1 of 30 May 10, 2016
2016 Integrated Device Technology, Inc. DSC 6930
®
IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc.
Device Overview
The 89HPES10T4G2 is a member of IDT’s PRECISE™ family of PCI
Express® switching solutions. The PES10T4G2 is a 10-lane, 4-port
Gen2 peripheral chip that performs PCI Express Base switching with a
feature set optimized for high performance applications such as servers,
storage, and communications/networking. It provides connectivity and
switching functions between a PCI Express upstream port and two
downstream ports and supports switching between downstream ports.
Features
High Performance PCI Express Switch
Ten 5 Gbps Gen2 PCI Express lanes
Four switch ports
One x4 upstream port
Three x2 downstream ports
Low latency cut-through switch architecture
Support for Max Payload Size up to 2048 bytes
One virtual channel
Eight traffic classes
PCI Express Base Specification Revision 2.0 compliant
Flexible Architecture with Numerous Configuration Options
Automatic per port link width negotiation to x4, x2 or x1
Automatic lane reversal on all ports
Automatic polarity inversion
Ability to load device configuration from serial EEPROM
Legacy Support
PCI compatible INTx emulation
Bus locking
Highly Integrated Solution
Incorporates on-chip internal memory for packet buffering and
queueing
Integrates ten 5 Gbps embedded SerDes with 8b/10b
encoder/decoder (no separate transceivers needed)
Receive equalization (RxEQ)
Reliability, Availability, and Serviceability (RAS) Features
Internal end-to-end parity protection on all TLPs ensures data
integrity even in systems that do not implement end-to-end
CRC (ECRC)
Supports ECRC and Advanced Error Reporting
Supports PCI Express Native Hot-Plug, Hot-Swap capable
I/O
Compatible with Hot-Plug I/O expanders used on PC mother-
boards
Supports Hot-Swap
Block Diagram
Figure 1 Internal Block Diagram
4-Port Switch Core / 10 P CI Express Lanes
Frame Buffer Route Table Port
Arbitration Scheduler
SerDes
Phy
Logical
Layer
Multiple xer / Demultiplexer
Transaction Layer
Data Link Layer
(Port 0) (Port 2)
SerDes
Phy
Logical
Layer
Multiplexer / Demultiplexer
Transaction Layer
Data Link Layer
SerDes
Phy
Logical
Layer
Multiplexer / Demultiplexer
Transaction Layer
Data Link Layer
SerDes
Phy
Logical
Layer
Multiplexer / Demultiplexer
Transaction Layer
Data Link Layer
(Port 4) (Port 6)
89HPES10T4G2
Data Sheet
10-Lane 4-Port
Gen2 PCI Express® Switch
2 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
Power Management
Utilizes advanced low-power design techniques to achieve
low typical power consumption
Support PCI Express Power Management Interface specifica-
tion (PCI-PM 1.2)
Supports PCI Express Active State Power Management
(ASPM) link state
Supports PCI Express Power Budgeting Capability
Supports the optional PCI Express SerDes Transmit Low-
Swing Voltage Mode
Unused SerDes are disabled and can be powered-off.
Testability and Debug Features
Built in Pseudo-Random Bit Stream (PRBS) generator
Numerous SerDes test modes
Ability to read and write any internal register via the SMBus
Ability to bypass link training and force any link into any mode
Provides statistics and performance counters
Nine General Purpose Input/Output Pins
Each pin may be individually configured as an input or output
Each pin may be individually configured as an interrupt input
Some pins have selectable alternate functions
Packaged in a 19mm x 19mm 324-ball BGA with 1mm ball
spacing
Product Description
Utilizing standard PCI Express interconnect, the PES10T4G2
provides the most efficient fan-out solution for applications requiring high
throughput, low latency, and simple board layout with a minimum
number of board layers. It provides 12 GBps (96 Gbps) of aggregated,
full-duplex switching capacity through 10 integrated serial lanes, using
proven and robust IDT technology. Each lane provides 5 Gbps of band-
width in both directions and is fully compliant with PCI Express Base
Specification, Revision 2.0.
The PES10T4G2 is based on a flexible and efficient layered architec-
ture. The PCI Express layer consists of SerDes, Physical, Data Link and
Transaction layers in compliance with PCI Express Base specification
Revision 2.0. The PES10T4G2 can operate either as a store and
forward or cut-through switch and is designed to switch memory and I/O
transactions. It supports eight Traffic Classes (TCs) and one Virtual
Channel (VC) with sophisticated resource management to enable effi-
cient switching and I/O connectivity for servers, storage, and embedded
processors with limited connectivity.
Figure 2 I/O Expansion Application
SMBus Interface
The PES10T4G2 contains two SMBus interfaces. The slave inter-
face provides full access to the configuration registers in the
PES10T4G2, allowing every configuration register in the device to be
read or written by an external agent. The master interface allows the
default configuration register values of the PES10T4G2 to be over-
ridden following a reset with values programmed in an external serial
EEPROM. The master interface is also used by an external Hot-Plug I/O
expander.
Six pins make up each of the two SMBus interfaces. These pins
consist of an SMBus clock pin, an SMBus data pin, and 4 SMBus
address pins. In the slave interface, these address pins allow the
SMBus address to which the device responds to be configured. In the
master interface, these address pins allow the SMBus address of the
serial configuration EEPROM from which data is loaded to be config-
ured. The SMBus address is set up on negation of PERSTN by
sampling the corresponding address pins. When the pins are sampled,
the resulting address is assigned as shown in Table 1.
Bit Slave
SMBus
Address
Master
SMBus
Address
1 SSMBADDR[1] MSMBADDR[1]
2 SSMBADDR[2] MSMBADDR[2]
3 SSMBADDR[3] MSMBADDR[3]
4 0 MSMBADDR[4]
5 SSMBADDR[5] 1
61 0
71 1
Table 1 Master and Slave SMBus Address Assignment
Memory
Memory
Memory
Processor
Memory
North
Bridge
PES10T4G2
I/O
10GbE I/O
10GbE I/O
SATA
PCI Express
Slot
Processor
x4
x2 x2 x2
3 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
As shown in Figure 3, the master and slave SMBuses may be used in a unified or split configuration. In the unified configuratio n, shown in Figure
3(a), the master and slave SMBuses are tied together and the PES10T4G2 acts both as a SMBus master as well as a SMBus slave on this bus. This
requires that the SMBus master or processor that has access to PES10T4G2 registers supports SMBus arbitration. In some systems, this SMBus
master interface may be implemented using general purpose I/O pins on a processor or micro controller, and may not support SMBus arbitration. To
support these systems, the PES10T4G2 may be configured to operate in a split configuration as shown in Figure 3(b).
In the split configuration, the master and slave SMBuses operate as two independent buses and thus multi-master arbitration is never required.
The PES10T4G2 supports reading and writing of the serial EEPROM on the master SMBus via the slave SMBus, allowing in system programming of
the serial EEPROM.
Figure 3 SMBus Interface Configuration Examples
Hot-Plug Interface
The PES10T4G2 supports PCI Express Hot-Plug on each downstream port. To reduce the number of pins required on the device, the PES10T4G2
utilizes an external I/O expander, such as that used on PC motherboards, connected to the SMBus master interface. Following reset and configura-
tion, whenever the state of a Hot-Plug output needs to be modified, the PES10T4G2 generates an SMBus transaction to the I/O expander with the
new value of all of the outputs. Whenever a Hot-Plug input changes, the I/O expander generates an interrupt which is received on the IOEXPINTN
input pin (alternate function of GPIO) of the PES10T4G2. In response to an I/O expander interrupt, the PES10T4G2 generates an SMBus transaction
to read the state of all of the Hot-Plug inputs from the I/O expander.
General Purpose Input/Output
The PES10T4G2 provides 9 General Purpose Input/Output (GPIO) pins that may be used by the system designer as bit I/O ports. Eac h GPIO pin
may be configured independently as an input or output through software control. Some GPIO pins are shared with other on-chip functions. These
alternate functions may be enabled via software, SMBus slave interface, or serial configuration EEPROM.
Processor
PES10T4G2
SSMBCLK
SSMBDAT
MSMBCLK
MSMBDAT
SMBus
Master
Other
SMBus
Devices
Serial
EEPROM
Processor
PES10T4G2
SSMBCLK
SSMBDAT
MSMBCLK
MSMBDAT
SMBus
Master
Other
SMBus
Devices
Serial
EEPROM
... ...
(a) Unified Configuration and Management Bus (b) Split Configuration and Management Buses
4 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
Pin Description
The following tables list the functions of the pins provided on the PES10T4G2. Some of the functions listed may be multiplexed onto the same pin.
The active polarity of a signal is defined using a suffix. Signals ending with an “N” are defined as being active, or asserted, when at a logic zero (low)
level. All other signals (including clocks, buses, and select lines) will be interpreted as being active, or asserted, when at a logic one (high) level.
Note: In the PES10T4G2, the three downstream ports are labeled ports 2, 4, and 6.
Signal Type Name/Description
PE0RN[3:0]
PE0RP[3:0] IPCI Express Port 0 Serial Data Receive. Differentia l PCI Expres s receiv e
pairs for port 0. Port 0 is the upstream port.
PE0TN[3:0]
PE0TP[3:0] OPCI Express Port 0 Serial Data Transmit. Differential PCI Express trans-
mit pairs for port 0. Port 0 is the upstream port.
PE2RN[1:0]
PE2RP[1:0] IPCI Express Port 2 Serial Data Receive. Differentia l PCI Expres s receiv e
pairs for port 2.
PE2TN[1:0]
PE2TP[1:0] OPCI Express Port 2 Serial Data Transmit. Differential PCI Express trans-
mit pairs for port 2.
PE4RN[1:0]
PE4RP[1:0] IPCI Express Port 4 Serial Data Receive. Differentia l PCI Expres s receiv e
pairs for port 4.
PE4TN[1:0]
PE4TP[1:0] OPCI Express Port 4 Serial Data Transmit. Differential PCI Express trans-
mit pairs for port 4.
PE6RN[1:0]
PE6RP[1:0] IPCI Express Port 6 Serial Data Receive. Differentia l PCI Expres s receiv e
pairs for port 6.
PE6TN[1:0]
PE6TP[1:0] OPCI Express Port 6 Serial Data Transmit. Differential PCI Express trans-
mit pairs for port 6.
PEREFCLKP[0]
PEREFCLKN[0] IPCI Express Reference Clock. Differential reference clock pair input. This
clock is used as the reference clock by on-chip PLLs to generate the clocks
required for the system logic and on-chip SerDes. The frequency of the dif-
ferential reference clock is determined by the REFCLKM signal.
REFCLKM I PCI Express Reference Clock Mode Select. This signal selects the fre-
quency of the reference clock input.
0x0 - 100 MHz
0x1 - 125 MHz
This pin should be static and not change following the negation of
PERSTN.
Table 2 PCI Express Interface Pins
Signal Type Name/Description
MSMBADDR[4:1] I Master SMB us Address . These pins determine the SMBus address of the
serial EEPROM from which configuration information is loaded.
MSMBCLK I/O Master SMBus Clock. This bidirectional signal is used to synchronize
transfers on the master SMBus.
MSMBDAT I/O Master SMBus Data. This bidirectional signal is used for data on the mas-
ter SMBus.
Table 3 SMBus Interface Pins (Part 1 of 2)
5 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
SSMBADDR[5,3:1] I Slave SMBus Address. These pins determine the SMBus address to
which the slave SMBus interface responds.
SSMBCLK I/O Slave SMBus Clock. This bidirectional signal is used to synchronize trans-
fers on the slave SMBus.
SSMBDAT I/O Slave SMBus Data. This bidirectional signal is used for data on the slave
SMBus.
Signal Type Name/Description
GPIO[0] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: P2RSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port 2.
GPIO[1] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: P4RSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port 4.
GPIO[2] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: IOEXPINTN0
Alternate function pin type: Input
Alternate function: I/O expander interrupt 0 input.
GPIO[3] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
GPIO[4] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: IOEXPINTN2
Alternate function pin type: Input
Alternate function: I/O Expander interrupt 2 input.
GPIO[5] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
GPIO[6] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
GPIO[7] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: GPEN
Alternate function pin type: Output
Alternate function: General Purpose Event (GPE) output.
GPIO[11] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: P6RSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port 6.
Table 4 General Purpose I/O Pins
Signal Type Name/Description
Table 3 SMBus Interface Pins (Part 2 of 2)
6 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
Signal Type Name/Description
CCLKDS I Common Clock Downstream. The assertion of this pin indicates that all
downstream ports are using the same clock source as that provided to
downstream devices.This bit is used as the initial value of the Slot Clock
Configuration bit in all of the Link Status Registers for downstream ports.
The value may be overridden by modifying the SCLK bit in each down-
stream port’s PCIELSTS register.
CCLKUS I Common Clock Upstream. The assertion of this pin indicates that the
upstream port is using the same clock source as the upstream device. This
bit is used as the initial value of the Slot Clock Configuration bit in the Link
Status Register for the upstream port. The value may be overridden by
modifying the SCLK bit in the P0_PCIELSTS register.
MSMBSMODE I Master SMBus Slow Mode. The assertion of this pin indicates that the
master SMBus should operate at 100 KHz instead of 400 KHz. This value
may not be overridden.
PERSTN I Fundamental Reset. Assertion of this signal resets all logic inside
PES10T4G2 and initiates a PCI Express fundamental reset.
RSTHALT I Reset Halt. When this signal is asserted during a PCI Express fundamental
reset, PES10T4G2 executes the reset procedure and remains in a reset
state with the Master and Slave SMBuses active. This allows software to
read and write registers internal to the device before normal device opera-
tion begins. The device exits the reset state when the RSTHALT bit is
cleared in the SWCTL register by an SMBus master.
SWMODE[2:0] I Switch Mode. These configuration pins determine the PES10T4G2 switch
operating mode.
0x0 - Normal switch mode
0x1 - Normal switch mode with Serial EEPROM initialization
0x2 - through 0x7 Reserved
These pins should be static and not change following the negation of
PERSTN.
Table 5 System Pins
Signal Type Name/Description
JTAG_TCK I JTAG Clock. This is an input test clock used to clock the shifting of data
into or out of the boundary scan logic or JTAG Controller. JTAG_TCK is
independent of the system clock with a nominal 50% duty cycle.
JTAG_TDI I JTAG Data Input. This is the serial data input to the boundary scan logic or
JTAG Controller.
Table 6 Test Pins (Part 1 of 2)
7 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
JTAG_TDO O JTAG Data Output. This is the serial data shifted out from the boundary
scan logic or JTAG Controller. When no data is being shifted out, this signal
is tri-stated.
JTAG_TMS I JTAG Mode. The value on this signal controls the test mode select of the
boundary scan logic or JTAG Controller.
JTAG_TRST_N I JTAG Reset. This active low signal asynchronously resets the boundary
scan logic and JTAG TAP Controller. An external pull-up on the board is
recommended to meet the JTAG specification in cases where the tester
can access this signal. However, for systems running in functional mode,
one of the following should occur:
1) actively drive this signal low with control logic
2) statically drive this signal low with an external pull-down on the board
Signal Type Name/Description
REFRES0 I/O Port 0 External Reference Resi stor. Provides a reference for the Port 0
SerDes bias currents and PLL calibration circuitry. A 3 kOhm +/- 1% resis-
tor should be connected from this pin to ground.
REFRES2 I/O Port 2 External Reference Resi stor. Provides a reference for the Port 2
SerDes bias currents and PLL calibration circuitry. A 3 kOhm +/- 1% resis-
tor should be connected from this pin to ground.
REFRES4 I/O Port 4 External Reference Resi stor. Provides a reference for the Port 4
SerDes bias currents and PLL calibration circuitry. A 3 kOhm +/- 1% resis-
tor should be connected from this pin to ground.
REFRES6 I/O Port 6 External Reference Resi stor. Provides a reference for the Port 6
SerDes bias currents and PLL calibration circuitry. A 3 kOhm +/- 1% resis-
tor should be connected from this pin to ground.
VDDCORE I Core VDD. Power supply for core logic.
VDDI/O I I/O VDD. LVTTL I/O buffer power supply.
VDDPEA I PCI Express Analog Power. Serdes analog power supply (1.0V).
VDDPEHA I PCI Express Analog High Power. Serdes analog power supply (2.5V).
VDDPETA I PCI Express Transmitter Analog Voltage. Serdes transmitter analog
power supply (1.0V).
VSS IGround.
Table 7 Power, Ground, and SerDes Resistor Pins
Signal Type Name/Description
Table 6 Test Pins (Part 2 of 2)
8 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
Pin Characteristics
Note: Some input pads of the PES10T4G2 do not contain internal pull-ups or pull-downs. Unused inputs should be tied off to appropriate
levels. This is especially critical for unused control signal inputs which, if left floating, could adversely affect operation. Also, any input pin left
floating can cause a slight increase in power consumption.
Function Pin Name Type Buffer I/O
Type Internal
Resistor1Notes
PCI Express Inter-
face PE0RN[3:0] I PCIe
differential2Serial Link
PE0RP[3:0] I
PE0TN[3:0] O
PE0TP[3:0] O
PE2RN[1:0] I
PE2RP[1:0] I
PE2TN[1:0] O
PE2TP[1:0] O
PE4RN[1:0] I
PE4RP[1:0] I
PE4TN[1:0] O
PE4TP[1:0] O
PE6RN[1:0] I
PE6RP[1:0] I
PE6TN[1:0] O
PE6TP[1:0] O
PEREFCLKN[0] I HCSL Diff. Clock
Input Refer to Table 9
PEREFCLKP[0] I
REFCLKM I LVTTL Input pull-down
SMBus MSMBADDR[4:1] I LVTTL Input pull-up
MSMBCLK I/O STI3pull-up on board
MSMBDAT I/O STI pull-up on board
SSMBADDR[5,3:1] I Input pull-up
SSMBCLK I/O STI pull-up on board
SSMBDAT I/O STI pull-up on board
General Purpose I/O GPIO[11,7:0] I/O LVTTL STI,
High Drive pull-up
System Pins CCLKDS I LVTTL Input pull-u p
CCLKUS I Input pull-up
MSMBSMODE I Input pull-down
PERSTN I STI
RSTHALT I Input pull-down
SWMODE[2:0] I Input pull-down
Table 8 Pin Characteristics (Part 1 of 2)
9 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
EJTAG / JTAG JTAG_TCK I LVTTL STI pull-up
JTAG_TDI I STI pull-up
JTAG_TDO O
JTAG_TMS I STI pull-up
JTAG_TRST_N I STI pull-up
SerDes Reference
Resistors REFRES0 I/O Analog
REFRES2 I/O
REFRES4 I/O
REFRES6 I/O
1. Internal resist or values under typical operating con ditions are 92K for pull-up and 90K for pull-down.
2. All receiver pins se t the DC common mode voltage to ground. All tra nsmitters must be AC coupled to the media.
3. Schmitt Trigger Input (STI).
Function Pin Name Type Buffer I/O
Type Internal
Resistor1Notes
Table 8 Pin Characteristics (Part 2 of 2)
10 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
Logic Diagram — PES10T4G2
Figure 4 PES10T4G2 Logic Diagram
PE0TP[0]
Reference
Clocks PEREFCLKP[0]
PEREFCLKN[0]
JTAG_TCK
GPIO[11,7:0]
9General Purpose
I/O
VDDCORE
VDDI/O
VDDPEA Power/Ground
MSMBADDR[4:1]
MSMBCLK
MSMBDAT
4
SSMBADDR[5,3:1]
SSMBCLK
SSMBDAT
4
Master
SMBus Interface
Slave
SMBus Interface
CCLKUS
RSTHALT
System
Pins
JTAG_TDI
JTAG_TDO
JTAG_TMS
JTAG_TRST_N
JTAG Pins
VSS
SWMODE[2:0] 3
CCLKDS
PERSTN
REFCLKM
MSMBSMODE
PE0RP[0]
PE0RN[0]
PE0RP[3]
PE0RN[3]
PCI Express
Switch
SerDes Input
PE0TN[0]
PE0TP[3]
PE0TN[3]
PCI Express
Switch
SerDes Output
...
Port 0
Port 0
...
PE2RP[0]
PE2RN[0]
PE2RP[1]
PE2RN[1]
PCI Express
Switch
SerDes Input
PE2TP[0]
PE2TN[0]
PE2TP[1]
PE2TN[1]
PCI Express
Switch
SerDes Output
Port 2
Port 2
PE4RP[0]
PE4RN[0]
PE4RP[1]
PE4RN[1]
PCI Express
Switch
SerDes Input
PE4TP[0]
PE4TN[0]
PE4TP[1]
PE4TN[1]
PCI Express
Switch
SerDes Output
Port 4
Port 4
PES10T4G2
REFRES0 SerDes
Reference
Resistors
REFRES2
REFRES4
VDDPEHA
Reference Clock
Frequency Selection
VDDPETA
PE6RP[0]
PE6RN[0]
PE6RP[1]
PE6RN[1]
PCI Express
Switch
SerDes Input
Port 6
PE6TP[0]
PE6TN[0]
PE6TP[1]
PE6TN[1]
PCI Express
Switch
SerDes Output
Port 6
REFRES6
11 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
System Clock Parameters
Values based on systems running at recommended supply voltages and operating temperatures, as shown in Tables 13 and 15.
AC Timing Characteristics
Parameter Description Condition Min Typical Max Unit
RefclkFREQ Input reference clock frequency range 100 1251
1. The input clock frequen cy will be eit her 100 or 125 MHz depending on signal REFCLKM.
MHz
TC-RISE Rising edge rate Differential 0.6 4 V/ns
TC-FALL Falling edge rate Differential 0.6 4 V/ns
VIH Differential input high voltage Differential +150 mV
VIL Differential input low voltage Differential -150 mV
VCROSS Absolute single-ended crossing point
voltage Single-ended +250 +550 mV
VCROSS-DELTA Variatio n of VCROSS over all rising clock
edges Single-ended +140 mV
VRB Ring back voltage margin Differential -100 +100 mV
TSTABLE Time before VRB is allowed Differential 500 ps
TPERIOD-AVG Average clock period accuracy -300 2800 ppm
TPERIOD-ABS Absolute period, including spread-spec-
trum and jitter 9.847 10.203 ns
TCC-JITTER Cycle to cycle jitter 150 ps
VMAX Absolute maximum input voltage +1.15 V
VMIN Absolute minimum input voltage -0.3 V
Duty Cycle Duty cycle 40 60 %
Rise/Fall Matching Single ended rising Refclk edge rate ver-
sus falling Refclk edge rate 20 %
ZC-DC Clock source output DC impedance 40 60
Table 9 Input Clock Requirements
Parameter Description Gen 1 Gen 2 Units
Min1Typ1Max1Min1Typ1Max1
PCIe Transmit
UI Unit Interval 399.88 400 400.12 199.94 200 200.06 ps
TTX-EYE Minimum Tx Eye Width 0.75 0.75 UI
TTX-EYE-MEDIAN-to-
MAX-JITTER Maximum time between the jitter median and maximum
deviation from the median 0.125 UI
TTX-RISE, TTX-FALL TX Rise/Fall Time: 20% - 80% 0.125 0.15 UI
TTX- IDLE-MIN Minimum time in idle 20 20 UI
Table 10 PCIe AC Timing Characteristics (Part 1 of 2)
12 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
TTX-IDLE-SET-TO-IDLE Maximum time to transition to a valid Idle after sending
an Idle ordered set 88 ns
TTX-IDLE-TO-DIFF-
DATA Maximum time to transition from valid idle to diff data 8 8 ns
TTX-SKEW Transmitter data skew between any 2 lanes 1.3 1.3 ns
TMIN-PULSED Minimum Instantaneous Lone Pulse Width NA 0.9 UI
TTX-HF-DJ-DD Transmitter Deterministic Jitter > 1.5MHz Bandwidth NA 0.15 UI
TRF-MISMATCH Rise/Fall Time Differential Mismatch NA 0.1 UI
PCIe Receive
UI Unit Interval 399.88 400 400.12 199.94 200.06 ps
TRX-EYE (with jitter) Minimum Receiver Eye Width (jitter tolerance) 0.4 0.4 UI
TRX-EYE-MEDIUM TO
MAX JITTER Max time between jitter median & max deviation 0.3 UI
TRX-SKEW Lane to lane input skew 20 8 ns
TRX-HF-RMS 1.5 — 100 MHz RMS jitter (common clock) NA 3.4 ps
TRX-HF-DJ-DD Maximum tolerable DJ by the receiver (common clock) NA 88 ps
TRX-LF-RMS 10 KHz to 1.5 MHz RMS jitter (common clock) NA 4.2 ps
TRX-MIN-PULSE Minimum receiver instantaneous eye width NA 0.6 UI
1. Minimum, Typical, and Maximum values meet the requirements under PCI Specification 2.0
Signal Symbol Reference
Edge Min Max Unit Timing
Diagram
Reference
GPIO
GPIO[11,7:0]1
1. GPIO signals must meet the setup an d hold times if they are sy nch ronous o r the minimum pulse width if
they are asynchronous.
Tpw2
2. The values for this symbol were determined by calculation, not by testing.
None 50 ns
Table 11 GPIO AC Timing Characteristics
Parameter Description Gen 1 Gen 2 Units
Min1Typ1Max1Min1Typ1Max1
Table 10 PCIe AC Timing Characteristics (Part 2 of 2)
13 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
Figure 5 JTAG AC Timing Waveform
Signal Symbol Reference
Edge Min Max Unit Timing
Diagram
Reference
JTAG
JTAG_TCK Tper_16a none 50.0 ns See Figure 5.
Thigh_16a,
Tlow_16a 10.0 25.0 ns
JTAG_TMS1,
JTAG_TDI
1. The JTAG specification, IEEE 1149.1, recommends that JTAG_TMS should be held at 1 while the signal applied at JTAG_TRST_N
changes from 0 to 1. Otherwise, a race may occ ur if JTAG_TRST_N is deasserted (going from low to high) on a rising edge of JTAG_TCK
when JTAG_TMS is low, because the TAP controller might go to either the Run-Test/Idle stat e or stay in the Test-Logic-Reset state.
Tsu_16b JTAG_TCK risin g 2.4 ns
Thld_16b 1.0 ns
JTAG_TDO Tdo_16c JTAG_TCK falling 20 ns
Tdz_16c2
2. The values for this symbol were determined by calculation, not by te sting.
—20ns
JTAG_TRST_N Tpw_16d2none 25.0 ns
Table 12 JTAG AC Timing Characteristics
Tpw_16d
Tdz_16cTdo_16c
Thld_16b
Tsu_16b
Thld_16b
Tsu_16b
Tlow_16aTlow_16a Tper_16a
Thigh_16a
JTAG_TCK
JTAG_TDI
JTAG_TMS
JTAG_TDO
JTAG_TRST_N
14 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
Recommended Operating Supply Voltages
Absolute Maximum Voltage Rating
Warning: For proper and reliable operation in adherence with this data sheet, the device should not exceed the recommended operating voltages
in Table 13. The absolute maximum operating voltages in Table 14 are offered to provide guidelines for voltage excursions outside the recommended
voltage ranges. Device functionality is not guaranteed at these conditions and sustained operation at these values or any exposure to voltages outside
the maximum range may adversely affect device functionality and reliability.
Power-Up/Power-Down Sequence
During power supply ramp-up, VDDCORE must remain at least 1.0V below VDDI/O at all times. There are no other power-up sequence require-
ments for the various operating supply voltages.
The power-down sequence can occur in any order.
Recommended Operating Temperature
Symbol Parameter Minimum Typical Maximum Unit
VDDCORE Internal logic supply 0.9 1.0 1.1 V
VDDI/O I/O supply except for SerDes LVPECL/CML 3.135 3.3 3.465 V
VDDPEA1
1. VDDPEA and VDDPETA should have no more than 25mVpeak-peak AC power supply noise superimposed on the 1.0V nominal DC
value.
PCI Express Analog Power 0.95 1.0 1.1 V
VDDPEHA2
2. VDDPEHA should have no more than 50mVpeak-peak AC power supply noise superimposed on the 2.5V nominal DC value.
PCI Express Analog High Power 2.25 2.5 2.75 V
VDDPETA1PCI Express Transmitter Analog Voltage 0.95 1.0 1.1 V
VSS Common ground 0 0 0 V
Table 13 PES10T4G2 Operating Voltages
Core Supply PCIe Analog
Supply PCIe Analog
High Supply
PCIe
Transmitter
Supply I/O Supply
1.5V 1.5V 4.6V 1.5V 4.6V
Table 14 PES10T4G2 Absolute Maximum Voltage Rating
Grade Temperature
Commercial 0C to +70C Ambient
Industrial -40C to +85C Ambient
Table 15 PES10T4G2 Operating Temperatures
15 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
Power Consumption
Typical power is measured under the following conditions: 25°C Ambient, 35% total link usage on all ports, typical voltages defined in Table 13
(and also listed below).
Maximum power is measured under the following conditions: 70°C Ambient, 85% total link usage on all ports, maximum voltages defined in
Table 13 (and also listed below).
Thermal Considerations
This section describes thermal considerations for the PES10T4G2 (19mm2 CABGA324 package). The data in Table 17 below contains information
that is relevant to the thermal performance of the PES10T4G2 switch.
Note: It is important for the reliability of this device in any user environment that the junction temperature not exceed the TJ(max) value
specified in Table 17. Consequently, the effective junction to ambient thermal resistance (JA) for the worst case scenario must be
maintained below the value determined by the formula:
JA = (TJ(max) - TA(max))/P
Given that the values of TJ(max), TA(max), and P are known, the value of desired JA becomes a known entity to the system designer. How to
achieve the desired JA is left up to the board or system designer, but in general, it can be achieved by adding the effects of JC (value
provided in Table 17), thermal resistance of the chosen adhesive (CS), that of the heat sink (SA), amount of airflow, and properties of the
circuit board (number of layers and size of the board). As a general guideline, this device will not need a heat sink if the board has 8 or more
layers AND the board size is larger than 4"x12" AND airflow in excess of 0.5 m/s is available. It is strongly recommended that users perform
their own thermal analysis for their own board and system design scenarios.
Number of active
Lanes per Port
Core Supply PCIe Analog
Supply PCIe Analog
High Supply PCIe Termin-
ation Supply I/O Supply Total
Typ
1.0V Max
1.1V Typ
1.0V Max
1.1V Typ
2.5V Max
2.75V Typ
1.0V Max
1.1V Typ
3.3V Max
3.465V Typ
Power Max
Power
4/2/2/2
(Full swing) mA 531 781 402 484 194 275 207 238 3 4
Watts 0.53 0.86 0.40 0.53 0.49 0.76 0.21 0.26 0.01 0.02 1.64 2.43
2/2/2/2
(Full swing) mA 440 550 320 352 138 165 108 117 3 4
Watts 0.44 0.61 0.32 0.39 0.25 0.45 0.11 0.13 .01 .02 1.23 1.6
Table 16 PES10T4G2 Power Consumption
Symbol Parameter Value Units Conditions
TJ(max) Junction Temperature 125 oCMaximum
TA(max) Ambient Temperature 70 oCMaximum
JA(effective) Effective Thermal Resistance, Junction-to-Ambient
23.6 oC/W Zero air flo w
16.8 oC/W 1 m/S air flow
15.4 oC/W 2 m/S air flow
JB Thermal Resistance, Junction-to-Board 14.5 oC/W
JC Thermal Resistance, Junction-to-Case 7.6 oC/W
P Power Dissipation of the Device 2.43 Watts Maximum
Table 17 Thermal Specifications for PES10T4G2, 19x19 mm CABGA324 Package
16 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
DC Electrical Characteristics
Values based on systems running at recommended supply voltages, as shown in Table 13.
Note: See Table 8, Pin Characteristics, for a complete I/O listing.
I/O Type Parameter Description Gen1 Gen2 Unit Condi-
tions
Min1Typ1Max1Min1Typ1Max1
Serial Link PCIe Transmit
VTX-DIFFp-p Differential peak-to-peak output
voltage 800 1200 800 1200 mV
VTX-DIFFp-p-LOW Low-Drive Differential Peak to
Peak Output Voltage 400 1200 400 1200 mV
VTX-DE-RATIO-
3.5dB De-emphasized differential output
voltage -3 -4 -3.0 -3.5 -4.0 dB
VTX-DE-RATIO-
6.0dB De-emphasized differential output
voltage NA -5.5 -6.0 -6.5 dB
VTX-DC-CM DC Common mode voltage 0 3.6 0 3.6 V
VTX-CM-ACP RMS AC peak common mode
output voltage 20 mV
VTX-CM-DC-active-
idle-delta Abs delta of DC common mode
voltage between L0 and idle 100 100 mV
VTX-CM-DC-line-
delta Abs delta of DC common mode
voltage between D+ and D- 25 25 mV
VTX-Idle-DiffP Electrical idle diff peak output 20 20 mV
RLTX-DIFF Transmitter Differential Return
loss 10 10 dB 0.05 - 1.25GHz
8 dB 1.25 - 2.5GHz
RLTX-CM Transmitter Common Mode
Return loss 66dB
ZTX-DIFF-DC DC Differential TX impedance 80 100 120 120
VTX-CM-ACpp Peak-Peak AC Common NA 100 mV
VTX-DC-CM Transmit Driver DC Common
Mode Voltage 0 3.6 0 3.6 V
VTX-RCV-DETECT The amount of voltage change
allowed during Receiver Detec-
tion
600 600 mV
ITX-SHORT Transmitter Short Circuit Current
Limit 090 90mA
Table 18 DC Electrical Characteristics (Part 1 of 2)
17 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
Serial Link
(cont.) PCIe Receive
VRX-DIFFp-p Differential input voltage (peak-to-
peak) 175 1200 120 1200 mV
RLRX-DIFF Receiver Differential Return Loss 10 10 dB 0.05 - 1.25GHz
8 1.25 - 2.5GHz
RLRX-CM Receiver Common Mode Return
Loss 66dB
ZRX-DIFF-DC Differential input impedance (DC) 80 100 120 Refer to return loss spec
ZRX--DC DC common mode impedance 40 50 60 40 60
ZRX-COMM-DC Powered down input common
mode impedance (DC) 200k 350k 50k
ZRX-HIGH-IMP-DC-
POS DC input CM input impedance for
V>0 during reset or power down 50k 50k
ZRX-HIGH-IMP-DC-
NEG DC input CM input impedance for
V<0 during reset or power down 1.0k 1.0k
VRX-IDLE-DET-
DIFFp-p Electrical idle detect threshold 65 175 65 175 mV
VRX-CM-ACp Receiver AC common-mode peak
voltage 150 150 mV VRX-CM-ACp
PCIe REFCLK
CIN Input Capacitance 1.5 1.5 pF
Other I/Os
LOW Drive
Output IOL —2.5——2.5mAV
OL = 0.4v
IOH —-5.5— —-5.5 mAV
OH = 1.5V
High Drive
Output IOL 12.0 12.0 mA VOL = 0.4v
IOH -20.0 -20.0 mA VOH = 1.5V
Schmitt Trig-
ger Input
(STI)
VIL -0.3 0.8 -0.3 0.8 V
VIH 2.0 VDDI/O +
0.5 2.0 VDDI/O +
0.5 V—
Input VIL -0.3 0.8 -0.3 0.8 V
VIH 2.0 VDDI/O +
0.5 2.0 VDDI/O +
0.5 V—
Capacitance CIN ——8.5——8.5pF
Leakage Inputs + 10 + 10 AV
DDI/O (max)
I/OLEAK W/O
Pull-ups/downs ——+
10 + 10 AV
DDI/O (max)
I/OLEAK WITH
Pull-ups/downs ——+
80 + 80 AV
DDI/O (max)
1. Minimum, Typical, and Maximum values meet the requirements under PCI Specification 2.0.
I/O Type Parameter Description Gen1 Gen2 Unit Condi-
tions
Min1Typ1Max1Min1Typ1Max1
Table 18 DC Electrical Characteristics (Part 2 of 2)
18 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
Package Pinout — 324-BGA Signal Pinout for PES10T4G2
The following table lists the pin numbers and signal names for the PES10T4G2 device.
Pin Function Alt Pin Function Alt Pin Function Alt Pin Function Alt
A1 VSS B17 SWMODE_1 D15 GPIO_01 1 F13 VSS
A2 VSS B18 SWMODE_2 D16 PE4TP00 F14 VDDCORE
A3 PE0RN00 C1 JTAG_TCK D17 VDDPETA F15 VDDI/O
A4 PE0RP00 C2 PE0TP00 D18 GPIO_03 F16 VSS
A5 VSS C3 PE0TN00 E1 VSS F17 VDDPEA
A6 PE0RN01 C4 VSS E2 VDDPEA F18 PE4RP00
A7 PE0RP01 C5 PE0TP01 E3 NC G1 VSS
A8 VSS C6 PE0TN01 E4 JTAG_TMS G2 VDDPEA
A9 PEREFCLKP0 C7 VDDPEA E5 VDDCORE G3 VDDPETA
A10 PEREFCLKN0 C8 VDDPETA E6 VDDI/O G4 VSS
A11 VSS C9 VSS E7 VDDPEHA G5 VDDCORE
A12 PE0RN02 C10 PE0TP02 E8 VDDPEHA G6 VDDI/O
A13 PE0RP02 C11 PE0TN02 E9 VDDPEHA G7 VSS
A14 VSS C12 VDDPETA E10 VDDCORE G8 VSS
A15 PE0RN03 C13 PE0TP03 E11 VDDPEHA G9 VDDCORE
A16 PE0RP03 C14 PE0TN03 E12 VDDI/O G10 VSS
A17 CCLKDS C15 VSS E13 VDDCORE G11 VSS
A18 SWMODE_0 C16 CCLKUS E14 VDDI/O G12 VSS
B1 JTAG_TDI C17 PERSTN E15 GPIO_00 1 G13 VDDI/O
B2 VSS C18 GPIO_02 1 E16 PE4TN00 G14 VDDPEHA
B3 VSS D1 VSS E17 VSS G15 VSS
B4 VSS D2 JTAG_TDO E18 PE4RN00 G16 PE4TP01
B5 VSS D3 VDDPETA F1 VSS G17 VDDPETA
B6 VSS D4 JTAG_TRST_N F2 VDDPEHA G18 VSS
B7 VSS D5 VDDI/O F3 NC H1 VSS
B8 VSS D6 VDDPEHA F4 VDDCORE H2 VSS
B9 VDDPEA D7 VSS F5 VDDI/O H3 NC
B10 VDDPEA D8 VDDCORE F6 VSS H4 VSS
B11 VDDPETA D9 VDDCORE F7 VDDCORE H5 VDDPEHA
B12 VSS D10 REFRES0 F8 VSS H6 VSS
B13 VSS D11 VDDPEA F9 VSS H7 VDDCORE
B14 VDDCORE D12 VDDCORE F10 VSS H8 VSS
B15 VSS D13 VSS F11 VSS H9 VSS
B16 VDDPEA D14 RSTHALT F12 VDDCORE H10 VSS
Table 19 PES10T4G2 324-pin Signal Pin-Out (Part 1 of 3)
19 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
H11 VDDCORE K13 VSS M15 VSS P17 VSS
H12 VSS K14 VDDCORE M16 VDDPETA P18 VSS
H13 VSS K15 VSS M17 VDDPEA R1 PE2RP00
H14 VDDPEHA K16 NC M18 VSS R2 VSS
H15 VDDCORE K17 REFRES4 N1 PE2RN01 R3 PE2TP00
H16 PE4TN01 K18 VSS N2 VDDPEA R4 SSMBADDR_2
H17 VSS L1 VSS N3 VSS R5 VDDI/O
H18 PE4RN01 L2 VDDPEA N4 VSS R6 MSMBSMODE
J1 VSS L3 PE2TN01 N5 VDDCORE R7 VDDCORE
J2 VDDPETA L4 VDDCORE N6 VSS R8 VSS
J3 NC L5 VDDPEHA N7 VDDI/O R9 VSS
J4 REFRES2 L6 VSS N8 VSS R10 VSS
J5 VDDCORE L7 VSS N9 VSS R11 VDDCORE
J6 VSS L8 VSS N10 VSS R12 VSS
J7 VSS L9 VSS N11 VSS R13 VDDI/O
J8 VSS L10 VSS N12 VDDI/O R14 VSS
J9 VDDCORE L11 VSS N13 VSS R15 VSS
J10 VSS L12 VDDCORE N14 VDDCORE R16 GPIO_04 1
J11 VSS L13 VSS N15 VDDCORE R17 VDDPEA
J12 VDDCORE L14 VDDPEHA N16 NC R18 VSS
J13 VSS L15 VSS N17 VDDPEHA T1 PE2RN00
J14 VDDPEHA L16 NC N18 VSS T2 VDDPETA
J15 VSS L17 VDDPETA P1 VSS T3 VSS
J16 VDDPEA L18 VSS P2 VSS T4 SSMBADDR_5
J17 VDDPEA M1 PE2RP01 P3 PE2TN00 T5 VSS
J18 PE4RP01 M2 VDDPETA P4 SSMBADDR_1 T6 MSMBDAT
K1 VSS M3 PE2TP01 P5 VDDCORE T7 MSMBADDR_3
K2 VDDPEA M4 VSS P6 VDDI/O T8 VDDPEA
K3 VSS M5 VDDPEHA P7 VDDCORE T9 PE6TN01
K4 VSS M6 VDDI/O P8 VDDPEHA T10 PE6TP01
K5 VDDPEHA M7 VDDCORE P9 VDDPEHA T11 VDDPEA
K6 VSS M8 VSS P10 VDDCORE T12 PE6TN00
K7 VDDCORE M9 VDDCORE P11 VDDPEHA T13 PE6TP00
K8 VSS M10 VSS P12 VDDCORE T14 VDDPETA
K9 VSS M11 VDDCORE P13 VDDCORE T15 VSS
K10 VDDCORE M12 VSS P14 VDDI/O T16 GPIO_06
K11 VSS M13 VDDI/O P15 VSS T17 GPIO_05
K12 VSS M14 VDDCORE P16 NC T18 VSS
Pin Function Alt Pin Function Alt Pin Function Alt Pin Function Alt
Table 19 PES10T4G2 324-pin Signal Pin-Out (Part 2 of 3)
20 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
Alternate Signal Functions
No Connection Pins
U1 VSS U10 VDDPETA V1 VSS V10 VSS
U2 VSS U11 VSS V2 VSS V11 PE6RP00
U3 SSMBCLK U12 VSS V3 SSMBDAT V12 PE6RN00
U4 SSMBADDR_3 U13 VSS V4 VSS V13 VSS
U5 VSS U14 VSS V5 MSMBADDR_4 V14 VSS
U6 MSMBCLK U15 REFCLKM V6 MSMBADDR_2 V15 VSS
U7 MSMBADDR_1 U16 GPIO_07 1 V7 REFRES6 V16 GPIO_11 1
U8 VDDPEA U17 VSS V8 PE6RP01 V17 VSS
U9 VSS U18 VSS V9 PE6RN01 V18 VSS
Pin GPIO Alternate
E15 GPIO_00 P2RSTN
D15 GPIO_01 P4RSTN
C18 GPIO_02 IOEXPINTN0
R16 GPIO_04 IOEXPINTN2
U16 GPIO_07 GPEN
V16 GPIO_11 P6RSTN
Table 20 PES10T4G2 Alternate Signal Functions
NC Pins
E3
F3
H3
J3
K16
L16
N16
P16
Table 21 PES10T4G2 No Connection Pins
Pin Function Alt Pin Function Alt Pin Function Alt Pin Function Alt
Table 19 PES10T4G2 324-pin Signal Pin-Out (Part 3 of 3)
21 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
Power Pins
VDDCore VDDCore VDDI/O VDDPEA VDDPEHA VDDPETA
B14K7D5B9D6B11
D8K10E6B10E7 C8
D9 K14 E12 B16 E8 C12
D12 L4 E14 C7 E9 D3
E5 L12 F5 D11 E11 D17
E10 M7 F15 E2 F2 G3
E13 M9 G6 F17 G14 G17
F4 M11 G13 G2 H5 J2
F7 M14 M6 J16 H14 L17
F12 N5 M13 J17 J14 M2
F14 N14 N7 K2 K5 M16
G5 N15 N12 L2 L5 T2
G9 P5 P6 M17 L14 T14
H7 P7 P14 N2 M5 U10
H11 P10 R5 R17 N17
H15 P12 R13 T8 P8
J5 P13 T11 P9
J9 R7 U8 P11
J12 R11
Table 22 PES10T4G2 Power Pins
22 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
Ground Pins
Vss Vss Vss Vss Vss Vss
A1 E1 H6 K12 N6 T15
A2 E17 H8 K13 N8 T18
A5 F1 H9 K15 N9 U1
A8 F6 H10 K18 N10 U2
A11 F8 H12 L1 N11 U5
A14 F9 H13 L6 N13 U9
B2 F10 H17 L7 N18 U11
B3 F11 J1 L8 P1 U12
B4 F13 J6 L9 P2 U13
B5 F16 J7 L10 P15 U14
B6 G1 J8 L11 P17 U17
B7 G4 J10 L13 P18 U18
B8 G7 J11 L15 R2 V1
B12 G8 J13 L18 R8 V2
B13 G10 J15 M4 R9 V4
B15 G11 K1 M8 R10 V10
C4 G12 K3 M10 R12 V13
C9 G15 K4 M12 R14 V14
C15 G18 K6 M15 R15 V15
D1 H1 K8 M18 R18 V17
D7 H2 K9 N3 T3 V18
D13 H4 K11 N4 T5
Table 23 PES10T4G2 Ground Pins
23 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
Signals Listed Alphabetically
Signal Name I/O T ype Location Signal Category
CCLKDS I A17 System
CCLKUS I C16
GPIO_00 I/O E15 General Purpose Input/Output
GPIO_01 I/O D15
GPIO_02 I/O C18
GPIO_03 I/O D18
GPIO_04 I/O R16
GPIO_05 I/O T17
GPIO_06 I/O T16
GPIO_07 I/O U16
GPIO_11 I/O V16
JTAG_TCK I C1 JTAG
JTAG_TDI I B1
JTAG_TDO O D2
JTAG_TMS I E4
JTAG_TRST_N I D4
MSMBADDR_1 I U7 SMBus
MSMBADDR_2 I V6
MSMBADDR_3 I T7
MSMBADDR_4 I V5
MSMBCLK I/O U6
MSMBDAT I/O T6
MSMBSMODE I R6 System
No Connection See Table 21 for a list of NC pins
PE0RN00 I A3 PCI Express
PE0RN01 I A6
PE0RN02 I A12
PE0RN03 I A15
PE0RP00 I A4
PE0RP01 I A7
PE0RP02 I A13
PE0RP03 I A16
PE0TN00 O C3
PE0TN01 O C6
Table 24 89PES10T4G2 Alphabetical Signal List (Part 1 of 3)
24 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
PE0TN02 O C11 PCI Express (Cont.)
PE0TN03 O C14
PE0TP00 O C2
PE0TP01 O C5
PE0TP02 O C10
PE0TP03 O C13
PE2RN00 I T1
PE2RN01 I N1
PE2RP00 I R1
PE2RP01 I M1
PE2TN00 O P3
PE2TN01 O L3
PE2TP00 O R3
PE2TP01 O M3
PE4RN00 I E18
PE4RN01 I H18
PE4RP00 I F18
PE4RP01 I J18
PE4TN00 O E16
PE4TN01 O H16
PE4TP00 O D16
PE4TP01 O G16
PE6RN00 I V12
PE6RN01 I V9
PE6RP00 I V11
PE6RP01 I V8
PE6TN00 O T12
PE6TN01 O T9
PE6TP00 O T13
PE6TP01 O T10
PEREFCLKN0 I A10
PEREFCLKP0 I A9
PERSTN I C17 System
REFCLKM I U15 PCI Express
Signal Name I/O T ype Location Signal Category
Table 24 89PES10T4G2 Alphabetical Signal List (Part 2 of 3)
25 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
REFRES0 I/O D10 SerDes Reference Resistors
REFRES2 I/O J4
REFRES4 I/O K17
REFRES6 I/O V7
RSTHALT I D14 System
SSMBADDR_1 I P4 SMBus
SSMBADDR_2 I R4
SSMBADDR_3 I U4
SSMBADDR_5 I T4
SSMBCLK I/O U3 SMBus
SSMBDAT I/O V3
SWMODE_0 I A18 System
SWMODE_1 I B17
SWMODE_2 I B18
VDDCORE, VDDI/O,
VDDPEA, VDDPEHA,
VDDPETA
See Table 22 for a listing of power pins.
VSS See Table 23 for a listing of ground pins.
Signal Name I/O T ype Location Signal Category
Table 24 89PES10T4G2 Alphabetical Signal List (Part 3 of 3)
26 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
PES10T4G2 Pinout — Top View
1 2 3 4 5 6 7 8 910111213141516
A
B
17 18
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
1 2 3 4 5 6 7 8 91011121314151617 18
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
Vss (Ground)
VDDCore (Power)
VDDI/O (Power)
VDDPETA (Transmitter Power)
VDDPEA (Analog Power)
VDDPEHA (High Analog Power)
Signals
XNo Connect
XX
X
X
X
X
X
X
X
X
X
X
X
X
27 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
PES10T4G2 Package Drawing — 324-Pin BC324/BCG324
28 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
PES10T4G2 Package Drawing — Page Two
29 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
Revision History
August 10, 2011: Publication of final data sheet.
May 10, 2016: Added a ZB revision to the ordering information.
30 of 30 May 10, 2016
IDT 89HPES10T4G2 Data Sheet
CORPORATE HEADQUARTERS
6024 Silver Creek Valley Road
San Jose, CA 95138
for SALES:
800-345-7015 or 408-284-8200
fax: 408-284-2775
www.idt.com
for Tech Support:
email: ssdhelp@idt.com
phone: 408-284-8208
®
Ordering Information
Valid Combinations
89HPES10T4G2ZABC 324-ball BGA package, Commercial Temp. 89HPES10T4G2ZBBC 324-ball BGA package, Commercial Temp.
89HPES10T4G2ZABCG 324-ball Green BGA package, Commercial Temp. 89HPES10T4G2ZBBCG 324-ball Green BGA package, Commercial Temp.
89HPES10T4G2ZABCI 324-ball BGA package, Industrial Temp. 89HPES10T4G2ZBBCI 324-ball BGA package, Industrial Temp.
89HPES10T4G2ZABCGI 324-ball Green BGA package, Industrial Temp. 89HPES10T4G2ZBBCGI 324-ball Green BGA package, Industrial Temp.