Radar Receive Path AFE:
4-Channel LNA and PGA
Data Sheet
ADA8282
Rev. 0 Document Feedback
Information furnished by Analog Devices is believed to be accurate a nd re liable. However, no
resp ons ibil ity is as sumed by Ana lo g Dev ice s f or i ts use , n o r f or any in fr i ngem en ts of pa ten ts or o the r
ri gh ts of th i rd pa rt ies t hat m ay res u lt f rom i ts use. S pec if i ca t io ns s ubje ct to cha nge w i th ou t n ot ice . N o
license is granted by implica tion or otherwise under any patent or pa tent r ig hts of Ana log Dev ices .
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2015 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
4 channels of low noise amplifiers (LNAs) followed by
programmable gain amplifiers (PGAs)
Minimum 3 dB bandwidth of 5 MHz
Typical 3 dB bandwidth of 42.3 MHz
Typical slew rate of 28 V/µs
Differential input and output
Gain of 18 dB to 36 dB in 6 dB steps
Selectable low noise and low power modes
Input referred noise of 4.5 nV/√Hz at 18.3 mW per channel
Input referred noise of 3.8 nV/Hz at 26.5 mW per channel
Input referred noise of 3.6 nV/√Hz at 34.8 mW per channel
Input referred noise of 3.4 nV/√Hz at 54.8 mW per channel
Channel to channel gain matching of ±0.25 dB
Absolute gain error of ±0.5 dB
SPI programmable
Power-down mode (SPI selectable)
3.1 V p-p differential output swing when using a 3.3 V supply
32-lead, 5 mm × 5 mm LFCSP package
Specified from40°C to +125°C
Qualified for automotive applications
APPLICATIONS
Automotive radar
Adaptive cruise control
Collision avoidance
Blind spot detection
Self parking
Electronic bumpers
FUNCTIONAL BLOCK DIAGRAM
+OUTA
–OUTA
+INA
–INA LNA PGA
3nV√Hz
+24dB –6dB T O +12dB
+OUTB
–OUTB
+INB
–INB LNA PGA
3nV√Hz
+24dB –6dB T O +12dB
+OUTC
–OUTC
+INC
–INC LNA PGA
3nV√Hz
+24dB –6dB T O +12dB
+OUTD
–OUTD
+IND
–IND LNA PGA
3nV√Hz
+24dB –6dB T O +12dB
ADA8282
POWER
MODE
SPI
GAIN
SELECT
VIO AVDD RESETSCLK SDI SDOCS
13132-001
Figure 1.
GENERAL DESCRIPTION
The ADA8282 is designed for applications that require low cost,
low power, compact size, and flexibility. The ADA8282 has four
parallel channels, each including an LNA and a PGA. The LNA
and PGA combine to form a signal chain that features a gain range
of 18 dB to 36 dB in 6 dB increments with a guaranteed
minimum bandwidth of 5 MHz.
Using the highest power settings, the combined input referred
voltage noise of the combined LNA and PGA channel is
3.4 nV/√Hz at maximum gain.
The ADA8282 can be configured in four power modes that
trade off power and noise performance to optimize the overall
performance according to the end application.
Fabricated in an advanced complementary metal-oxide
semiconductor (CMOS) process, the ADA8282 is available in a
5 mm × 5 mm, RoHS-compliant, 32-lead LFCSP. It is specified
over the automotive temperature range of −40°C to +12C.
ADA8282* PRODUCT PAGE QUICK LINKS
Last Content Update: 02/23/2017
COMPARABLE PARTS
View a parametric search of comparable parts.
EVALUATION KITS
ADA8282 Evaluation Board
DOCUMENTATION
Data Sheet
ADA8282: Radar Receive Path AFE: 4-Channel LNA and
PGA Data Sheet
User Guides
UG-846: Evaluating the ADA8282 Radar Receive Path AFE
TOOLS AND SIMULATIONS
ADA8282 SPICE Macro-Model
DESIGN RESOURCES
ADA8282 Material Declaration
PCN-PDN Information
Quality And Reliability
Symbols and Footprints
DISCUSSIONS
View all ADA8282 EngineerZone Discussions.
SAMPLE AND BUY
Visit the product page to see pricing options.
TECHNICAL SUPPORT
Submit a technical question or find your regional support
number.
DOCUMENT FEEDBACK
Submit feedback for this data sheet.
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.
ADA8282 Data Sheet
Rev. 0 | Page 2 of 21
TABLE OF CONTENTS
Features........................................................................................... 1
Applications ................................................................................... 1
Functional Block Diagram ............................................................ 1
General Description ...................................................................... 1
Revision History ............................................................................ 2
Specifications ................................................................................. 3
Digital Specifications ................................................................. 4
Absolute Maximum Ratings ......................................................... 5
Thermal Resistance ................................................................... 5
ESD Ca ution............................................................................... 5
Pin Configuration and Function Descriptions............................ 6
Typical Performance Characteristics............................................ 7
Theory of Operation.................................................................... 11
Radar Receive Path AFE.......................................................... 11
Default SPI Settings ................................................................. 11
Input Impedance...................................................................... 11
Power Modes............................................................................ 11
Programmable Gain Range ..................................................... 12
Output Swing Variation with Gain......................................... 12
Offset Voltage Adjustments .................................................... 12
Single-Ended or Differential Input......................................... 12
Short-Circuit Currents ............................................................ 12
SPI Interface ............................................................................. 12
Channel to Channel Phase Matching..................................... 13
Applications ................................................................................. 14
Increased Gain Using Two ADA8282 Devices in Series ....... 14
Multiplexing Inputs Using Multiple ADA8282 Devices ....... 15
Basic Connections for a Typical Application......................... 16
Register Map ................................................................................ 17
Register Summary ................................................................... 17
Register Details ........................................................................ 17
Outline Dimensions .................................................................... 21
Ordering Guide............................................................................ 21
Automotive Products............................................................... 21
REVISION HISTORY
7/15Revision 0: Initial Version
Data Sheet ADA8282
Rev. 0 | Page 3 of 21
SPECIFICATIONS
AVDD = 3.3 V, LNA + PGA gain = 36 dB (LNA gain = 24 dB, PGA gain = 12 dB), TA = −40°C to +125°C, PGA_BIAS_SEL = b’10,
LNA_BIAS_SEL= b’10, unless otherwise noted.
Table 1.
Parameter Test Conditions/Comments Min Typ Max Unit
ANALOG CHANNEL CHARACTERISTICS
Gain 18/24/30/36 dB
Gain Range 18 dB
Gain Error ±0.5 dB
−3 dB Bandwidth VOUT = 100 mV p-p, gain = 36 dB
PGA_BIAS_SEL = b’00, LNA_BIAS_SEL = b’00 5 20.5 MHz
PGA_BIAS_SEL = b’01, LNA_BIAS_SEL = b’01 5 34.2 MHz
PGA_BIAS_SEL = b’01, LNA_BIAS_SEL = b’10 5 42.3 MHz
PGA_BIAS_SEL = b’11, LNA_BIAS_SEL = b’11 5 52.3 MHz
Channel to Channel Gain Matching Frequencies up to 5 MHz 0.1 ±0.25 dB
Channel to Channel Phase Matching1 Frequencies up to 5 MHz 0.1 ±1 Degrees
Slew Rate 28 V/μs
Input Referred Noise Gain = 36 dB at 2 MHz
PGA_BIAS_SEL = b’00, LNA_BIAS_SEL = b’00 4.5 nV/√Hz
PGA_BIAS_SEL = b’01, LNA_BIAS_SEL = b’01 3.8 nV/√Hz
PGA_BIAS_SEL = b’01, LNA_BIAS_SEL = b’10 3.6 nV/√Hz
PGA_BIAS_SEL = b’11, LNA_BIAS_SEL = b’11 3.4 nV/√Hz
50 Ω impedance used for voltage to power
conversion
−156 dBm/Hz
Output Referred Noise Gain = 18 dB 36 nV/√Hz
Gain = 24 dB 61 nV/√Hz
Gain = 30 dB 115 nV/√Hz
Gain = 36 dB 218 nV/√Hz
Offset Voltage
Referred to Input Gain = 36 dB ±0.8 ±3 mV
Referred to Output Gain = 36 dB ±50 ±200 mV
SPI Offset Adjustment Resolution
(Relative to Input)
LNA_BIAS_SEL = b’00 113 μV
LNA_BIAS_SEL = b’01 186 μV
LNA_BIAS_SEL = b’10 250 μV
LNA_BIAS_SEL = b’11 440 μV
SPI Offset Adjustment Range (Relative
to Input)
LNA_BIAS_SEL = b’00 ±4 mV
LNA_BIAS_SEL = b’01 ±6 mV
LNA_BIAS_SEL = b’10 ±8 mV
LNA_BIAS_SEL = b’11 ±14 mV
Harmonic Distortion
Second Harmonic (HD2) VOUT = 2 V p-p, fIN = 100 kHz −70 dBc
V
OUT = 100 mV p-p, fIN = 2 MHz −85 dBc
Third Harmonic (HD3) VOUT = 2 V p-p, fIN = 100 kHz −85 dBc
V
OUT = 100 mV p-p, fIN = 2 MHz −95 dBc
Intermodulation Distortion VOUT = 2 V p-p, fIN1 = 100 kHz, fIN2 = 150 kHz −72 dBc
V
OUT = 100 mV p-p, fIN1 = 2 MHz, fIN2 = 2.1 MHz −83 dBc
Common-Mode Rejection Ratio (CMRR) 80 dB
Crosstalk −105 dBc
ADA8282 Data Sheet
Rev. 0 | Page 4 of 21
Parameter Test Conditions/Comments Min Typ Max Unit
POWER SUPPLY
Total Power Dissipation
PGA_BIAS_SEL = b’00, LNA_BIAS_SEL = b’00 73 mW
PGA_BIAS_SEL = b’01, LNA_BIAS_SEL = b’01 106 mW
PGA_BIAS_SEL = b’01, LNA_BIAS_SEL = b’10 139 mW
PGA_BIAS_SEL = b’11, LNA_BIAS_SEL = b’11 219 mW
Power Dissipation per Channel 31 mW
AVDD 3.0 3.6 V
VIO 1.8 3.6 V
IAVDD Four channels active
PGA_BIAS_SEL = b’00, LNA_BIAS_SEL = b’00 19.6 22 mA
PGA_BIAS_SEL = b’01, LNA_BIAS_SEL = b’01 29 32 mA
PGA_BIAS_SEL = b’01, LNA_BIAS_SEL = b’10 37.7 42 mA
PGA_BIAS_SEL = b’11, LNA_BIAS_SEL = b’11 60 66.3 mA
One channel active 9.8 11 mA
IVIO 10 12 µA
Power-Down Current IAVDD and IVIO 20 100 µA
Power-Down Dissipation 0.07 0.33 mW
Power-Up Time Time to operational after chip is enabled 5 µs
Power Supply Rejection Ratio (PSRR) At dc −80 dB
At 1 MHz −80 dB
INPUT
Input Resistance
Differential Input Resistance 1.45 1.57 1.7 kΩ
Common-Mode Input Resistance 0.37 0.39 0.42 kΩ
Differential Input Capacitance 10.8 12 13.2 pF
OUTPUT
Output Voltage Swing +OUTx (−OUTx), gain = 18 dB 3.1 V p-p
+OUTx (−OUTx), gain = 24 dB, 30 dB, or 36 dB 6.3 V p-p
Output Balance fIN = 100 kHz −70 dB
Short-Circuit Current Per output at 25°C 205 mA
Capacitive Load 20% overshoot 30 pF
1 Normalized to 0° phase matching at 25°C; see the Theory of Operation section for details.
DIGITAL SPECIFICATIONS
AVDD = 3.3 V, TA = −40°C to +125°C, unless otherwise noted.
Table 2.
Parameter Temperature Min Typ Max Unit
LOGIC INPUT (CS)
Logic 1 Voltage Full 1.2 VIO + 0.3 V
Logic 0 Voltage Full 0.3 V
Input Resistance 25°C 15 kΩ
Input Capacitance 25°C 0.5 pF
LOGIC INPUTS (SDI, SCLK, RESET)
Logic 1 Voltage Full 1.2 VIO + 0.3 V
Logic 0 Voltage Full 0 0.3 V
Input Resistance 25°C 2.5 kΩ
Input Capacitance 25°C 2 pF
Maximum SCLK Frequency 10 MHz
LOGIC OUTPUT (SDO)
Logic 1 Voltage (IOH = 800 A) Full VIO − 0.3 V
Logic 0 Voltage (IOL = 50 A) Full 0.3 V
Data Sheet ADA8282
Rev. 0 | Page 5 of 21
ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter Rating
Electrical
AVDD to EPAD −0.3 V to +3.9 V
+INx, −INx, SCLK, SDI, SDO, CS, VIO, RESET,
−OUTx, +OUTx to EPAD
−0.3V to AVDD +
0.3 V
ESD Ratings
Human Body Model (HBM) ±4000 V
Charged Device Model (CDM) ±2000 V
Environmental
Operating Temperature Range (Ambient) −40°C to +125°C
Storage Temperature Range (Ambient) −65°C to +150°C
Maximum Junction Temperature 150°C
Lead Temperature (Soldering, 10 sec) 300°C
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
THERMAL RESISTANCE
θJA is specified for the worst case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Table 4. Thermal Resistance
Package Type θJA θ
JC Unit
32-Lead, 5 mm × 5 mm LFCSP 33.51 4.1 °C/W
ESD CAUTION
ADA8282 Data Sheet
Rev. 0 | Page 6 of 21
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
24 +OUTA
23 –OUTA
22 +OUTB
21 –OUTB
20 +OUTC
19 –OUTC
18 +OUTD
17 OUTD
1
2
3
4
5
6
7
8
+INA
–INA
+INB
–INB
+INC
–INC
+IND
–IND
9
10
11
12
13
14
15
16
AVDD
NIC
NIC
NIC
NIC
NIC
NIC
AVDD
32
31
30
29
28
27
26
25
AVDD
SDO
SDI
CS
SCLK
RESET
VIO
AVDD
ADA8282
TOP VIEW
(Not to Scale)
NOTES
1. NIC = NO INTERNAL CONNECTION.
2. TIE THE EXPOSED PAD ON THE BOTTOM SIDE OF THE
PACKAGE TO THE ANALOG/DIGITAL GROUND PLANE.
13132-002
Figure 2. Pin Configuration
Table 5. Pin Function Descriptions
Pin No. Mnemonic Description
0 EPAD Exposed Pad. Tie the exposed pad on the bottom side of the package to the analog/digital ground plane.
1 +INA Positive LNA Analog Input for Channel A.
2 −INA Negative LNA Analog Input for Channel A.
3 +INB Positive LNA Analog Input for Channel B.
4 −INB Negative LNA Analog Input for Channel B.
5 +INC Positive LNA Analog Input for Channel C.
6 −INC Negative LNA Analog Input for Channel C.
7 +IND Positive LNA Analog Input for Channel D.
8 −IND Negative LNA Analog Input for Channel D.
9 AVDD 3.3 V Analog Supply.
10 NIC No Internal Connection. Leave this pin floating.
11 NIC No Internal Connection. Leave this pin floating.
12 NIC No Internal Connection. Leave this pin floating.
13 NIC No Internal Connection. Leave this pin floating.
14 NIC No Internal Connection. Leave this pin floating.
15 NIC No Internal Connection. Leave this pin floating.
16 AVDD 3.3 V Analog Supply.
17 −OUTD Negative Analog Output for Channel D.
18 +OUTD Positive Analog Output for Channel D.
19 −OUTC Negative Analog Output for Channel C.
20 +OUTC Positive Analog Output for Channel C.
21 −OUTB Negative Analog Output for Channel B.
22 +OUTB Positive Analog Output for Channel B.
23 −OUTA Negative Analog Output for Channel A.
24 +OUTA Positive Analog Output for Channel A.
25 AVDD 3.3 V Analog Supply.
26 VIO Digital Level Select for SPI and RESET. This pin can accept 1.8 V to 3.3 V.
27 RESET Reset Input. RESET overrides the SPI and powers down the device and returns all settings back to default. RESET is
pulled to ground by default. A logic high triggers the reset.
28 SCLK Serial Clock.
29 CS Chip Select Bar.
30 SDI Serial Data Input.
31 SDO Serial Data Output.
32 AVDD 3.3 V Analog Supply.
Data Sheet ADA8282
Rev. 0 | Page 7 of 21
TYPICAL PERFORMANCE CHARACTERISTICS
AVDD = 3.3 V, LNA + PGA gain = 36 dB (LNA gain = 24 dB, PGA gain = 12 dB), TA = 25°C, PGA_BIAS_SEL = b’10, LNA_BIAS_SEL=
b’10, unless otherwise noted.
25000
0
5000
10000
15000
20000
NUMBER O F HI TS
GAI N E RROR (dB)
T
A
= –40° C
T
A
= +25°C
T
A
= +125°C
13132-103
–0.20
–0.19
–0.18
–0.17
–0.16
–0.15
–0.14
–0.13
–0.12
–0.11
–0.10
–0.09
–0.08
–0.07
–0.06
–0.05
–0.04
–0.03
–0.02
–0.01
0
Figure 3. Gain Accuracy Distribution
3000
2500
2000
1500
1000
0
500
–150 –100 –50 050 100 150
NUMBER O F HI TS
V
OS
(mV)
T
A
= –40° C
T
A
= +25°C
T
A
= +125°C N: 12199
M: –13.1269
SD: 19. 535
N: 12353
M: –7.49789
SD: 20. 0841
N: 11292
M: 0.0246995
SD: 21. 4755
13132-110
Figure 4. Output Offset Voltage Distribution
3000
2500
2000
1500
1000
0
500
0.050
0.045
0.040
0.035
0.030
0.025
0.020
0.015
0.010
0.005
0
NUMBER O F HI TS
DC GAI N M ISM ATCH ( dB)
TA = –40° C
TA = +25°C
TA = +125°C
13132-106
Figure 5. Distribution of Channel to Channel Gain Matching
350
300
250
200
150
100
50
0
–0.30
–0.25
–0.20
–0.15
–0.10
–0.05
0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
NUMBER O F HI TS
PHASE M ISM ATCH ( Degrees)
T
A
= –40° C
T
A
= +125°C
13132-107
Figure 6. Distribution of Channel to Channel Phase Matching
0
–20
–40
–60
–80
–120
–100
0 54321
THD ( dB)
FREQUENCY (MHz)
24dB
30dB
36dB
18dB
13132-108
Figure 7. Total Harmonic Distortion (THD) vs. Frequency for Various
Gains, VOUT = −10 dBm
1800
1600
1400
1200
1000
800
600
400
200
01k 1G10M 100M1M100k10k
INPUT IMPEDANCE (Ω)
FRE Q UE NCY ( Hz )
13132-109
Figure 8. Input Impedance vs. Frequency
ADA8282 Data Sheet
Rev. 0 | Page 8 of 21
TIME (80ns/DIV)
ANALOG OUTPUT (1V/DIV)
2V
250mV
ANALOG OUT P UT
SDI
b'00 b'11
13132-105
Figure 9. Gain Step Transient Response
30
25
20
15
10
5
01k 10k 100k 1M 10M 100M
NOISE (nV/√Hz)
FREQUENCY ( Hz )
GAI N = 18dB
GAI N = 24dB
GAI N = 30dB
GAI N = 36dB
13132-111
Figure 10. Input Referred Noise vs. Frequency
40
35
30
25
20
15
10
5
01k 10k 100k 1M 10M 100M
NOISE FIGURE (dB)
FREQUENCY ( Hz )
UNTERMINATED
50Ω
13132-112
Figure 11. Noise Figure vs. Frequency
42
–24
–18
–12
–6
0
6
12
18
24
30
36
100k 1M 10M 100M
GAI N ( dB)
FREQUENCY ( Hz )
GAI N = 36dB
GAI N = 30dB
GAI N = 24dB
GAI N = 18dB
13132-113
Figure 12. Frequency Response at All Gains (Bias Mode 0)
42
–24
–18
–12
–6
0
6
12
18
24
30
36
100k 1M 10M 100M
GAI N ( dB)
FREQUENCY ( Hz )
GAI N = 36dB
GAI N = 30dB
GAI N = 24dB
GAI N = 18dB
13132-114
Figure 13. Frequency Response at All Gains (Bias Mode 2)
4
–4
–3
–2
–1
0
1
2
3
0800700
600500400300200100
AMPLITUDE (V)
TIME (ns)
V
IN
× GAIN
V
OUT
13132-115
Figure 14. Overdrive Recovery
Data Sheet ADA8282
Rev. 0 | Page 9 of 21
200
–50
0
50
100
150
01000800600400200
V
OUT
(mV)
TIME (ns)
NO LOAD
5pF
33pF
66pF
100pF
13132-116
Figure 15. Pulse Response at Various Output Capacitive Loads
0100 200 300 400 500 600 700 800 900 1000
VOUT (V)
TIME (ns)
–1.5
–1.0
–0.5
0
0.5
1.0
1.5 MODE 0
MODE 1
MODE 2
MODE 3
13132-121
Figure 16. Larg e Signal
500
300
320
340
360
380
400
420
440
460
480
–40 –25 10 520 35 50 65 80 95 110 125
SHORT- CI RCUIT CURRE NT ( mA)
TEMPERATURE (°C)
13132-118
Figure 17. Short-Circuit Current vs. Temperature Per Channel
30
20
21
22
23
24
25
26
27
28
29
–40 –25 10 520 35 50 65 80 95 110 125
SLEW RATE (V/µs)
TEMPERATURE (°C)
GAI N = 18dB
GAI N = 24dB
GAI N = 30dB
GAI N = 36dB
13132-119
Figure 18. Output Slew Rate vs. Temperature
18 24 30 36
V
OUT
(V)
GAI N ( dB)
–3.4
–3.0
–2.6
–2.2
–1.8
–1.4
–1.0
–0.6
–0.2
0.2
0.6
1.0
1.4
1.8
2.2
2.6
3.0
3.4
13132-125
Figure 19. Maximum and Minimum Differential VOUT vs. Gain
4
–4
–3
–2
–1
0
1
2
3
10 100 1k 10k 100k
OUTPUT VOLTAGE SWING (V)
OUTPUT LOAD RESISTANCE (Ω)
T
A
= –40° C
T
A
= +25°C
T
A
= +85°C
13132-117
Figure 20. Differential Output Voltage Swing vs. Output Load Resistance
ADA8282 Data Sheet
Rev. 0 | Page 10 of 21
120
0
20
40
60
80
100
10k 100k 1M 10M 100M
PSRR ( dB)
FREQUENCY ( Hz )
GAI N = 18dB
GAI N = 24dB
GAI N = 30dB
GAI N = 36dB
13132-122
Figure 21. PSRR vs. Frequency at Various Gains
100
0
20
40
60
80
10
30
50
70
90
100k 1M 10M 100M
CMRR (dB)
FRE Q UE NCY ( Hz )
GAI N = 18dB
GAI N = 24dB
GAI N = 30dB
GAI N = 36dB
13132-123
Figure 22. CMRR vs. Frequency at Various Gains
0
–140
–120
–100
–80
–60
–40
–20
10k 100k 1M 10M 100M
CROSS TAL K ( dB)
FREQUENCY ( Hz )
13132-124
Figure 23. Crosstalk vs. Frequency
–40 –25 10 520 35 50 65 80 95 110 125
SUPPLY CURRE NT (mA)
TEMPERATURE (°C)
37.55
37.60
37.65
37.70
37.75
37.80
37.85
13132-120
Figure 24. Quiescent Supply Current vs. Temperature
Data Sheet ADA8282
Rev. 0 | Page 11 of 21
THEORY OF OPERATION
RADAR RECEIVE PATH AFE
The primary application for the ADA8282 is a high speed ramp,
frequency modulated, continuous wave radar (HSR-FMCW radar).
Figure 25 shows a simplified block diagram of an HSR-FMCW
radar system. The signal chain requires multiple channels, each
including an LNA and a PGA. The ADA8282 provides these key
components in a single 5 mm × 5 mm LFCSP.
The performance of each component is designed to meet the
demands of an HSR-FMCW radar system. Some examples of
these performance metrics are the LNA noise, PGA gain range,
and signal chain bandwidth and power. The ADA8282 also has
adjustable power modes to adjust the power and performance
level to accommodate a wide variety of applications.
The ADA8282 is programmable via the SPI. Channel gain,
power mode, and offset voltage can be adjusted using the SPI port.
DEFAULT SPI SETTINGS
When initially powered, the ADA8282 defaults to a setting of
0x00 in Register 0x17, which disables all channels. The device is
enabled by writing 0x0F to Register 0x17.
INPUT IMPEDANCE
The input impedance to the ADA8282 is set by an internal 785 Ω
resistance at each input, biased to midsupply by an internal voltage
buffer. Both the positive and negative inputs are biased with the
same network, creating a differential input impedance of 1.57 kΩ.
The input to the ADA8282 is typically ac-coupled. The ac
coupling capacitors operate with the input impedance of the
ADA8282 to create a high-pass filter with a pole at 1/(2π2RC),
where R = 785 Ω with a typical tolerance of ±15%.
POWER MODES
The ADA8282 has four power modes that can be controlled
through Register 0x14 (BIAS_SEL). The power modes allow a
user to adjust the power and performance tradeoffs to suit the end
application. Use the low power mode when power savings are in
demand, and use the high power mode in applications that
require increased bandwidth and low noise.
Table 6 shows the power performance trade-offs of the various
SPI settings.
Table 6. Power Mode Trade-Offs
Mode
Setting
Power per
Channel
(mW)
Input Referred
Noise at 2 MHz
(nV/√Hz)
Typical Bandwidth
(MHz), Gain = 36 dB
b’00 18.3 4.5 20.5
b’01 26.5 3.8 34.2
b’10 34.8 3.6 42.3
b’11 54.8 3.4 52.3
PA
DSP
ANTENNA
VCO
12-BIT
ADC
12-BIT
ADC
12-BIT
ADC
PGALNA
PGALNA
PGALNA
ADA8282
REF.
OSCILLATOR CHIRP RAMP
GENERATOR
TRANSMIT SIGNAL GENERATION
13132-021
Figure 25. Typical Signal Chain Overview
ADA8282 Data Sheet
Rev. 0 | Page 12 of 21
PROGRAMMABLE GAIN RANGE
The ADA8282 has a programmable gain to allow adjusting of
the output amplitudes of signals to accommodate a variety of
applications. The gain of the ADA8282 is programmable in 6 dB
increments from 18 dB to 36 dB. The gain is controlled using
Register 0x15. The same register controls all four channels, but
each channel can be independently controlled by utilizing the
appropriate bits in the register. Channel A is controlled with the
two LSBs of Register 0x15 (Bits[1:0]), Channel B uses Bits[3:2],
Channel C uses Bits[5:4], and Channel D uses the two MSBs,
Bits[7:6].
The gain setting and gains are listed in Table 7.
Table 7. Gain Settings
Register 0x15 Setting Gain (dB) Gain (V/V)
b’00 18 7.9
b’01 24 15.9
b’10 30 31.6
b’11 36 63.1
OUTPUT SWING VARIATION WITH GAIN
The ADA8282 gain is implemented using two internal gain stages.
The first stage is an LNA with a gain of 24 dB, and the second
stage is a PGA with a gain that varies from −6 dB to +12 dB. The
output of the LNA has a fixed output swing range, and is the
limiting factor when the channel gain is 18 dB. Because of the
limitations of the LNA swing range, the ADA8282 has an output
swing that is dependent on gain, as shown in Table 8.
Table 8. Output Swing at Various Gains
Gain (dB) Output Swing (V p-p)
18 3.1
24 6.3
30 6.3
36 6.3
OFFSET VOLTAGE ADJUSTMENTS
Register 0x10 through Register 0x13 adjust the dc offset voltage
of each channel. The default value of 0x20 is intended to be the
setting for the offset closest to 0 V, but adjustments can be made
as required by the application.
The default setting (0x20) applies a zero offset, 0x00 applies the
maximum negative offset, and 0x3F applies the maximum
positive offset.
The range and resolution of the LNA_OFFSETx adjustments
are dependent on the LNA bias mode as described in Table 9.
Table 9. Offset Voltage Adjustments
LNA_BIAS_SEL
Setting
Referred to Input (RTI)
Offset Resolution (μV)
RTI Offset
Range (mV)
b’00 113 ±4
b’01 186 ±6
b’10 250 ±8
b’11 440 ±14
VIO Pin
The VIO pin sets the voltage levels used by the SPI interface. If
the VIO pin is tied to the 3.3 V supply, the SPI port functions
on 3.3 V logic.
SINGLE-ENDED OR DIFFERENTIAL INPUT
The ADA8282 operates with either a differential or single-ended
signal source. The maximum input voltage swing is the same in
either configuration. When using a single-ended signal source,
connect the unused input to ground with a capacitor. Matching
the ac coupling capacitor to the ac grounding capacitor
optimizes CMRR performance.
SHORT-CIRCUIT CURRENTS
The ADA8282 typically has a 205 mA short-circuit current per
output pin. The thermal implications of this current during
unintended shorting of these outputs must be taken into account
when designing boards with this device.
SPI INTERFACE
The ADA8282 SPI interface uses a 4-wire interface to deliver a
16-bit instruction header, followed by 8 bits of data. The first bit
is a read/write bit. W1 and W0 determine how many bytes are
transferred, and must both be zeros for the ADA8282 to write to a
single register. Then, a 13-bit address and an 8-bit data byte follow.
The SPI port operates at SCLK frequencies of up to 10 MHz.
For additional SPI timing information, see the AN-877
Application Note.
A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0A12W0W1R/W
CS
SCLK
SDI
DON’T CARE
DON’T CARE
DON’T CARE
DON’T CARE
16-BIT INSTRUCTION HEADER
MSB-FIRST 16-BIT INSTRUCTION
REGISTER (N) DATA
13132-022
Figure 26. Serial Instruction Details
Data Sheet ADA8282
Rev. 0 | Page 13 of 21
CHANNEL TO CHANNEL PHASE MATCHING
In a multichannel radar application, matching the ac performance
between channels improves the distance and angle resolution of
a detected object, particularly the phase matching in the band of
interest for the application. The ADA8282 layout and design are
optimized to increase phase matching. The ADA8282 also has
sufficient bandwidth to minimize any channel to channel phase
variation for up to 5 MHz input signals.
The phase mismatch between channels can be calibrated at a
single temperature. However, any variation in phase matching
over temperature can still degrade system performance. The
ADA8282 is characterized to capture the maximum channel to
channel phase mismatch as the temperature varies from a
calibration temperature of 25°C.
Figure 27 shows a distribution of channel to channel phase
mismatch for signal frequencies up to 5 MHz. When the initial
phase mismatch between channels is normalized to 0° at +25°C,
the 6σ mismatch is 0.43° at −40°C and 0.6° at +125°C.
350
300
250
200
150
100
50
0
–0.30
–0.25
–0.20
–0.15
–0.10
–0.05
0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
NUMBER OF HITS
PHASE MISMATCH (Degrees)
T
A
= –40°C
T
A
= +125°C
13132-126
Figure 27. Channel to Channel Phase Mismatch, Normalized to 0° at 25°C,
LNA_BIAS_SEL = PGA_BIAS_SEL = b’00, PGA_GAIN = b’11
The amount of channel to channel phase mismatch varies with
the power mode. Table 10 shows the 6σ phase mismatch up to
5 MHz over the full temperature range for all gain settings in
different power modes, when normalized to 0° at 25°C in each
power mode.
Table 10. Maximum Channel to Channel Phase Mismatch over Temperature After 25°C Calibration
PGA_BIAS_SEL LNA_BIAS_SEL
6σ Channel to Channel Phase Mismatch
over Temperature (Degrees)
Maximum Channel to Channel Phase
Mismatch (Degrees)
b’00 b’00 0.60 ±1
b’01 b’01 0.41 ±1
b’10 b’10 0.33 ±1
b’11 b’11 0.60 ±1
ADA8282 Data Sheet
Rev. 0 | Page 14 of 21
APPLICATIONS INFORMATION
INCREASED GAIN USING TWO ADA8282 DEVICES
IN SERIES
For applications that require gains greater than 36 dB, two
ADA8282 devices can be used in series with each other. To
optimize the signal swing for the path, increment the gains
according to Table 11.
Table 11. Gain Settings for Two Devices in Series
Total Gain (dB)
A1 (Input Side
ADA8282) Gain (dB)
A2 (Output Side
ADA8282) Gain (dB)
36 18 18
42 18 24
48 24 24
54 30 24
60 30 30
66 36 30
72 36 36
24
+OUTA
23
–OUTA
22
+OUTB
21
–OUTB
20
+OUTC
19
–OUTC
18
+OUTD
17
–OUTD
1
2
3
4
5
6
7
8
+INA
–INA
+INB
–INB
+INC
–INC
+IND
–IND
9
10
11
12
13
14
15
16
AVDD
NIC
NIC
NIC
NIC
NIC
NIC
AVDD
32
31
30
29
28
27
26
25
ADA8282
EPAD TIED
TO GROUND
AVDD
SDO
SDI
CS
SCLK
RESET
VIO
AVDD
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF 0.1µF
0.1µF 0.1µF
+3.3V+3.3V
+3.3V
GPIO: +3.3V/0V
+3.3V
10k
SPI BUS
24
+OUTA
23
–OUTA
22
+OUTB
21
–OUTB
20
+OUTC
19
–OUTC
18
+OUTD
17
–OUTD
1
2
3
4
5
6
7
8
+INA
–INA
+INB
–INB
+INC
–INC
+IND
–IND
9
10
11
12
13
14
15
16
AVDD
NIC
NIC
NIC
NIC
NIC
NIC
AVDD
32
31
30
29
28
27
26
25
ADA8282
EPAD TIED
TO GROUND
AVDD
SDO
SDI
CS
SCLK
RESET
VIO
AVDD
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
INPUT A
SOURCE
INPUT B
SOURCE
INPUT C
SOURCE
INPUT D
SOURCE
0.1µF 0.1µF
0.1µF 0.1µF
+3.3V+3.3V
+3.3V
GPIO: +3.3V/0V
+3.3V
10k
SPI BUS
TO ADC
TO ADC
TO ADC
TO ADC
13132-023
Figure 28. Using Two ADA8282 Devices in Series to Increase Gain
Data Sheet ADA8282
Rev. 0 | Page 15 of 21
MULTIPLEXING INPUTS USING MULTIPLE
ADA8282 DEVICES
It is possible to multiplex eight differential inputs down to four
differential outputs by using two ADA8282 devices. The devices
can be connected such that the outputs are connected (see
Figure 29) as long as only one device is enabled at a time. When
an ADA8282 is disabled, the outputs present a 6 kΩ load on the
output bus.
24
+OUTA
23
–OUTA
22
+OUTB
21
–OUTB
20
+OUTC
19
–OUTC
18
+OUTD
17
–OUTD
1
2
3
4
5
6
7
8
+INA
–INA
+INB
–INB
+INC
–INC
+IND
–IND
9
10
11
12
13
14
15
16
AVDD
NIC
NIC
NIC
NIC
NIC
NIC
AVDD
32
31
30
29
28
27
26
25
ADA8282
EPAD TIED
TO GROUND
AVDD
SDO
SDI
CS
SCLK
RESET
VIO
AVDD
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
INPUT A
SOURCE
INPUT B
SOURCE
INPUT C
SOURCE
INPUT D
SOURCE
0.1µF 0.1µF
0.1µF 0.1µF
+3.3V+3.3V
+3.3V
GPIO: +3.3V/0V
+3.3V
10k
SPI BUS
24
+OUTA
23
–OUTA
22
+OUTB
21
–OUTB
20
+OUTC
19
–OUTC
18
+OUTD
17
–OUTD
1
2
3
4
5
6
7
8
+INA
–INA
+INB
–INB
+INC
–INC
+IND
–IND
9
10
11
12
13
14
15
16
AVDD
NIC
NIC
NIC
NIC
NIC
NIC
AVDD
32
31
30
29
28
27
26
25
ADA8282
EPAD TIED
TO GROUND
AVDD
SDO
SDI
CS
SCLK
RESET
VIO
AVDD
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
INPUT E
SOURCE
INPUT F
SOURCE
INPUT G
SOURCE
INPUT H
SOURCE
0.1µF 0.1µF
0.1µF 0.1µF
+3.3V+3.3V
+3.3V
GPIO: +3.3V/0V
+3.3V
10k
SPI BUS
TO ADC
TO ADC
TO ADC
TO ADC
13132-024
Figure 29. Multiplexing by Connecting Two ADA8282 Outputs to One Output Bus
ADA8282 Data Sheet
Rev. 0 | Page 16 of 21
BASIC CONNECTIONS FOR A TYPICAL
APPLICATION
The ADA8282 is typically configured to operate with a nominal
3.3 V power supply, using the EPAD as the analog ground
connection. Place the bypass capacitors as close as possible to
the power supply pins to minimize the length of metal traces in
series with the bypassing paths. AC couple the inputs and
outputs for each channel as shown in Figure 30. Pull the RESET pin
low with a 10 kΩ resistor and drive it with 3.3 V GPIO logic.
The SPI pins can be directly connected to the SPI bus.
24
+OUTA
23
–OUTA
22
+OUTB
21
–OUTB
20
+OUTC
19
–OUTC
18
+OUTD
17
–OUTD
1
2
3
4
5
6
7
8
+INA
–INA
+INB
–INB
+INC
–INC
+IND
–IND
9
10
11
12
13
14
15
16
AVDD
NIC
NIC
NIC
NIC
NIC
NIC
AVDD
32
31
30
29
28
27
26
25
ADA8282
EPAD TIED
TO GROUND
AVDD
SDO
SDI
CS
SCLK
RESET
VIO
AVDD
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
INPUT A
SOURCE
INPUT B
SOURCE
INPUT C
SOURCE
INPUT D
SOURCE
0.1µF 0.1µF
0.1µF 0.1µF
+3.3V+3.3V
+3.3V
GPIO: +3.3V/0V
+3.3V
10k
SPI BUS
TO ADC
TO ADC
TO ADC
TO ADC
13132-025
Figure 30. Typical Component Connections
Data Sheet ADA8282
Rev. 0 | Page 17 of 21
REGISTER MAP
REGISTER SUMMARY
Table 12. Register Summary
Reg. Name Bits Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset RW
0x00 INTF_CONFA [7:0] INTF_CONFA2 LSBFIRST1 INTF_CONFA1 LSBFIRST0 INTF_CONFA0 0x00 RW
0x01 SOFT_RESET [7:0] Unused SOFT_RESET 0x00 R
0x04 CHIP_ID1 [7:0] CHIP_IDLOW 0x82 R
0x05 CHIP_ID2 [7:0] CHIP_IDHI 0x82 R
0x06 Revision [7:0] Revision 0x00 R
0x10 LNA_OFFSET0 [7:0] Unused LNA_OFFSET0 0x20 RW
0x11 LNA_OFFSET1 [7:0] Unused LNA_OFFSET1 0x20 RW
0x12 LNA_OFFSET2 [7:0] Unused LNA_OFFSET2 0x20 RW
0x13 LNA_OFFSET3 [7:0] Unused LNA_OFFSET3 0x20 RW
0x14 BIAS_SEL [7:0] Unused PGA_BIAS_SEL LNA_BIAS_SEL 0x0A RW
0x15 PGA_GAIN [7:0] PGA_GAIN3 PGA_GAIN2 PGA_GAIN1 PGA_GAIN0 0x00 RW
0x17 EN_CHAN [7:0] Unused EN_
CHANNEL3
EN_
CHANNEL2
EN_
CHANNEL1
EN_
CHANNEL0
0x00 RW
0x18 EN_BIAS_GEN [7:0] Unused EN_BIAS_GEN 0x00 RW
0x1D SPAREWR0 [7:0] Unused GPIO_WRITE GPIO_WR_
MODE
0x00 RW
0x1E SPARERD0 [7:0] Unused GPIO_READ 0x00 R
REGISTER DETAILS
Register 0x00: Interface Configuration Register
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
INTF_CONFA2 LSBFIRST1 INTF_CONFA1 LSBFIRST0 INTF_CONFA0
The INTF_CONFA configuration register is symmetric, as it is the first register written and sets the data direction (LSB first or MSB first).
Table 13. INTF_CONFA Configuration Register Bit Descriptions
Bits Bit Name Description Reset Access
[7:0] INTF_CONFA2 INTF_CONFA2 must remain b’00. 0x00 RW
5 LSBFIRST1 LSBFIRST1 must be set to b’1 for LSB first operation and to b’0 for MSB first operation. 0x00 RW
[4:3] INTF_CONFA1 INTF_CONFA1 must remain b’00. 0x00 RW
2 LSBFIRST0 LSBFIRST0 must be set to b’1 for LSB first operation and to b’0 for MSB first operation. 0x00 RW
[1:0] INTF_CONFA0 INTF_CONFA0 must remain b’00. 0x00 RW
Register 0x01: Soft Reset Register
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unused SOFT_RESET
Table 14. SOFT_RESET Configuration Register Bit Descriptions
Bits Bit Name Description Reset Access
0 SOFT_RESET The SOFT_RESET bit resets all registers to their default values when SOFT_RESET is set to b’1. 0x00 RW
Register 0x04: Chip ID Low Register
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
CHIP_IDLOW
Table 15. CHIP_IDLOW Configuration Register Bit Descriptions
Bits Bit Name Description Reset Access
[7:0] CHIP_IDLOW The CHIP_ID1 and CHIP_ID2 registers identify the ADA8282. 0x82 R
ADA8282 Data Sheet
Rev. 0 | Page 18 of 21
Register 0x05: Chip ID High Register
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
CHIP_IDHI
Table 16. CHIP_IDHI Configuration Register Bit Descriptions
Bits Bit Name Description Reset Access
[7:0] CHIP_IDHI The CHIP_ID1 and CHIP_ID2 registers identify the ADA8282. 0x82 R
Register 0x06: Revision Register
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Revision
Table 17. Revision Configuration Register Bit Descriptions
Bits Bit Name Description Reset Access
[7:0] Revision The revision register identifies the silicon revision of the current die. 0x00 R
Register 0x10: LNA Offset 0 Register
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unused LNA_OFFSET0
Table 18. LNA_OFFSET0 Configuration Register Bit Descriptions
Bits Bit Name Description Reset Access
[5:0] LNA_OFFSET0
LNA_OFFSET0 controls the offset of Channel A. The default setting (0x20) applies the minimum
offset, 0x00 applies the maximum negative offset, and 0x3F applies the maximum positive offset.
0x20 RW
The resolution of the offset varies with the LNA bias mode as follows:
LNA Bias Mode 0: 113 μV RTI offset resolution, ±4 mV range.
LNA Bias Mode 1: 186 μV RTI offset resolution, ±6 mV range.
LNA Bias Mode 2: 250 μV RTI offset resolution, ±8 mV range.
LNA Bias Mode 3: 440 μV RTI offset resolution, ±14 mV range.
Register 0x11: LNA Offset 1 Register
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unused LNA_OFFSET1
Table 19. LNA_OFFSET1 Configuration Register Bit Descriptions
Bits Bit Name Description Reset Access
[5:0] LNA_OFFSET1
LNA_OFFSET0 controls the offset of Channel B. The default setting (0x20) applies the minimum
offset, 0x00 applies the maximum negative offset, and 0x3F applies the maximum positive offset.
0x20 RW
The resolution of the offset varies with the LNA bias mode as follows:
LNA Bias Mode 0: 113 μV RTI offset resolution, ±4 mV range.
LNA Bias Mode 1: 186 μV RTI offset resolution, ±6 mV range.
LNA Bias Mode 2: 250 μV RTI offset resolution, ±8 mV range.
LNA Bias Mode 3: 440 μV RTI offset resolution, ±14 mV range.
Register 0x12: LNA Offset 2 Register
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unused LNA_OFFSET2
Data Sheet ADA8282
Rev. 0 | Page 19 of 21
Table 20. LNA_OFFSET2 Configuration Register Bit Descriptions
Bits Bit Name Description Reset Access
[5:0] LNA_OFFSET2
LNA_OFFSET0 controls the offset of Channel C. The default setting (0x20) applies the minimum
offset, 0x00 applies the maximum negative offset, and 0x3F applies the maximum positive offset.
0x20 RW
The resolution of the offset varies with the LNA bias mode as follows:
LNA Bias Mode 0: 113 μV RTI offset resolution, ±4 mV range.
LNA Bias Mode 1: 186 μV RTI offset resolution, ±6 mV range.
LNA Bias Mode 2: 250 μV RTI offset resolution, ±8 mV range.
LNA Bias Mode 3: 440 μV RTI offset resolution, ±14 mV range.
Register 0x13: LNA Offset 3 Register
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unused LNA_OFFSET3
Table 21. LNA_OFFSET3 Configuration Register Bit Descriptions
Bits Bit Name Description Reset Access
[5:0] LNA_OFFSET3
LNA_OFFSET0 controls the offset of Channel D. The default setting (0x20) applies the minimum
offset, 0x00 applies the maximum negative offset, and 0x3F applies the maximum positive offset.
0x20 RW
The resolution of the offset varies with the LNA bias mode as follows:
LNA Bias Mode 0: 113 μV RTI offset resolution, ±4 mV range.
LNA Bias Mode 1: 186 μV RTI offset resolution, ±6 mV range.
LNA Bias Mode 2: 250 μV RTI offset resolution, ±8 mV range.
LNA Bias Mode 3: 440 μV RTI offset resolution, ±14 mV range.
Register 0x14: PGA Bias Register
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unused PGA_BIAS_SEL LNA_BIAS_SEL
The PGA bias select register allows the user to trade off power and performance (for example, bandwidth and noise).
Table 22. BIAS_SEL Configuration Register Bit Descriptions
Bits Bit Name Description Reset Access
[3:2] PGA_BIAS_SEL Set PGA_BIAS_SEL to b’00 for the minimum PGA bias and to b’11 for the maximum PGA bias. 0x00 RW
[1:0] LNA_BIAS_SEL Set LNA_BIAS_SEL to b’00 for the minimum LNA bias and to b’11 for the maximum LNA bias. 0x00 RW
Register 0x15: PGA Gain Register
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PGA_GAIN3 PGA_GAIN2 PGA_GAIN1 PGA_GAIN0
The PGA gain register allows independent gain settings for each channel.
Table 23. PGA_GAIN Configuration Register Bit Descriptions
Bits Bit Name Description Reset Access
[7:6] PGA_GAIN3 Set PGA_GAIN3 to b’00 for 18 dB gain, to b’01 for 24 dB gain, to b’10 for 30 dB gain, and to
b’11 for 36 dB gain for Channel D
0x00 RW
[5:4] PGA_GAIN2 Set PGA_GAIN2 to b’00 for 18 dB gain, to b’01 for 24 dB gain, to b’10 for 30 dB gain, and to
b’11 for 36 dB gain for Channel C
0x00 RW
[3:2] PGA_GAIN1 Set PGA_GAIN1 to b’00 for 18 dB gain, to b’01 for 24 dB gain, to b’10 for 30 dB gain, and to
b’11 for 36 dB gain for Channel B
0x00 RW
[1:0] PGA_GAIN0 Set PGA_GAIN0 to b’00 for 18 dB gain, to b’01 for 24 dB gain, to b’10 for 30 dB gain, and to
b’11 for 36 dB gain for Channel A
0x00 RW
ADA8282 Data Sheet
Rev. 0 | Page 20 of 21
Register 0x17: Enable Channel Register
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unused EN_CHANNEL3 EN_CHANNEL2 EN_CHANNEL1 EN_CHANNEL0
The enable channel register allows individual channels to be enabled or disabled. The default mode for the channel is disabled. Write 0x0F
to the EN_CHAN register to enable all channels.
When a channel is disabled but the bias generator is still enabled, the channels current consumption is <100 μA. When a channel is
disabled, its output pins are high-Z. The enable channel register resets at AVDD power-on to 0x00 to avoid inrush current for fast supply
ramps.
Table 24. EN_CHAN Register Bit Descriptions
Bits Bit Name Description Reset Access
3 EN_CHANNEL3 Set to b’1 to enable Channel D, and set to b’0 to disable Channel D 0x00 RW
2 EN_CHANNEL2 Set to b’1 to enable Channel C, and set to b’0 to disable Channel C 0x00 RW
1 EN_CHANNEL1 Set to b’1 to enable Channel B, and set to b’0 to disable Channel B 0x00 RW
0 EN_CHANNEL0 Set to b’1 to enable Channel A, and set to b’0 to disable Channel A 0x00 RW
Register 0x18: Enable Bias Generator Register
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unused EN_BIAS_GEN
When any channel is enabled, the bias generator is automatically enabled. The EN_BIAS_GEN register controls whether the bias
generator stays active, even when all channels are disabled. Leaving the bias generator active decreases the enable time of the device.
Table 25. EN_BIAS_GEN Register Bit Descriptions
Bits Bit Name Description Reset Access
0 EN_BIAS_GEN Setting EN_BIAS_GEN to 1 keeps the bias generator active, providing a faster enable time (~2 μs). 0x00 RW
Register 0x1D: GPIO Write Register
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unused GPIO_WRITE GPIO_WR_MODE
The GPIO_WR_MODE bit reconfigures the SDO pin to a general-purpose input/output (GPIO) port that can be written by the
GPIO_WRITE register or read by the GPIO_READ register.
Table 26. SPAREWR0 Configuration Register Bit Descriptions
Bits Bit Name Description Reset Access
1 GPIO_WRITE Data bit is put onto the SDO pin when GPIO write mode is active. 0x00 RW
0 GPIO_WR_MODE Write b’1 to this register to activate GPIO write mode. 0x00 RW
Register 0x1E: GPIO Read Register
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unused GPIO_READ
Table 27. SPARERD0 Configuration Register Bit Descriptions
Bits Bit Name Description Reset Access
0 GPIO_READ This register reflects the logic level placed on SDO when a b’0 is written to GPIO_WR_MODE. 0x00 R
Data Sheet ADA8282
Rev. 0 | Page 21 of 21
OUTLINE DIMENSIONS
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.
1
0.50
BSC
3.50 REF
BOTTOM VIEWTOP VIEW
PIN 1
INDICATOR
32
916
17
24
25
8
EXPOSED
PAD
PIN 1
INDICATOR
3.65
3.50 SQ
3.45
S
EATING
PLANE
0.05 MAX
0.02 NOM
0.20 REF
COPLANARITY
0.08
0.30
0.25
0.18
5.10
5.00 SQ
4.90
0.80
0.75
0.70
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
0.50
0.40
0.30
0.25 MIN
04-02-2012-A
Figure 31. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
5 mm × 5 mm Body, Very Very Thin Quad
(CP-32-11)
Dimensions shown in millimeters
ORDERING GUIDE
Model1, 2 Temperature Range Package Description Package Option
ADA8282WBCPZ-R7 −40°C to +125°C 32-Lead LFCSP_WQ, 7” Tape and Reel CP-32-11
ADA8282WBCPZ −40°C to +125°C 32-Lead LFCSP_WQ CP-32-11
ADA8282CP-EBZ Evaluation Board
1 Z = RoHS Compliant Part.
2 W = Qualified for Automotive Applications.
AUTOMOTIVE PRODUCTS
The ADA8282W models are available with controlled manufacturing to support the quality and reliability requirements of automotive
applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to
obtain the specific Automotive Reliability reports for these models.
©2015 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D13132-0-7/15(0)