© Semiconductor Components Industries, LLC, 2011
October, 2011 Rev. 5
1Publication Order Number:
MJE5850/D
MJE5850, MJE5851,
MJE5852
SWITCHMODE Series
PNP Silicon Power
Transistors
The MJE5850, MJE5851 and the MJE5852 transistors are designed
for highvoltage, highspeed, power switching in inductive circuits
where fall time is critical. They are particularly suited for line operated
SWITCHMODE applications.
Features
Switching Regulators
Inverters
Solenoid and Relay Drivers
Motor Controls
Deflection Circuits
Fast TurnOff Times
100 ns Inductive Fall Time @ 25_C (Typ)
125 ns Inductive Crossover Time @ 25°C (Typ)
Operating Temperature Range 65 to +150_C
100_C Performance Specified for:
Reversed Biased SOA with Inductive Loads
Switching Times with Inductive Loads
Saturation Voltages
Leakage Currents
PbFree Packages are Available*
*For additional information on our PbFree strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
8 AMPERE
PCP SILICON
POWER TRANSISTORS
300350400 VOLTS
80 WATTS
TO220AB
CASE 221A09
STYLE 1
1
http://onsemi.com
MARKING
DIAGRAM
23
MJE585x = Device Code
x = 0, 1, or 2
G= PbFree Package
A = Assembly Location
Y = Year
WW = Work Week
MJE585xG
AY WW
See detailed ordering and shipping information in the package
dimensions section on page 2 of this data sheet.
ORDERING INFORMATION
MJE5850, MJE5851, MJE5852
http://onsemi.com
2
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Rating
ÎÎÎÎÎ
ÎÎÎÎÎ
Symbol
ÎÎÎÎÎ
ÎÎÎÎÎ
MJE5850
ÎÎÎÎ
ÎÎÎÎ
MJE5851
ÎÎÎÎ
ÎÎÎÎ
MJE5852
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
CollectorEmitter Voltage
ÎÎÎÎÎ
ÎÎÎÎÎ
VCEO(sus)
ÎÎÎÎÎ
ÎÎÎÎÎ
300
ÎÎÎÎ
ÎÎÎÎ
350
ÎÎÎÎ
ÎÎÎÎ
400
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
CollectorEmitter Voltage
ÎÎÎÎÎ
ÎÎÎÎÎ
VCEV
ÎÎÎÎÎ
ÎÎÎÎÎ
350
ÎÎÎÎ
ÎÎÎÎ
400
ÎÎÎÎ
ÎÎÎÎ
450
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Base Voltage
ÎÎÎÎÎ
ÎÎÎÎÎ
VEB
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
6.0
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Current Continuous
Peak (Note 1)
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
IC
ICM
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
8.0
1 6
ÎÎÎ
ÎÎÎ
ÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Base Current Continuous
Peak (Note 1)
ÎÎÎÎÎ
ÎÎÎÎÎ
IB
IBM
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
4.0
8.0
ÎÎÎ
ÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Total Power Dissipation @ TC = 25_C
Derate above 25_C
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
PD
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
80
0.640
ÎÎÎ
ÎÎÎ
ÎÎÎ
W
W/_C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Operating and Storage Junction Temperature Range
ÎÎÎÎÎ
ÎÎÎÎÎ
TJ, Tstg
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
65 to 150
ÎÎÎ
ÎÎÎ
_C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
THERMAL CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Rating
ÎÎÎÎÎ
ÎÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
Max
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Thermal Resistance, JunctiontoCase
ÎÎÎÎÎ
ÎÎÎÎÎ
RqJC
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
1.25
ÎÎÎ
ÎÎÎ
_C/W
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Maximum Lead Temperature for Soldering Purposes: 1/8 from
Case for 5 Seconds
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
TL
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
275
ÎÎÎ
ÎÎÎ
ÎÎÎ
_C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%.
ORDERING INFORMATION
Device Package Shipping
MJE5850 TO220
50 Units / Rail
MJE5850G TO220
(PbFree)
MJE5851 TO220
MJE5851G TO220
(PbFree)
MJE5852 TO220
MJE5852G TO220
(PbFree)
MJE5850, MJE5851, MJE5852
http://onsemi.com
3
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
Symbol
ÎÎÎÎ
ÎÎÎÎ
Min
ÎÎÎ
ÎÎÎ
Typ
ÎÎÎÎ
ÎÎÎÎ
Max
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
OFF CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
CollectorEmitter Sustaining Voltage MJE5850
(IC = 10 mA, IB = 0) MJE5851
MJE5852
VCEO(sus)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
300
350
400
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Cutoff Current
(VCEV = Rated Value, VBE(off) = 1.5 Vdc)
(VCEV = Rated Value, VBE(off) = 1.5 Vdc, TC = 100_C)
ICEV
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.5
2.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Cutoff Current
(VCE = Rated VCEV, RBE = 50 W, TC = 100_C)
ICER
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
3.0
ÎÎÎ
ÎÎÎ
ÎÎÎ
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Cutoff Current
(VEB = 6.0 Vdc, IC = 0)
IEBO
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1.0
ÎÎÎ
ÎÎÎ
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SECOND BREAKDOWN
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Second Breakdown Collector Current with base forward biased
IS/b
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
See Figure 12
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Clamped Inductive SOA with base reverse biased
RBSOA
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
See Figure 13
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ON CHARACTERISTICS (Note 2)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DC Current Gain
(IC = 2.0 Adc, VCE = 5 Vdc)
(IC = 5.0 Adc, VCE = 5 Vdc)
hFE
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
15
5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
CollectorEmitter Saturation Voltage
(IC = 4.0 Adc, IB = 1.0 Adc)
(IC = 8.0 Adc, IB = 3.0 Adc)
(IC = 4.0 Adc, IB = 1.0 Adc, TC = 100_C)
VCE(sat)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
2.0
5.0
2.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
BaseEmitter Saturation Voltage
(IC = 4.0 Adc, IB = 1.0 Adc)
(IC = 4.0 Adc, IB = 1.0 Adc, TC = 100_C)
VBE(sat)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1.5
1.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DYNAMIC CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Output Capacitance
(VCB = 10 Vdc, IE = 0, ftest = 1.0 kHz)
Cob
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
270
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
pF
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SWITCHING CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Resistive Load (Table 1)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Delay Time
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
(VCC = 250 Vdc, IC = 4.0 A, IB1 = 1.0 A,
tp = 50 ms, Duty Cycle v 2%)
td
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.025
ÎÎÎÎ
ÎÎÎÎ
0.1
ÎÎÎ
ÎÎÎ
ms
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Rise Time
tr
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.100
ÎÎÎÎ
ÎÎÎÎ
0.5
ÎÎÎ
ÎÎÎ
ms
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
(VCC = 250 Vdc, IC = 4.0 A, IB1 = 1.0 A,
VBE(off) = 5 Vdc, tp = 50 ms, Duty Cycle v 2%)
ts
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.60
ÎÎÎÎ
ÎÎÎÎ
2.0
ÎÎÎ
ÎÎÎ
ms
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Fall Time
tf
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.11
ÎÎÎÎ
ÎÎÎÎ
0.5
ÎÎÎ
ÎÎÎ
ms
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Inductive Load, Clamped (Table 1)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
(ICM = 4 A, VCEM = 250 V, IB1 = 1.0 A,
VBE(off) = 5 Vdc, TC = 100_C)
tsv
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.8
ÎÎÎÎ
ÎÎÎÎ
3.0
ÎÎÎ
ÎÎÎ
ms
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Crossover Time
tc
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.4
ÎÎÎÎ
ÎÎÎÎ
1.5
ÎÎÎ
ÎÎÎ
ms
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Fall Time
tfi
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.1
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ms
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
(ICM = 4 A, VCEM = 250 V, IB1 = 1.0 A,
VBE(off) = 5 Vdc, TC = 25_C)
tsv
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.5
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ms
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Crossover Time
tc
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.125
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ms
ÎÎÎÎÎÎÎÎ
Fall Time
tfi
ÎÎÎÎ
ÎÎÎ
0.1
ÎÎÎÎ
ÎÎÎ
ms
2. Pulse Test: PW = 300 ms. Duty Cycle v 2%
MJE5850, MJE5851, MJE5852
http://onsemi.com
4
C, CAPACITANCE (pF)
IC, COLLECTOR CURRENT (nA)
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
IC, COLLECTOR CURRENT (AMPS)IC, COLLECTOR CURRENT (AMPS)
1.2
2.0
0.8
0
Figure 1. DC Current Gain
IC, COLLECTOR CURRENT (AMPS)
2.0 0.3 0.7 5.0 10
10
3.0
Figure 2. Collector Saturation Region
0.01
IB, BASE CURRENT (AMPS)
0.02 0.05
1.2
0.4
0
100
hFE, DC CURRENT GAIN
0.1 0.2 0.5 10
Figure 3. CollectorEmitter Saturation Voltage Figure 4. BaseEmitter Voltage
Figure 5. Collector Cutoff Region
2.0
0.8
105
VBE, BASE-EMITTER VOLTAGE (VOLTS)
100
0
TJ = 150°C
20
0.5 2.0
-0.4
Figure 6. Capacitance
3000
VR, REVERSE VOLTAGE (VOLTS)
Cib
0.1
104
103
102
101
+0.2 +0.1
100°C
REVERSE FORWARD
25°C
VCE = 200 V
200
100
20 500 1000
1.6
0.4
TJ = 25°CIC = 0.25 A
5.0
0.1 1.0 3.0 7.0
0.2 1.0 7.00.5 100.1 0.3 3.02.0 5.0
70
50
30
7.0
2000
1000
500
30
50
20010050105.01.00.50.2
V, VOLTAGE (VOLTS)
200
-0.3-0.2 -0.5-0.1
VCE = 5 V
1.0 A
1.0 2.0 5.0
1.6
IC/IB = 4
1.2
2.0
0.8
0
0.4
0.2 1.0 7.00.5 100.1 0.3 3.02.0 5.0
1.6
0.2
0.70.7
2.5 A 5.0 A
TJ = 25°C
TJ = 150°C
TJ = 25°C
IC/IB = 4
TJ = 150°C
TJ = 25°C
TJ = 150°C
Cob
TJ = 25°C
TYPICAL ELECTRICAL CHARACTERISTICS
MJE5850, MJE5851, MJE5852
http://onsemi.com
5
1
IN
PUT
Rcoil
Lcoil
VCC
Vclamp
RS =
0.1 W
1N4937
OR
EQUIVALENT
TUT
SEE ABOVE FOR
DETAILED CONDITIONS
20
1
0
PW Varied to Attain
IC = 100 mA
2
-10 V
t1
ICM tf
Clamped
tf
t
t
Vclamp
t2
TIM
E
VCEM
1
2
TUT
RL
VCC
t1 Adjusted to
Obtain IC
Test Equipment
Scope — Tektronix
475 or Equivalent
t1 Lcoil (ICM)
VCC
t2 Lcoil (ICM)
VClamp
VCEO(sus) RBSOA AND INDUCTIVE SWITCHING RESISTIVE SWITCHING
INPUT
CONDITIONS
CIRCUIT
VALUES
TEST CIRCUITS
V adjusted to obtain desired IB1
+ V adjusted to obtain desired VBE(off)
+ V
50 W
2 W
INPUT
0
0.2 mF
0.0025 mF
0.1 mF
500 W
1/2 W
500 W
0.0033 mF
500 W
1/2 W
+ V
50 mF
0.1 mF
MJE15029
1
2
1 W 2
W
MJE15028
50 mF
- V
+-
1/2 W
1N4934
0.1 mF
-+
500 W
1/2 W
0.2 mF
IB1 adjusted to
obtain the forced
hFE desired
TURNOFF TIME
Use inductive switching
driver as the input to
the resistive test circuit.
IB1
1
2
TURNON TIME
Lcoil = 80 mH, VCC = 10 V
Rcoil = 0.7 W
Lcoil = 180 mH
Rcoil = 0.05 W
VCC = 20 V
VCC = 250 V
RL = 62 W
Pulse Width = 10
ms
INDUCTIVE TEST CIRCUIT RESISTIVE TEST CIRCUITOUTPUT WAVEFORMS
Vclamp = 250 V
RB adjusted to attain desired IB1
VCE
IC
Table 1. Test Conditions for Dynamic Performance
, CROSSOVER TIME (tcμs)
tti
Figure 7. Inductive Switching Measurements
TIME
IB
VCE
90% IB1
tsr
tc
10%
VCEM
Figure 8. Inductive Switching Times
IC = 4 A
IC/IB = 4
TJ = 25°C
tc 100°C
tsv 100°Ctsv 25°C
tc 25°C
VBE, BASE-EMITTER VOLTAGE (VOLTS)
0
0.4
0.2
1.0
0.6
0.8
368057214
tsv, VOLTAGE STORAGE TIME (μs)
0
0.9
0.3
2.7
1.5
2.1
1.2
0.6
3.0
1.8
2.4
IC
10%
ICM
2%
ICM
trv
tfi
90%
ICM
ICM VCEM
Vclamp
MJE5850, MJE5851, MJE5852
http://onsemi.com
6
SWITCHING TIMES NOTE
In resistive switching circuits, rise, fall, and storage times
have been defined and apply to both current and voltage
waveforms since they are in phase. However, for inductive
loads which are common to SWITCHMODE power
supplies and hammer drivers, current and voltage
waveforms are not in phase. Therefore, separate
measurements must be made on each waveform to
determine the total switching time. For this reason, the
following new terms have been defined.
tsv = Voltage Storage Time, 90% IB1 to 10% VCEM
trv = Voltage Rise Time, 1090% VCEM
tfi = Current Fall Time, 9010% ICM
tti = Current Tail, 102% ICM
tc = Crossover Time,10% VCEM to 10% ICM
An enlarged portion of the inductive switching waveform
is shown in Figure 7 to aid on the visual identity of these
terms.
For the designer, there is minimal switching loss during
storage time and the predominant switching power losses
occur during the crossover interval and can be obtained
using the standard equation from AN222A:
PSWT = 1/2 VCCIC(tc)f
In general, trv + tfi ] tc. However, at lower test currents
this relationship may not be valid.
As is common with most switching transistors, resistive
switching is specified at 25°C and has become a benchmark
for designers. However, for designers of high frequency
converter circuits, the user oriented specifications which
make this a “SWITCHMODE” transistor are the inductive
switching speeds (tc and tsv) which are guaranteed at 100_C.
t, TIME (s)μ
t, TIME (ms)
1
0.01
0.01
0.7
0.2
0.1
0.05
0.02
r(t), TRANSIENT THERMAL RESISTANCE
0.05 1 2 5 10 20 50 100 200 500
ZqJC(t) = r(t) RqJC
RqJC = 1.25°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) - TC = P(pk) ZqJC(t)
P(pk)
t1
t2
DUTY CYCLE, D = t1/t2
D = 0.5
0.2
0.01
SINGLE PULSE
0.1
0.1 0.50.2
(NORMALIZED)
1 k
0.5
0.3
0.07
0.03
0.02
IC, COLLECTOR CURRENT (AMPS)
tr
Figure 9. TurnOn Switching Times Figure 10. TurnOff Switching Time
0.1
0.3
0.2
10
0.4
Figure 11. Typical Thermal Response [ZqJC(t)]
0.02
0.01
1.0
0.7
0.3
0.2
0.5
0.1
IC, COLLECTOR CURRENT (AMPS)
0.7 3.0 102.0 5.00.1 1.0 7.0
VCC = 250 V
IC/IB = 4
TJ = 25°C
0.5
0.03
0.05
0.07
0.7
VCC = 250 V
IC/IB = 4
VBE(off) = 5 V
TJ = 25°C
0.30.2 0.7 4.0 100.1 2.0 7.00.50.3 1.0
t, TIME (s)μ
td
ts
tf
0.02
0.05
MJE5850, MJE5851, MJE5852
http://onsemi.com
7
The Safe Operating Area figures shown in Figures 12 and 13 are
specified for these devices under the test conditions shown.
IC, COLLECTOR CURRENT (AMPS) IC, COLLECTOR CURRENT (AMPS)
7.0
0
1.0
100 300 500
3.0
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
5.0
5 ms
100 ms
dc
20
7.0
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
0.05
10 400
5.0
2.0
10
1.0
0.2
0.1
BONDING WIRE LIMIT
THERMAL LIMIT
(SINGLE PULSE)
SECOND BREAKDOWN LIMIT
20 40 70 100
Figure 12. Maximum Forward Bias
Safe Operating Area
TC =
25°C
Figure 13. RBSOA, Maximum Reverse Bias
Safe Operating Area
0.5
0.02
300
200 400
500
IC/IB = 4
VBE(off) = 2 V to 8 V
TJ = 100°C
MJE5850
MJE5851
MJE5852
8.0
2.0
4.0
6.0
MJE5850
MJE5851
MJE5852
200
1 ms
SAFE OPERATING AREA INFORMATION
FORWARD BIAS
There are two limitations on the power handling ability of
a transistor average junction temperature and second
breakdown. Safe operating area curves indicate IC VCE
limits of the transistor that must be observed for reliable
operation, i.e., the transistor must not be subjected to greater
dissipation than the curves indicate.
The data of Figure 12 is based on TC = 25_C; TJ(pk) is
variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC 25_C. Second breakdown limitations do
not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 12 may be found at
any case temperature by using the appropriate curve on
Figure 15.
TJ(pk) may be calculated from the data in Figure 11. At
high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations
imposed by second breakdown.
REVERSE BIAS
For inductive loads, high voltage and high current must be
sustained simultaneously during turnoff, in most cases,
with the base to emitter junction reverse biased. Under these
conditions the collector voltage must be held to a safe level
at or below a specific value of collector current. This can be
accomplished by several means such as active clamping, RC
snubbing, load line shaping, etc. The safe level for these
devices is specified as Reverse Bias Safe Operating Area
and represents the voltagecurrent condition allowable
during reverse biased turnoff. This rating is verified under
clamped conditions so that the device is never subjected to
an avalanche mode. Figure 13 gives the RBSOA
characteristics.
Figure 14. Peak Reverse Base Current Figure 15. Forward Bias Power Derating
IC = 4 A
IB1 = 1 A
TJ = 25°C
TC, CASE TEMPERATURE (°C)
040 120 160
0.6
POWER DERATING FACTOR
SECOND BREAKDOWN
DERATING
1
0.8
0.4
0.2
60 100 14080
THERMAL
DERATING
200
1.0 268
2.5
3.5
3.0
2.0
1.5
4
VBE(off), BASE-EMITTER VOLTAGE (VOLTS)
IB2(pk)
(AMPS)
MJE5850, MJE5851, MJE5852
http://onsemi.com
8
PACKAGE DIMENSIONS
TO220
CASE 221A09
ISSUE AG
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL
BODY AND LEAD IRREGULARITIES ARE
ALLOWED.
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A0.570 0.620 14.48 15.75
B0.380 0.405 9.66 10.28
C0.160 0.190 4.07 4.82
D0.025 0.036 0.64 0.91
F0.142 0.161 3.61 4.09
G0.095 0.105 2.42 2.66
H0.110 0.161 2.80 4.10
J0.014 0.025 0.36 0.64
K0.500 0.562 12.70 14.27
L0.045 0.060 1.15 1.52
N0.190 0.210 4.83 5.33
Q0.100 0.120 2.54 3.04
R0.080 0.110 2.04 2.79
S0.045 0.055 1.15 1.39
T0.235 0.255 5.97 6.47
U0.000 0.050 0.00 1.27
V0.045 --- 1.15 ---
Z--- 0.080 --- 2.04
B
Q
H
Z
L
V
G
N
A
K
F
123
4
D
SEATING
PLANE
T
C
S
T
U
R
J
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81358171050
MJE5850/D
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative