   
    
SLOS051E − O C TOBER 1987 − REVISED AUGUST 2008
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DTrimmed Offset Voltage:
TLC27M7 . . . 500 µV Max at 25°C,
VDD = 5 V
DInput Offset Voltage Drift ...Typically
0.1 µV/Month, Including the First 30 Days
DWide Range of Supply Voltages Over
Specified Temperature Ranges:
0°C to 70°C...3 V to 16 V
−40°C to 85°C...4 V to 16 V
−55°C to 125°C...4 V to 16 V
DSingle-Supply Operation
DCommon-Mode Input Voltage Range
Extends Below the Negative Rail (C-Suffix,
I-Suffix Types)
DLow Noise ...Typically 32 nV/Hz at
f = 1 kHz
DLow Power ...Typically 2.1 mW at 25°C,
VDD = 5 V
DOutput Voltage Range Includes Negative
Rail
DHigh Input impedance ...10
12 Typ
DESD-Protection Circuitry
DSmall-Outline Package Option Also
Available in Tape and Reel
DDesigned-In Latch-Up Immunity
1
2
3
4
8
7
6
5
1OUT
1IN
1IN +
GND
VCC
2OUT
2IN
2IN +
D, JG, P OR PW PACKAGE
(TOP VIEW)
3 2 1 20 19
910111213
4
5
6
7
8
18
17
16
15
14
NC
2OUT
NC
2IN
NC
NC
1IN
NC
1IN +
NC
FK PACKAGE
(TOP VIEW)
NC
1OUT
NC
NC NC
NC
GND
NC
NC − No internal connection
DD
V
2IN +
800
Percentage of Units − %
V
IO
− Input Offset Voltage − µV
30
800
0400 0 400
5
10
15
20
25 TA = 25°C
P Package
DISTRIBUTION OF TLC27M7
INPUT OFFSET VOLTAGE
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
340 Units Tested From 2 Wafer Lots
VDD = 5 V
AVAILABLE OPTIONS
VIOmax
PACKAGE
TA
V
IO
max
AT 25°CSMALL OUTLINE
(D) CHIP CARRIER
(FK) CERAMIC DIP
(JG) PLASTIC DIP
(P) TSSOP
(PW)
500 µV TLC27M7CD TLC27M7CP
0°C to 70°C
2 mV TLC27M2BCD TLC27M2BCP
0°C to 70°C5 mV TLC27M2ACD TLC27M2ACP
10 mV TLC27M2CD TLC27M2CP TLC27M2CPW
500 µV TLC27M7ID TLC27M7IP
−40°C to 85°C
2 mV TLC27M2BID TLC27M2BIP
−40°C to 85°C5 mV TLC27M2AID TLC27M2AIP
10 mV TLC27M2ID TLC27M2IP TLC27M2IPW
−55°C to 125°C
500 µV TLC27M7MD TLC27M7MFK TLC27M7MJG TLC27M7MP
−55
°
C to 125
°
C
10 mV TLC27M2MD TLC27M2MFK TLC27M2MJG TLC27M2MP
The D and PW package are available taped and reeled. Add R suffix to the device type (e.g.,TLC27M7CDR). For the most current package and
ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
Copyright 1987 − 2008, Texas Instruments Incorporated
       !"# $%
$   ! ! &   ' 
$$ ()% $ !* $  #) #$
*  ## !%
LinCMOS is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.
   
    
SLOS051E − O C TOBER 1987 − REVISED AUGUST 2008
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
description
The TLC27M2 and TLC27M7 dual operational amplifiers combine a wide range of input offset voltage grades
with low of fset voltage drift, high input impedance, low noise, and speeds approaching that of general-purpose
bipolar devices.These devices use Texas Instruments silicon-gate LinCMOStechnology, which provides offset
voltage stability far exceeding the stability available with conventional metal-gate processes.
The extremely high input impedance, low bias currents, and high slew rates make these cost-effective devices
ideal for applications which have previously been reserved for general-purpose bipolar products, but with only
a fraction of the power consumption. Four offset voltage grades are available (C-suffix and I-suffix types),
ranging from the low-cost TLC27M2 (10 mV) to the high-precision TLC27M7 (500 µV). These advantages, in
combination with good common-mode rejection and supply voltage rejection, make these devices a good
choice for new state-of-the-art designs as well as for upgrading existing designs.
In general, many features associated with bipolar technology are available on LinCMOS operational amplifiers,
without the power penalties of bipolar technology. General applications such as transducer interfacing, analog
calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC27M2 and
TLC27M7. The devices also exhibit low voltage single-supply operation, making them ideally suited for remote
and inaccessible battery-powered applications. The common-mode input voltage range includes the negative
rail.
A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density
system applications.
The device inputs and outputs are designed to withstand −100-mA surge currents without sustaining latch-up.
The TLC27M2 and TLC27M7 incorporate internal ESD-protection circuits that prevent functional failures at
voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in
handling th e s e d e v i c e s a s exposure to ESD may result in the degradation of th e device parametric performance.
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized
for operation from −40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of −55°C to 125°C.
   
    
SLOS051E − O C TOBER 1987 − REVISED AUGUST 2008
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
equivalent schematic (each amplifier)
VDD
P4P3
R6
N5R2
P2
R1
P1
IN
IN +
N1
R3 D1 R4 D2
N2
GND
N3
R5 C1
N4 R7
N6 N7
OUT
P6P5
   
    
SLOS051E − O C TOBER 1987 − REVISED AUGUST 2008
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) 18 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, VID (see Note 2) ±VDD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, VI (any input) 0.3 V to VDD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input current, II ±5 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO (each output) ±30 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current into VDD 45 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current out of GND 45 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duration of short-circuit current at (or below) 25°C (see Note 3) Unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature, TA: C suffix 0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I suffix 40°C to 85°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M suffix 55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range 65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case temperature for 60 seconds: FK package 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package 260°C. . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package 300°C. . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
2. Differential voltages are at IN+ with respect to IN−.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded (see application section).
DISSIPATION RATING TABLE
PACKAGE TA 25°C
POWER RATING DERATING FACTOR
ABOVE TA = 25°CTA = 70°C
POWER RATING TA = 85°C
POWER RATING TA = 125°C
POWER RATING
D725 mW 5.8 mW/°C464 mW 377 mW
FK 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW
JG 1050 mW 8.4 mW/°C 672 mW 546 mW 210 mW
P1000 mW 8.0 mW/°C640 mW 520 mW
recommended operating conditions
C SUFFIX I SUFFIX M SUFFIX
UNIT
MIN MAX MIN MAX MIN MAX
UNIT
Supply voltage, VDD 3 16 4 16 4 16 V
Common-mode input voltage, VIC
VDD = 5 V 0.2 3.5 0.2 3.5 0 3.5
V
Common-mode input voltage, VIC VDD = 10 V 0.2 8.5 0.2 8.5 0 8.5 V
Operating free-air temperature, TA0 70 −40 85 −55 125 °C
   
    
SLOS051E − O C TOBER 1987 − REVISED AUGUST 2008
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS TA
TLC27M2C
TLC27M2AC
TLC27M2BC
TLC27M7C UNIT
A
MIN TYP MAX
TLC27M2C
VIC = 0,
25°C 1.1 10
TLC27M2C
RS = 50 ,
VIC = 0,
RI = 100 kFull range 12
mV
TLC27M2AC
VIC = 0,
25°C 0.9 5 mV
VIO
Input offset voltage
TLC27M2AC
RS = 50 ,
VIC = 0,
RI = 100 kFull range 6.5
VIO Input offset voltage
TLC27M2BC
VIC = 0,
25°C 220 2000
TLC27M2BC
RS = 50 ,
VIC = 0,
RI = 100 kFull range 3000
V
TLC27M7C
VIC = 0,
25°C 185 500 µV
TLC27M7C
RS = 50 ,
VIC = 0,
RI = 100 kFull range 1500
αVIO Average temperature coefficient of input
offset voltage 25°C to
70°C1.7 µV/°C
IIO
Input offset current (see Note 4)
VIC = 2.5 V
25°C 0.1 60
pA
IIO Input offset current (see Note 4) VO = 2.5 V, VIC = 2.5 V 70°C7 300 pA
IIB
Input bias current (see Note 4)
VIC = 2.5 V
25°C 0.6 60
pA
IIB Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V 70°C40 600 pA
VICR
Common-mode input voltage range
25°C0.2
to
4
0.3
to
4.2 V
VICR
Common-mode input voltage range
(see Note 5) Full range 0.2
to
3.5 V
25°C 3.2 3.9
V
OH
High-level output voltage V
= 100 mV, R
L
= 100 k0°C3 3.9 V
VOH
High-level output voltage
RL = 100 k
70°C 3 4
V
25°C 0 50
V
OL
Low-level output voltage V
= −100 mV, I
OL
= 0 0°C0 50 mV
VOL
Low-level output voltage
IOL = 0
70°C 0 50
mV
Large-signal differential voltage
25°C 25 170
A
VD
Large-signal differential voltage
amplification
V
= 0.25 V to 2 V
R
L
= 100 k0°C15 200 V/mV
AVD
amplification
RL = 100 k
70°C 15 140
V/mV
25°C 65 91
CMRR Common-mode rejection ratio V
IC
= V
ICR
min 0°C 60 91 dB
CMRR
Common-mode rejection ratio
VIC = VICRmin
70°C 60 92
dB
Supply-voltage rejection ratio
25°C 70 93
k
SVR
Supply-voltage rejection ratio
(VDD/VIO)
V
= 5 V to 10 V, V
O
= 1.4 V 0°C60 92 dB
kSVR
(VDD/VIO)
VO = 1.4 V
70°C 60 94
dB
VIC = 2.5 V,
25°C 210 560
I
DD
Supply current (two amplifiers) VO = 2.5 V,
VIC = 2.5 V, 0°C250 640 µA
IDD
Supply current (two amplifiers)
70°C 170 440
µA
Full range is 0°C to 70°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
   
    
SLOS051E − O C TOBER 1987 − REVISED AUGUST 2008
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 10 V (unless otherwise noted)
PARAMETER TEST CONDITIONS TA
TLC27M2C
TLC27M2AC
TLC27M2BC
TLC27M7C UNIT
MIN TYP MAX
TLC27M2C
VIC = 0,
25°C 1.1 10
TLC27M2C
RS = 50 ,
VIC = 0,
RL = 100 kFull range 12
mV
TLC27M2AC
VIC = 0,
25°C 0.9 5 mV
VIO
Input offset voltage
TLC27M2AC
RS = 50 ,
VIC = 0,
RL = 100 kFull range 6.5
VIO Input offset voltage
TLC27M2BC
VIC = 0,
25°C 224 2000
TLC27M2BC
RS = 50 ,
VIC = 0,
RL = 100 kFull range 3000
V
TLC27M7C
VIC = 0,
25°C 190 800 µV
TLC27M7C
RS = 50 ,
VIC = 0,
RL = 100 kFull range 1900
αVIO Average temperature coefficient of input
offset voltage 25°C to
70°C2.1 µV/°C
IIO
Input offset current (see Note 4)
VIC = 5 V
25°C 0.1 60
pA
IIO Input offset current (see Note 4) VO = 5 V, VIC = 5 V 70°C7 300 pA
IIB
Input bias current (see Note 4)
VIC = 5 V
25°C 0.7 60
pA
IIB Input bias current (see Note 4) VO = 5 V, VIC = 5 V 70°C50 600 pA
VICR
Common-mode input voltage range
25°C0.2
to
9
0.3
to
9.2 V
VICR
Common-mode input voltage range
(see Note 5) Full range 0.2
to
8.5 V
25°C 8 8.7
V
OH
High-level output voltage V
= 100 mV, R
L
= 100 k0°C7.8 8.7 V
VOH
High-level output voltage
RL = 100 k
70°C 7.8 8.7
V
25°C 0 50
V
OL
Low-level output voltage V
= −100 mV, I
OL
= 0 0°C0 50 mV
VOL
Low-level output voltage
IOL = 0
70°C 0 50
mV
Large-signal differential voltage
25°C 25 275
A
VD
Large-signal differential voltage
amplification
V
= 1 V to 6 V, R
L
= 100 k0°C15 320 V/mV
AVD
amplification
RL = 100 k
70°C 15 230
V/mV
25°C 65 94
CMRR Common-mode rejection ratio V
IC
= V
ICR
min 0°C 60 94 dB
CMRR
Common-mode rejection ratio
VIC = VICRmin
70°C 60 94
dB
Supply-voltage rejection ratio
25°C 70 93
k
SVR
Supply-voltage rejection ratio
(VDD/VIO)
V
= 5 V to 10 V, V
O
= 1.4 V 0°C60 92 dB
kSVR
(VDD/VIO)
VO = 1.4 V
70°C 60 94
dB
VIC = 5 V,
25°C 285 600
I
DD
Supply current (two amplifiers) VO = 5 V,
VIC = 5 V, 0°C345 800 µA
IDD
Supply current (two amplifiers)
70°C 220 560
µA
Full range is 0°C to 70°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
   
    
SLOS051E − O C TOBER 1987 − REVISED AUGUST 2008
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS TA
TLC27M2I
TLC27M2AI
TLC27M2BI
TLC27M7I UNIT
MIN TYP MAX
TLC27M2I
VIC = 0,
25°C 1.1 10
TLC27M2I
RS = 50 ,
VIC = 0,
RL = 100 kFull range 13
mV
TLC27M2AI
VIC = 0,
25°C 0.9 5 mV
VIO
Input offset voltage
TLC27M2AI
RS = 50 ,
VIC = 0,
RL = 100 kFull range 7
VIO Input offset voltage
TLC27M2BI
VIC = 0,
25°C 220 2000
TLC27M2BI
RS = 50 ,
VIC = 0,
RL = 100 kFull range 3500
V
TLC27M7I
VIC = 0,
25°C 185 500 µV
TLC27M7I
RS = 50 ,
VIC = 0,
RL = 100 kFull range 2000
αVIO Average temperature coefficient of input
offset voltage 25°C to
85°C1.7 µV/°C
IIO
Input offset current (see Note 4)
VIC = 2.5 V
25°C 0.1 60
pA
IIO Input offset current (see Note 4) VO = 2.5 V, VIC = 2.5 V 85°C24 1000 pA
IIB
Input bias current (see Note 4)
VIC = 2.5 V
25°C 0.6 60
pA
IIB Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V 85°C200 2000 pA
VICR
Common-mode input voltage range
25°C0.2
to
4
0.3
to
4.2 V
VICR
Common-mode input voltage range
(see Note 5) Full range 0.2
to
3.5 V
25°C 3.2 3.9
V
OH
High-level output voltage V
= 100 mV, R
L
= 100 k−40°C3 3.9 V
VOH
High-level output voltage
RL = 100 k
85°C 3 4
V
25°C 0 50
V
OL
Low-level output voltage V
= −100 mV, I
OL
= 0 −40°C0 50 mV
VOL
Low-level output voltage
IOL = 0
85°C 0 50
mV
Large-signal differential voltage
25°C 25 170
A
VD
Large-signal differential voltage
amplification
V
= 0.25 V to 2 V
R
L
= 100 k−40°C15 270 V/mV
AVD
amplification
RL = 100 k
85°C 15 130
V/mV
25°C 65 91
CMRR Common-mode rejection ratio V
IC
= V
ICR
min −40°C 60 90 dB
CMRR
Common-mode rejection ratio
VIC = VICRmin
85°C 60 90
dB
Supply-voltage rejection ratio
25°C 70 93
k
SVR
Supply-voltage rejection ratio
(VDD/VIO)
V
= 5 V to 10 V, V
O
= 1.4 V −40°C60 91 dB
kSVR
(VDD/VIO)
VO = 1.4 V
85°C 60 94
dB
VIC = 2.5 V,
25°C 210 560
I
DD
Supply current (two amplifiers) VO = 2.5 V,
VIC = 2.5 V, −40°C315 800 µA
IDD
Supply current (two amplifiers)
85°C 160 400
µA
Full range is −40°C to 85°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
   
    
SLOS051E − O C TOBER 1987 − REVISED AUGUST 2008
8POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 10 V (unless otherwise noted)
PARAMETER TEST CONDITIONS TA
TLC27M2I
TLC27M2AI
TLC27M2BI
TLC27M7I UNIT
MIN TYP MAX
TLC27M2I
VIC = 0,
25°C 1.1 10
TLC27M2I
RS = 50 ,
VIC = 0,
RL = 100 kFull range 13
mV
TLC27M2AI
VIC = 0,
25°C 0.9 5 mV
VIO
Input offset voltage
TLC27M2AI
RS = 50 ,
VIC = 0,
RL = 100 kFull range 7
VIO Input offset voltage
TLC27M2BI
VIC = 0,
25°C 224 2000
TLC27M2BI
RS = 50 ,
VIC = 0,
RL = 100 kFull range 3500
V
TLC27M7I
VIC = 0,
25°C 190 800 µV
TLC27M7I
RS = 50 ,
VIC = 0,
RL = 100 kFull range 2900
αVIO Average temperature coefficient of input
offset voltage 25°C to
85°C2.1 µV/°C
IIO
Input offset current (see Note 4)
VIC = 5 V
25°C 0.1 60
pA
IIO Input offset current (see Note 4) VO = 5 V, VIC = 5 V 85°C26 1000 pA
25°C 0.7 60
IIB Input bias current (see Note 4) VO = 5 V, VIC = 5 V 85°C220 200
0pA
VICR
Common-mode input voltage range
25°C0.2
to
9
0.3
to
9.2 V
VICR
Common-mode input voltage range
(see Note 5) Full range 0.2
to
8.5 V
25°C 8 8.7
V
OH
High-level output voltage V
= 100 mV, R
L
= 100 k−40°C7.8 8.7 V
VOH
High-level output voltage
RL = 100 k
85°C 7.8 8.7
V
25°C 0 50
V
OL
Low-level output voltage V
= −100 mV, I
OL
= 0 −40°C0 50 mV
VOL
Low-level output voltage
IOL = 0
85°C 0 50
mV
Large-signal differential voltage
25°C 25 275
A
VD
Large-signal differential voltage
amplification
V
= 1 V to 6 V, R
L
= 100 k−40°C15 390 V/mV
AVD
amplification
RL = 100 k
85°C 15 220
V/mV
25°C 65 94
CMRR Common-mode rejection ratio V
IC
= V
ICR
min −40°C 60 93 dB
CMRR
Common-mode rejection ratio
VIC = VICRmin
85°C 60 94
dB
Supply-voltage rejection ratio
25°C 70 93
k
SVR
Supply-voltage rejection ratio
(VDD/VIO)
V
= 5 V to 10 V, V
O
= 1.4 V −40°C60 91 dB
kSVR
(VDD/VIO)
VO = 1.4 V
85°C 60 94
dB
VIC = 5 V,
25°C 285 600
I
DD
Supply current VO = 5 V,
VIC = 5 V, −40°C450 900 µA
IDD
Supply current
85°C 205 520
µA
Full range is −40°C to 85°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
   
    
SLOS051E − O C TOBER 1987 − REVISED AUGUST 2008
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA
TLC27M2M
TLC27M7M
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX
UNIT
TLC27M2M
VIC = 0,
25°C 1.1 10
VIO
Input offset voltage
TLC27M2M
RS = 50 ,
VIC = 0,
RL = 100 kFull range 12
mV
VIO Input offset voltage
TLC27M7M
VIC = 0,
25°C 185 500 mV
TLC27M7M
RS = 50 ,
VIC = 0,
RL = 100 kFull range 3750
αVIO Average temperature coefficient of input
offset voltage 25°C to
125°C1.7 µV/°C
IIO
Input offset current (see Note 4)
VIC = 2.5 V
25°C 0.1 60 pA
IIO Input offset current (see Note 4) VO = 2.5 V, VIC = 2.5 V 125°C1.4 15 nA
IIB
Input bias current (see Note 4)
VIC = 2.5 V
25°C 0.6 60 pA
IIB Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V 125°C9 35 nA
VICR
Common-mode input voltage range
25°C0
to
4
0.3
to
4.2 V
VICR
Common-mode input voltage range
(see Note 5) Full range 0
to
3.5 V
25°C 3.2 3.9
V
OH
High-level output voltage V
= 100 mV, R
L
= 100 k−55°C3 3.9 V
VOH
High-level output voltage
RL = 100 k
125°C 3 4
V
25°C 0 50
V
OL
Low-level output voltage V
= −100 mV, I
OL
= 0 −55°C0 50 mV
VOL
Low-level output voltage
IOL = 0
125°C 0 50
mV
Large-signal differential voltage
25°C 25 170
A
VD
Large-signal differential voltage
amplification
V
= 0.25 V to 2 V
R
L
= 100 k−55°C15 290 V/mV
AVD
amplification
RL = 100 k
125°C 15 120
V/mV
25°C 65 91
CMRR Common-mode rejection ratio V
IC
= V
ICR
min −55°C 60 89 dB
CMRR
Common-mode rejection ratio
VIC = VICRmin
125°C 60 91
dB
Supply-voltage rejection ratio
25°C 70 93
k
SVR
Supply-voltage rejection ratio
(VDD/VIO)
V
= 5 V to 10 V, V
O
= 1.4 V −55°C60 91 dB
kSVR
(VDD/VIO)
VO = 1.4 V
125°C 60 94
dB
VIC = 2.5 V,
25°C 210 560
I
DD
Supply current (two amplifiers) VO = 2.5 V,
VIC = 2.5 V, −55°C340 880 µA
IDD
Supply current (two amplifiers)
125°C 140 360
µA
Full range is −55°C to 125°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
   
    
SLOS051E − O C TOBER 1987 − REVISED AUGUST 2008
10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 10 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA
TLC27M2M
TLC27M7M
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX
UNIT
TLC27M2M
VIC = 0,
25°C 1.1 10
VIO
Input offset voltage
TLC27M2M
RS = 50 ,
VIC = 0,
RL = 100 kFull range 12
mV
VIO Input offset voltage
TLC27M7M
VIC = 0,
25°C 190 800 mV
TLC27M7M
RS = 50 ,
VIC = 0,
RL = 100 kFull range 4300
αVIO Average temperature coefficient of input
offset voltage 25°C to
125°C2.1 µV/°C
IIO
Input offset current (see Note 4)
VIC = 5 V
25°C 0.1 60
pA
IIO Input offset current (see Note 4) VO = 5 V, VIC = 5 V 125°C1.8 15 pA
IIB
Input bias current (see Note 4)
VIC = 5 V
25°C 0.7 60
pA
IIB Input bias current (see Note 4) VO = 5 V, VIC = 5 V 125°C10 35 pA
VICR
Common-mode input voltage range
25°C0
to
9
0.3
to
9.2 V
VICR
Common-mode input voltage range
(see Note 5) Full range 0
to
8.5 V
25°C 8 8.7
V
OH
High-level output voltage V
= 100 mV, R
L
= 100 k−55°C7.8 8.6 V
VOH
High-level output voltage
RL = 100 k
125°C 7.8 8.8
V
25°C 0 50
V
OL
Low-level output voltage V
= −100 mV, I
OL
= 0 −55°C0 50 mV
VOL
Low-level output voltage
IOL = 0
125°C 0 50
mV
Large-signal differential voltage
25°C 25 275
A
VD
Large-signal differential voltage
amplification
V
= 1 V to 6 V, R
L
= 100 k−55°C15 420 V/mV
AVD
amplification
RL = 100 k
125°C 15 190
V/mV
25°C 65 94
CMRR Common-mode rejection ratio V
IC
= V
ICR
min −55°C 60 93 dB
CMRR
Common-mode rejection ratio
VIC = VICRmin
125°C 60 93
dB
Supply-voltage rejection ratio
25°C 70 93
k
SVR
Supply-voltage rejection ratio
(VDD/VIO)
V
= 5 V to 10 V, V
O
= 1.4 V −55°C60 91 dB
kSVR
(VDD/VIO)
VO = 1.4 V
125°C 60 94
dB
VIC = 5 V,
25°C 285 600
I
DD
Supply current (two amplifiers) VO = 5 V,
VIC = 5 V, −55°C490 1000 µA
IDD
Supply current (two amplifiers)
125°C 180 480
µA
Full range is −55°C to 125°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
   
    
SLOS051E − O C TOBER 1987 − REVISED AUGUST 2008
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER TEST CONDITIONS TA
TLC27M2C
TLC27M2AC
TLC27M2BC
TLC27M7C UNIT
MIN TYP MAX
25°C 0.43
R = 100 k ,
V
I(PP)
= 1 V 0°C 0.46
SR
Slew rate at unity gain
RL = 100 k,
CL = 20 pF,
VI(PP) = 1 V
70°C 0.36
V/ s
SR Slew rate at unity gain
L
C
L
= 20 pF,
See Figure 1
25°C 0.40 V/µs
See Figure 1
V
I(PP)
= 2.5 V 0°C 0.43
VI(PP) = 2.5 V
70°C 0.34
VnEquivalent input noise voltage f = 1 kHz,
See Figure 2 RS = 20 ,25°C 32 nV/Hz
VO = VOH,
CL = 20 pF,
25°C 55
B
OM
Maximum output-swing bandwidth VO = VOH,
RL = 100 k,
CL = 20 pF,
See Figure 1
0°C 60 kHz
BOM
Maximum output-swing bandwidth
RL = 100 k,
See Figure 1
70°C 50
VI = 10 mV,
CL = 20 pF,
25°C 525
B
1
Unity-gain bandwidth VI = 10 mV,
See Figure 3
CL = 20 pF, 0°C600 kHz
B1
Unity-gain bandwidth
See Figure 3
70°C 400
VI = 10 mV,
f = B1,
25°C 40°
φ
m
Phase margin VI = 10 mV,
CL = 20 pF,
f = B1,
See Figure 3
0°C 41°
φm
Phase margin
CL = 20 pF,
See Figure 3
70°C 39°
operating characteristics at specified free-air temperature, VDD = 10 V
PARAMETER TEST CONDITIONS TA
TLC27M2C
TLC27M2AC
TLC27M2BC
TLC27M7C UNIT
MIN TYP MAX
25°C 0.62
R = 100 k ,
V
I(PP)
= 1 V 0°C 0.67
SR
Slew rate at unity gain
RL = 100 k,
CL = 20 pF,
VI(PP) = 1 V
70°C 0.51
V/ s
SR Slew rate at unity gain
L
C
L
= 20 pF,
See Figure 1
25°C 0.56 V/µs
See Figure 1
V
I(PP)
= 5.5 V 0°C 0.61
VI(PP) = 5.5 V
70°C 0.46
VnEquivalent input noise voltage f = 1 kHz,
See Figure 2 RS = 20 ,25°C 32 nV/Hz
VO = VOH,
CL = 20 pF,
25°C 35
B
OM
Maximum output-swing bandwidth VO = VOH,
RL = 100 k,
CL = 20 pF,
See Figure 1
0°C 40 kHz
BOM
Maximum output-swing bandwidth
RL = 100 k,
See Figure 1
70°C 30
kHz
VI = 10 mV,
CL = 20 pF,
25°C 635
B
1
Unity-gain bandwidth VI = 10 mV,
See Figure 3
CL = 20 pF, 0°C710 kHz
B1
Unity-gain bandwidth
See Figure 3
70°C 510
kHz
VI = 10 mV,
f = B1,
25°C 43°
φ
m
Phase margin VI = 10 mV,
CL = 20 pF,
f = B1,
See Figure 3
0°C 44°
φm
Phase margin
CL = 20 pF,
See Figure 3
70°C 42°
   
    
SLOS051E − O C TOBER 1987 − REVISED AUGUST 2008
12 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER TEST CONDITIONS TA
TLC27M2I
TLC27M2AI
TLC27M2BI
TLC27M7I UNIT
MIN TYP MAX
25°C 0.43
R = 100 k ,
V
I(PP)
= 1 V −40°C 0.51
SR
Slew rate at unity gain
RL = 100 k,
CL = 20 pF,
VI(PP) = 1 V
85°C 0.35
V/ s
SR Slew rate at unity gain
L
C
L
= 20 pF,
See Figure 1
25°C 0.40 V/µs
See Figure 1
V
I(PP)
= 2.5 V −40°C 0.48
VI(PP) = 2.5 V
85°C 0.32
VnEquivalent input noise voltage f = 1 kHz,
See Figure 2 RS = 20 ,25°C 32 nV/Hz
VO = VOH,
CL = 20 pF,
25°C 55
B
OM
Maximum output-swing bandwidth VO = VOH,
RL = 100 k,
CL = 20 pF,
See Figure 1
−40°C 75 kHz
BOM
Maximum output-swing bandwidth
RL = 100 k,
See Figure 1
85°C 45
kHz
VI = 10 mV,
CL = 20 pF,
25°C 525
B
1
Unity-gain bandwidth VI = 10 mV,
See Figure 3
CL = 20 pF, −40°C770 kHz
B1
Unity-gain bandwidth
See Figure 3
85°C 370
kHz
VI = 10 mV,
f = B1,
25°C 40°
φ
m
Phase margin VI = 10 mV,
CL = 20 pF,
f = B1,
See Figure 3
−40°C 43°
φm
Phase margin
CL = 20 pF,
See Figure 3
85°C 38°
operating characteristics at specified free-air temperature, VDD = 10 V
PARAMETER TEST CONDITIONS TA
TLC27M2I
TLC27M2AI
TLC27M2BI
TLC27M7I UNIT
MIN TYP MAX
25°C 0.62
R = 100 k ,
V
I(PP)
= 1 V −40°C 0.77
SR
Slew rate at unity gain
RL = 100 k,
CL = 20 pF,
VI(PP) = 1 V
85°C 0.47
V/ s
SR Slew rate at unity gain
L
C
L
= 20 pF,
See Figure 1
25°C 0.56 V/µs
See Figure 1
V
I(PP)
= 5.5 V −40°C 0.70
VI(PP) = 5.5 V
85°C 0.44
VnEquivalent input noise voltage f = 1 kHz,
See Figure 2 RS = 20 ,25°C 32 nV/Hz
VO = VOH,
CL = 20 pF,
25°C 35
B
OM
Maximum output-swing bandwidth VO = VOH,
RL = 100 k,
CL = 20 pF,
See Figure 1
−40°C 45 kHz
BOM
Maximum output-swing bandwidth
RL = 100 k,
See Figure 1
85°C 25
kHz
VI = 10 mV,
CL = 20 pF,
25°C 635
B
1
Unity-gain bandwidth VI = 10 mV,
See Figure 3
CL = 20 pF, −40°C880 kHz
B1
Unity-gain bandwidth
See Figure 3
85°C 480
kHz
VI = 10 mV,
f = B1,
25°C 43°
φ
m
Phase margin VI = 10 mV,
CL = 20 pF,
f = B1,
See Figure 3
−40°C 46°
φm
Phase margin
CL = 20 pF,
See Figure 3
85°C 41°
   
    
SLOS051E − O C TOBER 1987 − REVISED AUGUST 2008
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER TEST CONDITIONS T
A
TLC27M2M
TLC27M7M
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX
UNIT
25°C 0.43
R = 100 k ,
V
I(PP)
= 1 V −55°C 0.54
SR
Slew rate at unity gain
RL = 100 k
,
CL = 20 pF,
VI(PP) = 1 V
125°C 0.29
V/ s
SR Slew rate at unity gain
L
C
L
= 20 pF,
See Figure 1
25°C 0.40 V/µs
See Figure 1
V
I(PP)
= 2.5 V −55°C 0.49
VI(PP) = 2.5 V
125°C 0.28
VnEquivalent input noise voltage f = 1 kHz,
See Figure 2 RS = 20 ,25°C 32 nV/Hz
VO = VOH,
CL = 20 pF,
25°C 55
B
OM
Maximum output-swing bandwidth VO = VOH,
RL = 100 k,
CL = 20 pF,
See Figure 1
−55°C 80 kHz
BOM
Maximum output-swing bandwidth
RL = 100 k,
See Figure 1
125°C 40
kHz
VI = 10 mV,
CL = 20 pF,
25°C 525
B
1
Unity-gain bandwidth VI = 10 mV,
See Figure 3
CL = 20 pF, −55°C850 kHz
B1
Unity-gain bandwidth
See Figure 3
125°C 330
kHz
VI = 10 mV,
f = B1,
25°C 40°
φ
m
Phase margin VI = 10 mV,
CL = 20 pF,
f = B1,
See Figure 3
−55°C 44°
φm
Phase margin
CL = 20 pF,
See Figure 3
125°C 36°
operating characteristics at specified free-air temperature, VDD = 10 V
PARAMETER TEST CONDITIONS T
A
TLC27M2M
TLC27M7M
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX
UNIT
25°C 0.62
R = 100 k ,
V
I(PP)
= 1 V −55°C 0.81
SR
Slew rate at unity gain
RL = 100 k
,
CL = 20 pF,
VI(PP) = 1 V
125°C 0.38
V/ s
SR Slew rate at unity gain
L
C
L
= 20 pF,
See Figure 1
25°C 0.56 V/µs
See Figure 1
V
I(PP)
= 5.5 V −55°C 0.73
VI(PP) = 5.5 V
125°C 0.35
VnEquivalent input noise voltage f = 1 kHz,
See Figure 2 RS = 20 ,25°C 32 nV/Hz
VO = VOH,
CL = 20 pF,
25°C 35
B
OM
Maximum output-swing bandwidth VO = VOH,
RL = 100 k,
CL = 20 pF,
See Figure 1
−55°C 50 kHz
BOM
Maximum output-swing bandwidth
RL = 100 k,
See Figure 1
125°C 20
kHz
VI = 10 mV,
CL = 20 pF,
25°C 635
B
1
Unity gain bandwidth VI = 10 mV,
See Figure 3
CL = 20 pF, −55°C960 kHz
B1
Unity gain bandwidth
See Figure 3
125°C 440
kHz
VI = 10 mV,
f = B1,
25°C 43°
φ
m
Phase margin VI = 10 mV,
CL = 20 pF,
f = B1,
See Figure 3
−55°C 47°
φm
Phase margin
CL = 20 pF,
See Figure 3
125°C 39°
   
    
SLOS051E − O C TOBER 1987 − REVISED AUGUST 2008
14 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
single-supply versus split-supply test circuits
Because the TLC27M2 and TLC27M7 are optimized for single-supply operation, circuit configurations used for
the various tests often present some inconvenience since the input signal, in many cases, must be offset from
ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to
the negative rail. A comparison of single-supply versus split-supply test circuits is shown below . The use of either
circuit gives the same result.
+
VDD
CLRL
VO
VIVI
VO
RL
CL
+
VDD+
VDD
(a) SINGLE SUPPLY (b) SPLIT SUPPLY
Figure 1. Unity-Gain Amplifier
1/2 VDD
VDD
+
VDD+
+
20
VO
2 k
20
VDD
20 20
2 k
VO
(b) SPLIT SUPPLY(a) SINGLE SUPPLY
Figure 2. Noise-Test Circuit
VDD
+
10 k
VO
100
CL
1/2 VDD
VIVI
CL
100
VO
10 k
+
VDD+
VDD
(a) SINGLE SUPPLY (b) SPLIT SUPPLY
Figure 3. Gain-of-100 Inverting Amplifier
   
    
SLOS051E − O C TOBER 1987 − REVISED AUGUST 2008
15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
input bias current
Because of the high input impedance of the TLC27M2 and TLC27M7 operational amplifiers, attempts to
measure the input bias current can result in erroneous readings. The bias current at normal room ambient
temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two
suggestions are offered to avoid erroneous measurements:
1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the
device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.
2. Compensate for the leakage of the test socket by actually performing an input bias current test (using
a picoammeter) with no device in the test socket. The actual input bias current can then be calculated
by subtracting the open-socket leakage readings from the readings obtained with a device in the test
socket.
One word of caution—many automatic testers as well as some bench-top operational amplifier testers
use the servo-loop technique with a resistor in series with the device input to measure the input bias
current (the voltage drop across the series resistor is measured and the bias current is calculated). This
method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an
open-socket reading is not feasible using this method.
V = VIC
41
5
8
85
Figure 4. Isolation Metal Around Device Inputs (JG and P packages)
low-level output voltage
To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise
results in the device low-level output being dependent on both the common-mode input voltage level as well
as the differential input voltage level. When attempting to correlate low-level output readings with those quoted
in the electrical specifications, these two conditions should be observed. If conditions other than these are to
be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet.
   
    
SLOS051E − O C TOBER 1987 − REVISED AUGUST 2008
16 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
input offset voltage temperature coefficient
Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This
parameter is actually a calculation using input offset voltage measurements obtained at two different
temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device
and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input
offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage, since
the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these
measurements be performed at temperatures above freezing to minimize error.
full-power response
Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage
swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is
generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal
input signal until the maximum frequency is found above which the output contains significant distortion. The
full-peak response is defined as the maximum output frequency, without regard to distortion, above which full
peak-to-peak output swing cannot be maintained.
Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified
in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal
input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is
increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same
amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained
(Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum
peak-to-peak output is reached.
(a) f = 1 kHz (b) BOM > f > 1 kHz (c) f = BOM (d) f > BOM
Figure 5. Full-Power-Response Output Signal
test time
Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume,
short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET
devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more
pronounced with reduced supply levels and lower temperatures.
   
    
SLOS051E − O C TOBER 1987 − REVISED AUGUST 2008
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO Input offset voltage Distribution 6, 7
αVIO Temperature coefficient Distribution 8, 9
vs High-level output current
10, 11
VOH
High-level output voltage
vs High-level output current
vs Supply voltage
10, 11
12
VOH
High-level output voltage
vs Supply voltage
vs Free-air temperature
12
13
vs Common-mode input voltage
14, 15
VOL
Low-level output voltage
vs Common-mode input voltage
vs Differential input voltage
14, 15
16
VOL Low-level output voltage
vs Differential input voltage
vs Free-air temperature
16
17
vs Free-air temperature
vs Low-level output current
17
18, 19
vs Supply voltage
20
AVD
Differential voltage amplification
vs Supply voltage
vs Free-air temperature
20
21
AVD
Differential voltage amplification
vs Free-air temperature
vs Frequency
21
32, 33
IIB/IIO Input bias and input offset current vs Free-air temperature 22
VIC Common-mode input voltage vs Supply voltage 23
IDD
Supply current
vs Supply voltage
24
IDD Supply current
vs Supply voltage
vs Free-air temperature
24
25
SR
Slew rate
vs Supply voltage
26
SR Slew rate
vs Supply voltage
vs Free-air temperature
26
27
Normalized slew rate vs Free-air temperature 28
VO(PP) Maximum peak-to-peak output voltage vs Frequency 29
B1
Unity-gain bandwidth
vs Free-air temperature
30
B1Unity-gain bandwidth
vs Free-air temperature
vs Supply voltage
30
31
vs Supply voltage
34
φ
m
Phase margin
vs Supply voltage
vs Free-air temperature
34
35
φm
Phase margin
vs Free-air temperature
vs Capacitive loads
35
36
VnEquivalent input noise voltage vs Frequency 37
φPhase shift vs Frequency 32, 33