LTC2313-14
13
231314fb
For more information www.linear.com/LTC2313-14
applicaTions inForMaTion
critical and time domain applications where DC accuracy
and settling time are most critical. The following list is a
summary of the op amps that are suitable for driving the
LTC2313-14. (More detailed information is available on
the Linear Technology website at www.linear.com.)
LT6230: 215MHz GBWP, –80dBc Distortion at 1MHz,
Unity-Gain Stable, Rail-to-Rail Input and Output, 3.5mA/
Amplifier, 1.1nV/√Hz.
LT6200: 165MHz GBWP, –85dBc Distortion at 1MHz, Unity-
Gain Stable, R-R In and Out, 15mA/Amplifier, 0.95nV/√Hz.
LT1818/1819: 400MHz GBWP, –85dBc Distortion at 5MHz,
Unity-Gain Stable, 9mA/Amplifier, Single/Dual Voltage
Mode Operational Amplifier.
Input Drive Circuits
The analog input of the LTC2313-14 is designed to be driven
single-ended with respect to GND. A low impedance source
can directly drive the high impedance analog input of the
LTC2313-14 without gain error. A high impedance source
should be buffered to minimize settling time during acquisi-
tion and to optimize the distortion performance of the ADC.
For best performance, a buffer amplifier should be used
to drive the analog input of the LTC2313-14. The amplifier
provides low output impedance to allow for fast settling
of the analog signal during the acquisition phase. It also
provides isolation between the signal source and the ADC
inputs which draw a small current spike during acquisition.
Input Filtering
The noise and distortion of the buffer amplifier and other
circuitry must be considered since they add to the ADC
noise and distortion. Noisy input circuitry should be filtered
prior to the analog inputs to minimize noise. A simple
1-pole RC filter is sufficient for many applications.
Large filter RC time constants slow down the settling at
the analog inputs. It is important that the overall RC time
constants be short enough to allow the analog inputs to
completely settle to >14-bit resolution within the minimum
acquisition time (tACQ-MIN) of 175ns.
A simple 1-pole RC filter is sufficient for many applications.
For example, Figure 10 shows a recommended single-
ended buffered drive circuit using the LT1818 in unity gain
mode. The 47pF capacitor from AIN to ground and 50Ω
source resistor limits the input bandwidth to 68MHz. The
47pF capacitor also acts as a charge reservoir for the input
sample-and-hold and isolates the LT1818 from sampling
glitch kick-back. The 50Ω source resistor is used to help
stabilize the settling response of the drive amplifier. When
choosing values of source resistance and shunt capaci-
tance, the drive amplifier data sheet should be consulted
and followed for optimum settling response. If lower input
bandwidths are desired, care should be taken to optimize
the settling response of the driver amplifier with higher
values of shunt capacitance or series resistance. High
quality capacitors and resistors should be used in the RC
filter since these components can add distortion. NP0/C0G
and silver mica type dielectric capacitors have excellent
linearity. Carbon surface mount resistors can generate
distortion from self heating and from damage that may
occur during soldering. Metal film surface mount resistors
are much less susceptible to both problems. When high
amplitude unwanted signals are close in frequency to the
desired signal frequency, a multiple pole filter is required.
High external source resistance, combined with external
shunt capacitance at Pin 4 and 13pF of input capacitance on
the LTC2313-14 in sample mode, will significantly reduce
the internal 130MHz input bandwidth and may increase the
required acquisition time beyond the minimum acquisition
time (tACQ-MIN) of 175ns.
Figure 10. RC Input Filter
47pF
50Ω
231314 F10
AIN
LTC2313-14
LT1818 GND
ANALOG IN +
–
ADC Reference
A low noise, low temperature drift reference is critical to
achieving the full data sheet performance of the ADC. The
LTC2313-14 provides an excellent internal reference with
a guaranteed 20ppm/°C maximum temperature coefficient.
For added flexibility, an external reference may also be used.
The high speed, low noise internal reference buffer is used
only in the internal reference configuration. The reference