This is information on a product in full production.
June 2017 DocID025146 Rev 7 1/135
STM32F301x6 STM32F301x8
ARM® Cortex®-M4 32-bit MCU+FPU, up to 64 KB Flash,
16 KB SRAM, ADC, DAC, COMP, Op-Amp, 2.0 – 3.6 V
Datasheet - production data
Features
Core: ARM® 32-bit Cortex®-M4 CPU with FPU
(72 MHz max.), single-cycle multiplication and
HW division, DSP instruction
Memories
32 to 64 Kbytes of Flash memory
16 Kbytes of SRAM on data bus
CRC calculation unit
Reset and power management
–V
DD, VDDA voltage range: 2.0 to 3.6 V
Power-on/Power down reset (POR/PDR)
Programmable voltage detector (PVD)
Low-power: Sleep, Stop, and Standby
–V
BAT supply for RTC and backup registers
Clock management
4 to 32 MHz crystal oscillator
32 kHz oscillator for RTC with calibration
Internal 8 MHz RC with x 16 PLL option
Internal 40 kHz oscillator
Up to 51 fast I/O ports, all mappable on
external interrupt vectors, several 5 V-tolerant
Interconnect matrix
7-channel DMA controller supporting timers,
ADCs, SPIs, I2Cs, USARTs and DAC
1 × ADC 0.20 μs (up to 15 channels) with
selectable resolution of 12/10/8/6 bits, 0 to
3.6 V conversion range, single
ended/differential mode, separate analog
supply from 2.0 to 3.6 V
Temperature sensor
1 x 12-bit DAC channel with analog supply from
2.4 to 3.6 V
Three fast rail-to-rail analog comparators with
analog supply from 2.0 to 3.6 V
1 x operational amplifier that can be used in
PGA mode, all terminal accessible with analog
supply from 2.4 to 3.6 V
Up to 18 capacitive sensing channels
supporting touchkey, linear and rotary sensors
Up to 9 timers
One 32-bit timer with up to 4 IC/OC/PWM
or pulse counter and quadrature
(incremental) encoder input
One 16-bit 6-channel advanced-control
timer, with up to 6 PWM channels,
deadtime generation and emergency stop
Three 16-bit timers with IC/OC/OCN or
PWM, deadtime gen. and emergency stop
One 16-bit basic timer to drive the DAC
2 watchdog timers (independent, window)
SysTick timer: 24-bit downcounter
Calendar RTC with alarm, periodic wakeup
from Stop/Standby
Communication interfaces
Three I2Cs with 20 mA current sink to
support Fast mode plus
Up to 3 USARTs, 1 with ISO 7816 I/F, auto
baudrate detect and Dual clock domain
Up to two SPIs with multiplexed full duplex
I2S
Infrared transmitter
Serial wire debug (SWD), JTAG
96-bit unique ID
Table 1. Device summary
Reference Part number
STM32F301x6 STM32F301R6, STM32F301C6, STM32F301K6
STM32F301x8 STM32F301R8, STM32F301C8, STM32F301K8
LQFP48 (7x7 mm)
LQFP64 (10x10 mm)
UFQFPN32
(5x5 mm)
WLCSP49
(3.417x3.151 mm)
www.st.com
Contents STM32F301x6 STM32F301x8
2/135 DocID025146 Rev 7
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 ARM® Cortex®-M4 core with FPU, embedded Flash and SRAM . . . . . . . 13
3.2 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 14
3.5 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.8 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.10 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.10.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 19
3.11 Fast analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.12 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14 Ultra-fast comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.15 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.15.1 Advanced timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.15.2 General-purpose timers (TIM2, TIM15, TIM16, TIM17) . . . . . . . . . . . . . 23
3.15.3 Basic timer (TIM6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
DocID025146 Rev 7 3/135
STM32F301x6 STM32F301x8 Contents
4
3.15.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.15.5 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.15.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.16 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 24
3.17 Inter-integrated circuit interfaces (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.18 Universal synchronous/asynchronous receiver transmitter (USART) . . . 27
3.19 Serial peripheral interfaces (SPI)/Inter-integrated sound
interfaces (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.20 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.21 Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.22 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.22.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 31
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 58
6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 58
6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.6 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Contents STM32F301x6 STM32F301x8
4/135 DocID025146 Rev 7
6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.16 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.17 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.18 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.19 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.20 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.21 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.23 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.1 WLCSP49 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
7.2 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
7.3 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.4 UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.5.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.5.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 130
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
DocID025146 Rev 7 5/135
STM32F301x6 STM32F301x8 List of tables
6
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F301x6/8 device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 3. External analog supply values for analog peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. STM32F301x6/8 peripheral interconnect matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 5. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 6. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 7. STM32F301x6/8 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 8. USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 9. STM32F301x6/8 SPI/I2S implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 10. Capacitive sensing GPIOs available on STM32F301x6/8 devices. . . . . . . . . . . . . . . . . . . 29
Table 11. No. of capacitive sensing channels available on
STM32F301x6/8 devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 12. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 13. STM32F301x6/8 pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 14. Alternate functions for Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 15. Alternate functions for Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 16. Alternate functions for Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 17. Alternate functions for Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 18. Alternate functions for Port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 19. STM32F301x6 STM32F301x8 peripheral register boundary addresses . . . . . . . . . . . . . . 50
Table 20. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 21. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 22. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 23. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 24. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 25. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 26. Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 27. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 28. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 29. Typical and maximum current consumption from VDD supply at VDD = 3.6V . . . . . . . . . . 61
Table 30. Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . . 63
Table 31. Typical and maximum VDD consumption in Stop and Standby modes. . . . . . . . . . . . . . . . 63
Table 32. Typical and maximum VDDA consumption in Stop and Standby modes. . . . . . . . . . . . . . . 64
Table 33. Typical and maximum current consumption from VBAT supply. . . . . . . . . . . . . . . . . . . . . . 64
Table 34. Typical current consumption in Run mode, code with data processing running from Flash66
Table 35. Typical current consumption in Sleep mode, code running from Flash or RAM. . . . . . . . . 67
Table 36. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 37. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 38. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 39. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 40. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 41. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 42. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 43. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 44. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 45. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 46. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 47. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
List of tables STM32F301x6 STM32F301x8
6/135 DocID025146 Rev 7
Table 48. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 49. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 50. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 51. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 52. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 53. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 54. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 55. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 56. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 57. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 58. IWDG min/max timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 59. WWDG min-max timeout value @72 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 60. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 61. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 62. I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 63. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 64. Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 65. ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 66. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 67. ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 68. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 69. Comparator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 70. Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 71. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 72. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 73. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 74. WLCSP49 - 49-pin, 3.417 x 3.151 mm, 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 75. WLCSP49 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 118
Table 76. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 77. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 78. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 79. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 80. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 81. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
DocID025146 Rev 7 7/135
STM32F301x6 STM32F301x8 List of figures
8
List of figures
Figure 1. STM32F301x6/8 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 3. Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 4. STM32F301x6/8 UFQFN32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 5. STM32F301x6/8 LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 6. STM32F301x6/8 LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 7. STM32F301x6/8 WLCSP49 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 8. STM32F301x6/8 memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 9. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 10. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 11. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 12. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 13. Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0] = ‘00’) . . . . . . . . . . . 65
Figure 14. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 15. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 16. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 17. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 18. HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 79
Figure 19. TC and TTa I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 20. TC and TTa I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 21. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . . 87
Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . 87
Figure 23. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 24. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 25. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 26. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 27. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 28. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 29. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 30. ADC typical current consumption in single-ended and differential modes . . . . . . . . . . . . 101
Figure 31. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 32. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 33. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 34. Maximum VREFINT scaler startup time from power down . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 35. OPAMP Voltage Noise versus Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 36. WLCSP49 - 49-pin, 3.417 x 3.151 mm, 0.4 mm pitch wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 37. WLCSP49 - 49-pin, 3.417 x 3.151 mm, 0.4 mm pitch wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 38. WLCSP49 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 39. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 119
Figure 40. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 41. LQFP64 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 42. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 122
Figure 43. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 44. LQFP48 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
List of figures STM32F301x6 STM32F301x8
8/135 DocID025146 Rev 7
Figure 45. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 46. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 47. UFQFPN32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
DocID025146 Rev 7 9/135
STM32F301x6 STM32F301x8 Introduction
51
1 Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32F301x6/8 microcontrollers.
This datasheet should be read in conjunction with the STM32F301x6/8 and STM32F318x8
advanced ARM®-based 32-bit MCUs reference manual (RM0366). The reference manual is
available from the STMicroelectronics website www.st.com.
For information on the ARM® Cortex®-M4 core, please refer to the Cortex®-M4 Technical
Reference Manual, available from ARM website www.arm.com.
Description STM32F301x6 STM32F301x8
10/135 DocID025146 Rev 7
2 Description
The STM32F301x6/8 family is based on the high-performance ARM® Cortex®-M4
32-bit RISC core operating at a frequency of up to 72 MHz and embedding a floating point
unit (FPU). The family incorporates high-speed embedded memories (up to 64 Kbytes of
Flash memory, 16 Kbytes of SRAM), and an extensive range of enhanced I/Os and
peripherals connected to two APB buses.
The devices offer a fast 12-bit ADC (5 Msps), three comparators, an operational amplifier,
up to 18 capacitive sensing channels, one DAC channel, a low-power RTC, one general-
purpose 32-bit timer, one timer dedicated to motor control, and up to three general-purpose
16-bit timers, and one timer to drive the DAC. They also feature standard and advanced
communication interfaces: three I2Cs, up to three USARTs, up to two SPIs with multiplexed
full-duplex I2S, and an infrared transmitter.
The STM32F301x6/8 family operates in the –40 to +85°C and –40 to +105°C temperature
ranges from at a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode
allows the design of low-power applications.
The STM32F301x6/8 family offers devices in 32-, 48-, 49- and 64-pin packages.
The set of included peripherals changes with the device chosen.
DocID025146 Rev 7 11/135
STM32F301x6 STM32F301x8 Description
51
Table 2. STM32F301x6/8 device features and peripheral counts
Peripheral STM32F301Kx STM32F301Cx STM32F301Rx
Flash (Kbytes) 32 64 32 64 32 64
SRAM (Kbytes) 16
Timers
Advanced control 1 (16-bit)
General purpose 3 (16-bit)
1 (32 bit)
Basic 1
SysTick timer 1
Watchdog timers
(independent, window) 2
PWM channels (all) (1) 16 18
PWM channels
(except complementary) 10 12
Comm. interfaces
SPI/I2S 2
I2C3
USART 2 3
DMA channels 7
Capacitive sensing channels 18
12-bit ADC
Number of channels
1
8
1
11
1
15
12-bit DAC channels 1
Analog comparator 2 3
Operational amplifier 1
CPU frequency 72 MHz
Operating voltage 2.0 to 3.6 V
Operating temperature
Ambient operating temperature:
- 40 to 85°C / - 40 to 105°C
Junction temperature: - 40 to 125°C
Packages UFQFPN32 LQFP48,
WLCSP49 LQFP64
1. This total number considers also the PWMs generated on the complementary output channels.
Description STM32F301x6 STM32F301x8
12/135 DocID025146 Rev 7
Figure 1. STM32F301x6/8 block diagram
06Y9
7RXFK6HQVLQJ
&RQWUROOHU
$+%GHFRGHU
7,0(5
&KDQQHOV&RPS
&KDQQHO%5.DV$)
7,0(5
7,0(53:0
86$57
5;7;&76576
6PDUW&DUGDV$)
:LQ:$7&+'2*
%XV0DWUL[
)38
&RUWH[0&38
)PD[0+]
19,&
*3'0$
FKDQQHOV
)ODVK
LQWHUIDFH
2%/
)/$6+.%
ELWV
-7567
-7',
-7&.6:&/.
-7066:',2
-7'2
$V$)
3RZHU
9ROWDJHUHJ
9WR9
9''
6XSSO\
6XSHUYLVLRQ
3253'5
39'
325
5HVHW
,QW
9'',2 WR9
966
15(6(7
9''$
966$
,QG:'*.
6WDQGE\
LQWHUIDFH
3//
#9'',2
#9''$
;7$/26&
0+]
5HVHW
FORFN
FRQWURO
$+%3&/.
$3%3&/.
$3%3&/.
$+%
$3%
$+%
$3%
&5&
$3%)PD[ 0+]
$3%IPD[ 0+]
*3,23257$
*3,23257%
*3,23257&
*3,23257'
26&B,1
26&B287
63,,6
6&/6'$60%$DV$)
86$57
6&/6'$60%$DV$)
86$57
5&/6
7,0(5
63,,6
ELW'$&,)
#9''$
7,0(5
ELW3:0
3$>@
3%>@
3&>@
026,0,62
6&.166DV$)
&KDQQHOV(75DV$)
'$&B&+DV$)
+&/.
)&/.
86$57&/.
5&+60+]
65$0
.%
6:-7$*
73,8
,EXV
'EXV
6\VWHP
ELW$'&
7HPSVHQVRU
95()
95()
7,0(5
(;7,7
:.83
;;$)
&KDQQHO&RPS
&KDQQHO%5.DV$)
&KDQQHO&RPS
&KDQQHO%5.DV$)
&KDQQHOV
&RPSFKDQQHOV
(75%5.DV$)
*3,23257)
3'>@
3)>@
,)
,&&/.
$'&6$5
&/.
#9'',2
#9''$
#96:
;7$/N+] 26&B,1
26&B287
9%$7 9WR9
57&
$:8
%DFNXS
5HJ
%\WH
%DFNXS
LQWHUIDFH
$17,7$03
,&
,&
2S$PS
#9''$
,1[[287[[
,17(5)$&(
6<6&)*&7/
*3&RPSDUDWRU
*3&RPSDUDWRU
*3&RPSDUDWRU
5;7;&76576DV$)
5;7;&76576DV$)
#9''$
;[,QV287VDV$)
*URXSVRI
FKDQQHOVDV$)
026,0,62
6&.166DV$)
6&/6'$60%$DV$)
,&
DocID025146 Rev 7 13/135
STM32F301x6 STM32F301x8 Functional overview
51
3 Functional overview
3.1 ARM® Cortex®-M4 core with FPU, embedded Flash and
SRAM
The ARM® Cortex®-M4 processor with FPU is the latest generation of ARM processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The ARM® Cortex®-M4 32-bit RISC processor with FPU features exceptional code-
efficiency, delivering the high-performance expected from an ARM core in the memory size
usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution. Its single-precision FPU speeds up software development by
using metalanguage development tools while avoiding saturation.
With its embedded ARM core, the STM32F301x6/8 family is compatible with all ARM tools
and software.
Figure 1 shows the general block diagram of the STM32F301x6/8 family devices.
3.2 Memories
3.2.1 Embedded Flash memory
All STM32F301x6/8 devices feature up to 64 Kbytes of embedded Flash memory available
for storing programs and data. The Flash memory access time is adjusted to the CPU clock
frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states
above).
3.2.2 Embedded SRAM
STM32F301x6/8 devices feature 16 Kbytes of embedded SRAM.
3.3 Boot modes
At startup, BOOT0 pin and BOOT1 option bit are used to select one of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using USART1 (PA9/PA10) and USART2 (PA2/PA3).
Functional overview STM32F301x6 STM32F301x8
14/135 DocID025146 Rev 7
3.4 Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at
linktime and stored at a given memory location.
3.5 Power management
3.5.1 Power supply schemes
VSS, VDD = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. It is
provided externally through VDD pins.
VSSA, VDDA = 2.0 to 3.6 V: external analog power supply for ADC, DAC, comparators,
operational amplifier, reset blocks, RCs and PLL. The minimum voltage to be applied to
VDDA differs from one analog peripheral to another. Table 3 provides the summary of
the VDDA ranges for analog peripherals. The VDDA voltage level must always be greater
than or equal to the VDD voltage level and must be provided first.
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
3.5.2 Power supply supervisor
The device has an integrated power-on reset (POR) and power-down reset (PDR) circuits.
They are always active, and ensure proper operation above a threshold of 2 V. The device
remains in reset mode when the monitored supply voltage is below a specified threshold,
VPOR/PDR, without the need for an external reset circuit.
The POR monitors only the VDD supply voltage. During the startup phase it is required
that VDDA should arrive first and be greater than or equal to VDD.
The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce
the power consumption if the application design ensures that VDDA is higher than or
equal to VDD.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD power supply and compares it to the VPVD threshold. An interrupt can be generated
when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD
threshold. The interrupt service routine can then generate a warning message and/or put
the MCU into a safe state. The PVD is enabled by software.
Table 3. External analog supply values for analog peripherals
Analog peripheral Minimum VDDA supply Maximum VDDA supply
ADC/COMP 2.0 V 3.6 V
DAC/OPAMP 2.4 V 3.6 V
DocID025146 Rev 7 15/135
STM32F301x6 STM32F301x8 Functional overview
51
3.5.3 Voltage regulator
The regulator has three operation modes: main (MR), low-power (LPR), and power-down.
The MR mode is used in the nominal regulation mode (Run)
The LPR mode is used in Stop mode.
The power-down mode is used in Standby mode: the regulator output is in high
impedance, and the kernel circuitry is powered down thus inducing zero consumption.
The voltage regulator is always enabled after reset. It is disabled in Standby mode.
3.5.4 Low-power modes
The STM32F301x6/8 supports three low-power modes to achieve the best compromise
between low power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm, COMPx,
I2C or USARTx.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, SRAM and register contents are lost except for registers in the Backup
domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a
rising edge on the WKUP pin, or an RTC alarm occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
3.6 Interconnect matrix
Several peripherals have direct connections between them. This allows autonomous
communication between peripherals, saving CPU resources thus power supply
consumption. In addition, these hardware connections allow fast and predictable latency.
Functional overview STM32F301x6 STM32F301x8
16/135 DocID025146 Rev 7
Note: For more details about the interconnect actions, please refer to the corresponding sections
in the STM32F301x6/8 and STM32F318x8 reference manual RM0366.
Table 4. STM32F301x6/8 peripheral interconnect matrix
Interconnect source Interconnect
destination Interconnect action
TIMx
TIMx Timers synchronization or chaining
ADC1
DAC1 Conversion triggers
DMA Memory to memory transfer trigger
Compx Comparator output blanking
COMPx TIMx Timer input: OCREF_CLR input, input capture
ADC1 TIM1 Timer triggered by analog watchdog
GPIO
RTCCLK
HSE/32
MC0
TIM16 Clock source used as input channel for HSI and
LSI calibration
CSS
CPU (hard fault)
COMPx
PVD
GPIO
TIM1
TIM15, 16, 17 Timer break
GPIO
TIMx External trigger, timer break
ADC1
DAC1 Conversion external trigger
DAC1 COMPx Comparator inverting input
DocID025146 Rev 7 17/135
STM32F301x6 STM32F301x8 Functional overview
51
3.7 Clocks and startup
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is
selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example with
failure of an indirectly used external oscillator).
Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and
the low speed APB (APB1) domains. The maximum frequency of the AHB and the high
speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed
APB domain is 36 MHz.
The advanced clock controller clocks the core and all peripherals using a single crystal or
oscillator. To achieve audio class performance, an audio crystal can be used.
Functional overview STM32F301x6 STM32F301x8
18/135 DocID025146 Rev 7
Figure 2. Clock tree

0+]
+6(26&
26&B,1
26&B287
26&B,1
26&B287
0+]
+6,5&
,:'*&/.
WR,:'*
3//
[[
[
3//08/
0&2
$+% $3%
SUHVFDOHU

+&/.
3//&/.
WR$+%EXVFRUH
PHPRU\DQG'0$
/6(
/6,
+6,
+6,
+6(
WR57&
3//65& 6: 
6<6&/.
57&&/.
57&6(/>@
WR7,0
,I$3%SUHVFDOHU
[HOVH[
)/,7)&/.
WR)ODVKSURJUDPPLQJLQWHUIDFH
WR,&[[ 
WR86$57
/6(
+6,
6<6&/.

3&/.
6<6&/.
+6,
3&/.
069
WR,6[[ 
WRFRUWH[6\VWHPWLPHU
)+&/.&RUWH[IUHH
UXQQLQJFORFN
WR$3%SHULSKHUDOV
$+%
SUHVFDOHU

&66


/6(26&
N+]
/6,5&
N+]
$3%
SUHVFDOHU

,I$3%SUHVFDOHU
[HOVH[
3&/.
WR$3%SHULSKHUDOV
7,0
$'&
3UHVFDOHU

WR$'&
$'&
3UHVFDOHU


,665&
6<6&/.
([WFORFN
,6B&.,1
[
0DLQFORFN
RXWSXW
 3//&/.
+6,
+6(
0&2
6<6&/.
/6,


3//12',9
0&235(
/6(
DocID025146 Rev 7 19/135
STM32F301x6 STM32F301x8 Functional overview
51
3.8 General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current
capable except for analog inputs.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
Fast I/O handling allows I/O toggling up to 36 MHz.
3.9 Direct memory access (DMA)
The flexible general-purpose DMA is able to manage memory-to-memory, peripheral-to-
memory and memory-to-peripheral transfers. The DMA controller supports circular buffer
management, avoiding the generation of interrupts when the controller reaches the end of
the buffer.
Each of the 7 DMA channels is connected to dedicated hardware DMA requests, with
software trigger support for each channel. Configuration is done by software and transfer
sizes between source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, timers, DAC and ADC.
3.10 Interrupts and events
3.10.1 Nested vectored interrupt controller (NVIC)
The STM32F301x6/8 devices embed a nested vectored interrupt controller (NVIC) able to
handle up to 60 maskable interrupt channels and 16 priority levels.
The NVIC benefits are the following:
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal
interrupt latency.
Functional overview STM32F301x6 STM32F301x8
20/135 DocID025146 Rev 7
3.11 Fast analog-to-digital converter (ADC)
An analog-to-digital converter, with selectable resolution between 12 and 6 bit, is embedded
in the STM32F301x6/8 family devices. The ADC has up to 15 external channels performing
conversions in single-shot or scan modes. Channels can be configured to be either single-
ended input or differential input. In scan mode, automatic conversion is performed on a
selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Single-shunt phase current reading techniques.
The ADC can be served by the DMA controller.
Three analog watchdogs are available. The analog watchdog feature allows very precise
monitoring of the converted voltage of one, some or all selected channels. An interrupt is
generated when the converted voltage is outside the programmed thresholds.
The events generated by the general-purpose timers (TIMx) and the advanced-control timer
(TIM1) can be internally connected to the ADC start trigger and injection trigger,
respectively, to allow the application to synchronize A/D conversion and timers.
3.11.1 Temperature sensor
The temperature sensor (TS) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC1_IN16 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
3.11.2 Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and Comparators. VREFINT is internally connected to the ADC1_IN18 input channel.
The precise voltage of VREFINT is individually measured for each part by ST during
production test and stored in the system memory area. It is accessible in read-only mode.
DocID025146 Rev 7 21/135
STM32F301x6 STM32F301x8 Functional overview
51
3.11.3 VBAT battery voltage monitoring
This embedded hardware feature allows the application to measure the VBAT battery voltage
using the internal ADC channel ADC1_IN17. As the VBAT voltage may be higher than VDDA,
and thus outside the ADC input range, the VBAT pin is internally connected to a bridge
divider by 2. As a consequence, the converted digital value is half the VBAT voltage.
3.12 Digital-to-analog converter (DAC)
One 12-bit buffered DAC channel (DAC1_OUT1) can be used to convert digital signals into
analog voltage signal outputs. The chosen design structure is composed of integrated
resistor strings and an amplifier in inverting configuration.
This digital interface supports the following features:
One DAC output channel
8-bit or 12-bit monotonic output
Left or right data alignment in 12-bit mode
Synchronized update capability
Noise-wave generation
Triangular-wave generation
DMA capability
External triggers for conversion
3.13 Operational amplifier (OPAMP)
The STM32F301x6/8 devices embed one operational amplifier with external or internal
follower routing and PGA capability (or even amplifier and filter capability with external
components). When the operational amplifier is selected, an external ADC channel is used
to enable output measurement.
The operational amplifier features:
8.2 MHz bandwidth
0.5 mA output capability
Rail-to-rail input/output
In PGA mode, the gain can be programmed to be 2, 4, 8 or 16.
Functional overview STM32F301x6 STM32F301x8
22/135 DocID025146 Rev 7
3.14 Ultra-fast comparators (COMP)
The STM32F301x6/8 devices embed up to three ultra-fast rail-to-rail comparators which
offer the features below:
Programmable internal or external reference voltage
Selectable output polarity.
The reference voltage can be one of the following:
External I/O
DAC output
Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to Table 27: Embedded
internal reference voltage for the value and precision of the internal reference voltage.
All comparators can wake up from STOP mode, and also generate interrupts and breaks for
the timers.
3.15 Timers and watchdogs
The STM32F301x6/8 devices include advanced control timer, up to general-purpose timers,
basic timer, two watchdog timers and a SysTick timer. Table 5 compares the features of the
advanced control, general purpose and basic timers.
Table 5. Timer feature comparison
Timer type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
Channels
Complementary
outputs
Advanced
control TIM1(1) 16-bit Up, Down,
Up/Down
Any integer
between 1
and 65536
Yes 4 Yes
General-
purpose
TIM2 32-bit Up, Down,
Up/Down
Any integer
between 1
and 65536
Yes 4 No
TIM15(1) 16-bit Up
Any integer
between 1
and 65536
Yes 2 1
TIM16(1),
TIM17(1) 16-bit Up
Any integer
between 1
and 65536
Yes 1 1
Basic TIM6 16-bit Up
Any integer
between 1
and 65536
Yes 0 No
1. TIM1/15/16/17 can be clocked from the PLL running at 144 MHz when the system clock source is the PLL and AHB or
APB2 subsystem clocks are not divided by more than 2 cumulatively.
DocID025146 Rev 7 23/135
STM32F301x6 STM32F301x8 Functional overview
51
3.15.1 Advanced timer (TIM1)
The advanced-control timer can each be seen as a three-phase PWM multiplexed on 6
channels. They have complementary PWM outputs with programmable inserted dead-
times. They can also be seen as complete general-purpose timers. The 4 independent
channels can be used for:
Input capture
Output compare
PWM generation (edge or center-aligned modes) with full modulation capability (0-
100%)
One-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs
disabled to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose TIM timers (described in
Section 3.15.2 using the same architecture, so the advanced-control timers can work
together with the TIM timers via the Timer Link feature for synchronization or event chaining.
3.15.2 General-purpose timers (TIM2, TIM15, TIM16, TIM17)
There are up to four synchronizable general-purpose timers embedded in the
STM32F301x6/8 devices (see Table 5 for differences). Each general-purpose timer can be
used to generate PWM outputs, or act as a simple time base.
TIM2
TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler
It features 4 independent channels for input capture/output compare, PWM or one-pulse
mode output. It can work together, or with the other general-purpose timers via the Timer
Link feature for synchronization or event chaining.
The counter can be frozen in debug mode.
It has independent DMA request generation and supports quadrature encoders.
TIM15, TIM16 and TIM 17
These three timers general-purpose timers with mid-range features:
They have 16-bit auto-reload upcounters and 16-bit prescalers.
TIM15 has 2 channels and 1 complementary channel
TIM16 and TIM17 have 1 channel and 1 complementary channel
All channels can be used for input capture/output compare, PWM or one-pulse mode
output.
The timers can work together via the Timer Link feature for synchronization or event
chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.
Functional overview STM32F301x6 STM32F301x8
24/135 DocID025146 Rev 7
3.15.3 Basic timer (TIM6)
This timer is mainly used for DAC trigger generation. It can also be used as a generic 16-bit
time base.
3.15.4 Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 40 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free running timer for application timeout
management. It is hardware or software configurable through the option byte. The counter
can be frozen in debug mode.
3.15.5 Window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.15.6 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0.
Programmable clock source
3.16 Real-time clock (RTC) and backup registers
The RTC and the 20 backup registers are supplied through a switch that takes power from
either the VDD supply when present or the VBAT pin. The backup registers are five 32-bit
registers used to store 20 byte of user application data when VDD power is not present.
They are not reset by a system or power reset, or when the device wakes up from Standby
mode.
DocID025146 Rev 7 25/135
STM32F301x6 STM32F301x8 Functional overview
51
The RTC is an independent BCD timer/counter. It supports the following features:
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
Two programmable alarms with wake up from Stop and Standby mode capability.
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal
inaccuracy.
Two anti-tamper detection pins with programmable filter. The MCU can be woken up
from Stop and Standby modes on tamper event detection.
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be
woken up from Stop and Standby modes on timestamp event detection.
17-bit Auto-reload counter for periodic interrupt with wakeup from STOP/STANDBY
capability.
The RTC clock sources can be:
A 32.768 kHz external crystal
A resonator or oscillator
The internal low-power RC oscillator (typical frequency of 40 kHz)
The high-speed external clock divided by 32.
Functional overview STM32F301x6 STM32F301x8
26/135 DocID025146 Rev 7
3.17 Inter-integrated circuit interfaces (I2C)
The devices feature three I2C bus interfaces which can operate in multimaster and slave
mode. Each I2C interface can support standard (up to 100 kHz), fast (up to 400 kHz) and
fast mode + (up to 1 MHz) modes.
All I2C interfaces support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses
(2 addresses, 1 with configurable mask). They also include programmable analog and
digital noise filters.
In addition, it provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability,
Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and
ALERT protocol management. It also has a clock domain independent from the CPU clock,
allowing the I2Cx (x=1,3) to wake up the MCU from Stop mode on address match.
The I2C interfaces can be served by the DMA controller.
Refer to Table 7 for the features available in I2C1, I2C2 and I2C3.
Table 6. Comparison of I2C analog and digital filters
Analog filter Digital filter
Pulse width of
suppressed spikes 50 ns Programmable length from 1 to 15
I2C peripheral clocks
Benefits Available in Stop mode
1. Extra filtering capability vs.
standard requirements.
2. Stable length
Drawbacks Variations depending on
temperature, voltage, process
Wakeup from Stop on address
match is not available when digital
filter is enabled.
Table 7. STM32F301x6/8 I2C implementation
I2C features(1)
1. X = supported.
I2C1 I2C2 I2C3
7-bit addressing mode X X X
10-bit addressing mode X X X
Standard mode (up to 100 kbit/s) X X X
Fast mode (up to 400 kbit/s) X X X
Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) X X X
Independent clock X X X
SMBus X X X
Wakeup from STOP X X X
DocID025146 Rev 7 27/135
STM32F301x6 STM32F301x8 Functional overview
51
3.18 Universal synchronous/asynchronous receiver transmitter
(USART)
The STM32F301x6/8 devices have three embedded universal synchronous receiver
transmitters (USART1, USART2 and USART3).
The USART interfaces are able to communicate at speeds of up to 9 Mbit/s.
All USARTs support hardware management of the CTS and RTS signals, multiprocessor
communication mode, single-wire half-duplex communication mode and synchronous
mode.
USART1 supports SmartCard mode, IrDA SIR ENDEC, LIN Master capability and
autobaudrate detection.
All USART interfaces can be served by the DMA controller.
Refer to Table 8 for the features available in all USARTs interfaces.
3.19 Serial peripheral interfaces (SPI)/Inter-integrated sound
interfaces (I2S)
Two SPI interfaces (SPI2 and SPI3) allow communication up to 18 Mbit/s in slave and
master modes in full-duplex and simplex modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame size is configurable from 4 bits to 16 bits.
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available, that can be
operated in master or slave mode. These interfaces can be configured to operate with 16/32
bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to
192 kHz are supported. When either or both of the I2S interfaces is/are configured in master
Table 8. USART features
USART modes/features(1)
1. X = supported.
USART1 USART2 USART3
Hardware flow control for modem X X X
Continuous communication using DMA X X X
Multiprocessor communication X X X
Synchronous mode X X X
SmartCard mode X - -
Single-wire half-duplex communication X X X
IrDA SIR ENDEC block X - -
LIN mode X - -
Dual clock domain and wakeup from Stop mode X - -
Receiver timeout interrupt X - -
Modbus communication X - -
Auto baud rate detection X - -
Driver Enable X X X
Functional overview STM32F301x6 STM32F301x8
28/135 DocID025146 Rev 7
mode, the master clock can be output to the external DAC/CODEC at 256 times the
sampling frequency.
Refer to Table 9 for the features available in SPI2 and SPI3.
3.20 Touch sensing controller (TSC)
The STM32F301x6/8 devices provide a simple solution for adding capacitive sensing
functionality to any application. These devices offer up to 18 capacitive sensing channels
distributed over 6 analog I/O groups.
Capacitive sensing technology is able to detect the presence of a finger near a sensor which
is protected from direct touch by a dielectric (for example glass, plastic). The capacitive
variation introduced by the finger (or any conductive object) is measured using a proven
implementation based on a surface charge transfer acquisition principle. It consists of
charging the sensor capacitance and then transferring a part of the accumulated charges
into a sampling capacitor until the voltage across this capacitor has reached a specific
threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the
hardware touch sensing controller and only requires few external components to operate.
Table 9. STM32F301x6/8 SPI/I2S implementation
SPI features(1)
1. X = supported.
SPI2 SPI3
Hardware CRC calculation X X
Rx/Tx FIFO X X
NSS pulse mode X X
I2S mode X X
TI mode X X
DocID025146 Rev 7 29/135
STM32F301x6 STM32F301x8 Functional overview
51
Table 10. Capacitive sensing GPIOs available on STM32F301x6/8 devices
Group Capacitive sensing signal name Pin name
1
TSC_G1_IO1 PA0
TSC_G1_IO2 PA1
TSC_G1_IO3 PA2
TSC_G1_IO4 PA3
2
TSC_G2_IO1 PA4
TSC_G2_IO2 PA5
TSC_G2_IO3 PA6
TSC_G2_IO4 PA7
3
TSC_G3_IO1 PC5
TSC_G3_IO2 PB0
TSC_G3_IO3 PB1
TSC_G3_IO4 PB2
4
TSC_G4_IO1 PA9
TSC_G4_IO2 PA10
TSC_G4_IO3 PA13
TSC_G4_IO4 PA14
5
TSC_G5_IO1 PB3
TSC_G5_IO2 PB4
TSC_G5_IO3 PB6
TSC_G5_IO4 PB7
6
TSC_G6_IO1 PB11
TSC_G6_IO2 PB12
TSC_G6_IO3 PB13
TSC_G6_IO4 PB14
Table 11. No. of capacitive sensing channels available on
STM32F301x6/8 devices
Analog I/O group
Number of capacitive sensing channels
STM32F301Rx STM32F301Cx STM32F301Kx
G1 3 3 3
G2 3 3 3
G3 3 2 1
G4 3 3 3
G5 3 3 3
Functional overview STM32F301x6 STM32F301x8
30/135 DocID025146 Rev 7
3.21 Infrared transmitter
The STM32F301x6/8 devices provide an infrared transmitter solution. The solution is based
on internal connections between TIM16 and TIM17 as shown in the figure below.
TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be
sent. The infrared output signal is available on PB9 or PA13.
To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must
be properly configured to generate correct waveforms. All standard IR pulse modulation
modes can be obtained by programming the two timers output compare channels.
Figure 3. Infrared transmitter
G6 3 3 0
Number of capacitive
sensing channels 18 17 13
Table 11. No. of capacitive sensing channels available on
STM32F301x6/8 devices (continued)
Analog I/O group
Number of capacitive sensing channels
STM32F301Rx STM32F301Cx STM32F301Kx
7,0(5
IRUHQYHORS
7,0(5
IRUFDUULHU
2&
2&
3%3$
069
DocID025146 Rev 7 31/135
STM32F301x6 STM32F301x8 Functional overview
51
3.22 Development support
3.22.1 Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
Pinouts and pin description STM32F301x6 STM32F301x8
32/135 DocID025146 Rev 7
4 Pinouts and pin description
Figure 4. STM32F301x6/8 UFQFN32 pinout
1. The above figure shows the package top view.
Figure 5. STM32F301x6/8 LQFP48 pinout
1. The above figure shows the package top view.
       









8)4)1
069
9''B
3)26&B,1
3)26&B287
1567
9''$95()
966$95()
3$
3$
966B
%227
3%
3%
3%
3%
3%
3$
3$
3$
3$
3$
3$
3$
3$
9''B
3$
3$
3$
3$
3$
3$
3%
966B
      
3$
3%
3%
      
966B
%227
3%
   












   
3%
3%
9''B
966B
3$
3%
3%
3%
3%
3%
966B
3%
9''B








9%$7
3&26&B,1
3&26&B287
1567
966$95()
9''$
3$
3$
3$
9''B
3)26&B,1
3)26&B287
3&

069
/4)3
3$
3$
3$
3$
3$
3$
3$
3$
3$
3%
3%
3%
3%
3%
3$
3$
DocID025146 Rev 7 33/135
STM32F301x6 STM32F301x8 Pinouts and pin description
51
Figure 6. STM32F301x6/8 LQFP64 pinout
1. The above figure shows the package top view.
Pinouts and pin description STM32F301x6 STM32F301x8
34/135 DocID025146 Rev 7
Figure 7. STM32F301x6/8 WLCSP49 ballout
1. The above figure shows the package top view.
2. NC: Not connected.
069
$
%
(
'
&
)
*
3&
9''
1567
966
3$
9''$
9%$7
3&
966$
95()
3$
3$
%227
3%
3%
3%
3%
3%
3%
3$
3$
9''
3$
966
3$
3%
3$
3%
3$
3%
3$
3% 9''
966
3%
3$
3$
3%
3%
3%
3%
3&
3$
3$
3$
3$
3%
3)
26&B287
3)
26&B,1
1&
DocID025146 Rev 7 35/135
STM32F301x6 STM32F301x8 Pinouts and pin description
51
Table 12. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and
after reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input / output pin
I/O structure
FT 5 V tolerant I/O
FTf 5 V tolerant I/O, I2C FM+ option
TTa 3.3 V tolerant I/O
TT 3.3 V tolerant I/O
TC Standard 3.3V I/O
B Dedicated BOOT0 pin
RST Bi-directional reset pin with embedded weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after
reset
Pin
functions
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
Pinouts and pin description STM32F301x6 STM32F301x8
36/135 DocID025146 Rev 7
Table 13. STM32F301x6/8 pin definitions
Pin Number
Pin name
(function after reset)
Pin type
I/O structure
Notes
Alternate
functions
Additional
functions
UQFN32
WLCSP49
LQFP48
LQFP64
- B6 1 1 VBAT S - - Backup power supply
-D52 2 PC13(1) TAMPER1
WKUP2 (PC13) I/O TC (1) TIM1_CH1N WKUP2, RTC_TAMP1,
RTC_TS, RTC_OUT
-C73 3 PC14(1) OSC32_IN
(PC14) I/O TC (1) - OSC32_IN
-C64 4PC15(1) OSC32_OUT
(PC14) I/O TC (1) - OSC32_OUT
2 D7 5 5 PF0 OSC_IN (PF0) I/O FTf - I2C2_SDA, SPI2_NSS/I2S2_WS,
TIM1_CH3N OSC_IN
3 D6 6 6 PF1 OSC_OUT (PF1) O FTf - I2C2_SCL, SPI2_SCK/I2S2_CK OSC_OUT
4 E7 7 7 NRST I/O RST - Device reset input/internal reset output (active low)
- - - 8 PC0 I/O TTa - EVENTOUT, TIM1_CH1 ADC1_IN6
- - - 9 PC1 I/O TTa - EVENTOUT, TIM1_CH2 ADC1_IN7
- - - 10 PC2 I/O TTa - EVENTOUT, TIM1_CH3 ADC1_IN8
---11 PC3 I/O TTa -
EVENTOUT, TIM1_CH4,
TIM1_BKIN2 ADC1_IN9
6 E6 8 12 VSSA/VREF- S - - Analog ground/Negative reference voltage
5 A6 9 13 VDDA/VREF+ S - - Analog power supply/Positive reference voltage
STM32F301x6 STM32F301x8 Pinouts and pin description
DocID025146 Rev 7 37/135
7 F6 10 14 PA0 -TAMPER2-WKUP1 I/O TTa (2)
TIM2_CH1/TIM2_ETR,
TSC_G1_IO1, USART2_CTS,
EVENTOUT
ADC1_IN1, RTC_TAMP2, WKUP1
8G71115 PA1 I/O TTa (2)
RTC_REFIN, TIM2_CH2,
TSC_G1_IO2, USART2_RTS_DE,
TIM15_CH1N, EVENTOUT
ADC1_IN2
9E51216 PA2 I/O TTa (2)
TIM2_CH3, TSC_G1_IO3,
USART2_TX, COMP2_OUT,
TIM15_CH1, EVENTOUT
ADC1_IN3, COMP2_INM
10 E4 13 17 PA3 I/O TTa (2)
TIM2_CH4, TSC_G1_IO4,
USART2_RX, TIM15_CH2,
EVENTOUT
ADC1_IN4
- F7 - 18 VSS_4 S - - - -
-F2-19 VDD_4 S - - - -
11 G6 14 20 PA4 I/O TTa (2)(3) TSC_G2_IO1, SPI3_NSS/I2S3_WS,
USART2_CK, EVENTOUT
ADC1_IN5, DAC1_OUT1,
COMP2_INM, COMP4_INM,
COMP6_INM
12 F5 15 21 PA5 I/O TTa - TIM2_CH1/TIM2_ETR,
TSC_G2_IO2, EVENTOUT OPAMP2_VINM
13 F4 16 22 PA6 I/O TTa (3) TIM16_CH1, TSC_G2_IO3,
TIM1_BKIN, EVENTOUT ADC1_IN10, OPAMP2_VOUT
14 F3 17 23 PA7 I/O TTa - TIM17_CH1, TSC_G2_IO4,
TIM1_CH1N, EVENTOUT
ADC1_IN15, COMP2_INP,
OPAMP2_VINP
Table 13. STM32F301x6/8 pin definitions (continued)
Pin Number
Pin name
(function after reset)
Pin type
I/O structure
Notes
Alternate
functions
Additional
functions
UQFN32
WLCSP49
LQFP48
LQFP64
Pinouts and pin description STM32F301x6 STM32F301x8
38/135 DocID025146 Rev 7
---24 PC4 I/O TT -
EVENTOUT, TIM1_ETR,
USART1_TX
---25 PC5 I/O TTa -
EVENTOUT, TIM15_BKIN,
TSC_G3_IO1, USART1_RX OPAMP2_VINM
15 G5 18 26 PB0 I/O TTa - TSC_G3_IO2, TIM1_CH2N,
EVENTOUT
ADC1_IN11, COMP4_INP,
OPAMP2_VINP
- G4 19 27 PB1 I/O TTa - TSC_G3_IO3, TIM1_CH3N,
COMP4_OUT, EVENTOUT ADC1_IN12
- G3 20 28 PB2 I/O TTa - TSC_G3_IO4, EVENTOUT COMP4_INM
- E3 21 29 PB10 I/O TT - TIM2_CH3, TSC_SYNC,
USART3_TX, EVENTOUT
- G2 22 30 PB11 I/O TTa - TIM2_CH4, TSC_G6_IO1,
USART3_RX, EVENTOUT ADC1_IN14, COMP6_INP
16 D3 23 31 VSS_2 S - - Digital ground
17 B2 24 32 VDD_2 S - - Digital power supply
- E2 25 33 PB12 I/O TT -
TSC_G6_IO2, I2C2_SMBAL,
SPI2_NSS/I2S2_WS, TIM1_BKIN,
USART3_CK, EVENTOUT
- G1 26 34 PB13 I/O TTa -
TSC_G6_IO3, SPI2_SCK/I2S2_CK,
TIM1_CH1N, USART3_CTS,
EVENTOUT
ADC1_IN13
Table 13. STM32F301x6/8 pin definitions (continued)
Pin Number
Pin name
(function after reset)
Pin type
I/O structure
Notes
Alternate
functions
Additional
functions
UQFN32
WLCSP49
LQFP48
LQFP64
STM32F301x6 STM32F301x8 Pinouts and pin description
DocID025146 Rev 7 39/135
- F1 27 35 PB14 I/O TTa -
TIM15_CH1, TSC_G6_IO4,
SPI2_MISO/I2S2ext_SD,
TIM1_CH2N, USART3_RTS_DE,
EVENTOUT
OPAMP2_VINP
- E1 28 36 PB15 I/O TTa -
RTC_REFIN, TIM15_CH2,
TIM15_CH1N, TIM1_CH3N,
SPI2_MOSI/I2S2_SD, EVENTOUT
COMP6_INM
---37 PC6 I/O FT -
EVENTOUT, I2S2_MCK,
COMP6_OUT -
- - - 38 PC7 I/O FT - EVENTOUT, I2S3_MCK -
- - - 39 PC8 I/O FT - EVENTOUT -
- - - 40 PC9 I/O FTf - EVENTOUT, I2C3_SDA, I2SCKIN -
18 D1 29 41 PA8 I/O FT -
MCO, I2C3_SCL, I2C2_SMBAL,
I2S2_MCK, TIM1_CH1,
USART1_CK, EVENTOUT
-
19 D2 30 42 PA9 I/O FTf -
I2C3_SMBAL, TSC_G4_IO1,
I2C2_SCL, I2S3_MCK, TIM1_CH2,
USART1_TX, TIM15_BKIN,
TIM2_CH3, EVENTOUT
-
Table 13. STM32F301x6/8 pin definitions (continued)
Pin Number
Pin name
(function after reset)
Pin type
I/O structure
Notes
Alternate
functions
Additional
functions
UQFN32
WLCSP49
LQFP48
LQFP64
Pinouts and pin description STM32F301x6 STM32F301x8
40/135 DocID025146 Rev 7
20 C2 31 43 PA10 I/O FTf -
TIM17_BKIN, TSC_G4_IO2,
I2C2_SDA, SPI2_MISO/I2S2ext_SD,
TIM1_CH3, USART1_RX,
COMP6_OUT, TIM2_CH4,
EVENTOUT
-
21 C1 32 44 PA11 I/O FT -
SPI2_MOSI/I2S2_SD, TIM1_CH1N,
USART1_CTS, TIM1_CH4,
TIM1_BKIN2, EVENTOUT
22 C3 33 45 PA12 I/O FT -
TIM16_CH1, I2SCKIN, TIM1_CH2N,
USART1_RTS_DE, COMP2_OUT,
TIM1_ETR, EVENTOUT
23 B3 34 46 PA13 I/O FT -
SWDIO, TIM16_CH1N,
TSC_G4_IO3, IR-OUT,
USART3_CTS, EVENTOUT
-
- B1 35 47 VSS_3 S - - Digital ground
- B2 36 48 VDD_3 S - - Digital power supply
24 A1 37 49 PA14 I/O FTf -
SWCLK-JTCK, TSC_G4_IO4,
I2C1_SDA, TIM1_BKIN,
USART2_TX, EVENTOUT
-
25 A2 38 50 PA15 I/O FTf -
JTDI, TIM2_CH1/TIM2_ETR,
TSC_SYNC, I2C1_SCL,
SPI3_NSS/I2S3_WS, USART2_RX,
TIM1_BKIN, EVENTOUT
-
Table 13. STM32F301x6/8 pin definitions (continued)
Pin Number
Pin name
(function after reset)
Pin type
I/O structure
Notes
Alternate
functions
Additional
functions
UQFN32
WLCSP49
LQFP48
LQFP64
STM32F301x6 STM32F301x8 Pinouts and pin description
DocID025146 Rev 7 41/135
---51 PC10 I/O FT -
EVENTOUT, SPI3_SCK/I2S3_CK,
USART3_TX -
---52 PC11 I/O FT -
EVENTOUT,
SPI3_MISO/I2S3ext_SD,
USART3_RX
-
---53 PC12 I/O FT -
EVENTOUT, SPI3_MOSI/I2S3_SD,
USART3_CK -
- - - 54 PD2 I/O FT - EVENTOUT -
26 A3 39 55 PB3 I/O FT -
JTDO-TRACESWO, TIM2_CH2,
TSC_G5_IO1, SPI3_SCK/I2S3_CK,
USART2_TX, EVENTOUT
-
27 A4 40 56 PB4 I/O FT -
JTRST, TIM16_CH1, TSC_G5_IO2,
SPI3_MISO/I2S3ext_SD,
USART2_RX, TIM17_BKIN,
EVENTOUT
-
28 B4 41 57 PB5 I/O FT -
TIM16_BKIN, I2C1_SMBAl,
SPI3_MOSI/I2S3_SD, USART2_CK,
I2C3_SDA, TIM17_CH1, EVENTOUT
-
29 C4 42 58 PB6 I/O FTf -
TIM16_CH1N, TSC_G5_IO3,
I2C1_SCL, USART1_TX,
EVENTOUT
-
30 D4 43 59 PB7 I/O FTf -
TIM17_CH1N, TSC_G5_IO4,
I2C1_SDA, USART1_RX,
EVENTOUT
-
Table 13. STM32F301x6/8 pin definitions (continued)
Pin Number
Pin name
(function after reset)
Pin type
I/O structure
Notes
Alternate
functions
Additional
functions
UQFN32
WLCSP49
LQFP48
LQFP64
Pinouts and pin description STM32F301x6 STM32F301x8
42/135 DocID025146 Rev 7
31 A5 44 60 BOOT0 I B - Boot memory selection
- B5 45 61 PB8 I/O FTf -
TIM16_CH1, TSC_SYNC,
I2C1_SCL, USART3_RX,
TIM1_BKIN, EVENTOUT
-
- C5 46 62 PB9 I/O FTf -
TIM17_CH1, I2C1_SDA, IR-OUT,
USART3_TX, COMP2_OUT,
EVENTOUT
-
32 D3 47 63 VSS_1 S - - Digital ground
"1" B7 48 64 VDD_1 S - - Digital power supply
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch sinks only a limited amount of current (3 mA), the use of GPIO PC13 to PC15 in output
mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (e.g. to drive an LED).
After the first backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the Backup registers which is not reset by
the main reset. For details on how to manage these GPIOs, refer to the Battery backup domain and BKP register description sections in the RM0366 reference manual.
2. Fast ADC channel.
3. These GPIOs offer a reduced touch sensing sensitivity. It is thus recommended to use them as sampling capacitor I/O.
Table 13. STM32F301x6/8 pin definitions (continued)
Pin Number
Pin name
(function after reset)
Pin type
I/O structure
Notes
Alternate
functions
Additional
functions
UQFN32
WLCSP49
LQFP48
LQFP64
STM32F301x6 STM32F301x8 Pinouts and pin description
DocID025146 Rev 7 43/135
Table 14. Alternate functions for Port A
Port & pin name
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
SYS_AF
TIM2/TIM15/TIM16
/TIM17/EVENT
I2C3/TIM1/TIM2/TIM15
I2C3/TIM15/TSC
I2C1/I2C2/TIM1/
TIM16/TIM17
SPI2/I2S2/
SPI3/I2S3/Infrared
SPI2/I2S2/SPI3/
I2S3/TIM1/Infrared
USART1/USART2/USART3/
GPCOMP6
I2C3/GPCOMP2
/GPCOMP4/GPCOMP6
TIM1/TIM15
TIM2/TIM17
TIM1
TIM1
-
-
EVENT
PA0 -
TIM2
_CH1/
TIM2
_ETR
-TSC
_G1_IO1 -- - USART2
_CTS -------
EVENT
OUT
PA1 RTC
_REFIN
TIM2
_CH2 -TSC
_G1_IO2 -- -
USART2
_RTS_D
E
-TIM15
_CH1N -----
EVENT
OUT
PA2 - TIM2
_CH3 -TSC
_G1_IO3 -- - USART2
_TX
COMP2
_OUT
TIM15
_CH1 -----
EVENT
OUT
PA3 - TIM2
_CH4 -TSC
_G1_IO4 -- - USART2
_RX -TIM15
_CH2 -----
EVENT
OUT
PA4 - - - TSC
_G2_IO1 -- SPI3_NSS/
I2S3_WS
USART2
_CK -------
EVENT
OUT
PA5 -
TIM2
_CH1/
TIM2
_ETR
-TSC
_G2_IO2 - - - - -------
EVENT
OUT
PA6 - TIM16
_CH1 -TSC
_G2_IO3 - - TIM1_BKIN- -------
EVENT
OUT
PA7 - TIM17
_CH1 -TSC
_G2_IO4 -- TIM1
_CH1N - -------
EVENT
OUT
PA8 MCO - - I2C3
_SCL
I2C2
_SMBAL
I2S2
_MCK TIM1_CH1 USART1
_CK -------
EVENT
OUT
Pinouts and pin description STM32F301x6 STM32F301x8
44/135 DocID025146 Rev 7
PA9 - - I2C3
_SMBAL
TSC
_G4_IO1
I2C2
_SCL
I2S3
_MCK TIM1_CH2 USART1
_TX -TIM15
_BKIN
TIM2
_CH3 ----
EVENT
OUT
PA10 - TIM17
_BKIN
TSC
_G4_IO2
I2C2
_SDA
SPI2_MIS
O/I2S2ext
_SD
TIM1_CH3 USART1
_RX
COMP6
_OUT -TIM2
_CH4 ----
EVENT
OUT
PA11-----
SPI2_MO
SI/I2S2
_SD
TIM1
_CH1N
USART1
_CTS ---TIM1
_CH4
TIM1
_BKIN2 --EVENT
OUT
PA12 - TIM16
_CH1 - - - I2SCKIN TIM1
_CH2N
USART1
_RTS_D
E
COMP2
_OUT --TIM1
_ETR ---
EVENT
OUT
PA13 SWDAT-
JTMS
TIM16
_CH1N -TSC
_G4_IO3 -IR-OUT- USART3
_CTS -------
EVENT
OUT
PA14 SWCLK-
JTCK -TSC
_G4_IO4
I2C1
_SDA - TIM1_BKIN USART2
_TX -------
EVENT
OUT
PA15 JTDI
TIM2_C
H1/
TIM2_E
TR
-TSC
_SYNC
I2C1
_SCL -SPI3_NSS/
I2S3_WS
USART2
_RX -TIM1
_BKIN -----
EVENT
OUT
Table 14. Alternate functions for Port A (continued)
Port & pin name
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
SYS_AF
TIM2/TIM15/TIM16
/TIM17/EVENT
I2C3/TIM1/TIM2/TIM15
I2C3/TIM15/TSC
I2C1/I2C2/TIM1/
TIM16/TIM17
SPI2/I2S2/
SPI3/I2S3/Infrared
SPI2/I2S2/SPI3/
I2S3/TIM1/Infrared
USART1/USART2/USART3/
GPCOMP6
I2C3/GPCOMP2
/GPCOMP4/GPCOMP6
TIM1/TIM15
TIM2/TIM17
TIM1
TIM1
-
-
EVENT
STM32F301x6 STM32F301x8 Pinouts and pin description
DocID025146 Rev 7 45/135
Table 15. Alternate functions for Port B
Port &
pin
name
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
SYS_AF
TIM2/TIM15/TIM16
/TIM17/EVENT
I2C3/TIM1/TIM2/TIM15
I2C3/TIM15/TSC
I2C1/I2C2/TIM1/
TIM16/TIM17
SPI2/I2S2/
SPI3/I2S3/Infrared
SPI2/I2S2/SPI3/
I2S3/TIM1/Infrared
USART1/USART2/USART3/
GPCOMP6
I2C3/GPCOMP2
/GPCOMP4/GPCOMP6
TIM1/TIM15
TIM2/TIM17
TIM1
TIM1
-
-
EVENT
PB0 - - - TSC
_G3_IO2 --TIM1
_CH2N --------
EVENT
OUT
PB1 - - - TSC
_G3_IO3 --TIM1
_CH3N -COMP4_
OUT - - ----
EVENT
OUT
PB2 TSC
_G3_IO4 -----------
EVENT
OUT
PB3
JTDO-
TRACE
SWO
TIM2
_CH2 -TSC
_G5_IO1 --
SPI3_SC
K/I2S3_
CK
USART2
_TX -------
EVENT
OUT
PB4 JTRST TIM16
_CH1 -TSC
_G5_IO2 --
SPI3_MI
SO/I2S3
_SD
USART2
_RX --TIM17
_BKIN ----
EVENT
OUT
PB5 - TIM16
_BKIN --I2C1
_SMBAl -
SPI3
_MOSI/
I2S3ext_
SD
USART2
_CK
I2C3
_SDA -TIM17
_CH1 ----
EVENT
OUT
PB6 - TIM16
_CH1N -TSC
_G5_IO3
I2C1
_SCL --USART1
_TX -------
EVENT
OUT
PB7 - TIM17
_CH1N -TSC
_G5_IO4
I2C1
_SDA --USART1
_RX -------
EVENT
OUT
PB8 - TIM16
_CH1 -TSC
_SYNC
I2C1
_SCL --USART3
_RX ----
TIM1
_BKIN --EVENT
OUT
Pinouts and pin description STM32F301x6 STM32F301x8
46/135 DocID025146 Rev 7
PB9 - TIM17
_CH1 --I2C1
_SDA -IR-OUT
USART3
_TX
COMP2_
OUT - - ----
EVENT
OUT
PB10 - TIM2
_CH3 -TSC
_SYNC ---USART3
_TX -------
EVENT
OUT
PB11 - TIM2
_CH4 -TSC
_G6_IO1 ---USART3
_RX -------
EVENT
OUT
PB12 - - - TSC
_G6_IO2
I2C2
_SMBAL
SPI2_NS
S/I2S2_
WS
TIM1
_BKIN
USART3
_CK -------
EVENT
OUT
PB13 - - - TSC
_G6_IO3 -
SPI2_SC
K/
I2S2_CK
TIM1
_CH1N
USART3
_CTS -------
EVENT
OUT
PB14 - TIM15
_CH1 -TSC
_G6_IO4 -
SPI2_MI
SO/I2S2
ext_SD
TIM1
_CH2N
USART3
_RTS
_DE
-------
EVENT
OUT
PB15 RTC
_REFIN
TIM15
_CH2
TIM15
_CH1N -TIM1
_CH3N
SPI2_M
OSI/
I2S2_SD
---------
EVENT
OUT
Table 15. Alternate functions for Port B (continued)
Port &
pin
name
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
SYS_AF
TIM2/TIM15/TIM16
/TIM17/EVENT
I2C3/TIM1/TIM2/TIM15
I2C3/TIM15/TSC
I2C1/I2C2/TIM1/
TIM16/TIM17
SPI2/I2S2/
SPI3/I2S3/Infrared
SPI2/I2S2/SPI3/
I2S3/TIM1/Infrared
USART1/USART2/USART3/
GPCOMP6
I2C3/GPCOMP2
/GPCOMP4/GPCOMP6
TIM1/TIM15
TIM2/TIM17
TIM1
TIM1
-
-
EVENT
STM32F301x6 STM32F301x8 Pinouts and pin description
DocID025146 Rev 7 47/135
Table 16. Alternate functions for Port C
Port &
pin name
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SYS_AF
TIM2/TIM15/
TIM16/TIM17/
EVENT
I2C3/TIM1/TIM2
/TIM15
I2C3/TIM15/
TSC
I2C1/I2C2/TIM1/
TIM16/TIM17
SPI2/I2S2/
SPI3/I2S3
Infrared
SPI2/I2S2/SPI3/
I2S3/TIM1/
Infrared
USART1/
USART2/
USART3/
GPCOMP6
PC0 -EVENTOUT TIM1_CH1 -----
PC1 -EVENTOUT TIM1_CH2 -----
PC2 -EVENTOUT TIM1_CH3 -----
PC3 -EVENTOUT TIM1_CH4 ---
TIM1_BKIN2 -
PC4 -EVENTOUT TIM1_ETR ----
USART1_TX
PC5 -EVENTOUT TIM15_BKIN TSC_G3_IO1 ---
USART1_RX
PC6 -EVENTOUT ----
I2S2_MCK COMP6_OUT
PC7 -EVENTOUT ----
I2S3_MCK -
PC8 -EVENTOUT ------
PC9 -EVENTOUT -I2C3_SDA -I2SCKIN --
PC10 -EVENTOUT ----
SPI3_SCK/
I2S3_CK USART3_TX
PC11 -EVENTOUT ----
SPI3_MISO/
I2S3ext_SD USART3_RX
PC12 -EVENTOUT ----
SPI3_MOSI/
I2S3_SD USART3_CK
PC13 ----
TIM1_CH1N ---
PC14 --------
PC15 --------
Pinouts and pin description STM32F301x6 STM32F301x8
48/135 DocID025146 Rev 7
Table 17. Alternate functions for Port D
Port &
pin
name
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SYS_AF
TIM2/TIM15/
TIM16/TIM17/
EVENT
I2C3/TIM1/TIM2/
TIM15 I2C3/TIM15/TSC I2C1/I2C2/TIM1/
TIM16/TIM17
SPI2/I2S2/
SPI3/I2S3/
Infrared
SPI2/I2S2/SPI3/
I2S3/TIM1/
Infrared
USART1/
USART2/
USART3/
GPCOMP6
PD2 - EVENTOUT ------
Table 18. Alternate functions for Port F
Port &
pin
name
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SYS_AF
TIM2/TIM15/
TIM16/TIM17/
EVENT
I2C3/TIM1/TIM2/
TIM15 I2C3/TIM15/TSC I2C1/I2C2/TIM1/
TIM16/TIM17
SPI2/I2S2/
SPI3/I2S3/
Infrared
SPI2/I2S2/SPI3/
I2S3/TIM1/
Infrared
USART1/USAR
T2/USART3/
GPCOMP6
PF0 ---- I2C2_SDA SPI2_NSS/
I2S2_WS TIM1_CH3N -
PF1 ---- I2C2_SCL SPI2_SCK/
I2S2_CK --
DocID025146 Rev 7 49/135
STM32F301x6 STM32F301x8 Memory mapping
51
5 Memory mapping
Figure 8. STM32F301x6/8 memory mapping
[))))))))
[(
[&
[$
[
[
[
[
[
&RUWH[0
ZLWK)38
,QWHUQDO
3HULSKHUDOV
3HULSKHUDOV
65$0
&2'(
2SWLRQE\WHV
6\VWHPPHPRU\
)ODVKPHPRU\
)ODVKV\VWHP
PHPRU\RU65$0
GHSHQGLQJRQ%227
FRQILJXUDWLRQ
$+%
$+%
$3%
$3%
[
[
[
[))
[
[&
[
[$
[
[)))))))
[))))
[)))'
[
[
[
[
5HVHUYHG
06Y9
$+%
[))
5HVHUYHG
5HVHUYHG
5HVHUYHG
5HVHUYHG
5HVHUYHG
5HVHUYHG
Memory mapping STM32F301x6 STM32F301x8
50/135 DocID025146 Rev 7
Table 19. STM32F301x6 STM32F301x8 peripheral register boundary
addresses (1)
Bus Boundary address Size (bytes) Peripheral
AHB3 0x5000 0000 - 0x5000 03FF 1 K ADC1
0x4800 1800 - 0x4FFF FFFF ~132 M Reserved
AHB2
0x4800 1400 - 0x4800 17FF 1 K GPIOF
0x4800 1000 - 0x4800 13FF 1 K Reserved
0x4800 0C00 - 0x4800 0FFF 1 K GPIOD
0x4800 0800 - 0x4800 0BFF 1 K GPIOC
0x4800 0400 - 0x4800 07FF 1 K GPIOB
0x4800 0000 - 0x4800 03FF 1 K GPIOA
0x4002 4400 - 0x47FF FFFF ~128 M Reserved
AHB1
0x4002 4000 - 0x4002 43FF 1 K TSC
0x4002 3400 - 0x4002 3FFF 3 K Reserved
0x4002 3000 - 0x4002 33FF 1 K CRC
0x4002 2400 - 0x4002 2FFF 3 K Reserved
0x4002 2000 - 0x4002 23FF 1 K Flash interface
0x4002 1400 - 0x4002 1FFF 3 K Reserved
0x4002 1000 - 0x4002 13FF 1 K RCC
0x4002 0400 - 0x4002 0FFF 3 K Reserved
0x4002 0000 - 0x4002 03FF 1 K DMA1
0x4001 8000 - 0x4001 FFFF 32 K Reserved
APB2
0x4001 4C00 - 0x4001 7FFF 13 K Reserved
0x4001 4800 - 0x4001 4BFF 1 K TIM17
0x4001 4400 - 0x4001 47FF 1 K TIM16
0x4001 4000 - 0x4001 43FF 1 K TIM15
0x4001 3C00 - 0x4001 3FFF 1 K Reserved
0x4001 3800 - 0x4001 3BFF 1 K USART1
0x4001 3000 - 0x4001 37FF 2 K Reserved
0x4001 2C00 - 0x4001 2FFF 1 K TIM1
0x4001 0800 - 0x4001 2BFF 8 K Reserved
0x4001 0400 - 0x4001 07FF 1 K EXTI
0x4001 0000 - 0x4001 03FF 1 K SYSCFG + COMP +
OPAMP
0x4000 9C00 - 0x4000 FFFF 25 K Reserved
DocID025146 Rev 7 51/135
STM32F301x6 STM32F301x8 Memory mapping
51
APB1
0x4000 7C00 - 0x4000 9BFF 8 K Reserved
0x4000 7800 - 0x4000 7BFF 1 K I2C3
0x4000 7400 - 0x4000 77FF 1 K DAC1
0x4000 7000 - 0x4000 73FF 1 K PWR
0x4000 5C00 - 0x4000 6FFF 5 K Reserved
0x4000 5800 - 0x4000 5BFF 1 K I2C2
0x4000 5400 - 0x4000 57FF 1 K I2C1
0x4000 4C00 - 0x4000 53FF 2 K Reserved
0x4000 4800 - 0x4000 4BFF 1 K USART3
0x4000 4400 - 0x4000 47FF 1 K USART2
0x4000 4000 - 0x4000 43FF 1 K I2S3ext
0x4000 3C00 - 0x4000 3FFF 1 K SPI3/I2S3
0x4000 3800 - 0x4000 3BFF 1 K SPI2/I2S2
0x4000 3400 - 0x4000 37FF 1 K I2S2ext
0x4000 3000 - 0x4000 33FF 1 K IWDG
0x4000 2C00 - 0x4000 2FFF 1 K WWDG
0x4000 2800 - 0x4000 2BFF 1 K RTC
0x4000 1400 - 0x4000 27FF 5 K Reserved
0x4000 1000 - 0x4000 13FF 1 K TIM6
0x4000 0400 - 0x4000 0FFF 3 K Reserved
0x4000 0000 - 0x4000 03FF 1 K TIM2
0x2000 4000 - 3FFF FFFF ~512 M Reserved
0x2000 0000 - 0x2000 3FFF 16 K SRAM
0x1FFF F800 - 0x1FFF FFFF 2 K Option bytes
0x1FFF D800 - 0x1FFF F7FF 8 K System memory
0x0801 0000 - 0x1FFF D7FF ~384 M Reserved
0x0800 0000 - 0x0800 FFFF 64 K Main Flash memory
0x0001 0000 - 0x07FF FFFF ~128 M Reserved
0x0000 000 - 0x0000 FFFF 64 K
Main Flash memory,
system memory or SRAM
depending on BOOT
configuration
1. The gray color is used for reserved Flash memory addresses.
Table 19. STM32F301x6 STM32F301x8 peripheral register boundary
addresses (continued)(1)
Bus Boundary address Size (bytes) Peripheral
Electrical characteristics STM32F301x6 STM32F301x8
52/135 DocID025146 Rev 7
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes. Based on characterization, the minimum and maximum
values refer to sample tests and represent the mean value plus or minus three times the
standard deviation (mean±3σ).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA= 3.3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2σ).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 9.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 10.
Figure 9. Pin loading conditions Figure 10. Pin input voltage
069
0&8SLQ
& S)
069
0&8SLQ
9,1
DocID025146 Rev 7 53/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
6.1.6 Power supply scheme
Figure 11. Power supply scheme
Caution: Each power supply pair (for example VDD/VSS, VDDA/VSSA) must be decoupled with filtering
ceramic capacitors as shown above. These capacitors must be placed as close as possible
to, or below the appropriate pins on the underside of the PCB to ensure the good
functionality of the device.
069
/HYHOVKLIWHU
$QDORJ5&V
3//FRPSDUDWRUV23$03

3RZHU
VZLWFK
$'&'$&
.HUQHOORJLF
&38
GLJLWDO
PHPRULHV
,2ORJLF
%DFNXSFLUFXLWU\
/6(57&
:DNHXSORJLF
%DFNXSUHJLVWHUV
9%$7
±9
*3,2V
9''
287
,1
5HJXODWRU
[9''
[966
9''$
9''$
95()
95()
966$
[Q)
[)
Q)
)
Electrical characteristics STM32F301x6 STM32F301x8
54/135 DocID025146 Rev 7
6.1.7 Current consumption measurement
Figure 12. Current consumption measurement scheme
069
9%$7
9''
9''$
,''
,''$
,''B9%$7
DocID025146 Rev 7 55/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 20: Voltage characteristics,
Table 21: Current characteristics, and Table 22: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 20. Voltage characteristics(1)
Symbol Ratings Min Max Unit
VDD–VSS
External main supply voltage (including VDDA, VBAT
and VDD)-0.3 4.0 V
VDD–VDDA Allowed voltage difference for VDD > VDDA -0.4V
VIN(2)
Input voltage on FT and FTf pins VSS 0.3 VDD + 4.0
V
Input voltage on TTa and TT pins VSS 0.3 4.0
Input voltage on any other pin VSS 0.3 4.0
Input voltage on Boot0 pin 0 9
|ΔVDDx| Variations between different VDD power pins - 50
mV
|VSSX VSS| Variations between all the different ground pins(3) -50
VESD(HBM)
Electrostatic discharge voltage (human body
model)
see Section 6.3.12: Electrical
sensitivity characteristics V
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range. The following relationship must be respected between VDDA and VDD:
VDDA must power on before or at the same time as VDD in the power up sequence.
VDDA must be greater than or equal to VDD.
2. VIN maximum must always be respected. Refer to Table 21: Current characteristics for the maximum allowed injected
current values.
3. Include VREF- pin.
Electrical characteristics STM32F301x6 STM32F301x8
56/135 DocID025146 Rev 7
Table 21. Current characteristics
Symbol Ratings Max. Unit
ΣIVDD Total current into sum of all VDD_x power lines (source) 130
mA
ΣIVSS Total current out of sum of all VSS_x ground lines (sink) -130
IVDD Maximum current into each VDD_x power line (source)(1) 100
IVSS Maximum current out of each VSS _x ground line (sink)(1) -100
IIO(PIN)
Output current sunk by any I/O and control pin 25
Output current sourced by any I/O and control pin -25
ΣIIO(PIN)
Total output current sunk by sum of all IOs and control pins(2) 80
Total output current sourced by sum of all IOs and control pins(2) -80
IINJ(PIN)
Injected current on TT, FT, FTf and B pins(3) -5/+0
Injected current on TC and RST pin(4) +/-5
Injected current on TTa pins(5) +/-5
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins)(6) +/-25
1. All main power (VDD, VDDA) and ground (VSS and VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins.The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
4. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN< VSS. IINJ(PIN) must never be
exceeded. Refer to Table 20: Voltage characteristics for the maximum allowed input voltage values.
5. A positive injection is induced by VIN > VDDA while a negative injection is induced by VIN< VSS. IINJ(PIN) must never be
exceeded. Refer also to Table 20: Voltage characteristics for the maximum allowed input voltage values. Negative injection
disturbs the analog performance of the device. See note (2) below Table 65.
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 22. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150 °C
TJMaximum junction temperature 150 °C
DocID025146 Rev 7 57/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
6.3 Operating conditions
6.3.1 General operating conditions
Table 23. General operating conditions
Symbol Parameter Conditions Min Max Unit
fHCLK Internal AHB clock frequency - 0 72
MHzfPCLK1 Internal APB1 clock frequency - 0 36
fPCLK2 Internal APB2 clock frequency - 0 72
VDD Standard operating voltage - 2 3.6 V
VDDA
Analog operating voltage
(OPAMP and DAC not used) Must have a potential
equal to or higher than
VDD
23.6
V
Analog operating voltage
(OPAMP and DAC used) 2.4 3.6
VBAT Backup operating voltage - 1.65 3.6 V
VIN I/O input voltage
TC I/O –0.3 VDD+0.3
V
TT I/O(1) -0.3 3.6
TTa I/O pins –0.3 VDDA+0.3
FT and FTf I/O(1)
1. To sustain a voltage higher than VDD+0.3 V, the internal pull-up/pull-down resistors must be disabled.
–0.3 5.5
BOOT0 0 5.5
PD
Power dissipation at
TA = 85 °C for suffix 6 or
TA = 105 °C for suffix 7(2)
2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax. See Table 79: Package
thermal characteristics.
LQFP64 - 444
mW
LQFP48 - 364
WLCSP49 - 408
UFQFPN32 - 540
TA
Ambient temperature for 6
suffix version
Maximum power
dissipation –40 85
°C
Low power dissipation(3)
3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax. See
Table 79: Package thermal characteristics
–40 105
Ambient temperature for 7
suffix version
Maximum power
dissipation –40 105
°C
Low power dissipation(3) –40 125
TJ Junction temperature range
6 suffix version –40 105
°C
7 suffix version –40 125
Electrical characteristics STM32F301x6 STM32F301x8
58/135 DocID025146 Rev 7
6.3.2 Operating conditions at power-up / power-down
The parameters given in Table 24 are derived from tests performed under the ambient
temperature condition summarized in Table 23.
6.3.3 Embedded reset and power control block characteristics
The parameters given in Table 25 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 23.
Table 24. Operating conditions at power-up / power-down
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate
-
0
µs/V
VDD fall time rate 20
tVDDA
VDDA rise time rate
-
0
VDDA fall time rate 20
Table 25. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPOR/PDR(1)
1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector
monitors only VDD.
Power on/power down
reset threshold
Falling edge 1.8(2)
2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
1.88 1.96 V
Rising edge 1.84 1.92 2.0 V
VPDRhyst(1) PDR hysteresis - - 40 - mV
tRSTTEMPO(3)
3. Based on characterization, not tested in production.
POR reset
temporization - 1.5 2.5 4.5 ms
DocID025146 Rev 7 59/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
Table 26. Programmable voltage detector characteristics
Symbol Parameter Conditions Min(1)
1. Guaranteed by characterization results.
Typ Max(1) Unit
VPVD0 PVD threshold 0
Rising edge 2.1 2.18 2.26
V
Falling edge 2 2.08 2.16
VPVD1 PVD threshold 1
Rising edge 2.19 2.28 2.37
Falling edge 2.09 2.18 2.27
VPVD2 PVD threshold 2
Rising edge 2.28 2.38 2.48
Falling edge 2.18 2.28 2.38
VPVD3 PVD threshold 3
Rising edge 2.38 2.48 2.58
Falling edge 2.28 2.38 2.48
VPVD4 PVD threshold 4
Rising edge 2.47 2.58 2.69
Falling edge 2.37 2.48 2.59
VPVD5 PVD threshold 5
Rising edge 2.57 2.68 2.79
Falling edge 2.47 2.58 2.69
VPVD6 PVD threshold 6
Rising edge 2.66 2.78 2.9
Falling edge 2.56 2.68 2.8
VPVD7 PVD threshold 7
Rising edge 2.76 2.88 3
Falling edge 2.66 2.78 2.9
VPVDhyst(2)
2. Guaranteed by design.
PVD hysteresis - - 100 - mV
IDD(PVD) PVD current
consumption - - 0.15 0.26 µA
Electrical characteristics STM32F301x6 STM32F301x8
60/135 DocID025146 Rev 7
6.3.4 Embedded reference voltage
The parameters given in Table 27 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 23.
6.3.5 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 12: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to CoreMark code.
Note: The total current consumption is the sum of IDD and IDDA.
Table 27. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.20 1.23 1.25 V
TS_vrefint
ADC sampling time when
reading the internal
reference voltage
-2.2--µs
VRERINT
Internal reference voltage
spread over the
temperature range
VDD = 3 V ±10 mV - - 10(1)
1. Guaranteed by design.
mV
TCoeff Temperature coefficient - - - 100
(1)
ppm/°
C
Table 28. Internal reference voltage calibration values
Calibration value name Description Memory address
VREFINT_CAL
Raw data acquired at
temperature of 30 °C
VDDA= 3.3 V
0x1FFF F7BA - 0x1FFF F7BB
DocID025146 Rev 7 61/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at VDD or VSS (no load)
All peripherals are disabled except when explicitly mentioned
The Flash memory access time is adjusted to the fHCLK frequency (0 wait state from 0
to 24 MHz,1 wait state from 24 to 48 MHz and 2 wait states from 48 to 72 MHz)
Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
When the peripherals are enabled fPCLK2 = fHCLK and fPCLK1 = fHCLK/2
When fHCLK > 8 MHz, the PLL is ON and the PLL input is equal to HSI/2 (4 MHz) or
HSE (8 MHz) in bypass mode.
The parameters given in Table 29 to Table 35 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 23.
Table 29. Typical and maximum current consumption from VDD supply at VDD = 3.6V
Symbol Parameter Conditions fHCLK
All peripherals enabled All peripherals disabled
Unit
Typ
Max @ TA(1)
Typ
Max @ TA(1)
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
IDD
Supply
current in
Run
mode,
executing
from Flash
External
clock (HSE
bypass)
72 MHz 45.7 48.6 50.0 52.0 25.5 27.5 28.1 28.8
mA
64 MHz 40.6 43.6 44.5 46.4 22.7 24.6 25.2 25.9
48 MHz 30.8 33.6 34.1 35.5 17.3 19.0 19.5 20.0
32 MHz 21.0 22.9 23.5 25.6 11.7 13.2 13.7 14.1
24 MHz 16.0 16.8 18.0 18.9 9.0 10.4 10.8 11.4
8 MHz 5.4 5.6 6.1 7.2 3.3 3.3 3.8 4.2
1 MHz 1.1 1.2 1.7 2.7 0.8 0.9 1.3 1.6
Internal
clock (HSI)
64 MHz 37.6 41.3 42.9 44.7 22.5 24.7 25.0 25.8
48 MHz 28.7 32.3 33.1 34.0 17.2 19.1 19.4 19.6
32 MHz 19.5 22.0 23.4 24.6 11.5 12.9 13.5 13.7
24 MHz 14.9 16.6 17.9 18.4 6.0 7.0 7.4 7.9
8 MHz 5.2 5.5 6.4 7.0 3.2 3.8 4.3 4.7
Electrical characteristics STM32F301x6 STM32F301x8
62/135 DocID025146 Rev 7
IDD
Supply
current in
Run mode,
executing
from RAM
External
clock (HSE
bypass)
72 MHz 45.8 49.1(2) 50.1 51.4(2) 25.1 27.3(2) 28.0 28.6(2)
mA
64 MHz 40.8 43.6 44.9 46.9 22.3 24.1 25.0 25.5
48 MHz 30.2 32.9 33.5 34.8 17.0 18.7 19.1 19.6
32 MHz 20.5 23.1 24.1 25.4 11.1 12.2 13.2 13.3
24 MHz 15.4 17.1 18.3 19.5 8.5 9.7 10.1 10.2
8 MHz 5.0 5.9 6.3 6.9 3.1 3.7 4.1 4.7
1 MHz 0.8 1.1 1.9 2.6 0.5 0.8 1.2 1.4
Internal
clock (HSI)
64 MHz 37.3 41.1 41.8 43.3 22.0 23.8 24.4 24.9
48 MHz 28.0 31.1 31.6 33.2 16.4 18.0 18.3 18.6
32 MHz 18.8 21.3 22.1 23.1 10.9 11.9 12.8 13.1
24 MHz 14.2 15.9 16.8 17.9 5.5 6.4 6.7 7.3
8 MHz 4.8 5.1 6.0 6.5 2.9 3.5 4.1 4.2
IDD
Supply
current in
Sleep
mode,
executing
from Flash
or RAM
External
clock (HSE
bypass)
72 MHz 30.0 32.8(2) 33.1 34.1(2) 5.9 6.8(2) 6.9 7.4(2)
64 MHz 26.7 29.2 29.6 30.5 5.3 5.9 6.2 6.7
48 MHz 16.7 18.5 19.0 19.7 3.6 4.5 4.5 5.3
32 MHz 13.3 14.9 15.3 15.4 2.9 3.7 3.8 4.3
24 MHz 10.2 11.4 12.0 12.3 2.2 2.7 2.9 3.2
8 MHz 3.6 4.4 4.8 5.3 0.9 1.2 1.5 2.1
1 MHz 0.5 0.8 1.1 1.3 0.1 0.4 0.8 0.8
Internal
clock (HSI)
64 MHz 23.2 25.3 25.6 26.2 5.0 5.7 6.1 6.2
mA
48 MHz 17.5 19.2 19.4 19.9 3.9 4.7 4.8 5.3
32 MHz 11.7 12.9 13.2 13.3 2.6 3.4 3.6 4.2
24 MHz 8.9 10.2 10.6 10.8 1.4 2.1 2.4 2.7
8 MHz 3.4 4.0 4.6 5.1 0.7 1.1 1.4 1.9
1. Guaranteed by characterization results.
2. Data based on characterization results and tested in production with code executing from RAM.
Table 29. Typical and maximum current consumption from VDD supply at VDD = 3.6V (continued)
Symbol Parameter Conditions fHCLK
All peripherals enabled All peripherals disabled
Unit
Typ
Max @ TA(1)
Typ
Max @ TA(1)
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
DocID025146 Rev 7 63/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
Table 30. Typical and maximum current consumption from the VDDA supply
Symbol Parameter Conditions
(1) fHCLK
VDDA = 2.4 V VDDA = 3.6 V
Unit
Typ
Max @ TA(2)
Typ
Max @ TA(2)
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
IDDA
Supply
current in
Run/Sleep
mode,
code
executing
from Flash
or RAM
HSE
bypass
72 MHz 231 254(3) 266 271(3) 251 274(3) 294 300(3)
µA
64 MHz 203 226 239 243 222 245 261 266
48 MHz 153 174 182 186 165 185 198 203
32 MHz 105 124 131 133 114 132 141 143
24 MHz 82 98 104 105 89 106 111 113
8 MHz 3.1 4.1 4.1 5.1 3.6 4.7 5.2 5.5
1 MHz 3.1 4.1 4.1 5.1 3.6 4.7 5.2 5.5
HSI clock
64 MHz 270 294 307 312 296 322 338 343
48 MHz 219 242 253 257 240 263 276 281
32 MHz 171 192 201 203 188 209 219 222
24 MHz 148 169 175 177 163 182 190 193
8 MHz 69 84 87 87 79 92 94 96
1. Current consumption from the VDDA supply is independent of whether the peripherals are on or off. Furthermore when the
PLL is off, IDDA is independent from the frequency.
2. Guaranteed by characterization results.
3. Data based on characterization results and tested in production.
Table 31. Typical and maximum VDD consumption in Stop and Standby modes
Symbol Parameter Conditions
Typ @VDD (VDD=VDDA)Max
(1)
Unit
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply
current in
Stop mode
Regulator in run mode,
all oscillators OFF 16.92 17.09 17.16 17.27 17.39 17.50 29.7 359.1 564.5
µA
Regulator in low-power
mode, all oscillators OFF 5.29 5.46 5.55 5.70 5.73 5.95 16.40 267.1 407.4
Supply
current in
Standby
mode
LSI ON and IWDG ON 0.80 0.93 1.11 1.19 1.31 1.41 - - -
LSI OFF and IWDG OFF 0.63 0.76 0.84 0.95 1.02 1.10 5.00 6.30 12.60
1. Guaranteed by characterization results.
Electrical characteristics STM32F301x6 STM32F301x8
64/135 DocID025146 Rev 7
Table 32. Typical and maximum VDDA consumption in Stop and Standby modes
Symbol Parameter Conditions
Typ @VDD (VDD = VDDA)Max
(1)
Unit
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V TA =
25 °C
TA =
85 °C
TA =
105 °C
IDDA
Supply
current in
Stop mode
VDDA supervisor ON
Regulator in run/low-
power mode, all
oscillators OFF
1.70 1.83 1.95 2.08 2.22 2.37 3.40 5.30 5.5
µA
Supply
current in
Standby
mode
LSI ON and IWDG ON 2.08 2.25 2.41 2.59 2.79 3.01 - - -
LSI OFF and IWDG
OFF 1.59 1.72 1.83 1.96 2.10 2.25 2.80 2.90 3.60
Supply
current in
Stop mode
VDDA supervisor OFF
Regulator in run/low-
power mode, all
oscillators OFF
0.99 1.01 1.04 1.09 1.14 1.21 - - -
Supply
current in
Standby
mode
LSI ON and IWDG ON 1.36 1.43 1.50 1.60 1.72 1.85 - - -
LSI OFF and IWDG
OFF 0.87 0.89 0.92 0.97 1.02 1.09 - - -
1. Guaranteed by characterization results.
Table 33. Typical and maximum current consumption from VBAT supply
Symbol Para
meter
Conditions
(1)
Typ.@VBAT
Max.
@VBAT= 3.6V(2)
TA (°C) Unit
1.65V 1.8V 2V 2.4V 2.7V 3V 3.3V 3.6V 25 85 105
IDD_VBAT
Backup
domain
supply
current
LSE & RTC
ON; “Xtal
mode”
lower
driving
capability;
LSEDRV[1:
0] = '00'
0.41 0.43 0.46 0.54 0.59 0.66 0.74 0.82 - - -
µA
LSE & RTC
ON; “Xtal
mode”
higher
driving
capability;
LSEDRV[1:
0] = '11'
0.65 0.68 0.73 0.80 0.87 0.95 1.03 1.14 - - -
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.
2. Guaranteed by characterization results.
DocID025146 Rev 7 65/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
Figure 13. Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0] = ‘00’)
Typical current consumption
The MCU is placed under the following conditions:
VDD = VDDA = 3.3 V
All I/O pins available on each package are in analog input configuration
The Flash access time is adjusted to fHCLK frequency (0 wait states from 0 to 24 MHz,
1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz), and Flash
prefetch is ON
When the peripherals are enabled, fAPB1 = fAHB/2, fAPB2 = fAHB
PLL is used for frequencies greater than 8 MHz
AHB prescaler of 2, 4, 8,16 and 64 is used for the frequencies 4 MHz, 2 MHz, 1 MHz,
500 kHz and 125 kHz respectively.
06
06[[[[[9\









& & & &
$
,
9%$7
7$&

9

9
9

9

9
9

9

9
Electrical characteristics STM32F301x6 STM32F301x8
66/135 DocID025146 Rev 7
Table 34. Typical current consumption in Run mode, code with data processing running from
Flash
Symbol Parameter Conditions fHCLK
Typ
Unit
Peripherals
enabled
Peripherals
disabled
IDD
Supply current in
Run mode from
VDD supply
Running from HSE
crystal clock 8 MHz,
code executing from
Flash
72 MHz 44.8 24.9
mA
64 MHz 40.0 22.4
48 MHz 30.3 17.1
32 MHz 20.7 11.9
24 MHz 15.8 9.2
16 MHz 10.9 6.5
8 MHz 5.7 3.55
4 MHz 3.43 3.22
2 MHz 2.18 1.53
1 MHz 1.56 1.19
500 kHz 1.25 0.96
125 kHz 0.96 0.84
IDDA(1) (2)
Supply current in
Run mode from
VDDA supply
72 MHz 237.1
µA
64 MHz 208.3
48 MHz 154.3
32 MHz 105.0
24 MHz 81.3
16 MHz 57.8
8 MHz 1.15
4 MHz 1.15
2 MHz 1.15
1 MHz 1.15
500 kHz 1.15
125 kHz 1.15
1. VDDA supervisor is OFF.
2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators,
OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.
DocID025146 Rev 7 67/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
Table 35. Typical current consumption in Sleep mode, code running from Flash or RAM
Symbol Parameter Conditions fHCLK
Typ
Unit
Peripherals
enabled
Peripherals
disabled
IDD
Supply current in
Sleep mode from
VDD supply
Running from HSE
crystal clock 8 MHz,
code executing from
Flash or RAM
72 MHz 28.7 6.1
mA
64 MHz 25.6 5.5
48 MHz 19.3 4.26
32 MHz 13.1 3.04
24 MHz 10.0 2.42
16 MHz 6.8 1.81
8 MHz 3.54 0.98
4 MHz 2.35 0.88
2 MHz 1.64 0.80
1 MHz 1.28 0.77
500 kHz 1.11 0.75
125 kHz 0.92 0.74
IDDA(1) (2)
Supply current in
Sleep mode from
VDDA supply
72 MHz 237.1
µA
64 MHz 208.3
48 MHz 154.3
32 MHz 105.0
24 MHz 81.3
16 MHz 57.8
8 MHz 1.15
4 MHz 1.15
2 MHz 1.15
1 MHz 1.15
500 kHz 1.15
125 kHz 1.15
1. VDDA supervisor is OFF.
2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators,
OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.
Electrical characteristics STM32F301x6 STM32F301x8
68/135 DocID025146 Rev 7
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 53: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption (seeTable 37: Peripheral current
consumption), the I/Os used by an application also contribute to the current consumption.
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to
the pin:
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT+CS
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
ISW VDD fSW C××=
DocID025146 Rev 7 69/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
Table 36. Switching output I/O current consumption
Symbol Parameter Conditions(1) I/O toggling
frequency (fSW)Typ Unit
ISW
I/O current
consumption
VDD = 3.3 V
Cext = 0 pF
C = CINT + CEXT+ CS
2 MHz 0.90
mA
4 MHz 0.93
8 MHz 1.16
18 MHz 1.60
36 MHz 2.51
48 MHz 2.97
VDD = 3.3 V
Cext = 10 pF
C = CINT + CEXT +CS
2 MHz 0.93
4 MHz 1.06
8 MHz 1.47
18 MHz 2.26
36 MHz 3.39
48 MHz 5.99
VDD = 3.3 V
Cext = 22 pF
C = CINT + CEXT +CS
2 MHz 1.03
4 MHz 1.30
8 MHz 1.79
18 MHz 3.01
36 MHz 5.99
VDD = 3.3 V
Cext = 33 pF
C = CINT + CEXT+ CS
2 MHz 1.10
4 MHz 1.31
8 MHz 2.06
18 MHz 3.47
36 MHz 8.35
VDD = 3.3 V
Cext = 47 pF
C = CINT + CEXT+ CS
2 MHz 1.20
4 MHz 1.54
8 MHz 2.46
18 MHz 4.51
1. CS = 5 pF (estimated value).
Electrical characteristics STM32F301x6 STM32F301x8
70/135 DocID025146 Rev 7
On-chip peripheral current consumption
The MCU is placed under the following conditions:
all I/O pins are in analog input configuration
all peripherals are disabled unless otherwise mentioned
the given value is calculated by measuring the current consumption
with all peripherals clocked off
with only one peripheral clocked on
ambient operating temperature at 25°C and VDD = VDDA = 3.3 V.
DocID025146 Rev 7 71/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
Table 37. Peripheral current consumption
Peripheral Typical consumption(1)
Unit
IDD
BusMatrix (2) 11.3
µA/MHz
DMA1 6.7
CRC 2.0
GPIOA 8.5
GPIOB 8.3
GPIOC 8.6
GPIOD 1.5
GPIOF 1.0
TSC 4.7
ADC1 15.9
APB2-Bridge (3) 2.7
SYSCFG 3.2
TIM1 27.6
USART1 21.0
TIM15 14.3
TIM16 10.1
TIM17 10.4
APB1-Bridge (3) 5.8
TIM2 40.7
TIM6 7.4
WWDG 4.6
SPI2 35.2
SPI3 34.2
USART2 13.9
USART3 13.1
I2C1 9.4
I2C2 9.4
PWR 4.5
DAC 8.3
I2C3 10.5
1. The power consumption of the analog part (IDDA) of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not
included. Refer to the tables of characteristics in the subsequent sections.
2. BusMatrix is automatically active when at least one master is ON (CPU or DMA1).
3. The APBx bridge is automatically active when at least one peripheral is ON on the same bus.
Electrical characteristics STM32F301x6 STM32F301x8
72/135 DocID025146 Rev 7
6.3.6 Wakeup time from low-power mode
The wakeup times given in Table 38 are measured starting from the wakeup event trigger up
to the first instruction executed by the CPU:
For Stop or Sleep mode: the wakeup event is WFE.
WKUP1 (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 23.
Table 38. Low-power mode wakeup timings
Symbol Parameter Conditions
Typ @VDD, VDD = VDDA
Max Unit
2.0 V 2.4 V 2.7 V 3 V 3.3 V 3.6 V
tWUSTOP
Wakeup from
Stop mode
Regulator in
run mode 4.5 4.2 4.1 4.0 3.8 3.8 4.5
µs
Regulator in
low-power
mode
8.2 7.0 6.4 6.0 5.7 5.5 9.0
tWUSTANDBY(1) Wakeup from
Standby mode
LSI and
IWDG OFF 72.8 63.4 59.2 56.1 53.1 51.3 103
tWUSLEEP
Wakeup from
Sleep mode -6-
CPU
clock
cycles
1. Guaranteed by characterization results.
DocID025146 Rev 7 73/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
6.3.7 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The
external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the
recommended clock input waveform is shown in Figure 14.
Figure 14. High-speed external clock source AC timing diagram
Table 39. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
User external clock source
frequency(1)
1. Guaranteed by design.
-
1832MHz
VHSEH OSC_IN input pin high level voltage 0.7VDD -V
DD V
VHSEL OSC_IN input pin low level voltage VSS -0.3V
DD
tw(HSEH)
tw(HSEL)
OSC_IN high or low time(1) 15 - -
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1) --20
069
9+6(+
WI+6(


7+6(
W
WU+6(
9+6(/
WZ+6(+
WZ+6(/
Electrical characteristics STM32F301x6 STM32F301x8
74/135 DocID025146 Rev 7
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The
external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the
recommended clock input waveform is shown in Figure 15
Figure 15. Low-speed external clock source AC timing diagram
Table 40. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext
User External clock source
frequency(1)
1. Guaranteed by design.
-
- 32.768 1000 kHz
VLSEH
OSC32_IN input pin high level
voltage 0.7VDD -V
DD
V
VLSEL
OSC32_IN input pin low level
voltage VSS -0.3V
DD
tw(LSEH)
tw(LSEL)
OSC32_IN high or low time(1) 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1) --50
069
9/6(+
WI/6(


7/6(
W
WU/6(
9/6(/
WZ/6(+
WZ/6(/
DocID025146 Rev 7 75/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 41. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Table 41. HSE oscillator characteristics
Symbol Parameter Conditions(1)
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
Min(2)
2. Guaranteed by design.
Typ Max(2) Unit
fOSC_IN Oscillator frequency - 4 8 32 MHz
RFFeedback resistor - - 200 - kΩ
IDD HSE current consumption
During startup(3)
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time.
--8.5
mA
VDD=3.3 V, Rm= 30Ω,
CL=10 pF@8 MHz -0.4-
VDD=3.3 V, Rm= 45Ω,
CL=10 pF@8 MHz -0.5-
VDD=3.3 V, Rm= 30Ω,
CL= 5 pF@32 MHz -0.8-
VDD=3.3 V, Rm= 30Ω,
CL=10 pF@32 MHz -1-
VDD=3.3 V, Rm= 30Ω,
CL=20 pF@32 MHz -1.5-
gmOscillator transconductance Startup 10 - - mA/V
tSU(HSE)(4)
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer.
Startup time VDD is stabilized - 2 - ms
Electrical characteristics STM32F301x6 STM32F301x8
76/135 DocID025146 Rev 7
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (Typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 16). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 16. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
069

26&B,1
26&B287
5)
%LDV
FRQWUROOHG
JDLQ
I+6(
5(;7
0+]
UHVRQDWRU
5HVRQDWRUZLWKLQWHJUDWHG
FDSDFLWRUV
&/
&/
DocID025146 Rev 7 77/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 42. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Table 42. LSE oscillator characteristics (fLSE = 32.768 kHz)
Symbol Parameter Conditions(1) Min(2) Typ Max(2) Unit
IDD LSE current consumption
LSEDRV[1:0]=00
lower driving capability -0.50.9
µA
LSEDRV[1:0]=10
medium low driving capability --1
LSEDRV[1:0]=01
medium high driving capability --1.3
LSEDRV[1:0]=11
higher driving capability --1.6
gm
Oscillator
transconductance
LSEDRV[1:0]=00
lower driving capability 5--
µA/V
LSEDRV[1:0]=10
medium low driving capability 8--
LSEDRV[1:0]=01
medium high driving capability 15 - -
LSEDRV[1:0]=11
higher driving capability 25 - -
tSU(LSE)(3) Startup time VDD is stabilized - 2 - s
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
2. Guaranteed by design.
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer.
Electrical characteristics STM32F301x6 STM32F301x8
78/135 DocID025146 Rev 7
Figure 17. Typical application with a 32.768 kHz crystal
Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
069
26&B,1
26&B287
'ULYH
SURJUDPPDEOH
DPSOLILHU
I/6(
N+]
UHVRQDWRU
5HVRQDWRUZLWKLQWHJUDWHG
FDSDFLWRUV
&/
&/
DocID025146 Rev 7 79/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
6.3.8 Internal clock source characteristics
The parameters given in Table 43 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 23.
High-speed internal (HSI) RC oscillator
Figure 18. HSI oscillator accuracy characterization results for soldered parts
Table 43. HSI oscillator characteristics(1)
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - - 8 - MHz
TRIM HSI user trimming step - - - 1(2)
2. Guaranteed by design.
%
DuCy(HSI) Duty cycle - 45(2) -55
(2) %
ACCHSI Accuracy of the HSI oscillator
TA = -40 to
105°C -2.8(3)
3. Guaranteed by characterization results.
-3.8
(3)
%
TA = -10 to 85°C -1.9(3) -2.3
(3)
TA = 0 to 85°C -1.9(3) -2
(3)
TA = 0 to 70°C -1.3(3) -2
(3)
TA = 0 to 55°C -1(3) -2
(3)
TA = 25°C(4)
4. Factory calibrated, parts not soldered.
-1 - 1
tsu(HSI) HSI oscillator startup time - 1(2) -2
(2) µs
IDDA(HSI)
HSI oscillator power
consumption - - 80 100(2) µA
069
5<$>
"
."9
.*/
       









Electrical characteristics STM32F301x6 STM32F301x8
80/135 DocID025146 Rev 7
Low-speed internal (LSI) RC oscillator
6.3.9 PLL characteristics
The parameters given in Table 45 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 23.
Table 44. LSI oscillator characteristics(1)
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI Frequency 30 40 50 kHz
tsu(LSI)(2)
2. Guaranteed by design.
LSI oscillator startup time - - 85 µs
IDD(LSI)(2) LSI oscillator power consumption - 0.75 1.2 µA
Table 45. PLL characteristics
Symbol Parameter
Value
Unit
Min Typ Max
fPLL_IN
PLL input clock(1)
1. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT
.
1(2) -24
(2) MHz
PLL input clock duty cycle 40(2) -60
(2) %
fPLL_OUT PLL multiplier output clock 16(2) -72MHz
tLOCK PLL lock time - - 200(2) µs
Jitter Cycle-to-cycle jitter - - 300(2)
2. Guaranteed by design.
ps
DocID025146 Rev 7 81/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
6.3.10 Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
Table 46. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max(1)
1. Guaranteed by design.
Unit
tprog 16-bit programming time TA = –40 to +105 °C 40 53.5 60 µs
tERASE Page (2 KB) erase time TA = –40 to +105 °C 20 - 40 ms
tME Mass erase time TA = –40 to +105 °C 20 - 40 ms
IDD Supply current
Write mode - - 10 mA
Erase mode - - 12 mA
Table 47. Flash memory endurance and data retention
Symbol Parameter Conditions
Value
Unit
Min(1)
1. Guaranteed by characterization results.
NEND Endurance TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions) 10 kcycles
tRET Data retention
1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
30
Years1 kcycle(2) at TA = 105 °C 10
10 kcycles(2) at TA = 55 °C 20
Electrical characteristics STM32F301x6 STM32F301x8
82/135 DocID025146 Rev 7
6.3.11 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 48. They are based on the EMS levels and classes
defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Table 48. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, LQFP64, TA = +25°C,
fHCLK = 72 MHz
conforms to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP64, TA = +25°C,
fHCLK = 72 MHz
conforms to IEC 61000-4-4
4A
DocID025146 Rev 7 83/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
6.3.12 Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 49. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs. [fHSE/fHCLK]
Unit
8/72 MHz
SEMI Peak level
VDD = 3.3 V, TA = 25 °C,
LQFP64 package
compliant with IEC
61967-2
0.1 to 30 MHz 5
dBµV30 to 130 MHz 6
130 MHz to 1GHz 28
SAE EMI Level 4 -
Table 50. ESD absolute maximum ratings
Symbol Ratings Conditions Packages Class Maximum
value(1) Unit
VESD(HBM)
Electrostatic discharge voltage
(human body model)
TA = +25 °C, conforming
to JESD22-A114 All 2 2000 V
VESD(CDM)
Electrostatic discharge voltage
(charge device model)
TA = +25 °C, conforming
to ANSI/ESD STM5.3.1
LQFP64,
WLCSP49 C3 250
V
All other C4 500
1. Guaranteed by characterization results.
Electrical characteristics STM32F301x6 STM32F301x8
84/135 DocID025146 Rev 7
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
6.3.13 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of –5 µA/+0 µA range), or other functional failure (for example reset occurrence or oscillator
frequency deviation).
The test results are given in Table 52
Table 51. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78A 2 level A
Table 52. I/O current injection susceptibility
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on BOOT0 -0 NA(1)
1. Injection is not possible.
mA
Injected current on PC0 pin (TTa pin) -0 +5
Injected current PC0, PC1, PC2, PC3, PA0, PA1, PA2,
PA3, PA4, PA6, PA7, PC4, PB0, PB10, PB11, PB13 with
induced leakage current on other pins from this group
less than -100 µA or more than +100 µA
-5 +5
Injected current on any other TT, FT and FTf pins -5 NA(1)
Injected current on all other TC, TTa and RESET pins -5 +5
DocID025146 Rev 7 85/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may
potentially inject negative currents.
6.3.14 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 53 are derived from tests
performed under the conditions summarized in Table 23. All I/Os are CMOS and TTL
compliant.
Table 53. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
Low level input
voltage
TTa and TT I/O - - 0.3 VDD + 0.07 (1)
V
FT and FTf I/O - - 0.475 VDD -0.2 (1)
BOOT0 I/O - - 0.3 VDD – 0.3 (1)
All I/Os except BOOT0 - - 0.3 VDD (2)
VIH
High level input
voltage
TTa and TT I/O 0.445 VDD+0.398 (1) --
V
FT and FTf I/O 0.5 VDD+0.2 (1) --
BOOT0 0.2 VDD+0.95 (1) --
All I/Os except BOOT0 0.7 VDD (2) --
Vhys Schmitt trigger
hysteresis
TC and TTa I/O - 200 (1) -
mVFT and FTf I/O - 100 (1) -
BOOT0 - 300 (1) -
Ilkg
Input leakage
current (3)
TC, FT and FTf I/O
TTa I/O in digital mode
VSS VIN VDD
--±0.1
µA
TTa I/O in digital mode
VDD VIN VDDA
--1
TTa I/O in analog mode
VSS VIN VDDA
--±0.2
FT and FTf I/O(4)
VDD VIN 5 V --10
RPU
Weak pull-up
equivalent resistor(5) VIN = VSS 25 40 55 kΩ
RPD
Weak pull-down
equivalent resistor(5) VIN = VDD 25 40 55 kΩ
CIO I/O pin capacitance - - 5 - pF
1. Data based on design simulation
2. Tested in production.
3. Leakage could be higher than the maximum value. if negative current is injected on adjacent pins. Refer to Table 52: I/O
current injection susceptibility.
4. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled.
Electrical characteristics STM32F301x6 STM32F301x8
86/135 DocID025146 Rev 7
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 19 and Figure 20 for standard I/Os.
Figure 19. TC and TTa I/O input characteristics - CMOS port
Figure 20. TC and TTa I/O input characteristics - TTL port
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimum (~10% order).
069
9''9
9,+PLQ
9,/PD[
9,/9,+9

 
9
,/PD[
9
''


  
&026VWDQGDUGUHTXLUHPHQWV9,/PD[ 9''
9
,+PLQ
9
''

$UHDQRWGHWHUPLQHG
7HVWHGLQSURGXFWLRQ
7HVWHGLQSURGXFWLRQ
%DVHGRQGHVLJQVLPXODWLRQV
%DVHGRQGHVLJQVLPXODWLRQV
&026VWDQGDUGUHTXLUHPHQWV9
,+
PLQ 9
''
069
9''9
9,+PLQ
9,/PD[
9,/9,+9

 
9
,/PD[
9
''


  
77/VWDQGDUGUHTXLUHPHQWV9,/PD[ 9
9
,+PLQ
9
''

$UHDQRWGHWHUPLQHG
%DVHGRQGHVLJQVLPXODWLRQV
%DVHGRQGHVLJQVLPXODWLRQV
77/VWDQGDUGUHTXLUHPHQWV9,+PLQ 9
DocID025146 Rev 7 87/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
Figure 21. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port
Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port
9''9


9,/9,+9
 


$UHDQRWGHWHUPLQHG
069
9
,/PD[
9
''

9
,+PLQ
9
''

%DVHGRQGHVLJQVLPXODWLRQV
%DVHGRQGHVLJQVLPXODWLRQV
&026VWDQGDUGUHTXLUHPHQWV9
,+
PLQ 9
''
&026VWDQGDUGUHTXLUHPHQWV9
,/
PD[ 9
''
069
9''9

9,/9,+9

 
9
,/PLQ
9
''


9
,+PLQ
9
''

$UHDQRWGHWHUPLQHG

77/VWDQGDUGUHTXLUHPHQWV9,+PLQ 9
77/VWDQGDUGUHTXLUHPHQWV9,/PD[ 9

%DVHGRQGHVLJQVLPXODWLRQV
%DVHGRQGHVLJQVLPXODWLRQV
Electrical characteristics STM32F301x6 STM32F301x8
88/135 DocID025146 Rev 7
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or
source up to +/- 20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 21).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
ΣIVSS (see Table 21).
Output voltage levels
Unless otherwise specified, the parameters given in Table 54 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 23. All I/Os (FT, TTa and TC unless otherwise specified) are CMOS and TTL
compliant.
Table 54. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
VOL(1) Output low level voltage for an I/O pin CMOS port(2)
IIO = +8 mA
2.7 V < VDD < 3.6 V
-0.4
V
VOH(3) Output high level voltage for an I/O pin VDD–0.4 -
VOL (1) Output low level voltage for an I/O pin TTL port(2)
IIO = +8 mA
2.7 V < VDD < 3.6 V
-0.4
VOH (3) Output high level voltage for an I/O pin 2.4 -
VOL(1)(4) Output low level voltage for an I/O pin IIO = +20 mA
2.7 V < VDD < 3.6 V
-1.3
VOH(3)(4) Output high level voltage for an I/O pin VDD–1.3 -
VOL(1)(4) Output low level voltage for an I/O pin IIO = +6 mA
2 V < VDD < 2.7 V
-0.4
VOH(3)(4) Output high level voltage for an I/O pin VDD–0.4 -
VOLFM+(1)(4) Output low level voltage for an FTf I/O pin in
FM+ mode
IIO = +20 mA
2.7 V < VDD < 3.6 V -0.4
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 21 and the sum of
IIO (I/O ports and control pins) must not exceed ΣIIO(PIN).
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 21 and the sum
of IIO (I/O ports and control pins) must not exceed ΣIIO(PIN).
4. Data based on design simulation.
DocID025146 Rev 7 89/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 23 and
Table 55, respectively.
Unless otherwise specified, the parameters given are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 23.
Table 55. I/O AC characteristics(1)
OSPEEDRy [1:0]
value(1) Symbol Parameter Conditions Min Max Unit
x0
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V - 2(3) MHz
tf(IO)out
Output high to low level
fall time
CL = 50 pF, VDD = 2 V to 3.6 V
- 125(3)
ns
tr(IO)out
Output low to high level
rise time - 125(3)
01
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V - 10(3) MHz
tf(IO)out
Output high to low level
fall time
CL = 50 pF, VDD = 2 V to 3.6 V
-25
(3)
ns
tr(IO)out
Output low to high level
rise time -25
(3)
11
fmax(IO)out Maximum frequency(2)
CL = 30 pF, VDD = 2.7 V to 3.6 V - 50(3) MHz
CL = 50 pF, VDD = 2.7 V to 3.6 V - 30(3) MHz
CL = 50 pF, VDD = 2 V to 2.7 V - 20(3) MHz
tf(IO)out
Output high to low level
fall time
CL = 30 pF, VDD = 2.7 V to 3.6 V - 5(3)
ns
CL = 50 pF, VDD = 2.7 V to 3.6 V - 8(3)
CL = 50 pF, VDD = 2 V to 2.7 V - 12(3)
tr(IO)out
Output low to high level
rise time
CL = 30 pF, VDD = 2.7 V to 3.6 V - 5(3)
CL = 50 pF, VDD = 2.7 V to 3.6 V - 8(3)
CL = 50 pF, VDD = 2 V to 2.7 V - 12(3)
FM+
configuration(4)
fmax(IO)out Maximum frequency(2)
CL = 50 pF, VDD = 2 V to 3.6 V
-2
(4) MHz
tf(IO)out
Output high to low level
fall time -12
(4)
ns
tr(IO)out
Output low to high level
rise time -34
(4)
-t
EXTIpw
Pulse width of external
signals detected by the
EXTI controller
-10-ns
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0366 reference manual for a description of
GPIO Port configuration register.
2. The maximum frequency is defined in Figure 23.
3. Guaranteed by design.
4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the STM32F301x6 STM32F301x8 reference manual
RM0366 for a description of FM+ I/O mode configuration.
Electrical characteristics STM32F301x6 STM32F301x8
90/135 DocID025146 Rev 7
Figure 23. I/O AC characteristics definition
1. See Table 55: I/O AC characteristics.
6.3.15 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 53).
Unless otherwise specified, the parameters given in Table 56 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 23.
069



WU,2RXW
([WHUQDO
RXWSXWRQ&/
0D[LPXPIUHTXHQF\LVDFKLHYHGLIWUWI7DQGLIWKHGXW\F\FOHLV



ZKHQORDGHGE\&/
7
WI,2RXW
VHHQRWH
Table 56. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST)(1) NRST Input low level voltage - - - 0.3VDD+
0.07(1)
V
VIH(NRST)(1) NRST Input high level voltage - 0.445VDD+
0.398(1) --
Vhys(NRST) NRST Schmitt trigger voltage hysteresis - - 200 - mV
RPU Weak pull-up equivalent resistor(2) VIN = VSS 25 40 55 kΩ
VF(NRST)(1) NRST Input filtered pulse - - - 100(1) ns
VNF(NRST)(1) NRST Input not filtered pulse - 500(1) --ns
1. Guaranteed by design.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10% order).
DocID025146 Rev 7 91/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
Figure 24. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets. 0.1 uF capacitor must be placed as close as
possible to the chip.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 56. Otherwise the reset will not be taken into account by the device.
3. The user must place the external capacitor on NRST as close as possible to the chip.
6.3.16 Timer characteristics
The parameters given in Table 57 are guaranteed by design.
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
069
538
9''
,QWHUQDOUHVHW
([WHUQDO
UHVHWFLUFXLW
1567
)LOWHU
)
Table 57. TIMx(1)(2) characteristics
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM15, TIM16 and TIM17 timers.
Symbol Parameter Conditions Min Max Unit
tres(TIM) Timer resolution time
-1-
tTIMxCLK
fTIMxCLK = 72 MHz 13.9 - ns
fTIMxCLK = 144 MHz,
x = 1, 15,16, 17 6.95 - ns
fEXT Timer external clock
frequency on CH1 to CH4
-0
fTIMxCLK/2 MHz
fTIMxCLK = 72 MHz 0 36 MHz
ResTIM Timer resolution
TIMx (except TIM2) - 16
bit
TIM2 - 32
tCOUNTER 16-bit counter clock period
- 1 65536 tTIMxCLK
fTIMxCLK = 72 MHz 0.0139 910 µs
fTIMxCLK = 144 MHz,
x= 1/15/16/17 0.0069 455 µs
tMAX_COUNT Maximum possible count
with 32-bit counter
- - 65536 × 65536 tTIMxCLK
fTIMxCLK = 72 MHz - 59.65 s
fTIMxCLK = 144 MHz,
x= 1/15/16/17 - 29.825 s
Electrical characteristics STM32F301x6 STM32F301x8
92/135 DocID025146 Rev 7
2. Guaranteed by design.
Table 58. IWDG min/max timeout period at 40 kHz (LSI) (1)
1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing
of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.
Prescaler divider PR[2:0] bits Min timeout (ms) RL[11:0]=
0x000
Max timeout (ms) RL[11:0]=
0xFFF
/4 0 0.1 409.6
/8 1 0.2 819.2
/16 2 0.4 1638.4
/32 3 0.8 3276.8
/64 4 1.6 6553.6
/128 5 3.2 13107.2
/256 7 6.4 26214.4
Table 59. WWDG min-max timeout value @72 MHz (PCLK)(1)
1. Guaranteed by design.
Prescaler WDGTB Min timeout value Max timeout value
1 0 0.05687 3.6409
2 1 0.1137 7.2817
4 2 0.2275 14.564
8 3 0.4551 29.127
DocID025146 Rev 7 93/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
6.3.17 Communications interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
Standard-mode (Sm): with a bit rate up to 100 kbit/s
Fast-mode (Fm): with a bit rate up to 400 kbit/s
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to Reference manual).
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and
SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins
support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O
port characteristics for the I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog
filter characteristics:
Table 60. I2C analog filter characteristics(1)
1. Guaranteed by design.
Symbol Parameter Min Max Unit
tAF
Maximum pulse width of spikes that
are suppressed by the analog filter 50(2)
2. Spikes with widths below tAF(min) are filtered.
260(3)
3. Spikes with widths above tAF(max) are not filtered
ns
Electrical characteristics STM32F301x6 STM32F301x8
94/135 DocID025146 Rev 7
SPI/I2S characteristics
Unless otherwise specified, the parameters given in Table 61 for SPI or in Table 62 for I2S
are derived from tests performed under ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 23.
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S).
Table 61. SPI characteristics(1)
1. Guaranteed by characterization results.
Symbol Parameter Conditions Min Typ Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode - - 18
MHz
Slave mode - - 18
tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4*Tpcl
k--
ns
th(NSS) NSS hold time Slave mode, SPI presc = 2 2*Tpcl
k--
tw(SCKH)
tw(SCKL)
SCK high and low
time
Master mode, fPCLK = 36
MHz, presc = 4
Tpclk-
2Tpclk Tpclk+
2
tsu(MI)
tsu(SI)
Data input setup time
Master mode 0 - -
Slave mode 1 - -
th(MI) Data input hold time
Master mode 6.5 - -
th(SI) Slave mode 2.5 - -
ta(SO)
Data output access
time Slave mode 8 - 40
tdis(SO)
Data output disable
time Slave mode 8 - 14
tv(SO) Data output valid time
Slave mode - 12 27
tv(MO) Master mode - 1.5 4
th(SO) Data output hold time
Slave mode 7.5 - -
th(MO) Master mode 0 - -
DocID025146 Rev 7 95/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
Figure 25. SPI timing diagram - slave mode and CPHA = 0
Figure 26. SPI timing diagram - slave mode and CPHA = 1(1)
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.
DLE
166LQSXW
W68166 WF6&. WK166
6&.LQSXW
&3+$ 
&32/ 
&3+$ 
&32/ 
WZ6&.+
WZ6&./
WD62 WY62 WK62 WU6&.
WI6&. WGLV62
0,62
287387
026,
,1387
WVX6, WK6,
06%287
06%,1
%,7287 /6%287
/6%,1
%,7,1
Electrical characteristics STM32F301x6 STM32F301x8
96/135 DocID025146 Rev 7
Figure 27. SPI timing diagram - master mode(1)
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.
DLF
6&.2XWSXW
&3+$
026,
287387
0,62
,13 87
&3+$
/6%287
/6%,1
&32/ 
&32/ 
% , 7287
166LQSXW
WF6&.
WZ6&.+
WZ6&./
WU6&.
WI6&.
WK0,
+LJK
6&.2XWSXW
&3+$
&3+$
&32/ 
&32/ 
WVX0,
WY02 WK02
06%,1 %,7,1
06%287
Table 62. I2S characteristics(1)
Symbol Parameter Conditions Min Max Unit
fMCK I2S Main clock output - 256 x 8K 256xFs (2) MHz
fCK I2S clock frequency
Master data: 32 bits - 64xFs
MHz
Slave data: 32 bits - 64xFs
DCK
I2S clock frequency duty
cycle Slave receiver 30 70 %
DocID025146 Rev 7 97/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
Note: Refer to RM0366 Reference Manual I2S Section for more details about the sampling
frequency (Fs), fMCK, fCK, DCK values reflect only the digital peripheral behavior, source
clock precision might slightly change the values DCK depends mainly on ODD bit value.
Digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max
(I2SDIV+ODD)/(2*I2SDIV+ODD) and Fs max supported for each mode/condition.
tv(WS) WS valid time Master mode - 20
ns
th(WS) WS hold time Master mode 2 -
tsu(WS) WS setup time Slave mode 0 -
th(WS) WS hold time Slave mode 4 -
tsu(SD_MR) Data input setup time
Master receiver 1 -
tsu(SD_SR) Slave receiver 1 -
th(SD_MR) Data input hold time
Master receiver 8 -
th(SD_SR) Slave receiver 2.5 -
tv(SD_ST)
Data output valid time
Slave transmitter (after enable edge) - 50
tv(SD_MT)
Master transmitter (after enable
edge) -22
th(SD_ST)
Data output hold time
Slave transmitter (after enable edge) 8 -
th(SD_MT)
Master transmitter (after enable
edge) 1-
1. Guaranteed by characterization results.
2. 256xFs maximum is 36 MHz (APB1 Maximum frequency)
Table 62. I2S characteristics(1) (continued)
Symbol Parameter Conditions Min Max Unit
Electrical characteristics STM32F301x6 STM32F301x8
98/135 DocID025146 Rev 7
Figure 28. I2S slave timing diagram (Philips protocol)(1)
1. Measurement points are done at 0.5VDD and with external CL=30 pF.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 29. I2S master timing diagram (Philips protocol)(1)
1. Measurement points are done at 0.5VDD and with external CL=30 pF.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
STM32F301x6 STM32F301x8 Electrical characteristics
DocID025146 Rev 7 99/135
6.3.18 ADC characteristics
Unless otherwise specified, the parameters given in Table 63 to Table 65 are guaranteed by design, with conditions summarized in
Table 23.
Table 63. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA
Analog supply voltage for
ADC -2-3.6V
IDDA
ADC current consumption
(see Figure 30)
Single-ended mode,
5 MSPS - 1011.3 1172.0
µA
Single-ended mode,
1 MSPS - 214.7 322.3
Single-ended mode,
200 KSPS - 54.7 81.1
Differential mode, 5 MSPS - 1061.5 1243.6
Differential mode, 1 MSPS - 246.6 337.6
Differential mode,
200 KSPS - 56.4 83.0
fADC ADC clock frequency - 0.14 - 72 MHz
fS(1) Sampling rate
Resolution = 12 bits,
Fast Channel 0.01 - 5.14
MSPS
Resolution = 10 bits,
Fast Channel 0.012 - 6
Resolution = 8 bits,
Fast Channel 0.014 - 7.2
Resolution = 6 bits,
Fast Channel 0.0175 - 9
fTRIG(1) External trigger frequency
fADC = 72 MHz
Resolution = 12 bits - - 5.14 MHz
Resolution = 12 bits - - 14 1/fADC
VAIN Conversion voltage range - 0 - VDDA V
RAIN(1) External input impedance - - - 100 kΩ
Electrical characteristics STM32F301x6 STM32F301x8
100/135 DocID025146 Rev 7
CADC(1) Internal sample and hold
capacitor --5-pF
tCAL(1) Calibration time fADC = 72 MHz 1.56 µs
-1121/f
ADC
tlatr(1)
Trigger conversion latency
Regular and injected
channels without conversion
abort
CKMODE = 00 1.5 2 2.5 1/fADC
CKMODE = 01 - - 2 1/fADC
CKMODE = 10 - - 2.25 1/fADC
CKMODE = 11 - - 2.125 1/fADC
tlatrinj(1)
Trigger conversion latency
Injected channels aborting a
regular conversion
CKMODE = 00 2.5 3 3.5 1/fADC
CKMODE = 01 - - 3 1/fADC
CKMODE = 10 - - 3.25 1/fADC
CKMODE = 11 - - 3.125 1/fADC
tS(1) Sampling time fADC = 72 MHz 0.021 - 8.35 µs
-1.5-601.51/f
ADC
TADCVREG_STUP(1) ADC Voltage Regulator
Start-up time ---10µs
tSTAB(1) Power-up time - 1 conversion
cycle
tCONV(1) Total conversion time
(including sampling time)
fADC = 72 MHz
Resolution = 12 bits 0.19 - 8.52 µs
Resolution = 12 bits 14 to 614 (tS for sampling + 12.5 for
successive approximation) 1/fADC
CMIR(1) Common mode input signal ADC differential mode (VSSA + VREF+)/2
- 0.18 (VSSA + VREF+)/2 (VSSA + VREF+)/2
+ 0.18 V
1. Data guaranteed by design.
Table 63. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
DocID025146 Rev 7 101/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
Figure 30 illustrates the ADC current consumption as per the clock frequency in single-
ended and differential modes.
Figure 30. ADC typical current consumption in single-ended and differential modes
069
$'&FXUUHQWFRQVXPSWLRQ$
&ORFNIUHTXHQF\0636
Table 64. Maximum ADC RAIN (1)
Resolution
Sampling
cycle @
72 MHz
Sampling
time [ns] @
72 MHz
RAIN max (kΩ)
Fast
channels(2)
Slow
channels
Other
channels(3)
12 bits
1.5 20.83 0.018 NA NA
2.5 34.72 0.150 NA 0.022
4.5 62.50 0.470 0.220 0.180
7.5 104.17 0.820 0.560 0.470
19.5 270.83 2.70 1.80 1.50
61.5 854.17 8.20 6.80 4.70
181.5 2520.83 22.0 18.0 15.0
601.5 8354.17 82.0 68.0 47.0
Electrical characteristics STM32F301x6 STM32F301x8
102/135 DocID025146 Rev 7
10 bits
1.5 20.83 0.082 NA NA
2.5 34.72 0.270 0.082 0.100
4.5 62.50 0.560 0.390 0.330
7.5 104.17 1.20 0.82 0.68
19.5 270.83 3.30 2.70 2.20
61.5 854.17 10.0 8.2 6.8
181.5 2520.83 33.0 27.0 22.0
601.5 8354.17 100.0 82.0 68.0
8 bits
1.5 20.83 0.150 NA 0.039
2.5 34.72 0.390 0.180 0.180
4.5 62.50 0.820 0.560 0.470
7.5 104.17 1.50 1.20 1.00
19.5 270.83 3.90 3.30 2.70
61.5 854.17 12.00 12.00 8.20
181.5 2520.83 39.00 33.00 27.00
601.5 8354.17 100.00 100.00 82.00
6 bits
1.5 20.83 0.270 0.100 0.150
2.5 34.72 0.560 0.390 0.330
4.5 62.50 1.200 0.820 0.820
7.5 104.17 2.20 1.80 1.50
19.5 270.83 5.60 4.70 3.90
61.5 854.17 18.0 15.0 12.0
181.5 2520.83 56.0 47.0 39.0
601.5 8354.17 100.00 100.0 100.0
1. Guaranteed by characterization results.
2. All fast channels, expect channel on PA6.
3. Channel available on PA6.
Table 64. Maximum ADC RAIN (1) (continued)
Resolution
Sampling
cycle @
72 MHz
Sampling
time [ns] @
72 MHz
RAIN max (kΩ)
Fast
channels(2)
Slow
channels
Other
channels(3)
DocID025146 Rev 7 103/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
Table 65. ADC accuracy - limited test conditions(1)(2)
Symbol Parameter Conditions Min
(3) Typ Max
(3) Unit
ET
To ta l
unadjusted
error
ADC clock freq. 72 MHz
Sampling freq. 5 Msps
VDDA = 3.3 V
25°C
Single ended
Fast channel 5.1 Ms - ±4 ±4.5
LSB
Slow channel 4.8 Ms - ±5.5 ±6
Differential
Fast channel 5.1 Ms - ±3.5 ±4
Slow channel 4.8 Ms - ±3.5 ±4
EO Offset error
Single ended
Fast channel 5.1 Ms - ±2 ±2
Slow channel 4.8 Ms - ±1.5 ±2
Differential
Fast channel 5.1 Ms - ±1.5 ±2
Slow channel 4.8 Ms - ±1.5 ±2
EG Gain error
Single ended
Fast channel 5.1 Ms - ±3 ±4
Slow channel 4.8 Ms - ±5 ±5.5
Differential
Fast channel 5.1 Ms - ±3 ±3
Slow channel 4.8 Ms - ±3 ±3.5
ED
Differential
linearity
error
Single ended
Fast channel 5.1 Ms - ±1 ±1
Slow channel 4.8 Ms - ±1 ±1
Differential
Fast channel 5.1 Ms - ±1 ±1
Slow channel 4.8 Ms - ±1 ±1
EL
Integral
linearity
error
Single ended
Fast channel 5.1 Ms - ±1.5 ±2
Slow channel 4.8 Ms - ±2 ±3
Differential
Fast channel 5.1 Ms - ±1.5 ±1.5
Slow channel 4.8 Ms - ±1.5 ±2
ENOB
(4)
Effective
number of
bits
Single ended
Fast channel 5.1 Ms 10.8 10.8 -
bit
Slow channel 4.8 Ms 10.8 10.8 -
Differential
Fast channel 5.1 Ms 11.2 11.3 -
Slow channel 4.8 Ms 11.2 11.3 -
SINAD
(4)
Signal-to-
noise and
distortion
ratio
Single ended
Fast channel 5.1 Ms 66 67 -
dB
Slow channel 4.8 Ms 66 67 -
Differential
Fast channel 5.1 Ms 69 70 -
Slow channel 4.8 Ms 69 70 -
Electrical characteristics STM32F301x6 STM32F301x8
104/135 DocID025146 Rev 7
SNR(4) Signal-to-
noise ratio
ADC clock freq. 72 MHz
Sampling freq 5 Msps
VDDA = 3.3 V
25°C
Single ended
Fast channel 5.1 Ms 66 67 -
dB
Slow channel 4.8 Ms 66 67 -
Differential
Fast channel 5.1 Ms 69 70 -
Slow channel 4.8 Ms 69 70 -
THD(4)
To ta l
harmonic
distortion
Single ended
Fast channel 5.1 Ms - -80 -80
Slow channel 4.8 Ms - -78 -77
Differential
Fast channel 5.1 Ms - -83 -82
Slow channel 4.8 Ms - -81 -80
1. ADC DC accuracy values are measured after internal calibration.
2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC
accuracy.
3. Guaranteed by characterization results.
4. Value measured with a –0.5dB Full Scale 50kHz sine wave input signal.
Table 65. ADC accuracy - limited test conditions(1)(2) (continued)
Symbol Parameter Conditions Min
(3) Typ Max
(3) Unit
DocID025146 Rev 7 105/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
l Table 66. ADC accuracy (1)(2)(3)
Symbol Parameter Conditions Min(4) Max
(4) Unit
ET
Total
unadjusted
error
ADC clock freq. 72 MHz,
Sampling freq. 5 Msps
2.0 V VDDA 3.6 V
Single ended
Fast channel 5.1 Ms - ±6.5
LSB
Slow channel 4.8 Ms - ±6.5
Differential
Fast channel 5.1 Ms - ±4
Slow channel 4.8 Ms - ±4.5
EO Offset error
Single ended
Fast channel 5.1 Ms - ±3
Slow channel 4.8 Ms - ±3
Differential
Fast channel 5.1 Ms - ±2.5
Slow channel 4.8 Ms - ±2.5
EG Gain error
Single ended
Fast channel 5.1 Ms - ±6
Slow channel 4.8 Ms - ±6
Differential
Fast channel 5.1 Ms - ±3.5
Slow channel 4.8 Ms - ±4
ED
Differential
linearity
error
Single ended
Fast channel 5.1 Ms - ±1.5
Slow channel 4.8 Ms - ±1.5
Differential
Fast channel 5.1 Ms - ±1.5
Slow channel 4.8 Ms - ±1.5
EL
Integral
linearity
error
Single ended
Fast channel 5.1 Ms - ±3
Slow channel 4.8 Ms - ±3.5
Differential
Fast channel 5.1 Ms - ±2
Slow channel 4.8 Ms - ±2.5
ENOB
(5)
Effective
number of
bits
Single ended
Fast channel 5.1 Ms 10.4 -
bits
Slow channel 4.8 Ms 10.4 -
Differential
Fast channel 5.1 Ms 10.8 -
Slow channel 4.8 Ms 10.8 -
SINAD
(5)
Signal-to-
noise and
distortion
ratio
Single ended
Fast channel 5.1 Ms 64 -
dB
Slow channel 4.8 Ms 63 -
Differential
Fast channel 5.1 Ms 67 -
Slow channel 4.8 Ms 67 -
Electrical characteristics STM32F301x6 STM32F301x8
106/135 DocID025146 Rev 7
SNR(5) Signal-to-
noise ratio
ADC clock freq. 72 MHz,
Sampling freq 5 Msps,
2 V VDDA 3.6 V
Single ended
Fast channel 5.1 Ms 64 -
dB
Slow channel 4.8 Ms 64 -
Differential
Fast channel 5.1 Ms 67 -
Slow channel 4.8 Ms 67 -
THD(5)
Total
harmonic
distortion
Single ended
Fast channel 5.1 Ms - -75
Slow channel 4.8 Ms - -75
Differential
Fast channel 5.1 Ms - -79
Slow channel 4.8 Ms - -78
1. ADC DC accuracy values are measured after internal calibration.
2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC
accuracy.
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.
4. Guaranteed by characterization results.
5. Value measured with a –0.5dB Full Scale 50kHz sine wave input signal.
Table 66. ADC accuracy (1)(2)(3) (continued)
Symbol Parameter Conditions Min(4) Max
(4) Unit
Table 67. ADC accuracy(1)(2)
Symbol Parameter Test conditions Typ Max(3) Unit
ET Total unadjusted error
ADC Freq 72 MHz
Sampling Freq 1MSPS
2.4 V VDDA = VREF+ 3.6 V
Single-ended mode
Fast channel ±2.5 ±5
LSB
Slow channel ±3.5 ±5
EO Offset error
Fast channel ±1 ±2.5
Slow channel ±1.5 ±2.5
EG Gain error
Fast channel ±2 ±3
Slow channel ±3 ±4
ED Differential linearity error
Fast channel ±0.7 ±2
Slow channel ±0.7 ±2
EL Integral linearity error
Fast channel ±1 ±3
Slow channel ±1.2 ±3
1. ADC DC accuracy values are measured after internal calibration.
2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current
within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 6.3.14: I/O port characteristics does not affect the ADC
accuracy.
3. Guaranteed by characterization results.
DocID025146 Rev 7 107/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
Figure 31. ADC accuracy characteristics
Figure 32. Typical connection diagram using the ADC
1. Refer to Table 63 for the values of RAIN.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 11. The 10 nF capacitor
should be ceramic (good quality) and it should be placed as close as possible to the chip.
(2
(*
/6%
,'($/
([DPSOHRIDQDFWXDOWUDQVIHUFXUYH
7KHLGHDOWUDQVIHUFXUYH
(QGSRLQWFRUUHODWLRQOLQH
(7 7RWDO 8QDGMXVWHG (UURU PD[LPXP GHYLDWLRQ
EHWZHHQWKHDFWXDODQGWKHLGHDOWUDQVIHUFXUYHV
(2 2IIVHW(UURUGHYLDWLRQEHWZHHQWKHILUVWDFWXDO
WUDQVLWLRQDQGWKHILUVWLGHDORQH
(* *DLQ (UURU GHYLDWLRQ EHWZHHQ WKH ODVW LGHDO
WUDQVLWLRQDQGWKHODVWDFWXDORQH
(' 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDFWXDOVWHSVDQGWKHLGHDORQH
(/ ,QWHJUDO /LQHDULW\ (UURU PD[LPXP GHYLDWLRQ
EHWZHHQ DQ\ DFWXDO WUDQVLWLRQ DQG WKH HQG SRLQW
FRUUHODWLRQOLQH



    


(7
('
(/

9''$
966$
9''$

/6%,'($/
069
ELW
FRQYHUWHU
6DPSOHDQGKROG$'&
FRQYHUWHU
5
$,1
$,1[
9
$,1
&
SDUDVLWLF
9
''
9
7
9
9
7
9
,
/
$
5
$'&
&
$'&
069
Electrical characteristics STM32F301x6 STM32F301x8
108/135 DocID025146 Rev 7
6.3.19 DAC electrical specifications
Table 68. DAC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Analog supply voltage DAC output buffer ON 2.4 - 3.6 V
RLOAD(1) Resistive load DAC output buffer ON
Connected to VSSA 5- - kΩ
Connected to VDDA 25 - -
RO(1) Output impedance DAC output buffer ON - - 15 kΩ
CLOAD(1) Capacitive load DAC output buffer ON - - 50 pF
VDAC_OUT
(1)
Voltage on DAC_OUT
output
Corresponds to 12-bit input code (0x0E0) to
(0xF1C) at VDDA = 3.6 V
and (0x155) and (0xEAB) at VDDA = 2.4 V
DAC output buffer ON.
0.2 - VDDA – 0.2 V
DAC output buffer OFF - 0.5 VDDA -
1LSB mV
IDDA(3)
DAC DC current
consumption in
quiescent mode
(Standby mode)(2)
With no load, middle code (0x800) on the
input. -- 38A
With no load, worst code (0xF1C) on the input. - - 480 µA
DNL(3)
Differential non
linearity Difference
between two
consecutive code-
1LSB)
Given for a 10-bit input code - - ±0.5 LSB
Given for a 12-bit input code - - ±2 LSB
INL(3)
Integral non linearity
(difference between
measured value at
Code i and the value
at Code i on a line
drawn between Code
0 and last Code 4095)
Given for a 10-bit input code - - ±1 LSB
Given for a 12-bit input code - - ±4 LSB
Offset(3)
Offset error (difference
between measured
value at Code (0x800)
and the ideal value =
VDDA/2)
---±10mV
Given for a 10-bit input code at VDDA = 3.6 V - - ±3 LSB
Given for a 12-bit input code at VDDA = 3.6 V - - ±12 LSB
Gain error(3) Gain error Given for a 12-bit input code - - ±0.5 %
tSETTLING(3)
Settling time (full
scale: for a 12-bit input
code transition
between the lowest
and the highest input
codes when
DAC_OUT reaches
CLOAD 50 pF,
RLOAD 5 kΩ-3 4 µs
DocID025146 Rev 7 109/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
Figure 33. 12-bit buffered /non-buffered DAC
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external
loads directly without the use of an external operational amplifier. The buffer can be bypassed by
configuring the BOFFx bit in the DAC_CR register.
6.3.20 Comparator characteristics
Update
rate(3)
Max frequency for a
correct DAC_OUT
change when small
variation in the input
code (from code i to
i+1LSB)
CLOAD 50 pF,
RLOAD 5 kΩ-- 1MS/s
tWAKEUP(3)
Wakeup time from off
state (Setting the ENx
bit in the DAC Control
register)
CLOAD 50 pF,
RLOAD 5 kΩ- 6.5 10 µs
PSRR+ (1)
Power supply rejection
ratio (to VDDA) (static
DC measurement
CLOAD = 50 pF,
No RLOAD 5 kΩ, - –67 –40 dB
1. Guaranteed by design.
2. Quiescent mode refers to the state of the DAC a keeping steady value on the output, so no dynamic consumption is
involved.
3. Guaranteed by characterization results.
Table 68. DAC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
%XIIHUHG1RQEXIIHUHG'$&
'$&B287[
%XIIHU
ELWGLJLWDO
WRDQDORJ
FRQYHUWHU

5/
&/
069
Table 69. Comparator characteristics(1)(2)
Symbol Parameter Conditions Min. Typ. Max. Unit
VDDA Analog supply voltage - 2 - 3.6 V
VIN
Comparator input voltage
range -0-V
DDA V
VBG Scaler input voltage - - VREFINIT -
VSC Scaler offset voltage - - ±5 ±10 mV
Electrical characteristics STM32F301x6 STM32F301x8
110/135 DocID025146 Rev 7
Figure 34. Maximum VREFINT scaler startup time from power down
tS_SC
VREFINT scaler startup time
from power down
VREFINT scaler activation after
device power on --1
(3) s
Next activations - - 0.2 ms
tSTART Comparator startup time
VDDA 2.7 V - - 4
µs
VDDA < 2.7 V - - 10
tD
Propagation delay for
200 mV step with 100 mV
overdrive
VDDA 2.7 V - 25 28
ns
VDDA < 2.7 V - 28 30
Propagation delay for full
range step with 100 mV
overdrive
VDDA 2.7 V - 32 35
VDDA < 2.7 V - 35 40
VOFFSET Comparator offset error
VDDA 2.7 V - ±5±10
mV
VDDA < 2.7 V - - ±25
TVOFFSET Total offset variation Full temperature range - - 3 mV
IDD(COMP)
COMP current
consumption - - 400 600 µA
1. Guaranteed by design.
2. The comparators do not have built-in hysteresis.
3. For more details and conditions, see Figure 34: Maximum VREFINT scaler startup time from power down.
Table 69. Comparator characteristics(1)(2) (continued)
Symbol Parameter Conditions Min. Typ. Max. Unit
DocID025146 Rev 7 111/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
6.3.21 Operational amplifier characteristics
Table 70. Operational amplifier characteristics(1)
Symbol Parameter Condition Min Typ Max Unit
VDDA Analog supply voltage - 2.4 - 3.6 V
CMIR Common mode input range - 0 - VDDA V
VIOFFSET
Input offset
voltage
Maximum
calibration
range
25°C, No Load
on output. --4
mV
All voltage/Temp. - - 6
After offset
calibration
25°C, No Load
on output. --1.6
All voltage/Temp. - - 3
ΔVIOFFSET Input offset voltage drift - - 5 - µV/°C
ILOAD Drive current - - - 500 µA
IDDOPAMP Consumption No load,
quiescent mode - 690 1450 µA
CMRR Common mode rejection ratio - - 90 - dB
PSRR Power supply rejection ratio DC 73 117 - dB
GBW Bandwidth - - 8.2 - MHz
SR Slew rate - - 4.7 - V/µs
RLOAD Resistive load - 4 - - kΩ
CLOAD Capacitive load - - - 50 pF
VOHSAT High saturation voltage(2)
Rload = min, Input
at VDDA.VDDA-100 - -
mV
Rload = 20K,
Input at VDDA.VDDA-20 - -
VOLSAT Low saturation voltage(2)
Rload = min,
input at 0V --100
Rload = 20K,
input at 0V. --20
ϕm Phase margin - - 62 - °
tOFFTRIM
Offset trim time: during
calibration,
minimum time needed between
two
steps to have 1 mV accuracy
---2ms
tWAKEUP Wake up time from OFF state.
CLOAD 50 pf,
RLOAD 4 kΩ,
Follower
configuration
-2.85µs
tS_OPAM_VOUT ADC sampling time when reading the OPAMP output 400 - - ns
Electrical characteristics STM32F301x6 STM32F301x8
112/135 DocID025146 Rev 7
PGA gain Non inverting gain value -
-2-
-
-4-
-8-
-16-
Rnetwork
R2/R1 internal resistance values
in PGA mode (3)
Gain=2 - 5.4/5.4 -
kΩ
Gain=4 - 16.2/5.4 -
Gain=8 - 37.8/5.4 -
Gain=16 - 40.5/2.7 -
PGA gain error PGA gain error - -1% - 1% %
Ibias OPAMP input bias current - - - ±0.2(4) µA
PGA BW PGA bandwidth for different non
inverting gain
PGA Gain = 2,
Cload = 50pF,
Rload = 4 KΩ
-4-
MHz
PGA Gain = 4,
Cload = 50pF,
Rload = 4 KΩ
-2-
PGA Gain = 8,
Cload = 50pF,
Rload = 4 KΩ
-1-
PGA Gain = 16,
Cload = 50pF,
Rload = 4 KΩ
-0.5-
VnVoltage noise density
@ 1KHz, Output
loaded with 4 KΩ-109-
@ 10KHz, Output
loaded with 4 KΩ-43-
1. Guaranteed by design.
2. The saturation voltage can also be limited by the ILOAD (drive current).
3. R2 is the internal resistance between OPAMP output and OPAMP inverting input.
R1 is the internal resistance between OPAMP inverting input and ground.
The PGA gain =1+R2/R1
4. Mostly TTa I/O leakage, when used in analog mode.
Table 70. Operational amplifier characteristics(1) (continued)
Symbol Parameter Condition Min Typ Max Unit
nV
Hz
-----------
DocID025146 Rev 7 113/135
STM32F301x6 STM32F301x8 Electrical characteristics
114
Figure 35. OPAMP Voltage Noise versus Frequency
Electrical characteristics STM32F301x6 STM32F301x8
114/135 DocID025146 Rev 7
6.3.22 Temperature sensor characteristics
6.3.23 VBAT monitoring characteristics
Table 71. TS characteristics
Symbol Parameter Min Typ Max Unit
TL(1)
1. Guaranteed by design.
VSENSE linearity with temperature - ±1±C
Avg_Slope(1) Average slope 4.0 4.3 4.6 mV/°C
V25 Voltage at 25 °C 1.34 1.43 1.52 V
tSTART(1) Startup time 4 - 10 µs
TS_temp(1)(2)
2. Shortest sampling time can be determined in the application by multiple iterations.
ADC sampling time when reading the
temperature 2.2 - - µs
Table 72. Temperature sensor calibration values
Calibration value name Description Memory address
TS_CAL1
TS ADC raw data acquired at
temperature of 30 °C,
VDDA= 3.3 V
0x1FFF F7B8 - 0x1FFF F7B9
TS_CAL2
TS ADC raw data acquired at
temperature of 110 °C
VDDA= 3.3 V
0x1FFF F7C2 - 0x1FFF F7C3
Table 73. VBAT monitoring characteristics
Symbol Parameter Min Typ Max Unit
R Resistor bridge for VBAT -50-KΩ
QRatio on VBAT measurement - 2 -
Er(1)
1. Guaranteed by design.
Error on Q -1 - +1 %
TS_vbat(1)(2)
2. Shortest sampling time can be determined in the application by multiple iterations.
ADC sampling time when reading the VBAT
1mV accuracy 2.2 - - µs
DocID025146 Rev 7 115/135
STM32F301x6 STM32F301x8 Package information
131
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Package information STM32F301x6 STM32F301x8
116/135 DocID025146 Rev 7
7.1 WLCSP49 package information
Figure 36. WLCSP49 - 49-pin, 3.417 x 3.151 mm, 0.4 mm pitch wafer level chip scale
package outline
1. Drawing is not to scale.
%RWWRPYLHZ
%XPSVLGH 6LGHYLHZ
)URQWYLHZ
7RSYLHZ
:DIHUEDFNVLGH
$EDOOORFDWLRQ
H
)
*
H
H
H (
'
$
$
'HWDLO$
$
EEE =
'HWDLO$
URWDWHG
6HDWLQJSODQH
1RWH
1RWH
%XPS
[
HHH =
2ULHQWDWLRQ
UHIHUHQFH
$
[
'
(
$ $
E
$;-B0(B9
$
DocID025146 Rev 7 117/135
STM32F301x6 STM32F301x8 Package information
131
Figure 37. WLCSP49 - 49-pin, 3.417 x 3.151 mm, 0.4 mm pitch wafer level chip scale
package recommended footprint
Table 74. WLCSP49 - 49-pin, 3.417 x 3.151 mm, 0.4 mm pitch wafer level chip scale
package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.525 0.555 0.585 0.0207 0.0219 0.0230
A1 - 0.175 - - 0.0069 -
A2 - 0.380 - - 0.0150 -
A3(2)
2. Back side coating
- 0.025 - - 0.0010 -
b(3)
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
0.220 0.250 0.280 0.0087 0.0098 0.0110
D 3.382 3.417 3.452 0.1331 0.1345 0.1359
E 3.116 3.151 3.186 0.1227 0.1241 0.1254
e - 0.400 - - 0.0157 -
e1 - 2.400 - - 0.0945 -
e2 - 2.400 - - 0.0945 -
F - 0.5085 - - 0.0200 -
G - 0.3755 - - 0.0148 -
aaa - - 0.100 - - 0.0039
bbb - - 0.100 - - 0.0039
ccc - - 0.100 - - 0.0039
ddd - - 0.050 - - 0.0020
eee - - 0.050 - - 0.0020
069
'VP
'SDG
Package information STM32F301x6 STM32F301x8
118/135 DocID025146 Rev 7
Device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 38. WLCSP49 marking example (package top view)
1. Parts marked as ES or E are not yet qualified and therefore not approved for use in production. ST is not
responsible for any consequences resulting from such use. In no event will ST be liable for the customer
using any of these engineering samples in production. ST’s Quality department must be contacted prior to
any decision to use these engineering samples to run a qualification activity.
Table 75. WLCSP49 recommended PCB design rules (0.4 mm pitch)
Dimension Recommended values
Pitch 0.4
Dpad
260 µm max. (circular)
220 µm recommended
Dsm 300 µm min. (for 260 µm diameter pad)
PCB pad design Non-solder mask defined via underbump allowed.
069
'$
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
:88 3
5HYLVLRQFRGH
DocID025146 Rev 7 119/135
STM32F301x6 STM32F301x8 Package information
131
7.2 LQFP64 package information
Figure 39. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline
1. Drawing is not to scale.
Table 76. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D - 12.000 - - 0.4724 -
D1 - 10.000 - - 0.3937 -
D3 - 7.500 - - 0.2953 -
E - 12.000 - - 0.4724 -
E1 - 10.000 - - 0.3937 -
:B0(B9
$
$
$
6($7,1*3/$1(
FFF &
E
&
F
$
/
/
.
,'(17,),&$7,21
3,1
'
'
'
H







(
(
(
*$8*(3/$1(
PP
Package information STM32F301x6 STM32F301x8
120/135 DocID025146 Rev 7
Figure 40. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.
E3 - 7.500 - - 0.2953 -
e - 0.500 - - 0.0197 -
K 0°3.5°7° 0°3.5°7°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 76. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max



 










AIC
DocID025146 Rev 7 121/135
STM32F301x6 STM32F301x8 Package information
131
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 41. LQFP64 marking example (package top view)
1. Parts marked as ES or E are not yet qualified and therefore not approved for use in production. ST is not
responsible for any consequences resulting from such use. In no event will ST be liable for the customer
using any of these engineering samples in production. ST’s Quality department must be contacted prior to
any decision to use these engineering samples to run a qualification activity.
069
3URGXFWLGHQWLILFDWLRQ
3LQLGHQWLILFDWLRQ
45.'
35
3
:88
5HYLVLRQFRGH
'DWHFRGH
Package information STM32F301x6 STM32F301x8
122/135 DocID025146 Rev 7
7.3 LQFP48 package information
Figure 42. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline
1. Drawing is not to scale.
"?-%?6
0).
)$%.4)&)#!4)/.
CCC #
#
$
MM
'!5'%0,!.%
B
!
!
!
C
!
,
,
$
$
%
%
%
E







3%!4).'
0,!.%
+
DocID025146 Rev 7 123/135
STM32F301x6 STM32F301x8 Package information
131
Table 77. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.500 - - 0.2165 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.500 - - 0.2165 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
Package information STM32F301x6 STM32F301x8
124/135 DocID025146 Rev 7
Figure 43. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.
  













AID

DocID025146 Rev 7 125/135
STM32F301x6 STM32F301x8 Package information
131
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 44. LQFP48 marking example (package top view)
1. Parts marked as ES or E are not yet qualified and therefore not approved for use in production. ST is not
responsible for any consequences resulting from such use. In no event will ST be liable for the customer
using any of these engineering samples in production. ST’s Quality department must be contacted prior to
any decision to use these engineering samples to run a qualification activity.
069

3URGXFW
LGHQWLILFDWLRQ 45.'
$5
3
:88
3LQ
LGHQWLILFDWLRQ 5HYLVLRQFRGH
'DWHFRGH
Package information STM32F301x6 STM32F301x8
126/135 DocID025146 Rev 7
7.4 UFQFPN32 package information
Figure 45. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package outline
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
!"?-%?6

3,1,GHQWLILHU
6($7,1*
3/$1(
&
&
GGG
$
$
$
H
E
'
E
(
/
H
( (
' /
'
DocID025146 Rev 7 127/135
STM32F301x6 STM32F301x8 Package information
131
Figure 46. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package recommended footprint
1. Dimensions are expressed in millimeters.
Table 78. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.500 0.550 0.600 0.0197 0.0217 0.0236
A1 0.000 0.020 0.050 0.0000 0.0008 0.0020
A3 - 0.152 - - 0.0060 -
b 0.180 0.230 0.280 0.0071 0.0091 0.0110
D 4.900 5.000 5.100 0.1929 0.1969 0.2008
D1 3.400 3.500 3.600 0.1339 0.1378 0.1417
D2 3.400 3.500 3.600 0.1339 0.1378 0.1417
E 4.900 5.000 5.100 0.1929 0.1969 0.2008
E1 3.400 3.500 3.600 0.1339 0.1378 0.1417
E2 3.400 3.500 3.600 0.1339 0.1378 0.1417
e - 0.500 - - 0.0197 -
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
ddd - - 0.080 - - 0.0031
$%B)3B9
















Package information STM32F301x6 STM32F301x8
128/135 DocID025146 Rev 7
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 47. UFQFPN32 marking example (package top view)
1. Parts marked as ES or E are not yet qualified and therefore not approved for use in production. ST is not
responsible for any consequences resulting from such use. In no event will ST be liable for the customer
using any of these engineering samples in production. ST’s Quality department must be contacted prior to
any decision to use these engineering samples to run a qualification activity.
',
3URGXFWLGHQWLILFDWLRQ 
5HYLVLRQFRGH
:88
'DWHFRGH
3
3LQLGHQWLILHU
069
DocID025146 Rev 7 129/135
STM32F301x6 STM32F301x8 Package information
131
7.5 Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 23: General operating conditions.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x Θ
JA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
7.5.1 Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org
Table 79. Package thermal characteristics
Symbol Parameter Value Unit
Θ
JA
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch 45
°C/W
Thermal resistance junction-ambient
LQFP48 - 7 × 7 mm 55
Thermal resistance junction-ambient
WCSP49 - 3.4 x 3.4 mm 49
Thermal resistance junction-ambient
UFQFN32 - 5 x 5 mm 37
Package information STM32F301x6 STM32F301x8
130/135 DocID025146 Rev 7
7.5.2 Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the ordering
information scheme shown in Section 8: Ordering information.
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at
maximum dissipation and, to a specific maximum junction temperature.
As applications do not commonly use the STM32F301x6 STM32F301x8 at maximum
dissipation, it is useful to calculate the exact power consumption and junction temperature
to determine which temperature range will be best suited to the application.
The following examples show how to calculate the temperature range needed for a given
application.
Example 1: High-performance application
Assuming the following application conditions:
Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2),
IDDmax = 50 mA, VDD = 3.5 V, maximum 3 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V and maximum 2 I/Os used at the same time in output
at low level with IOL = 20 mA, VOL= 1.3 V
PINTmax = 50 mA × 3.5 V= 175 mW
PIOmax = 3 × 8 mA × 0.4 V + 2 × 20 mA × 1.3 V = 61.6 mW
This gives: PINTmax = 175 mW and PIOmax = 61.6 mW:
PDmax = 175 + 61.6 = 236.6 mW
Thus: PDmax = 236.6 mW
Using the values obtained in Table 79 TJmax is calculated as follows:
For LQFP64, 45°C/W
TJmax = 82 °C + (45°C/W × 236.6 mW) = 82°C + 10.65 °C = 92.65°C
This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 6 (see
Section 8: Ordering information).
DocID025146 Rev 7 131/135
STM32F301x6 STM32F301x8 Package information
131
Example 2: High-temperature application
Using the same rules, it is possible to address applications that run at high ambient
temperatures with a low dissipation, as long as junction temperature TJ remains within the
specified range.
Assuming the following application conditions:
Maximum ambient temperature TAmax = 115 °C (measured according to JESD51-2),
IDDmax = 20 mA, VDD = 3.5 V, maximum 9 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V
PINTmax = 20 mA × 3.5 V= 70 mW
PIOmax = 9 × 8 mA × 0.4 V = 28.8 mW
This gives: PINTmax = 70 mW and PIOmax = 28.8 mW:
PDmax = 70 + 28.8 = 98.8 mW
Thus: PDmax = 98.8 mW
Using the values obtained in Table 79 TJmax is calculated as follows:
For LQFP100, 45°C/W
TJmax = 115°C + (45°C/W × 98.8 mW) = 115 °C + 4.44°C = 119.44°C
This is within the range of the suffix 7 version parts (–40 < TJ < 125 °C).
In this case, parts must be ordered at least with the temperature range suffix 7 (see
Section 8: Ordering information).
Ordering information STM32F301x6 STM32F301x8
132/135 DocID025146 Rev 7
8 Ordering information
Table 80. Ordering information scheme
Example: STM32 F 301 K 8 T 6 xxx
Device family
STM32 = ARM®-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
301 = STM32F301xx, 2.0 to 3.6 V operating voltage
Pin count
K = 32 pins
C = 48 or 49 pins
R = 64 pins
Flash memory size
6 = 32 Kbytes of Flash memory
8 = 64 Kbytes of Flash memory
Package
T = LQFP
Y= WLCSP
U= UFQFPN
Temperature range
6 = Industrial temperature range, –40 to 85 °C
7 = Industrial temperature range, –40 to 105 °C
Options
xxx = programmed parts
TR = tape and reel
DocID025146 Rev 7 133/135
STM32F301x6 STM32F301x8 Revision history
134
9 Revision history
Table 81. Document revision history
Date Revision Changes
10-Apr-2014 1 Initial release.
13-May-2014 2
Updated Table 13: STM32F301x6/8 pin definitions.
Added the input voltage on Boot0 pin in Table 20: Voltage
characteristics.
02-Dec-2014 3
Applied the following changes:
added “Interconnect matrix” to Features,
added the timers-related information in Table 2: STM32F301x6/8
device features and peripheral counts,
updated the number of comparators for 32-pin package in
Table 2: STM32F301x6/8 device features and peripheral counts
updated Figure 1: STM32F301x6/8 block diagram,
updated Section 3.5.1: Power supply schemes and added
Table 3: External analog supply values for analog peripherals,
added a table footnote about touch sensing sensitivity for pins
PA4 and PA6 in Table 13: STM32F301x6/8 pin definitions,
renamed USARTx_RTS as USARTx_RTS_DE where x=1, 2 or 3,
updated IDD values at 48 MHz (Supply current in Run mode,
executing from RAM/External clock (HSE bypass)) in Table 29:
Typical and maximum current consumption from VDD supply at
VDD = 3.6V,
updated tWUSTOP maximum values in Table 38: Low-power mode
wakeup timings,
updated Figure 18: HSI oscillator accuracy characterization
results for soldered parts and Table 43: HSI oscillator
characteristics,
updated the supply current in stop mode values for TA=25 deg.
Celsius in Table 31: Typical and maximum VDD consumption in
Stop and Standby modes,
replaced all occurrences of VDDA monitoring with VDDA supervisor
in Section 6: Electrical characteristics,
added footnotes to Figure : Device marking,
updated the marking information (Figure 38: WLCSP49 marking
example (package top view), Figure 41: LQFP64 marking
example (package top view), Figure 44: LQFP48 marking
example (package top view), Figure 47: UFQFPN32 marking
example (package top view)).
09-Feb-2015 4
Updated:
Table 41: HSE oscillator characteristics
Table 46: Flash memory characteristics
Table 69: Comparator characteristics
Added:
Figure 34: Maximum VREFINT scaler startup time from power
down
Revision history STM32F301x6 STM32F301x8
134/135 DocID025146 Rev 7
04-Jun-2015 5
Updated:
AF9 value for PA1, PA3 and PA9 in Table 14: Alternate functions
for Port A,
the structure of Section 7: Package information.
22-Jul-2016 6
Updated notes on:
All document tables by removing the “not tested in production”
specification.
Table 13: STM32F301x6/8 pin definitions.
Table 20: Voltage characteristics.
Table 69: Comparator characteristics.
Figure 4: STM32F301x6/8 UFQFN32 pinout.
Figure 5: STM32F301x6/8 LQFP48 pinout.
Figure 6: STM32F301x6/8 LQFP64 pinout.
Figure 7: STM32F301x6/8 WLCSP49 ballout.
Figure 24: Recommended NRST pin protection.
Figure 45: UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin
fine pitch quad flat package outline.
Updated tables:
Updated VREFINT line on Table 27: Embedded internal reference
voltage.
Updated “Conditions” column on Table 42: LSE oscillator
characteristics (fLSE = 32.768 kHz).
Added CMIR and tSTAB lines on Table 63: ADC characteristics.
Updated RLOAD line on Table 68: DAC characteristics.
Updated VOHSAT and VOLSAT lines on Table 70: Operational
amplifier characteristics.
Updated figures:
Figure 2: Clock tree.
Figure 7: STM32F301x6/8 WLCSP49 ballout.
Figure 21: Five volt tolerant (FT and FTf) I/O input characteristics
- CMOS port.
Figure 24: Recommended NRST pin protection.
Added:
Table 39: wakeup time using USART.
Updated name of Section 8: Ordering information
06-Jun-2017 7
Updated Section 7.4: UFQFPN32 package information note 3
removed.
Updated Section 7: Package information adding information
about other optional marking or inset/upset marks.
Updated note 1 below all the package device marking figures.
Updated Table 52: I/O current injection susceptibility note by
‘injection is not possible’.
Removed table ‘Wakeup time using USART’.
Updated Figure 24: Recommended NRST pin protection note
about the 0.1uF capacitor.
Table 81. Document revision history (continued)
Date Revision Changes
DocID025146 Rev 7 135/135
STM32F301x6 STM32F301x8
135
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved