DRIVE
RB
0.005
MTP3055E
50
MTP3055E
- Voff
DRIVE
-
+-
IB1 adjusted to
obtain the forced
hFE desired
TURN–OFF TIME
Use inductive switching
driver as the input to
the resistive test circuit.
IB1
1
2
1
INPUT
2
Rcoil
Lcoil
VCC
Vclamp
RS =
0.1
1N4937
OR
EQUIVALENT
TUT
SEE ABOVE FOR
DETAILED CONDITIONS
1
2
TUT
RL
VCC
t1 Lcoil (ICpk)
VCC
t2 Lcoil (ICpk)
VClamp
Table 1. Test Conditions for Dynamic Performance
90% VCEM
IC
90% ICM
ICM VCEM
tc
90% IB1
VCE
IB10% VCEM 10%
ICM 2% IC
tsv trv tfi tti
Figure 7. Inductive Switching Measurements
TIME
Vclamp
SWITCHING TIMES NOTE
In resistive switching circuits, rise, fall, and storage times
have been defined and apply to both current and voltage
waveforms since they are in phase. However, for inductive
loads which are common to SWITCHMODE power
supplies and hammer drivers, current and voltage
waveforms are not in phase. Therefore, separate
measurements must be made on each waveform to
determine the total switching time. For this reason, the
following new terms have been defined.
tsv = Voltage Storage Time, 90% IB1 to 10% Vclamp
trv = Voltage Rise Time, 10–90% Vclamp
tfi = Current Fall Time, 90–10% IC
tti = Current Tail, 10–2% IC
tc = Crossover Time, 10% Vclamp to 10% IC
For the designer, there is minimal switching loss during
storage time and the predominant switching power losses
occur during the crossover interval and can be obtained
using the standard equation from AN–222.
PSWT = 1/2 VCC IC (tc) f
Typical inductive switching waveforms are shown in
Figure 7. In general, t rv + t fi tc. However, at lower test
currents this relationship may not be valid.
As is common with most switching transistors, resistive
switching is specified a t 2 5C and has become a benchmark
for designers. However, for designers of high frequency
converter circuits, the user oriented specifications which
make this a “SWITCHMODE” transistor are the inductive
switching speeds (tc and tsv) which are guaranteed at 100C.
MJ10009
http://onsemi.com
5
2
Figure 8. Turn-On Time
IC, COLLECTOR CURRENT (AMP)
t, TIME (s)µ
0.1
VCC = 250 V
IC/IB = 20
TJ = 25°C
td
tr
1.0
Figure 9. Turn-Off Time
IC, COLLECTOR CURRENT (AMP)
t, TIME (s)µ
0.5
0.1
0.05
VCC = 250 V
IC/IB = 20
VBE(off) = 5 V
TJ = 25°C
tf
ts
0.2
tP = 25 µs, DUTY CYCLE 2%
tP = 25 µs, DUTY CYCLE 2%
1
0.2
0.5
2015210 2015210
RESISTIVE SWITCHING PERFORMANCE
Figure 10. Thermal Response
t, TIME (ms)
1.0
0.01
0.01
0.7
0.5
0.3
0.2
0.1
0.07
0.05
0.03
0.02
0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 200 1 k500
ZθJC (t) = r(t) RθJC
RθJC = 1.0°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) - TC = P(pk) ZθJC(t)
P(pk)
t1
t2
DUTY CYCLE, D = t1/t2
D = 0.5
0.2
0.05
0.02
0.01 SINGLE PULSE
0.1
r(t), TRANSIENT THERMAL RESISTANCE
(NORMALIZED)
MJ10009
http://onsemi.com
6
The Safe Operating Area figures shown in Figures 11 and 12
are specified ratings for these devices under the test
conditions shown.
50
Figure 11. Forward Bias Safe Operating Area
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
20
5
1
0.5
0.1
0.005 6 10 20 600
BONDING WIRE LIMIT
THERMAL LIMIT @ TC = 25°C
(SINGLE PULSE)
SECOND BREAKDOWN LIMIT
50
0.05
IC, COLLECTOR CURRENT (AMP)
dc
0.2
100 200 450
100 µs
10 µs
20
0
Figure 12. Reverse Bias Switching
Safe Operating Area (MJ10009)
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
16
12
0500
4
IC, COLLECTOR CURRENT (AMP)
8
300 400100 200
VBE(off) = 5 V
1 ms
MJ10009
VBE(off) = 2 V
VBE(off) = 0 V
TC = 100°C
IC/IB1 20
10
2
0.02
0.01
500
18
14
10
6
2
SAFE OPERATING AREA INFORMATION
FORWARD BIAS
There are two limitations on the power handling ability of
a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC – VCE
limits of the transistor that must be observed for reliable
operation, i.e., the transistor must not be subjected to greater
dissipation than the curves indicate.
The data of Figure 11 is based on TC = 25C; TJ(pk) is
variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC 25C. Second breakdown limitations do
not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 11 may be found at
any case temperature by using the appropriate curve on
Figure 13.
TJ(pk) may be calculated from the data in Figure 10. At
high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations
imposed by second breakdown.
REVERSE BIAS
For inductive loads, high voltage and high current must be
sustained simultaneously during turn–off, in most cases,
with the base to emitter junction reverse biased. Under these
conditions the collector voltage must be held to a safe level
at or below a specific value of collector current. This can be
accomplished b y several means such as active clamping, RC
snubbing, load line shaping, etc. The safe level for these
devices is specified a s VCEX(sus) at a given collector current
and represents a voltage–current condition that can be
sustained during reverse biased turn–off. This rating is
verified under clamped conditions so that the device is never
subjected to an avalanche mode. Figure 12 gives the
complete reverse bias safe operating area characteristics.
See Table 1 for circuit conditions.
10
0
Figure 13. Power Derating
VBE(off), REVERSE BASE CURRENT (VOLTS)
7
5
02587
2
IB2(pk) , BASE CURRENT (AMP)
IC = 10 A
1
SEE TABLE 1 FOR CONDITIONS,
FIGURE 7 FOR WAVESHAPE.
100
80
60
20
00 40 80 120 200
Figure 14. Reverse Base Current versus
VBE(off) with No External Base Resistance
TC, CASE TEMPERATURE (°C)
POWER DERATING FACTOR (%)
THERMAL DERATING
FORWARD BIAS
SECOND BREAKDOWN
DERATING
160
40
MJ10009
http://onsemi.com
7
PACKAGE DIMENSIONS
CASE 1–07
ISSUE Z
TO–204 (TO–3)
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. ALL RULES AND NOTES ASSOCIATED WITH
REFERENCED TO-204AA OUTLINE SHALL APPLY.
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A1.550 REF 39.37 REF
B--- 1.050 --- 26.67
C0.250 0.335 6.35 8.51
D0.038 0.043 0.97 1.09
E0.055 0.070 1.40 1.77
G0.430 BSC 10.92 BSC
H0.215 BSC 5.46 BSC
K0.440 0.480 11.18 12.19
L0.665 BSC 16.89 BSC
N--- 0.830 --- 21.08
Q0.151 0.165 3.84 4.19
U1.187 BSC 30.15 BSC
V0.131 0.188 3.33 4.77
A
N
E
C
K
–T– SEATING
PLANE
2 PL
D
M
Q
M
0.13 (0.005) Y M
T
M
Y
M
0.13 (0.005) T
–Q–
–Y–
2
1
UL
GB
V
H
MJ10009
http://onsemi.com
8
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–spanish@hibbertco.com
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –
then Dial 866–297–9322
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
MJ10009/D
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: ONlit–german@hibbertco.com
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
Email: ONlit–french@hibbertco.com
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
Email: ONlit@hibbertco.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, UK, Ireland