© by SEMIKRON 0898 B 6 201
Absolute Maximum Ratings Values
Symbol Conditions 1) Units
VCES
VCGR
IC
ICM
VGES
Ptot
Tj, (Tstg)
Visol
humidity
climate
RGE = 20 k
Tcase = 25/80 °C
Tcase = 25/80 °C; tp = 1 ms
per IGBT, Tcase = 25 °C
AC, 1 min.
DIN 40040
DIN IEC 68 T.1
1200
1200
570 / 400
1140 / 800
± 20
2500
–40 ... +150 (125)
2500
Class F
40/125/56
V
V
A
A
V
W
°C
V
Inverse Diode; Free-wheeling Diode FWD
IF = –IC
IFM = –ICM
IFSM
I2t
Tcase = 25/80 °C
Tcase = 25/80 °C; tp = 1 ms
tp = 10 ms; sin.; Tj = 150 °C
tp = 10 ms; Tj = 150 °C
390 / 260
1140 / 800
2900
42 000
A
A
A
A2s
Characteristics
Symbol Conditions 1) min. typ. max. Units
V(BR)CES
VGE(th)
ICES
IGES
VCEsat
VCEsat
gfs
VGE = 0, IC = 4 mA
VGE = VCE, IC = 12 mA
VGE = 0 Tj = 25 °C
VCE = VCES Tj = 125 °C
VGE = 20 V, VCE = 0
IC = 300 A VGE = 15 V;
IC = 400 A Tj = 25 (125) °C
VCE = 20 V, IC = 300 A
VCES
4,5
110
5,5
8
24
2,1(2,4)
2,5(3,0)
6,5
14
0,35
2,45(2,85)
V
V
mA
mA
µA
V
V
S
CCHC
Cies
Coes
Cres
LCE
per IGBT
VGE = 0
VCE = 25 V
f = 1 MHz
22
3,3
1,2
700
30
4
1,6
20
pF
nF
nF
nF
nH
td(on)
tr
td(off)
tf
Eon
Eoff
VCC = 600 V
VGE = –15 V / +15 V3)
IC = 300 A, ind. load
RGon = RGoff = 5
Tj = 125 °C
85
65
680
56
36
42
ns
ns
ns
ns
mWs
mWs
Inverse Diode and FWD of types “GAL”, GAR” 8)
VF = VEC
VF = VEC
VTO
rt
IRRM
Qrr
IF = 300 A VGE = 0 V;
IF = 400 A Tj = 25 (125) °C
Tj = 125 °C 2)
Tj = 125 °C 2)
IF = 300 A; Tj = 125 °C2)
IF = 300 A; Tj = 125 °C2)
2,0(1,8)
2,25(2,05)
1,1
136
36
2,5
1,2
3,5
V
V
V
m
A
µC
Thermal character isti c s
Rthjc
Rthjc
Rthch
per IGBT
per diode
per module
0,05
0,125
0,038
°C/W
°C/W
°C/W
SEMITRANS® M
Low Loss IGBT Modules
SKM 400 GB 124 D
SKM 400 GAL 124D 6)
SKM 40 0 GAR 124D 6)
Features
MOS input (voltage controlled)
N channel, homogeneous Silicon
structure (NPT-Non punch
through-IGBT)
Low inductance case
Very low tail current with low
temperature dependence
High short circuit capability,
self limiting to 6 * Icnom
Latch-up free
Fast & soft inverse CAL diodes 8)
Isolated copper baseplate using
DCB Direct Copper Bonding
Technology without hard mould
Large clearance (12 mm) and
creepage distances (20 mm)
Typical Applications B 6 205
Switching (not for linear use)
Inverter drives
UPS
1) Tcase = 25 °C, unless otherwise
specified
2) IF = – IC, VR = 600 V,
–diF/dt = 2000 A/µs, VGE = 0 V
3) Use VGEoff = –5... –15 V
6) The free-wheeling diodes of the
GAL and GAR types have the
data of the inverse diodes of
SKM 400 GB 124 D
8) CAL = Controlled Axial Lifetime
Technology.
Cases and mech. data
B 6 206
GB GAL GARGAR
6)
6)
SEMITRANS 3
http://store.iiic.cc/
© by SEMIKRONB 6 – 202
SKM 400 GB 124 D...
0898
M400G124.XLS-6
0
2
4
6
8
10
12
0 200 400 600 800 1000 1200 1400
VCE V
ICSC/IC
all owed num bers of
s ho rt circuits: <1 000
t i me between sh ort
circuits: >1s
di/d t=10 00 A/ µs
3000 A/µs
5000 A/µs
M400G124.XLS-5
0
0,5
1
1,5
2
2,5
0 200 400 600 800 1000 1200 1400
VCE V
ICpuls/IC
M400G124.XLS-4
0,1
1
10
100
1000
10000
1 10 100 1000 10000
VCE V
IC
Atp=16µs
100µs
1ms
10ms
(DC)
M400G124.XLS-3
0
40
80
120
160
200
010203040
R
G
E
mWs
Eon
Eoff
M400G124.XLS-2
0
20
40
60
80
100
120
0 200 400 600 800
ICA
E
mWs
Eon
Eoff
M400G124.XLS-1
0
500
1000
1500
2000
2500
3000
0 20 40 60 80 100 120 140 160
TC°C
Ptot
W
Fig. 3 Turn-on /-off energy = f (R
G
) Fig. 4 Maximum safe operating area (SOA) I
C
= f (V
CE
)
Fig. 1 Rated power dissipation P
tot
= f (T
C
) Fig. 2 Turn-on /-off energy = f (I
C
)
Fig. 5 Turn-off safe operating area (RB SOA) Fig. 6 Safe operating area at short circuit I
C
= f (V
CE
)
T
j
= 125 °C
V
CE
= 600 V
V
GE
= + 15 V
R
G
= 5
1 pulse
T
C
= 25 °C
T
j
150 °C
T
j
= 125 °C
V
CE
= 600 V
V
GE
= + 15 V
I
C
= 300 A
T
j
150 °C
V
GE
= ± 15 V
t
sc
10 µs
L < 25 nH
I
CN
= 300 A
T
j
150 °C
V
GE
= 15 V
R
Goff
= 5
I
C
= 300 A
Not fo r
linear use
http://store.iiic.cc/
© by SEMIKRON B 6 – 2030898
M400G124.XLS-10
0
100
200
300
400
500
600
012345
V
CE
I
C
A
17V
15V
13V
11V
9V
7V
V
M400G124.XLS-12
0
100
200
300
400
500
600
02468101214
V
G
E
V
I
C
A
M400G124.XLS-9
0
100
200
300
400
500
600
012345
V
CE
V
I
C
A17V
15V
13V
11V
9V
7V
M400G124.XLS-8
0
100
200
300
400
500
600
0 20 40 60 80 100 120 140 160
T
C
°C
I
C
A
P
cond(t)
= V
CEsat(t
) · I
C(t)
V
CEsat(t)
= V
CE(TO)(Tj)
+ r
CE(Tj)
· I
C(t)
V
CE(TO)(Tj)
1,3 + 0,0005 (T
j
–25) [V]
typ.: r
CE(Tj)
= 0,0027 + 0,000008 (T
j
–25) [
]
max.: r
CE(Tj)
= 0,0038 + 0,000012 (T
j
–25) [
]
valid for V
GE
= + 15 [V]; I
C
> 0,3 I
Cnom
Fig. 9 Typ. output characteristic, t
p
= 80 µs; 25 °C Fig. 10 Typ. output characteristic, t
p
= 80 µs; 125 °C
Fig. 8 Rated current vs. temperatu re I
C
= f (T
C
)
+2
–1
Fig. 11 Saturation characteristic (IGBT)
Calculation elements and equations Fig. 12 Typ. transfer characteristic, t
p
= 80 µs; V
CE
= 20 V
T
j
= 150 °C
V
GE
15V
http://store.iiic.cc/
© by SEMIKRONB 6 – 204 0898
SKM 400 GB 124 D...
M400G124.XLS-18
0
5
10
15
20
25
0 100 200 300 400 500
I
F
A
E
offD
mJ
15 Ω
7 Ω
30 Ω
5 Ω
R
G
=
3 Ω
M400G124.XLS-17
0
100
200
300
400
01234
V
F
V
I
F
A
T
j
= 1 25°C, typ.
T
j
= 25°C, t y p.
T
j
= 1 25°C, m a x.
T
j
=25°C, max.
M400G124.XLS-16
10
100
1000
10000
0 10203040
R
G
t
ns t
doff
t
don
t
r
t
f
M400G124.XLS-15
10
100
1000
0 200 400 600 800
I
C
A
t
ns t
doff
t
don
t
r
t
f
M400G124.XLS-14
0,1
1
10
100
0102030
V
CE
V
C
nF C
ies
C
oes
C
res
M400G124.XLS-13
0
2
4
6
8
10
12
14
16
18
20
0 500 1000 1500 2000
Q
Gate
nC
V
GE
V
600V
800V
Fig. 13 Typ. gate charge characteristic Fig. 14 Typ. capacitances vs.V
CE
V
GE
= 0 V
f = 1 MH z
Fig. 15 Typ. switching times vs. I
C
Fig. 16 Typ. switching times vs. gate resist or R
G
Fig. 17 Typ. CAL diode forward characteristic Fig. 18 Diode turn-off energy dissipation per pulse
T
j
= 125 °C
V
CE
= 600
V
V
GE
= ± 15
V
I
C
= 300 A
induct. load
I
Cpuls
= 300 A
T
j
= 125 °C
V
CE
= 600 V
V
GE
= ± 15 V
R
Gon
= 5
R
Goff
= 5
induct. load
V
CC
= 600 V
T
j
= 125 °C
V
GE
= ± 15
V
http://store.iiic.cc/
© by SEMIKRON 0898 B 6 205
M400G124.XLS-19
0,00001
0,0001
0,001
0,01
0,1
0,00001 0,0001 0,001 0,01 0,1 1
tps
ZthJC
K/W
D=0,50
0,20
0,10
0,05
0,02
0,01
sin
le pulse
M400G124.XLS-24
0
10
20
30
40
50
60
70
0 2000 4000 6000 8000 10000 12000
diF/dt A/
µ
s
Qrr
µ
C
IF=
300 A
220 A
150 A
75 A
15 Ω 7 Ω
30 Ω
5 Ω RG=3 Ω
400 A
M400G124.XLS-23
0
100
200
300
400
500
0 2000 4000 6000 8000 10000
diF/dt A/
µ
s
IRR
A
15 Ω
7 Ω
30 Ω
5 Ω
RG=3 Ω
M400G124.XLS-22
0
100
200
300
400
500
0 100 200 300 400 500
IFA
IRR
A
15 Ω
7 Ω
30 Ω
5 Ω
RG=
3 Ω
M400G124.XLS-20
0,0001
0,001
0,01
0,1
1
0,00001 0,0001 0,001 0,01 0,1 1
s
ZthJC
K/W
D=0,5
0,2
0,1
0,05
0,02
0,01
sin
g
le pulse
tp
Fig. 19 Transient thermal impedance of IGBT
ZthJC = f (tp); D = tp / tc = t p · f Fig. 20 Transient thermal impedance of
inverse CAL diodes ZthJC = f (tp); D = tp / tc = tp · f
Fig. 22 Typ. CAL diode peak reverse recovery
current IRR = f (IF; RG)Fig. 23 Typ. CAL diode peak reverse recovery
current IRR = f (di/dt)
Fig. 24 Typ. CAL diode recovered charge
Typical Applications
include
Switched mode power supplies
DC servo and robot drives
Inverters
DC choppers
AC motor speed co ntr ol
UPS Uninter ruptable power suppl ies
General power switching applications
Electronic (also portable) welders
VCC = 600 V
Tj = 125 °C
VGE = ± 15 V
VCC = 600 V
Tj = 125 °C
VGE = ± 15 V
IF = 300 A
VCC = 600 V
Tj = 125 °C
VGE = ± 15 V
http://store.iiic.cc/
© by SEMIKRONB 6 – 206 0898
SKM 400 GB 124 D...
SEMITRANS 3
Case D 56
UL Recognized
File no. E 63 532
SKM 400 GB 124 D
Dimensions in mm
SKM 400 GAL 124 D
Case D 57 (
D 56) SKM 400 GAR 124 D
Case D 58 (
D 56)
Case outline and circuit diagrams
6)
Freewheeling diod e
B 6 – 201, rema rk 6.
Mechanical Data
Symbol Conditions Values Units
min. typ. max.
M
1
M
2
a
w
to heatsink, SI Units (M6)
to heatsink, US Units
for terminals, S I Units (M6)
for terminals, US Units
3
27
2,5
22
-
-
-
5
44
5
44
5x9,81
325
Nm
lb.in.
Nm
lb.in.
m/s
2
g
This is an electrost atic discharge
sensitive device (ESDS).
Please observe the international
standard IEC 747-1, Chapter IX.
Three devices are supplied in one
SEMIBOX A without mounting
hardware, which can be ordered
separately under Ident No.
33321100 (f or 10 SEMITRANS 3).
Larger packing units of 12 and 20
pieces are used if suitable
Accessories
B 6
4.
SEMIBOX
C
1.
http://store.iiic.cc/