Low Voltage, Micropower,
Quad Operational Amplifier
OP490
Rev. E
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©1987–2010 Analog Devices, Inc. All rights reserved.
FEATURES
Single/dual-supply operation
1.6 V to 36 V
±0.8 V to ±18 V
Single-supply operation; input and output
voltage ranges include ground
Low supply current: 80 μA maximum
High output drive: 5 mA minimum
Low offset voltage: 1.0 mV maximum
High open-loop gain: 800 V/mV typical
Industry-standard quad pinouts
FUNCTIONAL BLOCK DIAGRAMS
OUT A
1
–IN A
2
+IN A
3
V+
4
OUT D
14
–IN D
13
+IN D
12
V–
11
+IN B
5
–IN B
6
OUT B
7
+IN C
10
–IN C
9
OUT C
8
00308-001
TOP VIEW
(Not to Scal e)
OP490
Figure 1. 14-Lead Plastic DIP
(P-Suffix)
OUT A
1
–IN A
2
+IN A
3
V+
4
OUT D
16
–IN D
15
+IN D
14
V–
13
+IN B
5
–IN B
6
OUT B
NC
7
+IN C
12
–IN C
11
OUT C
NC
NC = NO CONNECT
10
89
00308-002
TOP VIEW
(Not to Scal e)
OP490
Figure 2. 16-Lead SOIC
(S-Suffix)
GENERAL DESCRIPTION
The OP490 is a high performance micropower quad op amp
that operates from a single supply of 1.6 V to 36 V or from dual
supplies of ±0.8 V to ±18 V. The input voltage range includes
the negative rail allowing the OP490 to accommodate input
signals down to ground in single-supply operation. The output
swing of the OP490 also includes ground when operating from
a single supply, enabling zero-in, zero-out operation.
The quad OP490 draws less than 20 μA of quiescent supply
current per amplifier, but each amplifier is able to deliver over
5 mA of output current to a load. Input offset voltage is under
0.5 mV. Gain exceeds over 400,000 and CMR is better than
90 dB. A PSRR of under 5.6 μV/V minimizes offset voltage
changes experienced in battery-powered systems.
The quad OP490 combines high performance with the space
and cost savings of quad amplifiers. The minimal voltage and
current requirements of the OP490 make it ideal for battery and
solar-powered applications, such as portable instruments and
remote sensors.
OP490
Rev. E | Page 2 of 16
TABLE OF CONTENTS
Features .............................................................................................. 1
Functional Block Diagrams ............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Electrical Characteristics ............................................................. 3
Absolute Maximum Ratings ............................................................ 5
Thermal Resistance ...................................................................... 5
ESD Caution .................................................................................. 5
Typical Performance Characteristics ............................................. 6
Applications Information ................................................................ 9
Battery-Powered Applications .....................................................9
Single-Supply Output Voltage Range..........................................9
Input Voltage Protection ........................................................... 10
Micropower Voltage-Controlled Oscillator ............................ 10
Micropower Single-Supply Quad Voltage-Output 8-Bit DAC
....................................................................................................... 11
High Output Amplifier .............................................................. 12
Single-Supply Micropower Quad Programmable Gain
Amplifier ..................................................................................... 12
Outline Dimensions ....................................................................... 14
Ordering Guide .......................................................................... 15
REVISION HISTORY
5/10—Rev. D to Rev. E
Changes to Features Section............................................................ 1
Changes to Figure 24 ...................................................................... 12
7/09—Rev. C to Rev. D
Deleted 14-Lead CERDIP (Y-Suffix) ............................... Universal
Deleted Figure 1, Renumbered Figures Sequentially ................... 1
Changes to Table 1 ............................................................................ 3
Changes to Table 2 ............................................................................ 4
Changes to Figure 16 ........................................................................ 8
Updated Outline Dimensions ....................................................... 14
Changes to Ordering Guide .......................................................... 15
4/02—Rev. B to Rev. C
Deleted 28-Pin LCC (TC-Suffix) Pin Connection Diagram ...... 1
Deleted Electrical Characteristics .................................................. 3
Edits to Absolute Maximum Ratings ............................................ 6
Edits to Ordering Guide ............................................................... 16
OP490
Rev. E | Page 3 of 16
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
@ VS = ±1.5 V to ±15 V, TA = 25°C, unless otherwise noted.
Table 1.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Input Offset Voltage VOS 0.6 1.0 mV
Input Offset Current IOS VCM = 0 V 0.4 5 nA
Input Bias Current IB V
CM = 0 V 4.2 25 nA
Large Signal Voltage Gain AVO V
S = ±15 V, VO = ±10 V
R
L = 100 kΩ 400 800 V/mV
R
L = 10 kΩ 200 400 V/mV
R
L = 2 kΩ 100 200 V/mV
V+ = 5 V, V− = 0 V, 1 V < VO < 4 V
R
L = 100 kΩ 100 250 V/mV
R
L = 10 kΩ 70 140 V/mV
Input Voltage Range1 IVR V+ = 5 V, V− = 0 V 0 4 V
Common-Mode Rejection Ratio CMRR V+ = 5 V, V− = 0 V, 0 V < VCM < 4 V 80 100 dB
V
S = ±15 V, −15 V < VCM < +13.5 V 90 120 dB
Input Resistance Differential Mode RIN VS = ±15 V 30
Input Resistance Common-Mode RINCM VS = ±15 V 20
OUTPUT CHARACTERISTICS
Output Voltage Swing VO L V
S = ±15 V, RL = 10 kΩ ±13.5 ±14.2 V
V
S = ±15 V, RL = 2 kΩ ±10.5 ±11.5 V
Output Voltage High VOH V+ = 5 V, V− = 0 V, RL = 2 kΩ 4.0 4.2 V
Output Voltage Low VOL V+ = 5 V, V− = 0 V, RL = 10 kΩ 100 500 μV
Capacitive Load Stability AV = 1 650 pF
DYNAMIC PERFORMANCE
Slew Rate SR VS = ±15 V 5 12 V/ms
Channel Separation2 CS fO = 10 Hz, VO = 20 V p-p, VS = ±15 V 120 150 dB
Gain Bandwidth Product GBWP AV = 1 20 kHz
POWER SUPPLY
Power Supply Rejection Ratio PSRR 3.2 10 μV/V
Supply Current (All Amplifiers) ISY VS = ±1.5 V, no load 40 60 μA
V
S = ±15 V, no load 60 80 μA
NOISE PERFORMANCE
Voltage Noise en p-p fO = 0.1 Hz to 10 Hz, VS = ±15 V 3 μV p-p
Voltage Noise Density en f = 1 kHz 60 nV/√Hz
Current Noise Density in f = 1 kHz 0.07 pA/√Hz
1 Guaranteed by CMRR test.
2 Guaranteed but not 100% tested.
OP490
Rev. E | Page 4 of 16
@ VS = ±1.5 V to ±15 V, −40°C ≤ TA ≤ +85°C
Table 2.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Input Offset Voltage VOS 0.8 1.5 mV
Average Input Offset Voltage Drift TCVOS VS = ±15 V 4 μV/°C
Input Offset Current IOS VCM = 0 V 1.3 7 nA
Input Bias Current IB VCM = 0 V 4.4 25 nA
Large Signal Voltage Gain AVO VS = ±15 V, VO = ±10 V
R
L = 100 kΩ 300 600 V/mV
R
L = 10 kΩ 150 250 V/mV
R
L = 2 kΩ 75 125 V/mV
V+ = 5 V, V− = 0 V, 1 V < VO < 4 V
R
L = 100 kΩ 80 160 V/mV
R
L = 10 kΩ 40 90 V/mV
Input Voltage Range1 IVR V+ = 5 V, V− = 0 V 0.3 5 V
−15 +13.5 V
Common-Mode Rejection Ratio CMRR V+ = 5 V, V− = 0 V, 0 V < VCM < 3.5 V 80 100 dB
V
S = ±15 V, −15 V < VCM < +13.5 V 90 110 dB
OUTPUT CHARACTERISTICS
Output Voltage Swing VO VS = ±15 V ±13 ±14 V
R
L = 2 kΩ ±10 ±11 V
Output Voltage High VOH V+ = 5 V, V− = 0 V, RL = 2 kΩ 3.9 4.1 V
Output Voltage Low VOL V+ = 5 V, V− = 0 V, RL = 10 kΩ 100 500 μV
POWER SUPPLY
Power Supply Rejection Ratio PSRR 5.6 17.8 μV/V
Supply Current (All Amplifiers) ISY V
S = ±1.5 V, no load 60 100 mA
V
S = ±15 V, no load 75 120 mA
1 Guaranteed by CMRR test.
00308-003
V–
IN
V
+
OUTPUT
+IN
Figure 3. Simplified Schematic
OP490
Rev. E | Page 5 of 16
ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter Rating
Supply Voltage ±18 V
Digital Input Voltage [(V−) − 20 V] to [(V+) + 20 V]
Common-Mode Input Voltage [(V−) − 20 V] to [(V+) + 20 V]
Output Short-Circuit Duration Continuous
Storage Temperature Range −65°C to +150°C
Operating Temperature Range −40°C to +85°C
Junction Temperature (TJ) Range −65°C to +150°C
Lead Temperature (Soldering,
60 sec)
300°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
THERMAL RESISTANCE
θJA is specified for worst-case mounting conditions, that is, θJA is
specified for a device in socket for the PDIP package; θJA is
specified for a device soldered to a printed circuit board (PCB)
for the SOIC package.
Table 4.
Package Type θJA θ
JC Unit
14-Lead PDIP_N (S-Suffix) 76 33 °C/W
16-Lead SOIC_R (S-Suffix) 92 27 °C/W
ESD CAUTION
OP490
Rev. E | Page 6 of 16
TYPICAL PERFORMANCE CHARACTERISTICS
00308-004
0.4
0.3
2
0.1
0.2
INPUT OFFSET VOLTAGE (mA)
TEMPERAT URE ( °C)
–75 –50 –25 25 50 75 1250
V
S
= ±15V
Figure 4. Input Offset Voltage vs. Temperature
00308-005
1.6
1.4
0.2
0.6
0.4
1.2
1.0
0.8
INPUT OFFS E T CURRENT ( nA)
TEMPERAT URE ( °C)
–75 –50 –25 25 50 75 1250
V
S
= ±15V
Figure 5. Input Offset Current vs. Temperature
00308-006
4.8
4.6
3.6
3.8
4.4
4.2
4.0
INPUT BIAS CURRE NT (nA)
TEMPERAT URE ( °C)
–75 –50 –25 25 50 75 1250
V
S
= ±15V
Figure 6. Input Bias Current vs. Temperature
00308-007
90
80
30
40
70
60
50
TOTAL S UPPL Y CURRENT A)
TEMPERAT URE ( °C)
–75 –50 –25 25 50 75 1250
V
S
= ±15V
V
S
= ±1.5V
Figure 7. Total Supply Current vs. Temperature
00308-008
600
500
0
100
400
300
200
OPEN-LOOP GAIN (V/mV)
SINGL E-S UPPL Y VOLTAG E (V)
0 5 10 20 25 3015
25°C
85°C
125°C
T
A
= 25°C
R
L
= 10k
Figure 8. Open-Loop Gain vs. Single-Supply Voltage
140
60
80
100
120
40
20
0
0.1 1 10 100 1k 10k 100k
OPEN-LOOP GAIN (dB)
FREQ UENCY (Hz)
PHASE S HI FT ( Deg rees)
180
90
45
0
135
V
S
= ±15V
T
A
= 25°C
R
L
= 10k
00308-009
GAIN
PHASE
Figure 9. Open-Loop Gain and Phase Shift vs. Frequency
OP490
Rev. E | Page 7 of 16
60
20
40
0
–2010 100 1k 10k 100k
CLOSED-LOOP GAIN (dB)
FREQUENCY (Hz)
V
S
= ±15V
T
A
= 25°C
00308-010
Figure 10. Closed-Loop Gain vs. Frequency
6
2
3
4
5
1
0
100 1k 10k 100k
OUTPUT V OLT AG E SWING (V)
LOAD RESI S TANCE ()
V+ = 5V, V– = 0V
T
A
= 25°C
00308-011
Figure 11. Output Voltage Swing vs. Load Resistance
16
4
6
8
10
12
14
2
0
100 1k 10k 100k
OUTPUT SWING (V)
LO AD RE SISTANCE ()
00308-012
V
S
= ±15V
T
A
= 25°C
POSITIVE
NEGATIVE
Figure 12. Output Voltage Swing vs. Load Resistance
40
60
80
100
120
20 1 10 100 1k
POWER S UPPLY RE JE CTION (dB)
LOAD RESISTANCE ()
00308-013
TA = 25°C
NEGATI VE SUPPLY
POSITI VE SUPPLY
Figure 13. Power Supply Rejection vs. Frequency
60
80
100
120
140
400.1 1 10 100 1k
COMM ON-MODE REJECTIO N (dB)
FREQUENCY (Hz )
00308-014
V
S
= ±15V
T
A
= 25°C
Figure 14. Common-Mode Rejection vs. Frequency
10
100
1k
10.1 1 10 100 1k
VOLT AGE NO ISE DE NS ITY ( nV/ Hz)
FREQUENCY (Hz )
00308-015
V
S
= ±15V
T
A
= 25°C
Figure 15. Voltage Noise Density vs. Frequency
OP490
Rev. E | Page 8 of 16
1
10
100
0.10.1 1 10 100 1k
CURRENT NO ISE DENS IT Y (pA/ Hz)
FREQUENCY ( Hz)
00308-016
V
S
= ±15V
T
A
= 25°C
Figure 16. Current Noise Density vs. Frequency
00308-017
VOL T AGE (20mV/DIV )
TIME (100µs/DI V )
V
S
= ±15V
T
A
= 25°C
A
V
= 1
R
L
= 10k
C
L
= 500pF
Figure 17. Small Signal Transient Response
00308-018
VOLTAGE (5V/DIV)
TIME (1ms/DIV)
V
S
= ±15V
T
A
= 25°C
A
V
= 1
R
L
= 10k
C
L
= 500pF
Figure 18. Large Signal Transient Response
OP490
Rev. E | Page 9 of 16
APPLICATIONS INFORMATION
00308-019
GND
+18
V
12345 67
14 13 12 11 10 9 8
18
V
AB
DC
Figure 19. Burn-In Circuit
V
IN
+15
V
15V
00308-020
1/4
OP490
A
+
OP37
A
+
+15V
V2
V1
20V p -p @ 10Hz
1k
10010k
1/4
OP490
B
+
1/4
OP490
C
+
1/4
OP490
D
+
15V
CHANNEL SEPARAT ION = 2 0 log V1
V2/1000
Figure 20. Channel Separation Test Circuit
BATTERY-POWERED APPLICATIONS
The OP490 can be operated on a minimum supply voltage of
1.6 V or with dual supplies of ±0.8 V drawing only 60 μA of
supply current. In many battery-powered circuits, the OP490
can be continuously operated for hundreds of hours before
requiring battery replacement, thereby reducing equipment
downtime and operating costs.
High performance portable equipment and instruments
frequently use lithium cells because of their long shelf life, light
weight, and high energy density relative to older primary cells.
Most lithium cells have a nominal output voltage of 3 V and are
noted for a flat discharge characteristic. The low supply current
requirement of the OP490, combined with the flat discharge
characteristic of the lithium cell, indicates that the OP490 can
be operated over the entire useful life of the cell. Figure 21
shows the typical discharge characteristic of a 1 Ah lithium cell
powering an OP490 with each amplifier, in turn, driving full
output swing into a 100 kΩ load.
00308-021
4
3
0
1
2
LITHI UM -SULP HUR DIOX IDE CELL V OLTAG E (V)
HOURS
0 250 500 1000 1250 1500750
Figure 21. Lithium-Sulphur Dioxide Cell Discharge Characteristic with
OP490 and 100 kΩ Loads
SINGLE-SUPPLY OUTPUT VOLTAGE RANGE
In single-supply operation the input and output ranges of the
OP490 include ground. This allows true zero-in, zero-out
operation. The output stage provides an active pull-down to
around 0.8 V above ground. Below this level, a load resistance of up
to 1 MΩ to ground is required to pull the output down to zero.
In the region from ground to 0.8 V, the OP490 has voltage gain
equal to the data sheet specification. Output current source
capability is maintained over the entire voltage range including
ground.
OP490
Rev. E | Page 10 of 16
INPUT VOLTAGE PROTECTION
The OP490 uses a PNP input stage with protection resistors in
series with the inverting and noninverting inputs. The high
breakdown of the PNP transistors coupled with the protection
resistors provides a large amount of input protection, allowing
the inputs to be taken 20 V beyond either supply without
damaging the amplifier.
MICROPOWER VOLTAGE-CONTROLLED
OSCILLATOR
An OP490 in combination with an inexpensive quad CMOS
switch comprise the precision VCO of Figure 22. This circuit
provides triangle and square wave outputs and draws only 75 μA
from a 5 V supply. A acts as an integrator; S1 switches the
charging current symmetrically to yield positive and negative
ramps. The integrator is bounded by B, which acts as a Schmitt
trigger with a precise hysteresis of 1.67 V, set by Resistors R5,
R6, and R7, and the associated CMOS switches. The resulting
output of A is a triangle wave with upper and lower levels of
3.33 V and 1.67 V. The output of B is a square wave with almost
rail-to-rail swing. With the components shown, frequency of
operation is given by the equation
fOUT = VCONTROL (Volts) × 10 Hz/V
but this is easily changed by varying C1. The circuit operates
well up to a few hundred hertz.
V
CONTROL
00308-022
+
1/4
OP490
A
+
1/4
OP490
B
SQUARE
OUT
IN/OUT
IN/OUT IN/OUT
IN/OUT
CONT
CONT
CONT
CONT
V
SS
V
DD
OUT/IN
OUT/IN
OUT/IN
OUT/IN
C1
75nF
TRIANGLE
OUT
R5
200k
R6
200k
+15V
7
6
5
R1
200k
R2
200k
+15V
R4
200k
1
4
11
2
3
R3
100k
S1
S2
S3
S4
R8
200k+5V
+5V
+5V
R7
200k
114
213
312
411
510
69
78
Figure 22. Micropower Voltage Controlled Oscillator
OP490
Rev. E | Page 11 of 16
MICROPOWER SINGLE-SUPPLY QUAD VOLTAGE-
OUTPUT 8-BIT DAC
The circuit shown in Figure 23 uses the DAC8408 CMOS quad
8-bit DAC, and the OP490 to form a single-supply quad voltage
output DAC with a supply drain of only 140 μA. The DAC8408
is used in voltage switching mode and each DAC has an output
resistance (≈10 kΩ) independent of the digital input code. The
output amplifiers act as buffers to avoid loading the DACs. The
100 kΩ resistors ensure that the OP490 outputs swing below 0.8 V
when required.
00308-023
DGND
A/B
28
V
REF
A
REFERENCE
VOLTAGE
1.5V
V
REF
B
V
REF
C
V
REF
D
I
OUT1D
DAC DATA BUS
PIN 9 (LSB) TO PI N 16 (MSB)
DAC A
1/4
DAC8408
OP490
DAC8408
DAC B
1/4
DAC8408
DAC C
1/4
DAC8408
DAC D
1/4
DAC8408
R4
100k
V
OUT
D
R3
100k
V
OUT
C
R2
100k
V
OUT
B
R1
100k
V
OUT
A
1
4
11
7
14
8
+5
V
2
3
6
5
13
12
9
1021
23
I
OUT2C/2D
24
I
OUT1C
25
I
OUT1B
6
I
OUT2A/2B
5
I
OUT1A
4
27
8
2
19
18
DIGITAL
CONTROL
SIGNALS
20
17
DS2
DS1
R/W
+
1/4
OP490
A
+
1/4
OP490
B
+
1/4
OP490
C
+
1/4
OP490
D
Figure 23. Micropower Single-Supply Quad Voltage Output 8-Bit DAC
OP490
Rev. E | Page 12 of 16
00308-024
+
1/4
OP490
A
+
1/4
OP490
B
+
1/4
OP490
D
+
1/4
OP490
C
R4
50R8
50
RL
7
6
5
1
4
11
2
3
13
12
9
8
10
14
R7
50
R6
5k
R3
50
R2
9k
R5
5k
R1
1k
+15V
15V
VIN
Figure 24. High Output Amplifier
HIGH OUTPUT AMPLIFIER
The amplifier shown in Figure 24 is capable of driving 25 V p-p
into a 1 kΩ load. Design of the amplifier is based on a bridge
configuration. A amplifies the input signal and drives the load
with the help of B. Amplifier C is a unity-gain inverter which
drives the load with help from D. Gain of the high output
amplifier with the component values shown is 10, but can easily
be changed by varying R1 or R2.
SINGLE-SUPPLY MICROPOWER QUAD
PROGRAMMABLE GAIN AMPLIFIER
The combination of a quad OP490 and the DAC8408 quad 8-bit
CMOS DAC creates a quad programmable-gain amplifier with
a quiescent supply drain of only 140 μA. The digital code
present at the DAC, which is easily set by a microprocessor,
determines the ratio between the fixed DAC feedback resistor
and the resistance of the DAC ladder seen by the op amp feed-
back loop. The gain of each amplifier is:
nV
V
IN
OUT 256
=
where n equals the decimal equivalent of the 8-bit digital code
present at the DAC. If the digital code present at the DAC
consists of all zeros, the feedback loop opens causing the op
amp output to saturate. The 10 MΩ resistors placed in parallel
with the DAC feedback loop eliminate this problem with a very
small reduction in gain accuracy. The 2.5 V reference biases the
amplifiers to the center of the linear region providing maximum
output swing.
OP490
Rev. E | Page 13 of 16
00308-025
DGND
A/B
28
I
OUT1D
DAC DATA BUS
PIN 9 (LSB) T O PIN 16 (MSB)
OP490
DAC8408
DAC D
1/4
DAC8408
DAC C
1/4
DAC8408
DAC B
1/4
DAC8408
DAC A
1/4
DAC8408
V
OUT
D
1
4
11
14
+5V
2
3
13
12
10
9
7
5
6
23
I
OUT2C/2D
24
I
OUT2A/2B
5
I
OUT1B
6
V
REF
D21
19
18
DIGITAL
CONTROL
SIGNALS
20
17
DS2
DS1
R/W +2.5V
REFERENCE
VOLTAGE
22 R
FB
D
V
IN
D
C4
0.1µF
25 R
FB
C
V
IN
C
C3
0.1µF
7R
FB
B
V
IN
B
C2
0.1µF
3R
FB
A
V
IN
A
C1
0.1µF
R4
10M
V
OUT
C
8
I
OUT1C
25
V
REF
C27
V
REF
B8
R3
10M
V
OUT
A
I
OUT1A
4
V
REF
A2
V
DD
1
R1
10M
V
OUT
B
R2
10M
+
1/4
OP490
B
+
1/4
OP490
A
+
1/4
OP490
C
+
1/4
OP490
D
Figure 25. Single-Supply Micropower Quad Programmable Gain Amplifier
OP490
Rev. E | Page 14 of 16
OUTLINE DIMENSIONS
COM PLI ANT TO JEDE C S TANDARDS MS-001
CONT ROLLING DIM E NS IONS ARE IN INCHES ; M IL L IMETER DIMENS IONS
(IN PARE NTHESES) ARE ROUNDED-OFF I NCH EQUIVALE NT S FOR
REFERENCE ONLY AND ARE NOT APP ROPRIATE FOR US E IN DESIGN.
CORNER L E ADS MAY BE CONFI GURED AS WHOLE OR HALF LE ADS .
070606-A
0.022 ( 0 .56)
0.018 ( 0 .46)
0.014 ( 0 .36)
0.150 (3.81)
0.130 (3.30)
0.110 (2. 79)
0.070 (1.78)
0.050 (1.27)
0.045 (1.14)
14
17
8
0.100 ( 2 .54)
BSC
0.775 (19.69)
0.750 (19.05)
0.735 (18.67)
0.060 ( 1.52)
MAX
0.430 ( 10.92)
MAX
0.014 (0.36)
0.010 (0.25)
0.008 (0.20)
0.325 ( 8.26)
0.310 ( 7.87)
0.300 ( 7.62)
0.015 ( 0 .38)
GAUGE
PLANE
0.210 ( 5.33)
MAX
SEATING
PLANE
0.015
(0.38)
MIN
0.005 ( 0 .13)
MIN
0.280 (7.11)
0.250 (6.35)
0.240 (6.10)
0.195 (4.95)
0.130 (3.30)
0.115 (2. 92)
Figure 26. 14-Lead Plastic Dual In-Line Package [PDIP]
Narrow Body
P-Suffix
(N-14)
Dimensions shown in inches and (millimeters)
CONT ROLLING DIMENSI ONS ARE IN M IL L IMETERS ; INCH DIMENSIONS
(IN PARE NTHESE S ) ARE ROUNDED-OFF MIL LI METE R EQUIVAL E NT S FO R
REFE RE NCE ONLY AND ARE NOT APP ROPRIATE FOR USE IN DESIGN.
COMP LI ANT TO JEDE C STANDARDS MS- 013-A A
032707-B
10.50 (0.4134 )
10.10 (0.3976 )
0.30 ( 0.0118)
0.10 ( 0.0039)
2.65 ( 0.1043)
2.35 ( 0.0925)
10.65 ( 0.4193)
10.00 ( 0.3937)
7.60 ( 0 .2992)
7.40 ( 0 .2913)
0.75 (0.0295)
0.25 (0.0098)
45°
1.27 (0.0500)
0.40 (0.0157)
C
OPLANARITY
0.10 0.33 (0.0130)
0.20 ( 0.0079)
0.51 ( 0.0201)
0.31 ( 0.0122)
SEATING
PLANE
16 9
8
1
1.27 ( 0.0500)
BSC
Figure 27. 16-Lead Standard Small Outline Package [SOIC_W]
Wide Body
S-Suffix
(RW-16)
Dimensions shown in millimeters and (inches)
OP490
Rev. E | Page 15 of 16
ORDERING GUIDE
Model1 Temperature Range Package Description Package Option
OP490GP −40°C to +85°C 14-Lead PDIP_N N-14 (P-Suffix)
OP490GPZ −40°C to +85°C 14-Lead PDIP_N N-14 (P-Suffix)
OP490GS −40°C to +85°C 16-Lead SOIC_W RW-16 (S-Suffix)
OP490GSZ −40°C to +85°C 16-Lead SOIC_W RW-16 (S-Suffix)
OP490GSZ-REEL −40°C to +85°C 16-Lead SOIC_W RW-16 (S-Suffix)
1 Z = RoHS Compliant Part.
OP490
Rev. E | Page 16 of 16
NOTES
©1987–2010 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D00308-0-5/10(E)