August 2011 Doc ID 15274 Rev 6 1/103
1
STM32F105xx
STM32F107xx
Connectivity line, ARM-based 32-bit MCU with 64/256 KB Flash, USB
OTG, Ethernet, 10 timers, 2 CANs, 2 ADCs, 14 communication interfaces
Features
Core: ARM 32-bit Cortex™-M3 CPU
72 MHz maximum frequency,
1.25 DMIPS/MHz (Dhrystone 2.1)
performance at 0 wait state memory
access
Single-cycle multiplication and hardware
division
Memories
64 to 256 Kbytes of Flash memory
64 Kbytes of general-purpose SRAM
Clock, reset and supply management
2.0 to 3.6 V application supply and I/Os
POR, PDR, and programmable voltage
detector (PVD)
3-to-25 MHz crystal oscillator
Internal 8 MHz factory-trimmed RC
Internal 40 kHz RC with calibration
32 kHz oscillator for RTC with calibration
Low power
Sleep, Stop and Standby modes
–V
BAT supply for RTC and backup registers
2 × 12-bit, 1 µs A/D converters (16 channels)
Conversion range: 0 to 3.6 V
Sample and hold capability
Temperature sensor
up to 2 MSPS in interleaved mode
2 × 12-bit D/A converters
DMA: 12-channel DMA controller
Supported peripherals: timers, ADCs, DAC,
I2Ss, SPIs, I2Cs and USARTs
Debug mode
Serial wire debug (SWD) & JTAG interfaces
Cortex-M3 Embedded Trace Macrocell
Up to 80 fast I/O ports
51/80 I/Os, all mappable on 16 external
interrupt vectors and almost all 5 V-tolerant
CRC calculation unit, 96-bit unique ID
Up to 10 timers with pinout remap capability
Up to four 16-bit timers, each with up to 4
IC/OC/PWM or pulse counter and
quadrature (incremental) encoder input
1 × 16-bit motor control PWM timer with
dead-time generation and emergency stop
2 × watchdog timers (Independent and
Window)
SysTick timer: a 24-bit downcounter
2 × 16-bit basic timers to drive the DAC
Up to 14 communication interfaces with pinout
remap capability
Up to 2 × I2C interfaces (SMBus/PMBus)
Up to 5 USARTs (ISO 7816 interface, LIN,
IrDA capability, modem control)
Up to 3 SPIs (18 Mbit/s), 2 with a
multiplexed I2S interface that offers audio
class accuracy via advanced PLL schemes
2 × CAN interfaces (2.0B Active) with
512 bytes of dedicated SRAM
USB 2.0 full-speed device/host/OTG
controller with on-chip PHY that supports
HNP/SRP/ID with 1.25 Kbytes of dedicated
SRAM
10/100 Ethernet MAC with dedicated DMA
and SRAM (4 Kbytes): IEEE1588 hardware
support, MII/RMII available on all packages
Table 1. Device summary
Reference Part number
STM32F105xx
STM32F105R8, STM32F105V8
STM32F105RB, STM32F105VB
STM32F105RC, STM32F105VC
STM32F107xx STM32F107RB, STM32F107VB
STM32F107RC, STM32F107VC
LQFP100 14 × 14 mm
LQFP64 10 × 10 mm
FBGA
LFBGA100 10 × 10 mm
www.st.com
Contents STM32F105xx, STM32F107xx
2/103 Doc ID 15274 Rev 6
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . . 13
2.3.2 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 13
2.3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.5 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 13
2.3.6 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.7 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.8 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.9 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.10 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.11 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.12 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.13 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.14 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 16
2.3.15 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.16 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.17 Universal synchronous/asynchronous receiver transmitters (USARTs) 18
2.3.18 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.19 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.20 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . 19
2.3.21 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.22 Universal serial bus on-the-go full-speed (USB OTG FS) . . . . . . . . . . . 20
2.3.23 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.24 Remap capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.25 ADCs (analog-to-digital converters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.26 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.27 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.28 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 22
STM32F105xx, STM32F107xx Contents
Doc ID 15274 Rev 6 3/103
2.3.29 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 36
5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 36
5.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.8 PLL, PLL2 and PLL3 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.11 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 54
5.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.15 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.16 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.17 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.18 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.19 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Contents STM32F105xx, STM32F107xx
4/103 Doc ID 15274 Rev 6
6 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . . 87
7 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Appendix A Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.1 USB OTG FS interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.2 Ethernet interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.3 Complete audio player solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.4 USB OTG FS interface + Ethernet/I2S interface solutions . . . . . . . . . . . . 96
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
STM32F105xx, STM32F107xx List of tables
Doc ID 15274 Rev 6 5/103
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F105xx and STM32F107xx features and peripheral counts . . . . . . . . . . . . . . . . . . 10
Table 3. STM32F105xx and STM32F107xx family versus STM32F103xx family . . . . . . . . . . . . . . 11
Table 4. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 5. Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 6. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 7. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 8. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 9. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 10. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 11. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 12. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 13. Maximum current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 14. Maximum current consumption in Run mode, code with data processing
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 15. Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 39
Table 16. Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 39
Table 17. Typical current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 18. Typical current consumption in Sleep mode, code running from Flash or
RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 19. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 20. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 21. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 22. HSE 3-25 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 23. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 24. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 25. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 26. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 27. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 28. PLL2 and PLL3 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 29. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 30. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 31. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 32. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 33. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 34. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 35. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 36. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 37. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 38. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 39. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 40. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 41. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 42. SCL frequency (fPCLK1= 36 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 43. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 44. I2S characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
List of tables STM32F105xx, STM32F107xx
6/103 Doc ID 15274 Rev 6
Table 45. USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 46. USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 47. USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 48. Ethernet DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 49. Dynamic characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 50. Dynamic characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 51. Dynamic characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 52. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 53. RAIN max for fADC = 14 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 54. ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 55. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 56. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 57. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 58. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 59. LQPF100 – 100-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . 84
Table 60. LQFP64 – 64 pin low-profile quad flat package mechanical data. . . . . . . . . . . . . . . . . . . . 85
Table 61. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 62. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 63. PLL configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 64. Applicative current consumption in Run mode, code with data
processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 65. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
STM32F105xx, STM32F107xx List of figures
Doc ID 15274 Rev 6 7/103
List of figures
Figure 1. STM32F105xx and STM32F107xx connectivity line block diagram . . . . . . . . . . . . . . . . . 12
Figure 2. STM32F105xxx and STM32F107xxx connectivity line BGA100 ballout top view. . . . . . . . 23
Figure 3. STM32F105xxx and STM32F107xxx connectivity line LQFP100 pinout . . . . . . . . . . . . . . 24
Figure 4. STM32F105xxx and STM32F107xxx connectivity line LQFP64 pinout . . . . . . . . . . . . . . . 25
Figure 5. Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 6. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 7. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 8. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 9. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 10. Typical current consumption on VBAT with RTC on vs. temperature at
different VBAT values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 11. Typical current consumption in Stop mode with regulator in Run mode
versus temperature at different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 12. Typical current consumption in Stop mode with regulator in Low-power
mode versus temperature at different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 13. Typical current consumption in Standby mode versus temperature at
different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 14. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 15. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 16. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 17. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 18. Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 19. Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 20. 5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 21. 5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 22. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 23. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 24. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 25. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 26. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 27. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 28. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 29. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 30. USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . 70
Figure 31. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 32. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 33. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 34. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 35. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 36. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . . 77
Figure 37. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . . 77
Figure 38. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 39. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package
outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 40. Recommended PCB design rules (0.80/0.75 mm pitch BGA) . . . . . . . . . . . . . . . . . . . . . . 83
Figure 41. LQFP100, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 42. Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 43. LQFP64 – 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
List of figures STM32F105xx, STM32F107xx
8/103 Doc ID 15274 Rev 6
Figure 44. Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 45. LQFP100 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 46. USB OTG FS device mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 47. Host connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 48. OTG connection (any protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 49. MII mode using a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 50. RMII with a 50 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 51. RMII with a 25 MHz crystal and PHY with PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 52. RMII with a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 53. Complete audio player solution 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 54. Complete audio player solution 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 55. USB OTG FS + Ethernet solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 56. USB OTG FS + I2S (Audio) solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
STM32F105xx, STM32F107xx Introduction
Doc ID 15274 Rev 6 9/104
1 Introduction
This datasheet provides the description of the STM32F105xx and STM32F107xx
connectivity line microcontrollers. For more details on the whole STMicroelectronics
STM32F10xxx family, please refer to Section 2.2: Full compatibility throughout the family.
The STM32F105xx and STM32F107xx datasheet should be read in conjunction with the
STM32F10xxx reference manual.
For information on programming, erasing and protection of the internal Flash memory
please refer to the STM32F10xxx Flash programming manual.
The reference and Flash programming manuals are both available from the
STMicroelectronics website www.st.com.
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical
Reference Manual, available from the www.arm.com website at the following address:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.
2 Description
The STM32F105xx and STM32F107xx connectivity line family incorporates the high-
performance ARM® Cortex™-M3 32-bit RISC core operating at a 72 MHz frequency, high-
speed embedded memories (Flash memory up to 256 Kbytes and SRAM 64 Kbytes), and
an extensive range of enhanced I/Os and peripherals connected to two APB buses. All
devices offer two 12-bit ADCs, four general-purpose 16-bit timers plus a PWM timer, as well
as standard and advanced communication interfaces: up to two I2Cs, three SPIs, two I2Ss,
five USARTs, an USB OTG FS and two CANs. Ethernet is available on the STM32F107xx
only.
The STM32F105xx and STM32F107xx connectivity line family operates in the –40 to
+105 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of
power-saving mode allows the design of low-power applications.
The STM32F105xx and STM32F107xx connectivity line family offers devices in three
different package types: from 64 pins to 100 pins. Depending on the device chosen, different
sets of peripherals are included, the description below gives an overview of the complete
range of peripherals proposed in this family.
These features make the STM32F105xx and STM32F107xx connectivity line
microcontroller family suitable for a wide range of applications such as motor drives and
application control, medical and handheld equipment, industrial applications, PLCs,
inverters, printers, and scanners, alarm systems, video intercom, HVAC and home audio
equipment.
Description STM32F105xx, STM32F107xx
10/104 Doc ID 15274 Rev 6
2.1 Device overview
Figure 1 shows the general block diagram of the device family.
Table 2. STM32F105xx and STM32F107xx features and peripheral counts
Peripherals(1) STM32F105Rx STM32F107Rx STM32F105Vx STM32F107Vx
Flash memory in Kbytes 64 128 256 128 256 64 128 256 128 256
SRAM in Kbytes 64
Package LQFP64 LQFP
100
LQFP100,
BGA100 LQFP100
Ethernet No Yes No Yes
Timers
General-purpose 4
Advanced-control 1
Basic 2
Communication
interfaces
SPI(I2S)(2) 3(2) 3(2) 3(2) 3(2)
I2C2121
USART 5
USB OTG FS Yes
CAN 2
GPIOs 51 80
12-bit ADC
Number of channels
2
16
12-bit DAC
Number of channels
2
2
CPU frequency 72 MHz
Operating voltage 2.0 to 3.6 V
Operating temperatures Ambient temperatures: –40 to +85 °C /–40 to +105 °C
Junction temperature: –40 to + 125 °C
1. Please refer to Table 5: Pin definitions for peripheral availability when the I/O pins are shared by the peripherals required by
the application.
2. The SPI2 and SPI3 interfaces give the flexibility to work in either the SPI mode or the I2S audio mode.
STM32F105xx, STM32F107xx Description
Doc ID 15274 Rev 6 11/104
2.2 Full compatibility throughout the family
The STM32F105xx and STM32F107xx constitute the connectivity line family whose
members are fully pin-to-pin, software and feature compatible.
The STM32F105xx and STM32F107xx are a drop-in replacement for the low-density
(STM32F103x4/6), medium-density (STM32F103x8/B) and high-density
(STM32F103xC/D/E) performance line devices, allowing the user to try different memory
densities and peripherals providing a greater degree of freedom during the development
cycle.
Table 3. STM32F105xx and STM32F107xx family versus STM32F103xx family(1)
STM32
device
Low-density
STM32F103xx devices
Medium-density
STM32F103xx devices
High-density
STM32F103xx devices STM32F105xx STM32F107xx
Flash
size (KB) 16 32 32 64 128 256 384 512 64 128 256 128 256
RAM
size (KB) 6101020204864646464646464
144 pins
5 × USARTs
4 × 16-bit timers,
2 × basic timers, 3 × SPIs,
2 × I2Ss, 2 × I2Cs, USB,
CAN, 2 × PWM timers
3 × ADCs, 2 × DACs,
1 × SDIO, FSMC (100-
and 144-pin packages(2))
100 pins
3 × USARTs
3 × 16-bit
timers
2 × SPIs,
2 × I2Cs, USB,
CAN,
1 × PWM timer
2 × ADCs
5 × USARTs,
4 × 16-bit timers,
2 × basic timers,
3 × SPIs,
2 × I2Ss,
2 × I2Cs,
USB OTG FS,
2 × CANs,
1 × PWM timer,
2 × ADCs,
2 × DACs
5 × USARTs,
4 × 16-bit timers,
2 × basic timers,
3 × SPIs,
2 × I2S,
1 × I2C,
USB OTG FS,
2 × CANs,
1 × PWM timer,
2 × ADCs,
2 × DACs,
Ethernet
64 pins
2 × USARTs
2 × 16-bit timers
1 × SPI, 1 × I2C, USB,
CAN,
1 × PWM timer
2 × ADCs
2 × USARTs
2 × 16-bit
timers
1 × SPI,
1 × I2C,
USB, CAN,
1 × PWM
timer
2 × ADCs
48 pins
36 pins
1. Please refer to Table 5: Pin definitions for peripheral availability when the I/O pins are shared by the peripherals required
by the application.
2. Ports F and G are not available in devices delivered in 100-pin packages.
Description STM32F105xx, STM32F107xx
12/104 Doc ID 15274 Rev 6
2.3 Overview
Figure 1. STM32F105xx and STM32F107xx connectivity line block diagram
1. TA = –40 °C to +85 °C (suffix 6, see Table 62) or –40 °C to +105 °C (suffix 7, see Table 62), junction temperature up to
105 °C or 125 °C, respectively.
2. AF = alternate function on I/O port pin.
PA[ 15:0]
EXT.IT
WWDG
12bit ADC1
16 ADC12_INs
common to
ADC1 & ADC2
JTDI
JTCK/SWCLK
JTMS/SWDIO
NJTRST
JTDO
NRST
VDD = 2 to 3.6 V
80 AF
PB[ 15:0]
PC[15:0]
AHB to
APB2
CAN1_RX as AF
2x(8x16bit)
WKUP
GPIO port AP
GPIO port BP
Fmax: 72 MHz
VSS
SCL,SDA,SMBA
I2C2
GP DMA1
TIM2
TIM3
XT
AL osc
3-25 MHz
XTAL 32kHz
OSC_IN
OSC_OUTC_O
OSC32_OUT
OSC32_IN
APB1 : Fmax= 36 MHz
HCLK
as AF
Flash 256 KB
Voltage reg.
3.3 V to 1.8 V
VDD18Power
Backup interface
as AF
TIM4
Bus Matri x
64 bit
Interface
RTC
RC HS
Cortex-M3 CPU
Ibus
Dbus
obl
Flashl
SRAM 512B
USART1
USART2
SPI2 / I2S2(1)
bxCAN1
7 channels
Backup
register
4 Channels
TIM1
4 compl. Channels
SCL,SDA,SMBA
I2C1
as AF
RX,TX, CTS, RTS,
USART3
Temp sensor
PD[15:0]
PE[15:0]
BKIN, ETR input as AF
4 Channels, ETR
4 Channels, ETR
4 Channels, ETR
FCLK
RC LS
Standby
IWDG
@VDD
@VBAT
POR / PDR
Supply
supervision
@VDDA
VDDA
VSSA
@VDDA
VBAT=1.8 V to 3.6 V
CK as AF
RX,TX, CTS, RTS,
CK as AF
RX,TX, CTS, RTS,
CK as AF
APB2 : Fmax= 72 MHz
NVIC
SPI1
MOSI,MISO,
SCK,NSS as AF
12bit ADC2
IF
IF
interface
PVD
Reset
Int
@VDD
AHB to
APB1
AWU
POR
TAMPER-RTC/
ALARM/SECOND OUT
System
2x(8x16bit)
SPI3 / I2S3
UART4
RX,TX as AF
UART5
RX,TX as AF
TIM5 4 Channel s, ETR
Reset &
clock
control
12bit DAC1
IFIF
IF
12bit DAC 2
@VDDA
USB OTG FS
SOF
VBUS
ID
DM
DP
SRAM
64 KB
GP DMA2
5 channels
TIM6
TIM7
CAN1_TX as AF
SW/JTAG
TPIU ETM
Trace/Trig
TRACECLK
TRACED[0:3]
as AF
as AF
as AF
as AF
as AF
Ethernet MAC
10/100
SRAM 1.25 KB
DPRAM 2 KB DPRAM 2 KB
MII_TXD[3:0]/RMII_TXD[1:0]
MII_TX_CLK/RMII_TX_CLK
MII_TX_EN/RMII_TX_EN
MII_RXD[3:0]/RMII_RXD[1:0]
MII_RX_ER/RMII_RX_ER
MII_RX_CLK/RMII_REF_CLK
MII_RX_DV/RMII_CRS_DV
MII_CRS
MII_COL/RMII_COL
MDC
MDIO
PPS_OUT
bxCAN2
CAN2_RX as AF
CAN2_TX as AF
ai15411
DAC_OUT1 as AF
DAC_OUT2 as AF
@VDDA
PLL
GPIO port C
GPIO port D
GPIO port E
VREF+
VREF–
MOSI/SD, MISO, MCK,
SCK/CK, NSS/WS as AF
MOSI/SD, MISO, MCK,
SCK/CK, NSS/WS as AF
PCLK1
PCLK2
PLL2
PLL3
PLL3
DMA Ethernet
AHB
STM32F105xx, STM32F107xx Description
Doc ID 15274 Rev 6 13/104
2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM
The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded
systems. It has been developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced system response to interrupts.
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an ARM core in the memory size usually
associated with 8- and 16-bit devices.
With its embedded ARM core, STM32F105xx and STM32F107xx connectivity line family is
compatible with all ARM tools and software.
Figure 1 shows the general block diagram of the device family.
2.3.2 Embedded Flash memory
64 to 256 Kbytes of embedded Flash is available for storing programs and data.
2.3.3 CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.
2.3.4 Embedded SRAM
64 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.
2.3.5 Nested vectored interrupt controller (NVIC)
The STM32F105xx and STM32F107xx connectivity line embeds a nested vectored interrupt
controller able to handle up to 67 maskable interrupt channels (not including the 16 interrupt
lines of Cortex™-M3) and 16 priority levels.
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail-chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
Description STM32F105xx, STM32F107xx
14/104 Doc ID 15274 Rev 6
2.3.6 External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 20 edge detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 80 GPIOs can be connected
to the 16 external interrupt lines.
2.3.7 Clocks and startup
System clock selection is performed on startup, however, the internal RC 8 MHz oscillator is
selected as default CPU clock on reset. An external 3-25 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example with
failure of an indirectly used external oscillator).
A single 25 MHz crystal can clock the entire system including the ethernet and USB OTG
FS peripherals. Several prescalers and PLLs allow the configuration of the AHB frequency,
the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum
frequency of the AHB and the high speed APB domains is 72 MHz. The maximum allowed
frequency of the low speed APB domain is 36 MHz. Refer to Figure 55: USB OTG FS +
Ethernet solution on page 96.
The advanced clock controller clocks the core and all peripherals using a single crystal or
oscillator. In order to achieve audio class performance, an audio crystal can be used. In this
case, the I2S master clock can generate all standard sampling frequencies from 8 kHz to
96 kHz with less than 0.5% accuracy error. Refer to Figure 56: USB OTG FS + I2S (Audio)
solution on page 96.
To configure the PLLs, please refer to Table 63 on page 97, which provides PLL
configurations according to the application type.
2.3.8 Boot modes
At startup, boot pins are used to select one of three boot options:
Boot from User Flash
Boot from System Memory
Boot from embedded SRAM
The boot loader is located in System Memory. It is used to reprogram the Flash memory by
using USART1, USART2 (remapped), CAN2 (remapped) or USB OTG FS in device mode
(DFU: device firmware upgrade). For remapped signals refer to Table 5: Pin definitions.
The USART peripheral operates with the internal 8 MHz oscillator (HSI), however the CAN
and USB OTG FS can only function if an external 8 MHz, 14.7456 MHz or 25 MHz clock
(HSE) is present.
For full details about the boot loader, please refer to AN2606.
STM32F105xx, STM32F107xx Description
Doc ID 15274 Rev 6 15/104
2.3.9 Power supply schemes
VDD = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator.
Provided externally through VDD pins.
VSSA, VDDA = 2.0 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs
and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC is used). VDDA
and VSSA must be connected to VDD and VSS, respectively.
VBAT = 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup
registers (through power switch) when VDD is not present.
2.3.10 Power supply supervisor
The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is
always active, and ensures proper operation starting from/down to 2 V. The device remains
in reset mode when VDD is below a specified threshold, VPOR/PDR, without the need for an
external reset circuit.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher
than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
2.3.11 Voltage regulator
The regulator has three operation modes: main (MR), low power (LPR) and power down.
MR is used in the nominal regulation mode (Run)
LPR is used in the Stop modes.
Power down is used in Standby mode: the regulator output is in high impedance: the
kernel circuitry is powered down, inducing zero consumption (but the contents of the
registers and SRAM are lost)
This regulator is always enabled after reset. It is disabled in Standby mode.
2.3.12 Low-power modes
The STM32F105xx and STM32F107xx connectivity line supports three low-power modes to
achieve the best compromise between low power consumption, short startup time and
available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm or the USB
OTG FS wakeup.
Description STM32F105xx, STM32F107xx
16/104 Doc ID 15274 Rev 6
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, SRAM and register contents are lost except for registers in the Backup
domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a
rising edge on the WKUP pin, or an RTC alarm occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
2.3.13 DMA
The flexible 12-channel general-purpose DMAs (7 channels for DMA1 and 5 channels for
DMA2) are able to manage memory-to-memory, peripheral-to-memory and memory-to-
peripheral transfers. The two DMA controllers support circular buffer management,
removing the need for user code intervention when the controller reaches the end of the
buffer.
Each channel is connected to dedicated hardware DMA requests, with support for software
trigger on each channel. Configuration is made by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose, basic
and advanced control timers TIMx, DAC, I2S and ADC.
In the STM32F107xx, there is a DMA controller dedicated for use with the Ethernet (see
Section 2.3.20: Ethernet MAC interface with dedicated DMA and IEEE 1588 support for
more information).
2.3.14 RTC (real-time clock) and backup registers
The RTC and the backup registers are supplied through a switch that takes power either on
VDD supply when present or through the VBAT pin. The backup registers are forty-two 16-bit
registers used to store 84 bytes of user application data when VDD power is not present.
They are not reset by a system or power reset, and they are not reset when the device
wakes up from the Standby mode.
The real-time clock provides a set of continuously running counters which can be used with
suitable software to provide a clock calendar function, and provides an alarm interrupt and a
periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the
internal low power RC oscillator or the high-speed external clock divided by 128. The
internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using
an external 512 Hz output to compensate for any natural quartz deviation. The RTC features
a 32-bit programmable counter for long term measurement using the Compare register to
generate an alarm. A 20-bit prescaler is used for the time base clock and is by default
configured to generate a time base of 1 second from a clock at 32.768 kHz.
For more information, please refer to AN2604: “STM32F101xx and STM32F103xx RTC
calibration”, available from www.st.com.
STM32F105xx, STM32F107xx Description
Doc ID 15274 Rev 6 17/104
2.3.15 Timers and watchdogs
The STM32F105xx and STM32F107xx devices include an advanced-control timer, four
general-purpose timers, two basic timers, two watchdog timers and a SysTick timer.
Ta bl e 4 compares the features of the general-purpose and basic timers.
Advanced-control timer (TIM1)
The advanced control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6
channels. It has complementary PWM outputs with programmable inserted dead-times. It
can also be seen as a complete general-purpose timer. The 4 independent channels can be
used for:
Input capture
Output compare
PWM generation (edge or center-aligned modes)
One-pulse mode output
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).
The counter can be frozen in debug mode.
Many features are shared with those of the standard TIM timers which have the same
architecture. The advanced control timer can therefore work together with the TIM timers via
the Timer Link feature for synchronization or event chaining.
General-purpose timers (TIMx)
There are up to 4 synchronizable standard timers (TIM2, TIM3, TIM4 and TIM5) embedded
in the STM32F105xx and STM32F107xx connectivity line devices. These timers are based
on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent
channels each for input capture/output compare, PWM or one pulse mode output. This
gives up to 16 input captures / output compares / PWMs on the largest packages. They can
work together with the Advanced Control timer via the Timer Link feature for synchronization
or event chaining.
The counter can be frozen in debug mode.
Table 4. Timer feature comparison
Timer Counter
resolution
Counter
type
Prescaler
factor
DMA request
generation
Capture/compare
channels
Complementary
outputs
TIM1 16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Ye s 4 Ye s
TIMx
(TIM2,
TIM3,
TIM4,
TIM5)
16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Ye s 4 N o
TIM6,
TIM7 16-bit Up
Any integer
between 1
and 65536
Ye s 0 N o
Description STM32F105xx, STM32F107xx
18/104 Doc ID 15274 Rev 6
Any of the standard timers can be used to generate PWM outputs. Each of the timers has
independent DMA request generations.
Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger generation. They can also be used as a
generic 16-bit time base.
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 40 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free running timer for application timeout
management. It is hardware or software configurable through the option bytes. The counter
can be frozen in debug mode.
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from the
main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0.
Programmable clock source
2.3.16 I²C bus
Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support
standard and fast modes.
They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A
hardware CRC generation/verification is embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.
2.3.17 Universal synchronous/asynchronous receiver transmitters (USARTs)
The STM32F105xx and STM32F107xx connectivity line embeds three universal
synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3) and
two universal asynchronous receiver transmitters (UART4 and UART5).
These five interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability.
The USART1 interface is able to communicate at speeds of up to 4.5 Mbit/s. The other
available interfaces communicate at up to 2.25 Mbit/s.
STM32F105xx, STM32F107xx Description
Doc ID 15274 Rev 6 19/104
USART1, USART2 and USART3 also provide hardware management of the CTS and RTS
signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All
interfaces can be served by the DMA controller except for UART5.
2.3.18 Serial peripheral interface (SPI)
Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in
full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC/SDHC(a) modes.
All SPIs can be served by the DMA controller.
2.3.19 Inter-integrated sound (I2S)
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available, that can be
operated in master or slave mode. These interfaces can be configured to operate with 16/32
bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to
96 kHz are supported. When either or both of the I2S interfaces is/are configured in master
mode, the master clock can be output to the external DAC/CODEC at 256 times the
sampling frequency with less than 0.5% accuracy error owing to the advanced clock
controller (see Section 2.3.7: Clocks and startup).
Please refer to the “Audio frequency precision” tables provided in the “Serial peripheral
interface (SPI)” section of the STM32F10xxx reference manual.
2.3.20 Ethernet MAC interface with dedicated DMA and IEEE 1588 support
Peripheral not available on STM32F105xx devices.
The STM32F107xx devices provide an IEEE-802.3-2002-compliant media access controller
(MAC) for ethernet LAN communications through an industry-standard media-independent
interface (MII) or a reduced media-independent interface (RMII). The STM32F107xx
requires an external physical interface device (PHY) to connect to the physical LAN bus
(twisted-pair, fiber, etc.). the PHY is connected to the STM32F107xx MII port using as many
as 17 signals (MII) or 9 signals (RMII) and can be clocked using the 25 MHz (MII) or 50 MHz
(RMII) output from the STM32F107xx.
The STM32F107xx includes the following features:
Supports 10 and 100 Mbit/s rates
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM
and the descriptors (see the STM32F105xx/STM32F107xx reference manual for
details)
Tagged MAC frame support (VLAN support)
Half-duplex (CSMA/CD) and full-duplex operation
MAC control sublayer (control frames) support
a. SDHC = Secure digital high capacity.
Description STM32F105xx, STM32F107xx
20/104 Doc ID 15274 Rev 6
32-bit CRC generation and removal
Several address filtering modes for physical and multicast address (multicast and group
addresses)
32-bit status code for each transmitted or received frame
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive
FIFO are both 2 Kbytes, that is 4 Kbytes in total
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 with
the timestamp comparator connected to the TIM2 trigger input
Triggers interrupt when system time becomes greater than target time
2.3.21 Controller area network (CAN)
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to
1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one
CAN is used). The 256 bytes of SRAM which are allocated for each CAN (512 bytes in total)
are not shared with any other peripheral.
2.3.22 Universal serial bus on-the-go full-speed (USB OTG FS)
The STM32F105xx and STM32F107xx connectivity line devices embed a USB OTG full-
speed (12 Mb/s) device/host/OTG peripheral with integrated transceivers. The USB OTG FS
peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It
has software-configurable endpoint setting and supports suspend/resume. The USB OTG
full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL
connected to the HSE oscillator. The major features are:
1.25 KB of SRAM used exclusively by the endpoints (not shared with any other
peripheral)
4 bidirectional endpoints
HNP/SNP/IP inside (no need for any external resistor)
for OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
the SOF output can be used to synchronize the external audio DAC clock in
isochronous mode
in accordance with the USB 2.0 Specification, the supported transfer speeds are:
in Host mode: full speed and low speed
in Device mode: full speed
2.3.23 GPIOs (general-purpose inputs/outputs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-
capable.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
I/Os on APB2 with up to 18 MHz toggling speed
STM32F105xx, STM32F107xx Description
Doc ID 15274 Rev 6 21/104
2.3.24 Remap capability
This feature allows the use of a maximum number of peripherals in a given application.
Indeed, alternate functions are available not only on the default pins but also on other
specific pins onto which they are remappable. This has the advantage of making board
design and port usage much more flexible.
For details refer to Table 5: Pin definitions; it shows the list of remappable alternate functions
and the pins onto which they can be remapped. See the STM32F10xxx reference manual
for software considerations.
2.3.25 ADCs (analog-to-digital converters)
Two 12-bit analog-to-digital converters are embedded into STM32F105xx and
STM32F107xx connectivity line devices and each ADC shares up to 16 external channels,
performing conversions in single-shot or scan modes. In scan mode, automatic conversion
is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
Single shunt
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
The events generated by the standard timers (TIMx) and the advanced-control timer (TIM1)
can be internally connected to the ADC start trigger and injection trigger, respectively, to
allow the application to synchronize A/D conversion and timers.
2.3.26 DAC (digital-to-analog converter)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs. The chosen design structure is composed of integrated
resistor strings and an amplifier in inverting configuration.
This dual digital Interface supports the following features:
two DAC converters: one for each output channel
8-bit or 12-bit monotonic output
left or right data alignment in 12-bit mode
synchronized update capability
noise-wave generation
triangular-wave generation
dual DAC channel independent or simultaneous conversions
DMA capability for each channel
external triggers for conversion
input voltage reference VREF+
Description STM32F105xx, STM32F107xx
22/104 Doc ID 15274 Rev 6
Eight DAC trigger inputs are used in the STM32F105xx and STM32F107xx connectivity line
family. The DAC channels are triggered through the timer update outputs that are also
connected to different DMA channels.
2.3.27 Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 2 V < VDDA < 3.6 V. The temperature sensor is internally
connected to the ADC1_IN16 input channel which is used to convert the sensor output
voltage into a digital value.
2.3.28 Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
2.3.29 Embedded Trace Macrocell™
The ARM® Embedded Trace Macrocell provides a greater visibility of the instruction and
data flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F10xxx through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or
any other high-speed channel. Real-time instruction and data flow activity can be recorded
and then formatted for display on the host computer running debugger software. TPA
hardware is commercially available from common development tool vendors. It operates
with third party debugger software tools.
STM32F105xx, STM32F107xx Pinouts and pin description
Doc ID 15274 Rev 6 23/104
3 Pinouts and pin description
Figure 2. STM32F105xxx and STM32F107xxx connectivity line BGA100 ballout top view
AI16001c
PE10
PC14-
OSC32_IN
PC5PA5
PC3
PB4
PE15
PB2
PC4PA4
H
PE14
PE11PE7
D PD4
PD3
PB8PE3
C
PD0
PC12
PE5
PB5
PC0
PE2
B PC11PD2
PC15-
OSC32_OUT
PB7
PB6
A
87654321
VSS_5
OSC_IN
OSC_OUT VDD_5
G
F
E
PC1
VREF–
PC13-
TAMPER-RTC PB9 PA15
PB3
PE4 PE1
PE0
VSS_1 PD1PE6NRST PC2 VSS_3
VSS_4
NCVDD_3
VDD_4
PB15
VBAT PD5
PD6
BOOT0 PD7
VSS_2
VSSA
PA1
VDD_2 VDD_1
PB14
PA0-WKUP
109
K
J
PD10
PD11
PA8
PA9
PA10
PA11
PA12
PC10
PA13
PA14
PC9 PC7
PC6
PD15
PC8
PD14
PE12
PB1PA7 PB11
PE8
PB0PA6 PB10
PE13PE9VDDA
PB13
VREF+
PA3 PB12
PA2
PD8
PD9 PD13
PD12
Pinouts and pin description STM32F105xx, STM32F107xx
24/104 Doc ID 15274 Rev 6
Figure 3. STM32F105xxx and STM32F107xxx connectivity line LQFP100 pinout
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
VDD_2
VSS_2
NC
PA 1 3
PA 1 2
PA 1 1
PA 1 0
PA 9
PA 8
PC9
PC8
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
PA 3
VSS_4
VDD_4
PA 4
PA 5
PA 6
PA 7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VSS_1
VDD_1
VDD_3
VSS_3
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PE2
PE3
PE4
PE5
PE6
VBAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
VSS_5
VDD_5
OSC_IN
OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VREF-
VREF+
VDDA
PA 0 - W K UP
PA1
PA2
ai14391
LQFP100
STM32F105xx, STM32F107xx Pinouts and pin description
Doc ID 15274 Rev 6 25/104
Figure 4. STM32F105xxx and STM32F107xxx connectivity line LQFP64 pinout
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
VBAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
PD0 OSC_IN
PD1 OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VDDA
PA 0 - W K U P
PA1
PA2
VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA 1 5
PA 1 4
VDD_2
VSS_2
PA 1 3
PA 1 2
PA 1 1
PA 1 0
PA 9
PA 8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
PA3
VSS_4
VDD_4
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS_1
VDD_1
LQFP64
ai14392
Pinouts and pin description STM32F105xx, STM32F107xx
26/104 Doc ID 15274 Rev 6
Table 5. Pin definitions
Pins
Pin name
Type(1)
I / O Level(2)
Main
function(3)
(after reset)
Alternate functions(4)
BGA100
LQFP64
LQFP100
Default Remap
A3 - 1 PE2 I/O FT PE2 TRACECK
B3 - 2 PE3 I/O FT PE3 TRACED0
C3 - 3 PE4 I/O FT PE4 TRACED1
D3 - 4 PE5 I/O FT PE5 TRACED2
E3 - 5 PE6 I/O FT PE6 TRACED3
B2 1 6 VBAT SV
BAT
A2 2 7 PC13-TAMPER-
RTC(5) I/O PC13(6) TAMPER-RTC
A1 3 8 PC14-
OSC32_IN(5) I/O PC14(6) OSC32_IN
B1 4 9 PC15-
OSC32_OUT(5) I/O PC15(6) OSC32_OUT
C2 - 10 VSS_5 SV
SS_5
D2 - 11 VDD_5 SV
DD_5
C1 5 12 OSC_IN I OSC_IN
D1 6 13 OSC_OUT O OSC_OUT
E1 7 14 NRST I/O NRST
F1 8 15 PC0 I/O PC0 ADC12_IN10
F2 9 16 PC1 I/O PC1 ADC12_IN11/ ETH_MII_MDC/
ETH_RMII_MDC
E2 10 17 PC2 I/O PC2 ADC12_IN12/ ETH_MII_TXD2
F3 11 18 PC3 I/O PC3 ADC12_IN13/
ETH_MII_TX_CLK
G1 12 19 VSSA SV
SSA
H1 - 20 VREF- SV
REF-
J1 - 21 VREF+ SV
REF+
K1 13 22 VDDA SV
DDA
G2 14 23 PA0-WKUP I/O PA0
WKUP/USART2_CTS(7)
ADC12_IN0/TIM2_CH1_ETR
TIM5_CH1/
ETH_MII_CRS_WKUP
H 2 1 5 2 4 PA 1 I / O PA 1
USART2_RTS(7)/ ADC12_IN1/
TIM5_CH2 /TIM2_CH2(7)/
ETH_MII_RX_CLK/
ETH_RMII_REF_CLK
STM32F105xx, STM32F107xx Pinouts and pin description
Doc ID 15274 Rev 6 27/104
J 2 1 6 2 5 PA 2 I / O PA 2
USART2_TX(7)/
TIM5_CH3/ADC12_IN2/
TIM2_CH3 (7)/ ETH_MII_MDIO/
ETH_RMII_MDIO
K 2 1 7 2 6 PA 3 I / O PA 3
USART2_RX(7)/
TIM5_CH4/ADC12_IN3 /
TIM2_CH4(7)/ ETH_MII_COL
E4 18 27 VSS_4 SV
SS_4
F4 19 28 VDD_4 SV
DD_4
G 3 2 0 2 9 PA 4 I / O PA 4 SPI1_NSS(7)/DAC_OUT1 /
USART2_CK(7) / ADC12_IN4 SPI3_NSS/I2S3_WS
H 3 2 1 3 0 PA 5 I / O PA 5 SPI1_SCK(7) /
DAC_OUT2 / ADC12_IN5
J 3 2 2 3 1 PA 6 I / O PA 6 SPI1_MISO(7)/ADC12_IN6 /
TIM3_CH1(7) TIM1_BKIN
K 3 2 3 3 2 PA 7 I / O PA 7
SPI1_MOSI(7)/ADC12_IN7 /
TIM3_CH2(7)/
ETH_MII_RX_DV(8)/
ETH_RMII_CRS_DV
TIM1_CH1N
G4 24 33 PC4 I/O PC4
ADC12_IN14/
ETH_MII_RXD0(8)/
ETH_RMII_RXD0
H4 25 34 PC5 I/O PC5
ADC12_IN15/
ETH_MII_RXD1(8)/
ETH_RMII_RXD1
J4 26 35 PB0 I/O PB0 ADC12_IN8/TIM3_CH3/
ETH_MII_RXD2(8) TIM1_CH2N
K4 27 36 PB1 I/O PB1 ADC12_IN9/TIM3_CH4(7)/
ETH_MII_RXD3(8) TIM1_CH3N
G5 28 37
PB2 I/O FT PB2/BOOT1
H5 - 38 PE7 I/O FT PE7 TIM1_ETR
J5 - 39 PE8 I/O FT PE8 TIM1_CH1N
K5 - 40 PE9 I/O FT PE9 TIM1_CH1
--- V
SS_7 S
--- V
DD_7 S
G6 - 41 PE10 I/O FT PE10 TIM1_CH2N
H6 - 42 PE11 I/O FT PE11 TIM1_CH2
J6 - 43 PE12 I/O FT PE12 TIM1_CH3N
Table 5. Pin definitions (continued)
Pins
Pin name
Type(1)
I / O Level(2)
Main
function(3)
(after reset)
Alternate functions(4)
BGA100
LQFP64
LQFP100
Default Remap
Pinouts and pin description STM32F105xx, STM32F107xx
28/104 Doc ID 15274 Rev 6
K6 - 44 PE13 I/O FT PE13 TIM1_CH3
G7 - 45 PE14 I/O FT PE14 TIM1_CH4
H7 - 46 PE15 I/O FT PE15 TIM1_BKIN
J7 29 47 PB10 I/O FT PB10 I2C2_SCL(8)/USART3_TX(7)/
ETH_MII_RX_ER TIM2_CH3
K7 30 48 PB11 I/O FT PB11
I2C2_SDA(8)/USART3_RX(7)/
ETH_MII_TX_EN/
ETH_RMII_TX_EN
TIM2_CH4
E7 31 49 VSS_1 SV
SS_1
F7 32 50 VDD_1 SV
DD_1
K8 33 51 PB12 I/O FT PB12
SPI2_NSS(8)/I2S2_WS(8)/
I2C2_
SMBA
(8) /
USART3_CK(7)/ TIM1_BKIN(7) /
CAN2_RX/ ETH_MII_TXD0/
ETH_RMII_TXD0
J8 34 52 PB13 I/O FT PB13
SPI2_SCK(8) / I2S2_CK(8) /
USART3_CTS(7)/
TIM1_CH1N/CAN2_TX/
ETH_MII_TXD1/
ETH_RMII_TXD1
H8 35 53 PB14 I/O FT PB14 SPI2_MISO(8) / TIM1_CH2N /
USART3_RTS(7)
G8 36 54 PB15 I/O FT PB15 SPI2_MOSI(8) / I2S2_SD(8) /
TIM1_CH3N(7)
K9 - 55 PD8 I/O FT PD8
USART3_TX/
ETH_MII_RX_DV/
ETH_RMII_CRS_DV
J9 - 56 PD9 I/O FT PD9
USART3_RX/
ETH_MII_RXD0/
ETH_RMII_RXD0
H9 - 57 PD10 I/O FT PD10
USART3_CK/
ETH_MII_RXD1/
ETH_RMII_RXD1
G9 - 58 PD11 I/O FT PD11 USART3_CTS/
ETH_MII_RXD2
K10 - 59 PD12 I/O FT PD12
TIM4_CH1 /
USART3_RTS/
ETH_MII_RXD3
J10 - 60 PD13 I/O FT PD13 TIM4_CH2
H10 - 61 PD14 I/O FT PD14 TIM4_CH3
Table 5. Pin definitions (continued)
Pins
Pin name
Type(1)
I / O Level(2)
Main
function(3)
(after reset)
Alternate functions(4)
BGA100
LQFP64
LQFP100
Default Remap
STM32F105xx, STM32F107xx Pinouts and pin description
Doc ID 15274 Rev 6 29/104
G10 - 62 PD15 I/O FT PD15 TIM4_CH4
F10 37 63 PC6 I/O FT PC6 I2S2_MCK/ TIM3_CH1
E10 38 64 PC7 I/O FT PC7 I2S3_MCK TIM3_CH2
F9 39 65 PC8 I/O FT PC8 TIM3_CH3
E9 40 66 PC9 I/O FT PC9 TIM3_CH4
D 9 4 1 6 7 PA 8 I / O F T PA 8 USART1_CK/OTG_FS_SOF /
TIM1_CH1(8)/MCO
C 9 4 2 6 8 PA 9 I / O F T PA 9 USART1_TX(7)/ TIM1_CH2(7)/
OTG_FS_VBUS
D10 43 69 PA10 I/O FT PA10 USART1_RX(7)/
TIM1_CH3(7)/OTG_FS_ID
C10 44 70 PA11 I/O FT PA11 USART1_CTS / CAN1_RX /
TIM1_CH4(7)/OTG_FS_DM
B10 45 71 PA12 I/O FT PA12 USART1_RTS / OTG_FS_DP /
CAN1_TX(7) / TIM1_ETR(7)
A10 46 72 PA13 I/O FT JTMS-SWDIO
PA13
F8 - 73 Not connected
E6 47 74
V
SS_2
SV
SS_2
F6 48 75
V
DD_2
SV
DD_2
A9 49 76
PA14 I/O FT JTCK-SWCLK PA14
A8 50 77
PA15 I/O FT JTDI SPI3_NSS / I2S3_WS
TIM2_CH1_ETR
/ PA15
SPI1_NSS
B9 51 78
PC10 I/O FT PC10 UART4_TX
USART3_TX/
SPI3_SCK/I2S3_CK
B8 52 79
PC11 I/O FT PC11 UART4_RX
USART3_RX/
SPI3_MISO
C8 53 80
PC12 I/O FT PC12 UART5_TX
USART3_CK/
SPI3_MOSI/I2S3_SD
--81
PD0 I/O FT PD0 OSC_IN
(9)
/
CAN1_RX
--82
PD1 I/O FT PD1 OSC_OUT
(9)
/
CAN1_TX
B7 54 83
PD2 I/O FT PD2 TIM3_ETR / UART5_RX
C7 - 84
PD3 I/O FT PD3
USART2_CTS
D7 - 85
PD4 I/O FT PD4
USART2_RTS
B6 - 86
PD5 I/O FT PD5
USART2_TX
C6 - 87
PD6 I/O FT PD6
USART2_RX
D6 - 88
PD7 I/O FT PD7
USART2_CK
Table 5. Pin definitions (continued)
Pins
Pin name
Type(1)
I / O Level(2)
Main
function(3)
(after reset)
Alternate functions(4)
BGA100
LQFP64
LQFP100
Default Remap
Pinouts and pin description STM32F105xx, STM32F107xx
30/104 Doc ID 15274 Rev 6
A7 55 89
PB3 I/O FT JTDO SPI3_SCK / I2S3_CK PB3 / TRACESWO/
TIM2_CH2 / SPI1_SCK
A6 56 90
PB4 I/O FT NJTRST SPI3_MISO PB4 /
TIM3_CH1/
SPI1_MISO
C5 57 91 PB5 I/O PB5
I2C1_
SMBA
/ SPI3_MOSI /
ETH_MII_PPS_OUT /
I2S3_SD
ETH_RMII_PPS_OUT
TIM3_CH2/SPI1_MOSI/
CAN2_RX
B5 58 92 PB6 I/O FT PB6 I2C1_SCL(7)/TIM4_CH1(7) USART1_TX/CAN2_TX
A5 59 93 PB7 I/O FT PB7 I2C1_SDA(7)/TIM4_CH2(7) USART1_RX
D5 60 94 BOOT0 I BOOT0
B4 61 95 PB8 I/O FT PB8 TIM4_CH3(7)/ ETH_MII_TXD3 I2C1_SCL/CAN1_RX
A4 62 96 PB9 I/O FT PB9 TIM4_CH4(7) I2C1_SDA / CAN1_TX
D4 - 97 PE0 I/O FT PE0 TIM4_ETR
C4 - 98 PE1 I/O FT PE1
E5 63 99 VSS_3 SV
SS_3
F5 64 100 VDD_3 SV
DD_3
1. I = input, O = output, S = supply, HiZ = high impedance.
2. FT = 5 V tolerant. All I/Os are VDD capable.
3. Function availability depends on the chosen device.
4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should
be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).
5. PC13, PC14 and PC15 are supplied through the power switch, and so their use in output mode is limited: they can be used
only in output 2 MHz mode with a maximum load of 30 pF and only one pin can be put in output mode at a time.
6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even
after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the
Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the
STMicroelectronics website: www.st.com.
7. This alternate function can be remapped by software to some other port pins (if available on the used package). For more
details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual,
available from the STMicroelectronics website: www.st.com.
8. SPI2/I2S2 and I2C2 are not available when the Ethernet is being used.
9. For the LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the
functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 and BGA100 packages, PD0
and PD1 are available by default, so there is no need for remapping. For more details, refer to Alternate function I/O and
debug configuration section in the STM32F10xxx reference manual.
Table 5. Pin definitions (continued)
Pins
Pin name
Type(1)
I / O Level(2)
Main
function(3)
(after reset)
Alternate functions(4)
BGA100
LQFP64
LQFP100
Default Remap
STM32F105xx, STM32F107xx Memory mapping
Doc ID 15274 Rev 6 31/104
4 Memory mapping
The memory map is shown in Figure 5.
Figure 5. Memory map
512-Mbyte
block 7
Cortex-M3's
internal
peripherals
512-Mbyte
block 6
Not used
512-Mbyte
block 5
Not used
512-Mbyte
block 4
Not used
512-Mbyte
block 3
Not used
512-Mbyte
block 2
Peripherals
512-Mbyte
block 1
SRAM
0x0000 0000
0x1FFF FFFF
0x2000 0000
0x3FFF FFFF
0x4000 0000
0x5FFF FFFF
0x6000 0000
0x7FFF FFFF
0x8000 0000
0xAFFF FFFF
0xB000 0000
0xBFFF FFFF
0xC000 0000
0xDFFF FFFF
0xE000 0000
0xFFFF FFFF
512-Mbyte
block 0
Code
Flash
0x0804 0000
0x1FFF AFFF
0x1FFF B000 - 0x1FFF F7FF
0x0800 0000
0x0803 FFFF
0x0004 0000
0x07FF FFFF
0x0000 0000
0x0003 FFFF
System memory
Reserved
Reserved
Aliased to Flash or system
memory depending on
BOOT pins
SRAM (aliased
by bit-banding)
Reserved
0x2000 0000
0x2000 FFFF
0x2001 0000
0x3FFF FFFF
RTC
WWDG
0x4000 2800 - 0x4000 2BFF
IWDG
Reserved
SPI2/I2S2
SPI3/I2S3
Reserved
0x4000 2C00 - 0x4000 2FFF
0x4000 3000 - 0x4000 33FF
0x4000 3400 - 0x4000 37FF
0x4000 3800 - 0x4000 3BFF
0x4000 3C00 - 0x4000 3FFF
0x4000 4000 - 0x4000 43FF
USART2 0x4000 4400 - 0x4000 47FF
USART30x4000 4800 - 0x4000 4BFF
UART4 0x4000 4C00 - 0x4000 4FFF
UART5 0x4000 5000 - 0x4000 53FF
I2C1 0x4000 5400 - 0x4000 57FF
I2C2 0x4000 5800 - 0x4000 5BFF
Reserved 0x4000 5C00 - 0x4000 63FF
0x4000 6400 - 0x4000 67FF
bxCAN1
bxCAN2 0x4000 6800 - 0x4000 6BFF
BKP 0x4000 6C00 - 0x4000 6FFF
PWR 0x4000 7000 - 0x4000 73FF
DAC 0x4000 7400 - 0x4000 77FF
AFIO 0x4001 0000 - 0x4001 3FFF
EXTI 0x4001 0400 - 0x4001 07FF
Port A 0x4001 0800 - 0x4001 0BFF
Port B 0x4001 0C00 - 0x4001 0FFF
Port C 0x4001 1000 - 0x4001 13FF
Port D 0x4001 1400 - 0x4001 17FF
Port E 0x4001 1800 - 0x4001 1BFF
Reserved 0x4001 1C00 - 0x4001 23FF
ADC1 0x4001 2400 - 0x4001 27FF
ADC2 0x4001 2800 - 0x4001 2BFF
TIM1 0x4001 2C00 - 0x4001 2FFF
SPI1 0x4001 3000 - 0x4001 33FF
Reserved 0x4001 3400 - 0x4001 37FF
USART1 0x4001 3800 - 0x4001 3BFF
Reserved 0x4001 3C00 - 0x4001 FFFF
DMA2 0x4002 0400 - 0x4002 07FF
Reserved 0x4002 1400 - 0x4002 1FFF
Flash interface 0x4002 2000 - 0x4002 23FF
Reserved 0x4002 2400 - 0x4002 2FFF
CRC 0x4002 3000 - 0x4002 33FF
Reserved 0x4002 3400 - 0x4002 7FFF
Ethernet 0x4002 8000 - 0x4002 9FFF
Reserved 0x4003 0000 - 0x4FFF FFFF
USB OTG FS0x5000 0000 - 0x5003 FFFF
Reserved 0x5000 0400 - 0x5FFF FFFF
ai15412b
0x4002 0800 - 0x4002 0FFF
0x4002 1000 - 0x4002 13FF
Reserved
RCC
DMA1 0x4002 0000 - 0x4002 03FF
Reserved 0x4000 7800 - 0x4000 FFFF
APB2
AHB
0x4000 1800 - 0x4000 27FF
0x4000 0800 - 0x4000 0BFF
0x4000 0C00 - 0x4000 0FFF
0x4000 1000 - 0x4000 13FF
0x4000 1400 - 0x4000 17FF
0x4000 0000 - 0x4000 03FF
0x4000 0400 - 0x4000 07FF
Reserved
TIM7
TIM6
TIM5
TIM4
TIM3
TIM2
APB1
Option bytes0x1FFF F800 - 0x1FFF FFFF
Electrical characteristics STM32F105xx, STM32F107xx
32/104 Doc ID 15274 Rev 6
5 Electrical characteristics
5.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
5.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3Σ).
5.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
2VVDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2Σ).
5.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
5.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 6.
5.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 7.
Figure 6. Pin loading conditions Figure 7. Pin input voltage
ai15664
C = 50 pF
STM32F10xxx pin
ai15665
STM32F10xxx pin
VIN
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 33/104
5.1.6 Power supply scheme
Figure 8. Power supply scheme
Caution: In Figure 8, the 4.7 µF capacitor must be connected to VDD3.
5.1.7 Current consumption measurement
Figure 9. Current consumption measurement scheme
ai14125d
VDD
1/2/3/4/5
Analog:
RCs, PLL,
...
Power switch
V
BAT
GP I/Os
OUT
IN
Kernel logic
(CPU,
Digital
& Memories)
Backup circuitry
(OSC32K,RTC,
Backup registers)
Wake-up logic
5 × 100 nF
+ 1 × 4.7 µF
1.8-3.6V
Regulator
VSS
1/2/3/4/5
VDDA
VREF+
VREF-
VSSA
ADC/
DAC
Level shifter
IO
Logic
VDD
10 nF
+ 1 µF
VREF
10 nF
+ 1 µF
VDD
ai14126
VBAT
VDD
VDDA
IDD_VBAT
IDD
Electrical characteristics STM32F105xx, STM32F107xx
34/104 Doc ID 15274 Rev 6
5.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 6: Voltage characteristics,
Table 7: Current characteristics, and Table 8: Thermal characteristics may cause permanent
damage to the device. These are stress ratings only and functional operation of the device
at these conditions is not implied. Exposure to maximum rating conditions for extended
periods may affect device reliability.
Table 6. Voltage characteristics
Symbol Ratings Min Max Unit
VDD–VSS
External main supply voltage (including VDDA
and VDD)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
–0.3 4.0
V
VIN(2)
2. VIN maximum must always be respected. Refer to Table 7: Current characteristics for the maximum
allowed injected current values.
Input voltage on five volt tolerant pin VSS 0.3 VDD + 4.0
Input voltage on any other pin VSS 0.3 4.0
|ΔVDDx| Variations between different VDD power pins 50 mV
|VSSX VSS| Variations between all the different ground pins 50
VESD(HBM)
Electrostatic discharge voltage (human body
model)
see Section 5.3.11:
Absolute maximum ratings
(electrical sensitivity)
Table 7. Current characteristics
Symbol Ratings Max. Unit
IVDD Total current into VDD/VDDA power lines (source)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
150
mA
IVSS Total current out of VSS ground lines (sink)(1) 150
IIO
Output current sunk by any I/O and control pin 25
Output current source by any I/Os and control pin 25
IINJ(PIN)(2)
2. Negative injection disturbs the analog performance of the device. See Note: on page 75.
Injected current on five volt tolerant pins(3)
3. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 6: Voltage characteristics for the maximum allowed input voltage
values.
-5/+0
Injected current on any other pin(4)
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 6: Voltage characteristics for the maximum allowed input voltage
values.
± 5
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins)(5)
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
± 25
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 35/104
5.3 Operating conditions
5.3.1 General operating conditions
Table 8. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150 °C
TJMaximum junction temperature 150 °C
Table 9. General operating conditions
Symbol Parameter Conditions Min Max Unit
fHCLK Internal AHB clock frequency 0 72
MHzfPCLK1 Internal APB1 clock frequency 0 36
fPCLK2 Internal APB2 clock frequency 0 72
VDD Standard operating voltage 2 3.6 V
VDDA(1)
1. When the ADC is used, refer to Table 52: ADC characteristics.
Analog operating voltage
(ADC not used) Must be the same potential
as VDD(2)
2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV
between VDD and VDDA can be tolerated during power-up and operation.
23.6
V
Analog operating voltage
(ADC used) 2.4 3.6
VBAT Backup operating voltage 1.8 3.6 V
PD
Power dissipation at TA = 85 °C
for suffix 6 or TA = 105 °C for
suffix 7(3)
3. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
LFBGA100 500
mWLQFP100 434
LQFP64 444
PD
Power dissipation at TA = 85 °C
for suffix 6 or TA = 105 °C for
suffix 7(4)
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
LQFP100 434
mW
LQFP64 444
TA
Ambient temperature for 6
suffix version
Maximum power dissipation –40 85 °C
Low power dissipation(5)
5. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
–40 105
Ambient temperature for 7
suffix version
Maximum power dissipation –40 105 °C
Low power dissipation(5) –40 125
TJ Junction temperature range 6 suffix version –40 105 °C
7 suffix version –40 125
Electrical characteristics STM32F105xx, STM32F107xx
36/104 Doc ID 15274 Rev 6
5.3.2 Operating conditions at power-up / power-down
Subject to general operating conditions for TA.
Table 10. Operating conditions at power-up / power-down
5.3.3 Embedded reset and power control block characteristics
The parameters given in Ta bl e 1 1 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Ta bl e 9 .
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate 0
µs/V
VDD fall time rate 20
Table 11. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPVD
Programmable voltage
detector level selection
PLS[2:0]=000 (rising edge) 2.1 2.18 2.26 V
PLS[2:0]=000 (falling edge) 2 2.08 2.16 V
PLS[2:0]=001 (rising edge) 2.19 2.28 2.37 V
PLS[2:0]=001 (falling edge) 2.09 2.18 2.27 V
PLS[2:0]=010 (rising edge) 2.28 2.38 2.48 V
PLS[2:0]=010 (falling edge) 2.18 2.28 2.38 V
PLS[2:0]=011 (rising edge) 2.38 2.48 2.58 V
PLS[2:0]=011 (falling edge) 2.28 2.38 2.48 V
PLS[2:0]=100 (rising edge) 2.47 2.58 2.69 V
PLS[2:0]=100 (falling edge) 2.37 2.48 2.59 V
PLS[2:0]=101 (rising edge) 2.57 2.68 2.79 V
PLS[2:0]=101 (falling edge) 2.47 2.58 2.69 V
PLS[2:0]=110 (rising edge) 2.66 2.78 2.9 V
PLS[2:0]=110 (falling edge) 2.56 2.68 2.8 V
PLS[2:0]=111 (rising edge) 2.76 2.88 3 V
PLS[2:0]=111 (falling edge) 2.66 2.78 2.9 V
VPVDhyst(2) PVD hysteresis 100 mV
VPOR/PDR
Power on/power down
reset threshold
Falling edge 1.8(1)
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
1.88 1.96 V
Rising edge 1.84 1.92 2.0 V
VPDRhyst(2) PDR hysteresis 40 mV
TRSTTEMPO(2)
2. Guaranteed by design, not tested in production.
Reset temporization 1 2.5 4.5 ms
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 37/104
5.3.4 Embedded reference voltage
The parameters given in Ta bl e 1 2 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Ta bl e 9 .
5.3.5 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 9: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to Dhrystone 2.1 code.
Maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at VDD or VSS (no load)
All peripherals are disabled except when explicitly mentioned
The Flash memory access time is adjusted to the fHCLK frequency (0 wait state from 0
to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above)
Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
When the peripherals are enabled fPCLK1 = fHCLK/2, fPCLK2 = fHCLK
The parameters given in Ta bl e 1 3 , Ta bl e 1 4 and Ta b l e 1 5 are derived from tests performed
under ambient temperature and VDD supply voltage conditions summarized in Ta bl e 9 .
Table 12. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.16 1.20 1.26 V
–40 °C < TA < +85 °C 1.16 1.20 1.24 V
TS_vrefint(1)
1. Shortest sampling time can be determined in the application by multiple iterations.
ADC sampling time when
reading the internal reference
voltage
5.1 17.1(2)
2. Guaranteed by design, not tested in production.
µs
VRERINT(2)
Internal reference voltage
spread over the temperature
range
VDD = 3 V ±10 mV 10 mV
TCoeff(2) Temperature coefficient 100 ppm/°C
Electrical characteristics STM32F105xx, STM32F107xx
38/104 Doc ID 15274 Rev 6
Table 13. Maximum current consumption in Run mode, code with data processing
running from Flash
Symbol Parameter Conditions fHCLK
Max(1)
1. Based on characterization, not tested in production.
Unit
TA = 85 °C TA = 105 °C
IDD
Supply current in
Run mode
External clock(2), all
peripherals enabled
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
72 MHz 68 68.4
mA
48 MHz 49 49.2
36 MHz 38.7 38.9
24 MHz 27.3 27.9
16 MHz 20.2 20.5
8 MHz 10.2 10.8
External clock(3), all
peripherals disabled
72 MHz 32.7 32.9
48 MHz 25 25.2
36 MHz 20.3 20.6
24 MHz 14.8 15.1
16 MHz 11.2 11.7
8 MHz 6.6 7.2
Table 14. Maximum current consumption in Run mode, code with data processing
running from RAM
Symbol Parameter Conditions fHCLK
Max(1)
1. Based on characterization, tested in production at VDD max, fHCLK max..
Unit
TA = 85 °C TA = 105 °C
IDD
Supply
current in
Run mode
External clock(2), all
peripherals enabled
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
72 MHz 65.5 66
mA
48 MHz 45.4 46
36 MHz 35.5 36.1
24 MHz 25.2 25.6
16 MHz 18 18.5
8 MHz 10.5 11
External clock(3), all
peripherals disabled
72 MHz 31.4 31.9
48 MHz 27.8 28.2
36 MHz 17.6 18.3
24 MHz 13.1 13.8
16 MHz 10.2 10.9
8 MHz 6.1 7.8
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 39/104
Table 15. Maximum current consumption in Sleep mode, code running from Flash or RAM
Symbol Parameter Conditions fHCLK
Max(1)
Unit
TA = 85 °C TA = 105 °C
IDD
Supply current in
Sleep mode
External clock(2), all
peripherals enabled
72 MHz 48.4 49
mA
48 MHz 33.9 34.4
36 MHz 26.7 27.2
24 MHz 19.3 19.8
16 MHz 14.2 14.8
8 MHz 8.7 9.1
External clock(3), all
peripherals disabled
72 MHz 10.1 10.6
48 MHz 8.3 8.75
36 MHz 7.5 8
24 MHz 6.6 7.1
16 MHz 6 6.5
8 MHz 2.5 3
1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
Table 16. Typical and maximum current consumptions in Stop and Standby modes
Symbol Parameter Conditions
Typ(1) Max
Unit
VDD/VBAT
= 2.0 V
VDD/VBAT
= 2.4 V
VDD/VBAT
= 3.3 V
TA =
85 °C
TA =
105 °C
IDD
Supply current
in Stop mode
Regulator in Run mode, low-speed
and high-speed internal RC
oscillators and high-speed oscillator
OFF (no independent watchdog)
32 33 600 1300
µA
Regulator in Low Power mode, low-
speed and high-speed internal RC
oscillators and high-speed oscillator
OFF (no independent watchdog)
25 26 590 1280
Supply current
in Standby
mode
Low-speed internal RC oscillator and
independent watchdog ON 33.8--
Low-speed internal RC oscillator
ON, independent watchdog OFF 2.8 3.6 - -
Low-speed internal RC oscillator and
independent watchdog OFF, low-
speed oscillator and RTC OFF
1.9 2.1 5(2) 6.5(2)
IDD_VBAT
Backup
domain supply
current
Low-speed oscillator and RTC ON 1.1 1.2 1.4 2.1(2) 2.3(2)
1. Typical values are measured at TA = 25 °C.
2. Based on characterization, not tested in production.
Electrical characteristics STM32F105xx, STM32F107xx
40/104 Doc ID 15274 Rev 6
Figure 10. Typical current consumption on VBAT with RTC on vs. temperature at
different VBAT values
Figure 11. Typical current consumption in Stop mode with regulator in Run mode
versus temperature at different VDD values
0
0.5
1
1.5
2
2.5
40 °C 25 °C 70 °C 85 °C 105 °C
Temperature (°C)
Consumption (µA)
ai17329
0.00
100.00
200.00
300.00
400.00
500.00
600.00
700.00
800.00
900.00
–40 °C 25 °C 85 °C 105 °C
Temperature (°C)
Consumption (µA)
3.6 V
3.3 V
3 V
2.7 V
2.4 V
ai17122
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 41/104
Figure 12. Typical current consumption in Stop mode with regulator in Low-power
mode versus temperature at different VDD values
Figure 13. Typical current consumption in Standby mode versus temperature at
different VDD values
Typical current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at VDD or VSS (no load).
All peripherals are disabled except if it is explicitly mentioned.
The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 24 MHz, 1
wait state from 24 to 48 MHz and 2 wait states above).
Ambient temperature and VDD supply voltage conditions summarized in Ta b l e 9 .
Prefetch is ON (Reminder: this bit must be set before clock setting and bus prescaling)
When the peripherals are enabled fPCLK1 = fHCLK/4, fPCLK2 = fHCLK/2, fADCCLK = fPCLK2/4
0.00
100.00
200.00
300.00
400.00
500.00
600.00
700.00
800.00
900.00
–40 °C 25 °C 85 °C 105 °C
Temperature (°C)
Consumption (µA)
3.6 V
3.3 V
3 V
2.7 V
2.4 V
ai17123
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
–40 °C 25 °C 85 °C 105 °C
Temperature (°C)
Consumption (µA)
3.6 V
3.3 V
3 V
2.7 V
2.4 V
ai17124
Electrical characteristics STM32F105xx, STM32F107xx
42/104 Doc ID 15274 Rev 6
Table 17. Typical current consumption in Run mode, code with data processing
running from Flash
Symbol Parameter Conditions fHCLK
Typ(1)
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.
Unit
All peripherals
enabled(2)
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).
All peripherals
disabled
IDD
Supply
current in
Run mode
External clock(3)
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
72 MHz 47.3 28.3
mA
48 MHz 32 19.6
36 MHz 24.6 15.4
24 MHz 16.8 10.6
16 MHz 11.8 7.4
8 MHz 5.9 3.7
4 MHz 3.7 2.9
2 MHz 2.5 2
1 MHz 1.8 1.53
500 kHz 1.5 1.3
125 kHz 1.3 1.2
Running on high
speed internal RC
(HSI), AHB
prescaler used to
reduce the
frequency
36 MHz 23.9 14.8
mA
24 MHz 16.1 9.7
16 MHz 11.1 6.7
8 MHz 5.6 3.8
4 MHz 3.1 2.1
2 MHz 1.8 1.3
1 MHz 1.16 0.9
500 kHz 0.8 0.67
125 kHz 0.6 0.5
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 43/104
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Ta b l e 1 9 . The MCU is placed
under the following conditions:
all I/O pins are in input mode with a static value at VDD or VSS (no load)
all peripherals are disabled unless otherwise mentioned
the given value is calculated by measuring the current consumption
with all peripherals clocked off
with one peripheral clocked on (with only the clock applied)
ambient operating temperature and VDD supply voltage conditions summarized in
Ta b le 6
Table 18. Typical current consumption in Sleep mode, code running from Flash or
RAM
Symbol Parameter Conditions fHCLK
Typ(1)
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.
Unit
All peripherals
enabled(2)
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).
All peripherals
disabled
IDD
Supply
current in
Sleep mode
External clock(3)
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
72 MHz 28.2 6
mA
48 MHz 19 4.2
36 MHz 14.7 3.4
24 MHz 10.1 2.5
16 MHz 6.7 2
8 MHz 3.2 1.3
4 MHz 2.3 1.2
2 MHz 1.7 1.16
1 MHz 1.5 1.1
500 kHz 1.3 1.05
125 kHz 1.2 1.05
Running on high
speed internal RC
(HSI), AHB prescaler
used to reduce the
frequency
36 MHz 13.7 2.6
24 MHz 9.3 1.8
16 MHz 6.3 1.3
8 MHz 2.7 0.6
4 MHz 1.6 0.5
2 MHz 1 0.46
1 MHz 0.8 0.44
500 kHz 0.6 0.43
125 kHz 0.5 0.42
Electrical characteristics STM32F105xx, STM32F107xx
44/104 Doc ID 15274 Rev 6
Table 19. Peripheral current consumption(1)
1. fHCLK = 72 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, default prescaler value for each peripheral.
Peripheral Typical consumption at 25 °C Unit
AHB ETH_MAC 5.2
mA
OTG_FS 7.7
APB1
TIM2 1.5
TIM3 1.5
TIM4 1.5
TIM5 1.5
TIM6 0.6
TIM7 0.3
SPI2 0.2
USART2 0.5
USART3 0.5
UART4 0.5
UART5 0.5
I2C1 0.5
I2C2 0.5
CAN1 0.8
CAN2 0.8
DAC 0.4
APB2
GPIO A 0.5
mA
GPIO B 0.5
GPIO C 0.5
GPIO D 0.5
GPIO E 0.5
ADC1(2)
2. Specific conditions for ADC: fHCLK = 56 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/4, ADON bit
in the ADC_CR2 register is set to 1.
2.1
ADC2(2) 2.0
TIM1 1.7
SPI1 0.4
USART1 0.9
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 45/104
5.3.6 External clock source characteristics
High-speed external user clock generated from an external source
The characteristics given in Tab l e 2 0 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Ta b l e 9 .
Low-speed external user clock generated from an external source
The characteristics given in Tab l e 2 1 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Ta b l e 9 .
Table 20. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
External user clock source
frequency(1) 1850MHz
VHSEH OSC_IN input pin high level voltage 0.7VDD VDD V
VHSEL OSC_IN input pin low level voltage VSS 0.3VDD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
1. Guaranteed by design, not tested in production.
5
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1) 20
Cin(HSE) OSC_IN input capacitance(1) 5pF
DuCy(HSE) Duty cycle 45 55 %
ILOSC_IN Input leakage current VSS VIN VDD ±1 µA
Table 21. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext
User External clock source
frequency(1)
1. Guaranteed by design, not tested in production.
32.768 1000 kHz
VLSEH
OSC32_IN input pin high level
voltage 0.7VDD VDD
V
VLSEL
OSC32_IN input pin low level
voltage VSS 0.3VDD
tw(LSE)
tw(LSE)
OSC32_IN high or low time(1) 450
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1) 50
Cin(LSE) OSC32_IN input capacitance(1) 5pF
DuCy(LSE) Duty cycle 30 70 %
ILOSC32_IN Input leakage current VSS VIN VDD ±1 µA
Electrical characteristics STM32F105xx, STM32F107xx
46/104 Doc ID 15274 Rev 6
Figure 14. High-speed external clock source AC timing diagram
Figure 15. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 3 to 25 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on characterization
results obtained with typical external components specified in Ta bl e 2 2 . In the application,
the resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
ai14127b
OSC _I N
External
STM32F10xxx
clock source
VHSEH
tf(HSE) tW(HSE)
IL
90%
10%
THSE
t
tr(HSE) tW(HSE)
fHSE_ext
VHSEL
ai14140c
OSC32_IN
External
STM32F10xxx
clock source
VLSEH
tf(LSE) tW(LSE)
IL
90%
10%
TLSE
t
tr(LSE) tW(LSE)
fLSE_ext
VLSEL
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 47/104
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 16). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
Figure 16. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on characterization
results obtained with typical external components specified in Ta bl e 2 3 . In the application,
the resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
Table 22. HSE 3-25 MHz oscillator characteristics(1) (2)
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Based on characterization, not tested in production.
Symbol Parameter Conditions Min Typ Max Unit
fOSC_IN Oscillator frequency 3 25 MHz
RFFeedback resistor 200 kΩ
C
Recommended load capacitance
versus equivalent serial
resistance of the crystal (RS)(3)
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a
humid environment, due to the induced leakage and the bias condition change. However, it is
recommended to take this point into account if the MCU is used in tough humidity conditions.
RS = 30 Ω 30 pF
i2HSE driving current VDD = 3.3 V, VIN =V
SS
with 30 pF load 1mA
gmOscillator transconductance Startup 25 mA/V
tSU(HSE(4)
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
Startup time VDD is stabilized 2 ms
ai14128b
OSC_OU T
OSC_IN fHSE
CL1
RF
STM32F10xxx
8 MHz
resonator
Resonator with
integrated capacitors
Bias
controlled
gain
REXT(1)
CL2
Electrical characteristics STM32F105xx, STM32F107xx
48/104 Doc ID 15274 Rev 6
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Note: For CL1 and CL2 it is recommended to use high-quality external ceramic capacitors in the
5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see
Figure 17). CL1 and CL2, are usually the same size. The crystal manufacturer typically
specifies a load capacitance which is the series combination of CL1 and CL2.
Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where
Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is
between 2 pF and 7 pF.
Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended
to use a resonator with a load capacitance CL
7 pF. Never use a resonator with a load
capacitance of 12.5 pF.
Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF,
then CL1 = CL2 = 8 pF.
Table 23. LSE oscillator characteristics (fLSE = 32.768 kHz) (1)
Symbol Parameter Conditions Min Typ Max Unit
RFFeedback resistor 5MΩ
C(2)
Recommended load capacitance
versus equivalent serial
resistance of the crystal (RS)(3)
RS = 30 kΩ15 pF
I2LSE driving current VDD = 3.3 V, VIN = VSS 1.4 µA
gmOscillator Transconductance 5 µA/V
tSU(LSE)(4) Startup time VDD is stabilized
TA = 50 °C 1.5
s
TA = 25 °C 2.5
TA = 10 °C 4
TA = 0 °C 6
TA = -10 °C 10
TA = -20 °C 17
TA = -30 °C 32
TA = -40 °C 60
1. Based on characterization, not tested in production.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST
microcontrollers”.
3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small RS value for example
MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details
4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached.
This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 49/104
Figure 17. Typical application with a 32.768 kHz crystal
ai14129b
OSC32_OU T
OSC32_IN fLSE
CL1
RF
STM32F10xxx
32.768 KHz
resonator
Resonator with
integrated capacitors
Bias
controlled
gain
CL2
Electrical characteristics STM32F105xx, STM32F107xx
50/104 Doc ID 15274 Rev 6
5.3.7 Internal clock source characteristics
The parameters given in Ta bl e 2 4 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Ta bl e 9 .
High-speed internal (HSI) RC oscillator
Low-speed internal (LSI) RC oscillator
Wakeup time from low-power mode
The wakeup times given in Ta bl e 2 6 is measured on a wakeup phase with a 8-MHz HSI RC
oscillator. The clock source used to wake up the device depends from the current operating
mode:
Stop or Standby mode: the clock source is the RC oscillator
Sleep mode: the clock source is the clock that was set before entering Sleep mode.
Table 24. HSI oscillator characteristics (1)
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency 8 MHz
DuCy(HSI) Duty cycle 45 55 %
ACCHSI
Accuracy of the HSI
oscillator
User-trimmed with the RCC_CR
register(2)
2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from the
ST website www.st.com.
1(3)
3. Guaranteed by design, not tested in production.
%
Factory-
calibrated(4)
4. Based on characterization, not tested in production.
TA = –40 to 105 °C –2 2.5 %
TA = –10 to 85 °C –1.5 2.2 %
TA = 0 to 70 °C –1.3 2 %
TA = 25 °C –1.1 1.8 %
tsu(HSI)(4) HSI oscillator
startup time 12µs
IDD(HSI)(4) HSI oscillator
power consumption 80 100 µA
Table 25. LSI oscillator characteristics (1)
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI(2)
2. Based on characterization, not tested in production.
Frequency 30 40 60 kHz
tsu(LSI)(3)
3. Guaranteed by design, not tested in production.
LSI oscillator startup time 85 µs
IDD(LSI)(3) LSI oscillator power consumption 0.65 1.2 µA
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 51/104
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Ta b l e 9 .
5.3.8 PLL, PLL2 and PLL3 characteristics
The parameters given in Ta bl e 2 7 and Ta bl e 2 8 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Ta bl e 9 .
Table 26. Low-power mode wakeup timings
Symbol Parameter Typ Unit
tWUSLEEP(1)
1. The wakeup times are measured from the wakeup event to the point in which the user application code
reads the first instruction.
Wakeup from Sleep mode 1.8 µs
tWUSTOP(1) Wakeup from Stop mode (regulator in run mode) 3.6 µs
Wakeup from Stop mode (regulator in low power mode) 5.4
tWUSTDBY(1) Wakeup from Standby mode 50 µs
Table 27. PLL characteristics
Symbol Parameter Min(1)
1. Based on characterization, not tested in production.
Max(1) Unit
fPLL_IN
PLL input clock(2)
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT.
312MHz
Pulse width at high level 30 ns
fPLL_OUT PLL multiplier output clock 18 72 MHz
fVCO_OUT PLL VCO output 36 144 MHz
tLOCK PLL lock time 350 µs
Jitter Cycle-to-cycle jitter 300 ps
Table 28. PLL2 and PLL3 characteristics
Symbol Parameter Min(1)
1. Based on characterization, not tested in production.
Max(1) Unit
fPLL_IN
PLL input clock(2)
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT.
35MHz
Pulse width at high level 30 ns
fPLL_OUT PLL multiplier output clock 40 74 MHz
fVCO_OUT PLL VCO output 80 148 MHz
tLOCK PLL lock time 350 µs
Jitter Cycle-to-cycle jitter 400 ps
Electrical characteristics STM32F105xx, STM32F107xx
52/104 Doc ID 15274 Rev 6
5.3.9 Memory characteristics
Flash memory
The characteristics are given at TA = 40 to 105 °C unless otherwise specified.
Table 30. Flash memory endurance and data retention
5.3.10 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Table 29. Flash memory characteristics
Symbol Parameter Conditions Min(1) Typ Max(1)
1. Guaranteed by design, not tested in production.
Unit
tprog 16-bit programming time TA = –40 to +105 °C 40 52.5 70 µs
tERASE Page (1 KB) erase time TA = 40 to +105 °C 20 40 ms
tME Mass erase time TA = –40 to +105 °C 20 40 ms
IDD Supply current
Read mode
fHCLK = 72 MHz with 2 wait
states, VDD = 3.3 V
20 mA
Write / Erase modes
fHCLK = 72 MHz, VDD = 3.3 V 5mA
Power-down mode / Halt,
VDD = 3.0 to 3.6 V 50 µA
Vprog Programming voltage 2 3.6 V
Symbol Parameter Conditions
Value
Unit
Min(1)
1. Based on characterization, not tested in production.
Typ Max
NEND Endurance TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions) 10 kcycles
tRET Data retention
1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
30
Years1 kcycle(2) at TA = 105 °C 10
10 kcycles(2) at TA = 55 °C 20
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 53/104
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the
device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Ta b le 3 1 . They are based on the EMS levels and classes
defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Table 31. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, LQFP100, TA = +25 °C,
fHCLK = 75 MHz, conforms to
IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP100, TA = +25 °C,
fHCLK = 75 MHz, conforms to
IEC 61000-4-2
4A
Electrical characteristics STM32F105xx, STM32F107xx
54/104 Doc ID 15274 Rev 6
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with SAE
IEC61967-2 standard which specifies the test board and the pin loading.
5.3.11 Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 32. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs. [fHSE/fHCLK]
Unit
8/48 MHz 8/72 MHz
SEMI Peak level
VDD = 3.3 V, TA = 25 °C,
LQFP100 package
compliant with IEC61967-2
0.1 to 30 MHz 9 9
dBµV30 to 130 MHz 26 13
130 MHz to 1GHz 25 31
SAE EMI Level 4 4 -
Table 33. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum value(1) Unit
VESD(HBM)
Electrostatic discharge voltage
(human body model)
TA = +25 °C conforming to
JESD22-A114 2 2000
V
VESD(CDM)
Electrostatic discharge voltage
(charge device model)
TA = +25 °C conforming to
JESD22-C101 II 500
1. Based on characterization results, not tested in production.
Table 34. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78A II level A
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 55/104
5.3.12 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into the
I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of spec current injection on adjacent pins or other functional failure (for
example reset, oscillator frequency deviation).
The test results are given in Table 35
5.3.13 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Ta b l e 3 6 are derived from tests
performed under the conditions summarized in Ta bl e 9 . All I/Os are CMOS and TTL
compliant.
Table 35. I/O current injection susceptibility
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on OSC_IN32,
OSC_OUT32, PA4, PA5, PC13 -0 +0
mA
Injected current on all FT pins -5 +0
Injected current on any other pin -5 +5
Table 36. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
Standard IO input low
level voltage –0.3 0.28*(VDD-2 V)+0.8 V V
IO FT(1) input low level
voltage –0.3 0.32*(VDD-2V)+0.75 V V
VIH
Standard IO input high
level voltage 0.41*(VDD-2 V)+1.3 V VDD+0.3 V
IO FT(1) input high level
voltage
VDD > 2 V 0.42*(VDD-2 V)+1 V 5.5 V
VDD 2 V 5.2
Electrical characteristics STM32F105xx, STM32F107xx
56/104 Doc ID 15274 Rev 6
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 18 and Figure 19 for standard I/Os, and
in Figure 20 and Figure 21 for 5 V tolerant I/Os.
Figure 18. Standard I/O input characteristics - CMOS port
Vhys
Standard IO Schmitt
trigger voltage
hysteresis(2)
200 mV
IO FT Schmitt trigger
voltage hysteresis(2) 5% VDD(3) mV
Ilkg Input leakage current (4)
VSS VIN VDD
Standard I/Os ±1µA
VIN= 5 V, I/O FT 3
RPU
Weak pull-
up
equivalent
resistor(5)
All pins
except for
PA 1 0 VIN = VSS
30 40 50 kΩ
PA 1 0 8 1 1 1 5
RPD
Weak pull-
down
equivalent
resistor(5)
All pins
except for
PA 1 0 VIN = VDD
30 40 50 kΩ
PA 1 0 8 1 1 1 5
CIO I/O pin capacitance 5 pF
1. FT = Five-volt tolerant. In order to sustain a voltage higher than VDD+0.3 the internal pull-up/pull-down resistors must be
disabled.
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.
3. With a minimum of 100 mV.
4. Leakage could be higher than max. if negative current is injected on adjacent pins.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
MOS/NMOS contribution to the series resistance is minimum (~10% order).
Table 36. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
AIB
6$$6



)NPUTRANGE
NOTGUARANTEED


6)(6$$

#-/3STANDARDREQUIREMENT6)(6$$

6)(6),6
#-/3STANDARDREQUIREMENT6),6$$





 
7),MAX
7)(MIN
6
$$
6
),
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 57/104
Figure 19. Standard I/O input characteristics - TTL port
AI

)NPUTRANGE
NOTGUARANTEED
6)(6),6






44,REQUIREMENTS 6)( 6
6)(6$$
6),6$$
44,REQUIREMENTS 6),
6
6$$6
7
),MAX
7
)(MIN
Electrical characteristics STM32F105xx, STM32F107xx
58/104 Doc ID 15274 Rev 6
Figure 20. 5 V tolerant I/O input characteristics - CMOS port
Figure 21. 5 V tolerant I/O input characteristics - TTL port
6$$


#-/3STANDARDREQUIREMENTS6)(6$$
#-/3STANDARDREQUIRMENT6),6$$











6)(6),6
6$$6
)NPUTRANGE
NOTGUARANTEED
AIB
6)(6$$
6),6$$



NOTGUARANTEED
)NPUTRANGE


44,REQUIREMENT6)(6
6)(6$$
6),6$$
44,REQUIREMENTS6),6
6)(6),6
6$$6
7),MAX
7)(MIN
AI
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 59/104
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or
source up to +/-20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 5.2:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Ta b le 7 ).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS (see Ta b l e 7 ).
Output voltage levels
Unless otherwise specified, the parameters given in Ta b l e 3 7 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Ta bl e 9 . All I/Os are CMOS and TTL compliant.
Table 37. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
VOL(1)
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 7
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage for an I/O pin
when 8 pins are sunk at same time TTL port
IIO = +8 mA
2.7 V < VDD < 3.6 V
0.4
V
VOH(2)
2. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 7 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
Output high level voltage for an I/O pin
when 8 pins are sourced at same time VDD–0.4
VOL (1) Output low level voltage for an I/O pin
when 8 pins are sunk at same time CMOS port
IIO =+ 8mA
2.7 V < VDD < 3.6 V
0.4
V
VOH (2) Output high level voltage for an I/O pin
when 8 pins are sourced at same time 2.4
VOL(1)(3)
3. Based on characterization data, not tested in production.
Output low level voltage for an I/O pin
when 8 pins are sunk at same time IIO = +20 mA
2.7 V < VDD < 3.6 V
1.3
V
VOH(2)(3) Output high level voltage for an I/O pin
when 8 pins are sourced at same time VDD–1.3
VOL(1)(3) Output low level voltage for an I/O pin
when 8 pins are sunk at same time IIO = +6 mA
2 V < VDD < 2.7 V
0.4
V
VOH(2)(3) Output high level voltage for an I/O pin
when 8 pins are sourced at same time VDD–0.4
Electrical characteristics STM32F105xx, STM32F107xx
60/104 Doc ID 15274 Rev 6
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 22 and
Ta bl e 3 8 , respectively.
Unless otherwise specified, the parameters given in Ta b l e 3 8 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Ta b l e 9 .
Table 38. I/O AC characteristics(1)
1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a
description of GPIO Port configuration register.
MODEx[1:0]
bit value(1) Symbol Parameter Conditions Min Max Unit
10
fmax(IO)out Maximum frequency(2)
2. The maximum frequency is defined in Figure 22.
CL = 50 pF, VDD = 2 V to 3.6 V 2 MHz
tf(IO)out
Output high to low
level fall time CL = 50 pF, VDD = 2 V to 3.6 V
125(3)
3. Guaranteed by design, not tested in production.
ns
tr(IO)out
Output low to high
level rise time 125(3)
01
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V 10 MHz
tf(IO)out
Output high to low
level fall time CL = 50 pF, VDD = 2 V to 3.6 V
25(3)
ns
tr(IO)out
Output low to high
level rise time 25(3)
11
Fmax(IO)out Maximum frequency(2)
CL = 30 pF, VDD = 2.7 V to 3.6 V 50 MHz
CL = 50 pF, VDD = 2.7 V to 3.6 V 30 MHz
CL = 50 pF, VDD = 2 V to 2.7 V 20 MHz
tf(IO)out
Output high to low
level fall time
CL = 30 pF, VDD = 2.7 V to 3.6 V 5(3)
ns
CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3)
CL = 50 pF, VDD = 2 V to 2.7 V 12(3)
tr(IO)out
Output low to high
level rise time
CL = 30 pF, VDD = 2.7 V to 3.6 V 5(3)
CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3)
CL = 50 pF, VDD = 2 V to 2.7 V 12(3)
-t
EXTIpw
Pulse width of
external signals
detected by the EXTI
controller
10 ns
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 61/104
Figure 22. I/O AC characteristics definition
5.3.14 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Ta bl e 3 6 ).
Unless otherwise specified, the parameters given in Ta b l e 3 9 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Ta b l e 9 .
ai14131
10%
90%
50%
tr(IO)out
OUTPUT
EXTERNAL
ON 50pF
Maximum frequency is achieved if (tr + tf) 2/3)T and if the duty cycle is (45-55%)
10 %
50%
90%
when loaded by 50pF
T
tr(IO)out
Table 39. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST)(1)
1. Guaranteed by design, not tested in production.
NRST Input low level voltage –0.5 0.8 V
VIH(NRST)(1) NRST Input high level voltage 2 VDD+0.5
Vhys(NRST)
NRST Schmitt trigger voltage
hysteresis 200 mV
RPU Weak pull-up equivalent resistor(2)
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution
to the series resistance must be minimum (~10% order).
VIN = VSS 30 40 50 kΩ
VF(NRST)(1) NRST Input filtered pulse 100 ns
VNF(NRST)(1) NRST Input not filtered pulse VDD > 2.7 V 300 ns
Electrical characteristics STM32F105xx, STM32F107xx
62/104 Doc ID 15274 Rev 6
Figure 23. Recommended NRST pin protection
2. The reset network protects the device against parasitic resets.
3. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 39. Otherwise the reset will not be taken into account by the device.
5.3.15 TIM timer characteristics
The parameters given in Ta bl e 4 0 are guaranteed by design.
Refer to Section 5.3.12: I/O current injection characteristics for details on the input/output
alternate function characteristics (output compare, input capture, external clock, PWM
output).
ai14132d
STM32F10x
RPU
NRST
(2)
VDD
Filter
Internal reset
0.1 µF
External
reset circuit(1)
Table 40. TIMx(1) characteristics
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM4 and TIM5 timers.
Symbol Parameter Conditions Min Max Unit
tres(TIM) Timer resolution time
1tTIMxCLK
fTIMxCLK = 72 MHz 13.9 ns
fEXT Timer external clock
frequency on CH1 to CH4
0
fTIMxCLK/2 MHz
fTIMxCLK = 72 MHz 036MHz
ResTIM Timer resolution 16 bit
tCOUNTER
16-bit counter clock period
when internal clock is
selected
1 65536 tTIMxCLK
fTIMxCLK = 72 MHz 0.0139 910 µs
tMAX_COUNT Maximum possible count
65536 × 65536 tTIMxCLK
fTIMxCLK = 72 MHz 59.6 s
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 63/104
5.3.16 Communications interfaces
I2C interface characteristics
Unless otherwise specified, the parameters given in Ta b l e 4 1 are derived from tests
performed under the ambient temperature, fPCLK1 frequency and VDD supply voltage
conditions summarized in Ta b l e 9 .
The STM32F105xx and STM32F107xx I2C interface meets the requirements of the
standard I2C communication protocol with the following restrictions: the I/O pins SDA and
SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDD is disabled, but is still present.
The I2C characteristics are described in Ta b l e 4 1 . Refer also to Section 5.3.12: I/O current
injection characteristics for more details on the input/output alternate function characteristics
(SDA and SCL).
Table 41. I2C characteristics
Symbol Parameter
Standard mode I2C(1)
1. Guaranteed by design, not tested in production.
Fast mode I2C(1)(2)
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to
achieve the fast mode I2C frequencies and it must be a mulitple of 10 MHz in order to reach I2C fast mode
maximum clock 400 kHz.
Unit
Min Max Min Max
tw(SCLL) SCL clock low time 4.7 1.3 µs
tw(SCLH) SCL clock high time 4.0 0.6
tsu(SDA) SDA setup time 250 100
ns
th(SDA) SDA data hold time 0(3)
3. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low
period of SCL signal.
0(4)
4. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL.
900(3)
tr(SDA)
tr(SCL)
SDA and SCL rise time 1000 20 + 0.1Cb300
tf(SDA)
tf(SCL)
SDA and SCL fall time 300 300
th(STA) Start condition hold time 4.0 0.6
µs
tsu(STA)
Repeated Start condition
setup time 4.7 0.6
tsu(STO) Stop condition setup time 4.0 0.6 μs
tw(STO:STA)
Stop to Start condition time
(bus free) 4.7 1.3 μs
Cb
Capacitive load for each bus
line 400 400 pF
Electrical characteristics STM32F105xx, STM32F107xx
64/104 Doc ID 15274 Rev 6
Figure 24. I2C bus AC waveforms and measurement circuit
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
Table 42. SCL frequency (fPCLK1= 36 MHz.,VDD = 3.3 V)(1)(2)
1. RP = External pull-up resistance, fSCL = I2C speed,
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external
components used to design the application.
fSCL (kHz)
I2C_CCR value
RP = 4.7 kΩ
400 0x801E
300 0x8028
200 0x803C
100 0x00B4
50 0x0168
20 0x0384
ai14133d
Start
SDA
100 Ω
4.7kΩ
I²C bus
4.7kΩ
100 Ω
VDD
VDD
STM32F10x
SDA
SCL
tf(SDA) tr(SDA)
SCL
th(STA)
tw(SCLH)
tw(SCLL)
tsu(SDA)
tr(SCL) tf(SCL)
th(SDA)
Start repeated
Start
tsu(STA)
tsu(STO)
Stop tsu(STO:STA)
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 65/104
I2S - SPI interface characteristics
Unless otherwise specified, the parameters given in Ta b l e 4 3 for SPI or in Ta bl e 4 4 for I2S
are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Ta b l e 9 .
Refer to Section 5.3.12: I/O current injection characteristics for more details on the
input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK,
SD for I2S).
Table 43. SPI characteristics
Symbol Parameter Conditions Min Max Unit
fSCK
1/tc(SCK)
SPI clock frequency Master mode 18 MHz
Slave mode 18
tr(SCK)
tf(SCK)
SPI clock rise and fall
time Capacitive load: C = 30 pF 8 ns
DuCy(SCK) SPI slave input clock
duty cycle Slave mode 30 70 %
tsu(NSS) NSS setup time Slave mode 4 tPCLK
ns
th(NSS) NSS hold time Slave mode 2 tPCLK
tw(SCKH)
tw(SCKL)
SCK high and low time Master mode, fPCLK = 36 MHz,
presc = 4 50 60
tsu(MI) Data input setup time Master mode 4
tsu(SI) Slave mode 5
th(MI) Data input hold time Master mode 5
th(SI) Slave mode 5
ta(SO)
Data output access
time Slave mode, fPCLK = 20 MHz 3*tPCLK
tv(SO) Data output valid time Slave mode (after enable edge) 34
tv(MO) Data output valid time Master mode (after enable edge) 8
th(SO) Data output hold time Slave mode (after enable edge) 32
th(MO) Master mode (after enable edge) 10
Electrical characteristics STM32F105xx, STM32F107xx
66/104 Doc ID 15274 Rev 6
Figure 25. SPI timing diagram - slave mode and CPHA = 0
Figure 26. SPI timing diagram - slave mode and CPHA = 1(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
ai14134c
SCK Input
CPHA= 0
MOSI
INPUT
MISO
OUT PUT
CPHA= 0
MS B O UT
MSB IN
BI T6 OU T
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
NSS input
tSU(NSS)
tc(SCK)
th(NSS)
ta(SO)
tw(SCKH)
tw(SCKL)
tv(SO) th(SO) tr(SCK)
tf(SCK)
tdis(SO)
tsu(SI)
th(SI)
ai14135
SCK Input
CPHA=1
MOSI
INPUT
MISO
OUT PUT
CPHA=1
MS B O UT
MSB IN
BI T6 OU T
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
tSU(NSS) tc(SCK) th(NSS)
ta(SO)
tw(SCKH)
tw(SCKL)
tv(SO) th(SO) tr(SCK)
tf(SCK)
tdis(SO)
tsu(SI) th(SI)
NSS input
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 67/104
Figure 27. SPI timing diagram - master mode(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
ai14136
SCK Input
CPHA= 0
MOSI
OUTUT
MISO
INP UT
CPHA= 0
MS BIN
M SB OUT
BI T6 IN
LSB OUT
LSB IN
CPOL=0
CPOL=1
B I T1 OUT
NSS input
tc(SCK)
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
th(MI)
High
SCK Input
CPHA=1
CPHA=1
CPOL=0
CPOL=1
tsu(MI)
tv(MO) th(MO)
Electrical characteristics STM32F105xx, STM32F107xx
68/104 Doc ID 15274 Rev 6
Table 44. I2S characteristics
Symbol Parameter Conditions Min Max Unit
fCK
1/tc(CK)
I2S clock frequency
Master data: 16 bits, audio
freq = 48 K 1.52 1.54 MHz
Slave 0 6.5
tr(CK)
tf(CK)
I2S clock rise and fall time capacitive load CL= 50 pF 8
ns
tw(CKH)(1) I2S clock high time Master fPCLK = 16 MHz,
audio freq = 48 K
317 320
tw(CKL)(1) I2S clock low time 333 336
tv(WS) (1) WS valid time Master mode 3
th(WS) (1) WS hold time Master mode I2S2 0
I2S3 0
tsu(WS) (1) WS setup time Slave mode I2S2 4
I2S3 9
th(WS) (1) WS hold time Slave mode 0
DuCy(SCK) I2S slave input clock duty
cycle Slave mode 30 70 %
tsu(SD_MR) (1)
Data input setup time
Master receiver I2S2 8
ns
I2S3 10
tsu(SD_SR) (1) Slave receiver I2S2 3
I2S3 8
th(SD_MR)(1)
Data input hold time
Master receiver I2S2 2
I2S3 4
th(SD_SR) (1) Slave receiver I2S2 2
I2S3 4
tv(SD_ST) (1)(3) Data output valid time Slave transmitter
(after enable edge)
I2S2 23
I2S3 33
th(SD_ST) (1) Data output hold time Slave transmitter
(after enable edge)
I2S2 29
I2S3 27
tv(SD_MT) (1) Data output valid time Master transmitter
(after enable edge)
I2S2 5
I2S3 2
th(SD_MT) (1) Data output hold time Master transmitter
(after enable edge)
I2S2 11
I2S3 4
1. Based on design simulation and/or characterization results, not tested in production.
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 69/104
Figure 28. I2S slave timing diagram (Philips protocol)(1)
1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 29. I2S master timing diagram (Philips protocol)(1)
1. Based on characterization, not tested in production.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
CK Input
CPOL = 0
CPOL = 1
tc(CK)
WS input
SDtransmit
SDreceive
tw(CKH) tw(CKL)
tsu(WS)tv(SD_ST) th(SD_ST)
th(WS)
tsu(SD_SR) th(SD_SR)
MSB receive Bitn receive LSB receive
MSB transmit Bitn transmit LSB transmit
ai14881b
LSB receive(2)
LSB transmit(2)
CK output
CPOL = 0
CPOL = 1
tc(CK)
WS output
SDreceive
SDtransmit
tw(CKH)
tw(CKL)
tsu(SD_MR)
tv(SD_MT) th(SD_MT)
th(WS)
th(SD_MR)
MSB receive Bitn receive LSB receive
MSB transmit Bitn transmit LSB transmit
ai14884b
tf(CK) tr(CK)
tv(WS)
LSB receive(2)
LSB transmit(2)
Electrical characteristics STM32F105xx, STM32F107xx
70/104 Doc ID 15274 Rev 6
USB OTG FS characteristics
The USB OTG interface is USB-IF certified (Full-Speed).
Figure 30. USB OTG FS timings: definition of data signal rise and fall time
Table 45. USB OTG FS startup time
Symbol Parameter Max Unit
tSTARTUP(1)
1. Guaranteed by design, not tested in production.
USB OTG FS transceiver startup time 1 µs
Table 46. USB OTG FS DC electrical characteristics
Symbol Parameter Conditions Min.(1)
1. All the voltages are measured from the local ground potential.
Typ. Max.(1) Unit
Input
levels
VDD
USB OTG FS operating
voltage 3.0(2)
2. The STM32F105xx and STM32F107xx USB OTG FS functionality is ensured down to 2.7 V but not the full
USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
3.6 V
VDI(3)
3. Guaranteed by design, not tested in production.
Differential input sensitivity I(USBDP, USBDM) 0.2
V
VCM(3) Differential common mode
range Includes VDI range 0.8 2.5
VSE(3) Single ended receiver
threshold 1.3 2.0
Output
levels
VOL Static output level low RL of 1.5 kΩ to 3.6 V(4)
4. RL is the load connected on the USB OTG FS drivers
0.3 V
VOH Static output level high RL of 15 kΩ to VSS(4) 2.8 3.6
RPD
Pull-down resistance on
PA11, PA12 VIN = VDD
17 21 24
kΩ
Pull-down resistance on
PA 9 0.65 1.1 2.0
RPU
Pull-up resistance on PA12 VIN = VSS 1.5 1.8 2.1
Pull-up resistance on PA9 VIN = VSS 0.25 0.37 0.55
ai14137
tf
Differen tial
data lines
VSS
V
CR S
tr
Crossover
points
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 71/104
Ethernet characteristics
Ta bl e 4 8 showns the Ethernet operating voltage.
Ta bl e 4 9 gives the list of Ethernet MAC signals for the SMI (station management interface)
and Figure 31 shows the corresponding timing diagram.
Figure 31. Ethernet SMI timing diagram
Ta bl e 5 0 gives the list of Ethernet MAC signals for the RMII and Figure 32 shows the
corresponding timing diagram.
Table 47. USB OTG FS electrical characteristics(1)
1. Guaranteed by design, not tested in production.
Driver characteristics
Symbol Parameter Conditions Min Max Unit
trRise time(2)
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
CL = 50 pF 420ns
tfFall time(2) CL = 50 pF 4 20 ns
trfm Rise/ fall time matching tr/tf90 110 %
VCRS Output signal crossover voltage 1.3 2.0 V
Table 48. Ethernet DC electrical characteristics
Symbol Parameter Min.(1)
1. All the voltages are measured from the local ground potential.
Max.(1) Unit
Input level VDD Ethernet operating voltage 3.0 3.6 V
Table 49. Dynamic characteristics: Ethernet MAC signals for SMI
Symbol Rating Min Typ Max Unit
tMDC MDC cycle time (1.71 MHz, AHB = 72 MHz) 583 583.5 584 ns
td(MDIO) MDIO write data valid time 13.5 14.5 15.5 ns
tsu(MDIO) Read data setup time 35 ns
th(MDIO) Read data hold time 0 ns
ETH_MDC
ETH_MDIO(O)
ETH_MDIO(I)
tMDC
td(MDIO)
tsu(MDIO) th(MDIO)
ai15666c
Electrical characteristics STM32F105xx, STM32F107xx
72/104 Doc ID 15274 Rev 6
Figure 32. Ethernet RMII timing diagram
Ta bl e 5 1 gives the list of Ethernet MAC signals for MII and Figure 32 shows the
corresponding timing diagram.
Figure 33. Ethernet MII timing diagram
Table 50. Dynamic characteristics: Ethernet MAC signals for RMII
Symbol Rating Min Typ Max Unit
tsu(RXD) Receive data setup time 4 ns
tih(RXD) Receive data hold time 2 ns
tsu(DV) Carrier sense set-up time 4 ns
tih(DV) Carrier sense hold time 2 ns
td(TXEN) Transmit enable valid delay time 8 10 16 ns
td(TXD) Transmit data valid delay time 7 10 16 ns
RMII_REF_CLK
RMII_TX_EN
RMII_TXD[1:0]
RMII_RXD[1:0]
RMII_CRS_DV
t
d(TXEN)
t
d(TXD)
t
su(RXD)
t
su(CRS)
t
ih(RXD)
t
ih(CRS)
ai15667
MII_RX_CLK
MII_RXD[3:0]
MII_RX_DV
MII_RX_ER
td(TXEN)
td(TXD)
tsu(RXD)
tsu(ER)
tsu(DV)
tih(RXD)
tih(ER)
tih(DV)
ai15668
MII_TX_CLK
MII_TX_EN
MII_TXD[3:0]
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 73/104
CAN (controller area network) interface
Refer to Section 5.3.12: I/O current injection characteristics for more details on the
input/output alternate function characteristics (CANTX and CANRX).
5.3.17 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Ta b l e 5 2 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Ta b l e 9 .
Note: It is recommended to perform a calibration after each power-up.
Table 51. Dynamic characteristics: Ethernet MAC signals for MII
Symbol Rating Min Typ Max Unit
tsu(RXD) Receive data setup time 10 ns
tih(RXD) Receive data hold time 10 ns
tsu(DV) Data valid setup time 10 ns
tih(DV) Data valid hold time 10 ns
tsu(ER) Error setup time 10 ns
tih(ER) Error hold time 10 ns
td(TXEN) Transmit enable valid delay time 14 16 18 ns
td(TXD) Transmit data valid delay time 13 16 20 ns
Table 52. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Power supply 2.4 3.6 V
VREF+ Positive reference voltage 2.4 VDDA V
IVREF Current on the VREF input pin 160(1) 220(1) µA
fADC ADC clock frequency 0.6 14 MHz
fS(2) Sampling rate 0.05 1 MHz
fTRIG(2) External trigger frequency fADC = 14 MHz 823 kHz
17 1/fADC
VAIN Conversion voltage range(3) 0 (VSSA or VREF-
tied to ground) VREF+ V
RAIN(2) External input impedance See Equation 1 and
Ta bl e 5 3 for details 50 kΩ
RADC(2) Sampling switch resistance 1 kΩ
CADC(2) Internal sample and hold capacitor 8 pF
tCAL(2) Calibration time fADC = 14 MHz 5.9 µs
83 1/fADC
Electrical characteristics STM32F105xx, STM32F107xx
74/104 Doc ID 15274 Rev 6
Equation 1: RAIN max formula
The formula above (Equation 1) is used to determine the maximum external impedance allowed for an
error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
tlat(2) Injection trigger conversion latency fADC = 14 MHz 0.214 µs
3(4) 1/fADC
tlatr(2) Regular trigger conversion latency fADC = 14 MHz 0.143 µs
2(4) 1/fADC
tS(2) Sampling time fADC = 14 MHz 0.107 17.1 µs
1.5 239.5 1/fADC
tSTAB(2) Power-up time 0 0 1 µs
tCONV(2) Total conversion time (including
sampling time)
fADC = 14 MHz 1 18 µs
14 to 252 (tS for sampling +12.5 for
successive approximation) 1/fADC
1. Based on characterization, not tested in production.
2. Guaranteed by design, not tested in production.
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
4. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 52.
Table 52. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 53. RAIN max for fADC = 14 MHz(1)
1. Based on characterization, not tested in production.
Ts (cycles) tS (µs) RAIN max (kΩ)
1.5 0.11 0.4
7.5 0.54 5.9
13.5 0.96 11.4
28.5 2.04 25.2
41.5 2.96 37.2
55.5 3.96 50
71.5 5.11 NA
239.5 17.1 NA
RAIN
TS
fADC CADC 2N2+
()ln××
--------------------------------------------------------------RADC
<
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 75/104
Note: ADC accuracy vs. negative injection current: Injecting a negative current on any of the
standard (non-robust) analog input pins should be avoided as this significantly reduces the
accuracy of the conversion being performed on another analog input. It is recommended to
add a Schottky diode (pin to ground) to standard analog pins which may potentially inject
negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 5.3.12 does not affect the ADC accuracy.
Table 54. ADC accuracy - limited test conditions(1)
1. ADC DC accuracy values are measured after internal calibration.
Symbol Parameter Test conditions Typ Max(2)
2. Based on characterization, not tested in production.
Unit
ET Total unadjusted error fPCLK2 = 56 MHz,
fADC = 14 MHz, RAIN < 10 kΩ,
VDDA = 3 V to 3.6 V
TA = 25 °C
Measurements made after
ADC calibration
±1.3 ±2
LSB
EO Offset error ±1 ±1.5
EG Gain error ±0.5 ±1.5
ED Differential linearity error ±0.7 ±1
EL Integral linearity error ±0.8 ±1.5
Table 55. ADC accuracy(1) (2)
1. ADC DC accuracy values are measured after internal calibration.
2. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
Symbol Parameter Test conditions Typ Max(3)
3. Based on characterization, not tested in production.
Unit
ET Total unadjusted error
fPCLK2 = 56 MHz,
fADC = 14 MHz, RAIN < 10 kΩ,
VDDA = 2.4 V to 3.6 V
Measurements made after
ADC calibration
±2 ±5
LSB
EO Offset error ±1.5 ±2.5
EG Gain error ±1.5 ±3
ED Differential linearity error ±1 ±2
EL Integral linearity error ±1.5 ±3
Electrical characteristics STM32F105xx, STM32F107xx
76/104 Doc ID 15274 Rev 6
Figure 34. ADC accuracy characteristics
Figure 35. Typical connection diagram using the ADC
1. Refer to Ta b l e 5 2 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
EO
EG
1LSB
IDEAL
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) End point correlation line
ET=Total Unadjusted Error: maximum deviation
between the actual and the ideal transfer curves.
EO=Offset Error: deviation between the first actual
transition and the first ideal one.
EG=Gain Error: deviation between the last ideal
transition and the last actual one.
ED=Differential Linearity Error: maximum deviation
between actual steps and the ideal one.
EL=Integral Linearity Error: maximum deviation
between any actual transition and the end point
correlation line.
4095
4094
4093
5
4
3
2
1
0
7
6
1234567 4093 4094 4095 4096
(1)
(2)
ET
ED
EL
(3)
VDDA
VSSA
ai14395b
VREF+
4096 (or depending on package)]
VDDA
4096
[1LSBIDEAL =
ai14139d
STM32F10xxx
VDD
AINx
IL±1 µA
0.6 V
VT
RAIN(1)
Cparasitic
VAIN
0.6 V
VT
RADC(1)
C
ADC(1)
12-bit
converter
Sample and hold ADC
converter
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 77/104
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 36 or Figure 37,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 36. Power supply and reference decoupling (VREF+ not connected to VDDA)
1. VREF+ and VREF– inputs are available only on 100-pin packages.
Figure 37. Power supply and reference decoupling (VREF+ connected to VDDA)
1. VREF+ and VREF– inputs are available only on 100-pin packages.
VREF+
STM32F10xxx
VDDA
VSSA/V REF-
1 µF // 10 nF
1 µF // 10 nF
ai14380
c
(See note 1)
(See note 1)
VREF+/VDDA
STM32F10xxx
1 µF // 10 nF
VREF–/VSSA
ai14381
c
(See note 1)
(See note 1)
Electrical characteristics STM32F105xx, STM32F107xx
78/104 Doc ID 15274 Rev 6
5.3.18 DAC electrical specifications
Table 56. DAC characteristics
Symbol Parameter Min Typ Max Unit Comments
VDDA Analog supply voltage 2.4 3.6 V
VREF+ Reference supply voltage 2.4 3.6 V VREF+ must always be below VDDA
VSSA Ground 0 0 V
RLOAD(1) Resistive load with buffer ON 5 kΩ
RO(1) Impedance output with buffer
OFF 15 kΩ
When the buffer is OFF, the
Minimum resistive load between
DAC_OUT and VSS to have a 1%
accuracy is 1.5 MΩ
CLOAD(1) Capacitive load 50 pF
Maximum capacitive load at
DAC_OUT pin (when the buffer is
ON).
DAC_OUT
min(1)
Lower DAC_OUT voltage
with buffer ON 0.2 V
It gives the maximum output
excursion of the DAC.
It corresponds to 12-bit input code
(0x0E0) to (0xF1C) at VREF+ =
3.6 V and (0x155) to (0xEAB) at
VREF+ = 2.4 V
DAC_OUT
max(1)
Higher DAC_OUT voltage
with buffer ON VDDA – 0.2 V
DAC_OUT
min(1)
Lower DAC_OUT voltage
with buffer OFF 0.5 mV It gives the maximum output
excursion of the DAC.
DAC_OUT
max(1)
Higher DAC_OUT voltage
with buffer OFF VREF+ – 1LSB V
IDDVREF+
DAC DC current consumption
in quiescent mode (Standby
mode)
220 µA
With no load, worst code (0xF1C)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
IDDA
DAC DC current consumption
in quiescent mode (Standby
mode)
380 µA With no load, middle code (0x800)
on the inputs
480 µA
With no load, worst code (0xF1C)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
DNL(2)
Differential non linearity
Difference between two
consecutive code-1LSB)
±0.5 LSB Given for the DAC in 10-bit
configuration.
±2 LSB Given for the DAC in 12-bit
configuration.
INL(2)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
±1 LSB Given for the DAC in 10-bit
configuration.
±4 LSB Given for the DAC in 12-bit
configuration.
STM32F105xx, STM32F107xx Electrical characteristics
Doc ID 15274 Rev 6 79/104
Figure 38. 12-bit buffered /non-buffered DAC
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.
Offset(2)
Offset error
(difference between
measured value at Code
(0x800) and the ideal value =
VREF+/2)
±10 mV Given for the DAC in 12-bit
configuration
±3 LSB Given for the DAC in 10-bit at
VREF+ = 3.6 V
±12 LSB Given for the DAC in 12-bit at
VREF+ = 3.6 V
Gain
error(2) Gain error ±0.5 % Given for the DAC in 12bit
configuration
tSETTLING(2)
Settling time (full scale: for a
10-bit input code transition
between the lowest and the
highest input codes when
DAC_OUT reaches final
value ±1LSB
34µs
CLOAD 50 pF,
RLOAD 5 kΩ
Update
rate(2)
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
1MS/s
CLOAD 50 pF,
RLOAD 5 kΩ
tWAKEUP(2)
Wakeup time from off state
(Setting the ENx bit in the
DAC Control register)
6.5 10 µs
CLOAD 50 pF, RLOAD 5 kΩ
input code between lowest and
highest possible ones.
PSRR+ (1)
Power supply rejection ratio
(to VDDA) (static DC
measurement
–67 –40 dB No RLOAD, CLOAD = 50 pF
1. Guaranteed by design, not tested in production.
2. Guaranteed by characterization, not tested in production.
Table 56. DAC characteristics (continued)
Symbol Parameter Min Typ Max Unit Comments
R
LOAD
C
LOAD
Buffered/Non-buffered DAC
DACx_OUT
Buffer(1)
12-bit
digital to
analog
converter
ai17157
Electrical characteristics STM32F105xx, STM32F107xx
80/104 Doc ID 15274 Rev 6
5.3.19 Temperature sensor characteristics
Table 57. TS characteristics
Symbol Parameter Min Typ Max Unit
TL(1)
1. Based on characterization, not tested in production.
VSENSE linearity with temperature ±1±2°C
Avg_Slope(1) Average slope 4.0 4.3 4.6 mV/°C
V25(1) Voltage at 25 °C 1.34 1.43 1.52 V
tSTART(2)
2. Guaranteed by design, not tested in production.
Startup time 4 10 µs
TS_temp(3)(2)
3. Shortest sampling time can be determined in the application by multiple iterations.
ADC sampling time when reading the
temperature 17.1 µs
STM32F105xx, STM32F107xx Package characteristics
Doc ID 15274 Rev 6 81/104
6 Package characteristics
6.1 Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Package characteristics STM32F105xx, STM32F107xx
82/104 Doc ID 15274 Rev 6
Figure 39. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package
outline
Table 58. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package
mechanical data
Dim.
mm inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 1.700 0.0026
A1 0.270 0.0004
A2 1.085 0.0017
A3 0.30 0.0005
A4 0.80 0.0012
b 0.45 0.50 0.55 0.0007 0.0008 0.0009
D 9.85 10.00 10.15 0.0153 0.0155 0.0157
D1 7.20 0.0111
E 9.85 10.00 10.15 0.0153 0.0155 0.0157
E1 7.20 0.0111
e 0.80 0.0012
F 1.40 0.0022
ddd 0.12 0.0002
eee 0.15 0.0002
fff 0.08 0.0001
N (number of balls) 100
STM32F105xx, STM32F107xx Package characteristics
Doc ID 15274 Rev 6 83/104
Figure 40. Recommended PCB design rules (0.80/0.75 mm pitch BGA)
Dpad
Dsm
Dpad 0.37 mm
Dsm 0.52 mm typ. (depends on solder
mask registration tolerance
Solder paste 0.37 mm aperture diameter
Non solder mask defined pads are recommended
4 to 6 mils screen print
Package characteristics STM32F105xx, STM32F107xx
84/104 Doc ID 15274 Rev 6
Figure 41. LQFP100, 100-pin low-profile quad flat
package outline(1) Figure 42. Recommended footprint(1)(2)
1. Drawing is not to scale.
2. Dimensions are in millimeters.
D
D1
D3
75 51
50
76
100 26
125
E3 E1 E
e
b
Pin 1
identification
SEATING PLANE
GAGE PLANE
C
A
A2
A1
Cccc
0.25 mm
0.10 inch
L
L1
k
C
1L_ME
75 51
5076 0.5
0.3
16.7 14.3
100 26
12.3
25
1.2
16.7
1
ai14906
Table 59. LQPF100 – 100-pin low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Typ Min Max Typ Min Max
A 1.60 0.063
A1 0.05 0.15 0.002 0.0059
A2 1.40 1.35 1.45 0.0551 0.0531 0.0571
b 0.22 0.17 0.27 0.0087 0.0067 0.0106
c 0.09 0.20 0.0035 0.0079
D 16.00 15.80 16.20 0.6299 0.622 0.6378
D1 14.00 13.80 14.20 0.5512 0.5433 0.5591
D3 12.00 0.4724
E 16.00 15.80 16.20 0.6299 0.622 0.6378
E1 14.00 13.80 14.20 0.5512 0.5433 0.5591
E3 12.00 0.4724
e0.50 0.0197
L 0.60 0.45 0.75 0.0236 0.0177 0.0295
L1 1.00 0.0394
k3.5°0° 7°3.5°0° 7°
ccc 0.08 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
STM32F105xx, STM32F107xx Package characteristics
Doc ID 15274 Rev 6 85/104
Figure 43. LQFP64 – 64 pin low-profile quad flat
package outline(1) Figure 44. Recommended footprint(1)(2)
1. Drawing is not to scale.
2. Dimensions are in millimeters.
A
A2
A1
c
L1
EE1
D
D1
e
b
ai14398b
L
48
3249
64 17
116
1.2
0.3
33
10.3
12.7
10.3
0.5
7.8
12.7
ai14909
Table 60. LQFP64 – 64 pin low-profile quad flat package mechanical data
Dim.
mm inches(1)
Min Typ Max Min Typ Max
A 1.60 0.0630
A1 0.05 0.15 0.0020 0.0059
A2 1.35 1.40 1.45 0.0531 0.0551 0.0571
b 0.17 0.22 0.27 0.0067 0.0087 0.0106
c 0.09 0.20 0.0035 0.0079
D 12.00 0.4724
D1 10.00 0.3937
E 12.00 0.4724
E1 10.00 0.3937
e 0.50 0.0197
θ 3.5° 3.5°
L 0.45 0.60 0.75 0.0177 0.0236 0.0295
L1 1.00 0.0394
NNumber of pins
64
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Package characteristics STM32F105xx, STM32F107xx
86/104 Doc ID 15274 Rev 6
6.2 Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 9: General operating conditions on page 35.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max × ΘJA)
Where:
TA max is the maximum ambient temperature in °C,
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
6.2.1 Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
Table 61. Package thermal characteristics
Symbol Parameter Value Unit
ΘJA
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch 46
°C/W
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch 45
ΘJA
Thermal resistance junction-ambient
LFBGA100 - 10 × 10 mm / 0.8 mm pitch 40
°C/W
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch 46
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch 45
STM32F105xx, STM32F107xx Package characteristics
Doc ID 15274 Rev 6 87/104
6.2.2 Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the ordering
information scheme shown in Table 62: Ordering information scheme.
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at
maximum dissipation and, to a specific maximum junction temperature.
As applications do not commonly use the STM32F103xx at maximum dissipation, it is useful
to calculate the exact power consumption and junction temperature to determine which
temperature range will be best suited to the application.
The following examples show how to calculate the temperature range needed for a given
application.
Example 1: High-performance application
Assuming the following application conditions:
Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2),
IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output
at low level with IOL = 20 mA, VOL= 1.3 V
PINTmax = 50 mA × 3.5 V= 175 mW
PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW
This gives: PINTmax = 175 mW and PIOmax = 272 mW:
PDmax = 175 + 272 = 447 mW
Thus: PDmax = 447 mW
Using the values obtained in Ta bl e 6 1 TJmax is calculated as follows:
For LQFP100, 46 °C/W
TJmax = 82 °C + (46 °C/W × 447 mW) = 82 °C + 20.6 °C = 102.6 °C
This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 6 (see
Table 62: Ordering information scheme).
Example 2: High-temperature application
Using the same rules, it is possible to address applications that run at high ambient
temperatures with a low dissipation, as long as junction temperature TJ remains within the
specified range.
Assuming the following application conditions:
Maximum ambient temperature TAmax = 115 °C (measured according to JESD51-2),
IDDmax = 20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V
PINTmax = 20 mA × 3.5 V= 70 mW
PIOmax = 20 × 8 mA × 0.4 V = 64 mW
This gives: PINTmax = 70 mW and PIOmax = 64 mW:
PDmax = 70 + 64 = 134 mW
Thus: PDmax = 134 mW
Package characteristics STM32F105xx, STM32F107xx
88/104 Doc ID 15274 Rev 6
Using the values obtained in Ta bl e 6 1 TJmax is calculated as follows:
For LQFP100, 46 °C/W
TJmax = 115 °C + (46 °C/W × 134 mW) = 115 °C + 6.2 °C = 121.2 °C
This is within the range of the suffix 7 version parts (–40 < TJ < 125 °C).
In this case, parts must be ordered at least with the temperature range suffix 7 (see
Table 62: Ordering information scheme).
Figure 45. LQFP100 PD max vs. TA
0
100
200
300
400
500
600
700
65 75 85 95 105 115 125 135
TA (°C)
PD (mW)
Suffix 6
Suffix 7
STM32F105xx, STM32F107xx Part numbering
Doc ID 15274 Rev 6 89/104
7 Part numbering
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
Table 62. Ordering information scheme
Example: STM32 F 105 R C T 6 V xxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
105 = connectivity, USB OTG FS
107= connectivity, USB OTG FS & Ethernet
Pin count
R = 64 pins
V = 100 pins
Flash memory size
8 = 64 Kbytes of Flash memory
B = 128 Kbytes of Flash memory
C = 256 Kbytes of Flash memory
Package
H = BGA
T = LQFP
Temperature range
6 = Industrial temperature range, –40 to 85 °C.
7 = Industrial temperature range, –40 to 105 °C.
Software option
Internal code or Blank
Options
xxx = programmed parts
TR = tape and real
Application block diagrams STM32F105xx, STM32F107xx
90/104 Doc ID 15274 Rev 6
Appendix A Application block diagrams
A.1 USB OTG FS interface solutions
Figure 46. USB OTG FS device mode
1. Use a regulator if you want to build a bus-powered device.
USB
OTG
Full-speed
core
STM32F105xx/STM32F107xx
USB
Full-speed
transceiver
DP
USB Micro-B connector
DM
V
BUS
V
SS
HNPHNP
SRPSRP
V
DD
IDID
OTG PHY
ai15653b
DP
DM
V
BUS
V
SS
To host
5 V to VDD
Regulator(1)
STM32F105xx, STM32F107xx Application block diagrams
Doc ID 15274 Rev 6 91/104
Figure 47. Host connection
1. STMPS2141STR needed only if the application has to support bus-powered devices.
USB
OTG
Full-speed
core
STM32F105xx/STM32F107xx
USB
full-speed/
low-speed
transceiver
DP
USB Std-A connector
DM
V
BUS
V
SS
HNPHNP
SRPSRP
IDID
OTG PHY
ai15654b
GPIO
GPIO + IRQ
EN
OVRCR
flag
Current-limited
power distribution
switch
STMPS2141STR
(1)
V
DD
(2)
5 V
Application block diagrams STM32F105xx, STM32F107xx
92/104 Doc ID 15274 Rev 6
Figure 48. OTG connection (any protocol)
1. STMPS2141STR needed only if the application has to support bus-powered devices.
A.2 Ethernet interface solutions
Figure 49. MII mode using a 25 MHz crystal
1. HCLK must be greater than 25 MHz.
2. Pulse per second when using IEEE1588 PTP, optional signal.
USB
OTG
Full-speed
core
STM32F105xx/STM32F107xx
USB
full-speed/
low-speed
transceiver
DP
USB Micro-AB connector
DM
V
BUS
V
SS
HNPHNP
SRPSRP
IDID
OTG PHY
ai15655b
GPIO
GPIO + IRQ
EN Current-limited
power distribution
switch
STMPS2141STR
(1)
ID
OVRCR
flag
V
DD
5 V
MCU Ethernet
MAC 10/100
Ethernet
PHY 10/100
PLL HCLK
XT1
PHY_CLK 25 MHz
MII_RX_CLK
MII_RXD[3:0]
MII_RX_DV
MII_RX_ER
MII_TX_CLK
MII_TX_EN
MII_TXD[3:0]
MII_CRS
MII_COL
MDIO
MDC
HCLK
(1)
PPS_OUT
(2)
XTAL
25 MHz
STM32F107xx
OSC
TIM2 Timestamp
comparator
Timer
input
trigger
IEEE1588 PTP
MII
= 15 pins
MII + MDC
= 17 pins
ai15656
STM32F105xx, STM32F107xx Application block diagrams
Doc ID 15274 Rev 6 93/104
Figure 50. RMII with a 50 MHz oscillator
1. HCLK must be greater than 25 MHz.
Figure 51. RMII with a 25 MHz crystal and PHY with PLL
1. HCLK must be greater than 25 MHz.
MCU
Ethernet
MAC 10/100
Ethernet
PHY 10/100
PLL HCLK
XT1
PHY_CLK 50 MHz
RMII_RXD[1:0]
RMII_CRX_DV
RMII_REF_CLK
RMII_TX_EN
RMII_TXD[1:0]
MDIO
MDC
HCLK(1)
STM32F107xx
OSC
50 MHz
TIM2 Timestamp
comparator
Timer
input
trigger
IEEE1588 PTP
RMII
= 7 pins
RMII + MDC
= 9 pins
ai15657
/2 or /20
synchronous
2.5 or 25 MHz 50 MHz
50 MHz
MCU Ethernet
MAC 10/100
Ethernet
PHY 10/100
PLL HCLK
XT1
PHY_CLK 25 MHz
RMII_RXD[1:0]
RMII_CRX_DV
RMII_REF_CLK
RMII_TX_EN
RMII_TXD[1:0]
MDIO
MDC
HCLK(1)
STM32F107xx
TIM2 Timestamp
comparator
Timer
input
trigger
IEEE1588 PTP
RMII
= 7 pins
RMII + MDC
= 9 pins
ai15658
/2 or /20
synchronous
2.5 or 25 MHz 50 MHz
XTAL
25 MHz OSC PLL
REF_CLK
Application block diagrams STM32F105xx, STM32F107xx
94/104 Doc ID 15274 Rev 6
Figure 52. RMII with a 25 MHz crystal
1. The NS DP83848 is recommended as the input jitter requirement of this PHY. It is compliant with the output
jitter specification of the MCU.
MCU Ethernet
MAC 10/100
Ethernet
PHY 10/100
PLLSXT1/XT2
RMII_RXD[1:0]
RMII_CRX_DV
RMII_REF_CLK
RMII_TX_EN
RMII_TXD[1:0]
MDIO
MDC
HCLK
STM32F107xx
TIM2 Time stamp
comparator
Timer
input
trigger
IEEE1588 PTP
RMII
= 7 pins
RMII + MDC
= 9 pins
ai15659b
50 MHz
XTAL
25 MHz OSC
NS DP83848(1)
50 MHz
50 MHz
STM32F105xx, STM32F107xx Application block diagrams
Doc ID 15274 Rev 6 95/104
A.3 Complete audio player solutions
Two solutions are offered, illustrated in Figure 53 and Figure 54.
Figure 53 shows storage media to audio DAC/amplifier streaming using a software Codec.
This solution implements an audio crystal to provide audio class I2S accuracy on the master
clock (0.5% error maximum, see the Serial peripheral interface section in the reference
manual for details).
Figure 53. Complete audio player solution 1
Figure 54 shows storage media to audio Codec/amplifier streaming with SOF
synchronization of input/output audio streaming using a hardware Codec.
Figure 54. Complete audio player solution 2
Cortex-M3 core
72 MHz
OTG
(host
mode) +
PHY
SPI
SPI
GPIO
I2S
XTAL
14.7456 MHz
USB
Mass-storage
device
MMC/
SDCard
LCD
touch
screen
Control
buttons
DAC +
Audio
ampli
File
System
Program memory
Audio
CODEC
User
application
STM32F105/STM32F107
ai15660
Cortex-M3 core
72 MHz
OTG
+
PHY
SPI
SPI
GPIO
I2S
XTAL
14.7456 MHz
USB
Mass-storage
device
MMC/
SDCard
LCD
touch
screen
Control
buttons
Audio
ampli
File
System
Program memory
Audio
CODEC
User
application
STM32F105/STM32F107
ai15661
SOF
SOF synchronization of input/output
audio streaming
Application block diagrams STM32F105xx, STM32F107xx
96/104 Doc ID 15274 Rev 6
A.4 USB OTG FS interface + Ethernet/I2S interface solutions
With the clock tree implemented on the STM32F107xx, only one crystal is required to work
with both the USB (host/device/OTG) and the Ethernet (MII/RMII) interfaces. Figure 55
illustrate the solution.
Figure 55. USB OTG FS + Ethernet solution
With the clock tree implemented on the STM32F107xx, only one crystal is required to work
with both the USB (host/device/OTG) and the I2S (Audio) interfaces. Figure 56 illustrate the
solution.
Figure 56. USB OTG FS + I2S (Audio) solution
STM32F107 MCU
PLL2MUL
x8
PLLMUL
x9
PLL3MUL
x10
Ethernet
PHY
I2S
Sel
Sel
25 MHz
XTAL
OSC
Div
by 5
MCO
SYSCLK
Up to 72 MHz
PLLVCO
(2 xPLLCLK
USB
PHY
OTG
48 MHz
Div
by 3
Div
by 5
Up to 50 MHz 2% accuracy
STM32F105 /STM32F107MCU
PLL2MUL
x8
PLLMUL
x6.5
PLL3MUL
x20
Ethernet
PHY
I2S
Sel
14.7456 MHz
XTAL
OSC
Div
by 4
MCO
SYSCLK
Up to 71.88 MHz
PLLVCO
(2 xPLLCLK
USB
PHY
OTG
47.9232 MHz
Div
by 3
Div
by 4
Up to 147.456 MHz
Less than 0.5% accuracy
0.16% accuracy
MCLK
SCLK
on MCLK and SCLK
PLL3VCO
(2 xPLL3CLK
STM32F105xx, STM32F107xx Application block diagrams
Doc ID 15274 Rev 6 97/104
Ta bl e 6 4 give the IDD run mode values that correspond to the conditions specified in
Ta bl e 6 3 .
Table 63. PLL configurations
Application
Crystal
value in
MHz
(XT1)
PREDIV2 PLL2MUL PLLSRC PREDIV1 PLLMUL
USB
prescaler
(PLLVCO
output)
PLL3MUL
I2Sn
clock
input
MCO (main
clock
output)
Ethernet only 25 /5 PLL2ON
x8 PLL2 /5 PLLON x9 NA PLL3ON
x10 NA XT1 (MII)
PLL3 (RMII)
Ethernet + OTG 25 /5 PLL2ON
x8 PLL2 /5 PLLON x9 /3 PLL3ON
x10 NA XT1 (MII)
PLL3 (RMII)
Ethernet + OTG
+ basic audio 25 /5 PLL2ON
x8 PLL2 /5 PLLON x9 /3 PLL3ON
x10 PLL XT1 (MII)
PLL3 (RMII)
Ethernet + OTG
+ Audio class
I2S(1)
14.7456 /4 PLL2ON
x12 PLL2 /4 PLLON
x6.5 /3 PLL3ON
x20
PLL3
VCO
Out
NA
ETH PHY
must use its
own crystal
OTG only 8 NA PLL2OFF XT1 /1 PLLON x9 /3 PLL3OFF NA NA
OTG + basic
audio 8 NA PLL2OFF XT1 /1 PLLON x9 /3 PLL3OFF PLL NA
OTG + Audio
class I2S(1) 14.7456 /4 PLL2ON
x12 PLL2 /4 PLLON
x6.5 /3 PLL3ON
x20
PLL3
VCO
Out
NA
Audio class I2S
only(1) 14.7456 /4 PLL2ON
x12 PLL2 /4 PLLON
x6.5 NA PLL3ON
x20
PLL3
VCO
out
NA
1. SYSCLK is set to be at 72 MHz except in this case where SYSCLK is at 71.88 MHz.
Application block diagrams STM32F105xx, STM32F107xx
98/104 Doc ID 15274 Rev 6
Table 64. Applicative current consumption in Run mode, code with data
processing running from Flash
Symbol parameter Conditions(1)
1. VDD = 3.3 V.
Typ(2)
2. Based on characterization, not tested in production.
Max(2) Unit
85 °C 105 °C
IDD
Supply current
in run mode
External clock, all peripherals enabled
except ethernet,
HSE = 8 MHz, fHCLK = 72 MHz, no
MCO
57 63 64
mA
External clock, all peripherals enabled
except ethernet,
HSE = 14.74 MHz, fHCLK = 72 MHz, no
MCO
60.5 67 68
External clock, all peripherals enabled
except OTG,
HSE = 25 MHz, fHCLK = 72 MHz, MCO
= 25 MHz
53 60.7 61
External clock, all peripherals enabled,
HSE = 25 MHz, fHCLK = 72 MHz, MCO
= 25 MHz
60.5 65.5 66
External clock, all peripherals enabled,
HSE = 25 MHz, fHCLK = 72 MHz, MCO
= 50 MHz
64 69.7 70
External clock, all peripherals enabled,
HSE = 50 MHz(3), fHCLK = 72 MHz, no
MCO
3. External oscillator.
62.5 67.5 68
External clock, only OTG enabled,
HSE = 8 MHz, fHCLK = 48 MHz, no
MCO
26.7 None None
External clock, only ethernet enabled,
HSE = 25 MHz, fHCLK = 25 MHz, MCO
= 25 MHz
14.3 None None
STM32F105xx, STM32F107xx Revision history
Doc ID 15274 Rev 6 99/104
Revision history
Table 65. Document revision history
Date Revision Changes
18-Dec-2008 1 Initial release.
20-Feb-2009 2
I/O information clarified on page 1. Figure 4: STM32F105xxx and
STM32F107xxx connectivity line BGA100 ballout top view corrected.
Section 2.3.8: Boot modes updated.
PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default
column to Remap column, plus small additional changes in Tab l e 5 :
Pin definitions.
Consumption values modified in Section 5.3.5: Supply current
characteristics.
Note modified in Table 13: Maximum current consumption in Run
mode, code with data processing running from Flash and Ta bl e 15:
Maximum current consumption in Sleep mode, code running from
Flash or RAM.
Table 20: High-speed external user clock characteristics and
Table 21: Low-speed external user clock characteristics modified.
Table 27: PLL characteristics modified and Table 28: PLL2 and PLL3
characteristics added.
Revision history STM32F105xx, STM32F107xx
100/104 Doc ID 15274 Rev 6
19-Jun-2009 3
Section 2.3.8: Boot modes and Section 2.3.20: Ethernet MAC
interface with dedicated DMA and IEEE 1588 support updated.
Section 2.3.24: Remap capability added.
Figure 1: STM32F105xx and STM32F107xx connectivity line block
diagram and Figure 5: Memory map updated.
In Table 5: Pin definitions:
I2S3_WS, I2S3_CK and I2S3_SD default alternate functions
added
small changes in signal names
Note 6 modified
ETH_MII_PPS_OUT and ETH_RMII_PPS_OUT replaced by
ETH_PPS_OUT
ETH_MII_MDIO and ETH_RMII_MDIO replaced by ETH_MDIO
ETH_MII_MDC and ETH_RMII_MDC replaced by ETH_MDC
Figures: Typical current consumption in Run mode versus frequency
(at 3.6 V) - code with data processing running from RAM, peripherals
enabled and Typical current consumption in Run mode versus
frequency (at 3.6 V) - code with data processing running from RAM,
peripherals disabled removed.
Table 13: Maximum current consumption in Run mode, code with
data processing running from Flash, Table 14: Maximum current
consumption in Run mode, code with data processing running from
RAM and Table 15: Maximum current consumption in Sleep mode,
code running from Flash or RAM are to be determined.
Figure 12 and Figure 13 show typical curves. PLL1 renamed to PLL.
IDD supply current in Stop mode modified in Table 16: Typical and
maximum current consumptions in Stop and Standby modes.
Figure 11: Typical current consumption in Stop mode with regulator
in Run mode versus temperature at different VDD values, Figure 13:
Typical current consumption in Standby mode versus temperature at
different VDD values and Figure 13: Typical current consumption in
Standby mode versus temperature at different VDD values updated.
Table 17: Typical current consumption in Run mode, code with data
processing running from Flash, Table 18: Typical current
consumption in Sleep mode, code running from Flash or RAM and
Table 19: Peripheral current consumption updated.
fHSE_ext modified in Table 20: High-speed external user clock
characteristics.
Min PLL input clock (fPLL_IN), fPLL_OUT min and fPLL_VCO min
modified in Table 27: PLL characteristics.
ACCHSI max values modified in Table 24: HSI oscillator
characteristics. Table 31: EMS characteristics and Tabl e 3 2 : E M I
characteristics updated. Table 43: SPI characteristics updated.
Modified: Figure 28: I2S slave timing diagram (Philips protocol)(1),
Figure 29: I2S master timing diagram (Philips protocol)(1) and
Figure 31: Ethernet SMI timing diagram.
BGA100 package removed.
Section 6.2: Thermal characteristics added. Small text changes.
Table 65. Document revision history (continued)
Date Revision Changes
STM32F105xx, STM32F107xx Revision history
Doc ID 15274 Rev 6 101/104
14-Sep-2009 4
Document status promoted from Preliminary data to full datasheet.
Number of DACs corrected in Table 3: STM32F105xx and
STM32F107xx family versus STM32F103xx family.
Note 5 added in Table 5: Pin definitions.
VRERINT and TCoeff added to Table 12: Embedded internal reference
voltage.
Values added to Table 13: Maximum current consumption in Run
mode, code with data processing running from Flash, Ta bl e 14 :
Maximum current consumption in Run mode, code with data
processing running from RAM and Table 15: Maximum current
consumption in Sleep mode, code running from Flash or RAM.
Typical IDD_VBAT value added in Ta bl e 1 6 : Ty p i c a l a n d m a x i mu m
current consumptions in Stop and Standby modes.
Figure 10: Typical current consumption on VBAT with RTC on vs.
temperature at different VBAT values added.
Values modified in Table 17: Typical current consumption in Run
mode, code with data processing running from Flash and Ta bl e 18:
Typical current consumption in Sleep mode, code running from Flash
or RAM.
fHSE_ext min modified in Table 20: High-speed external user clock
characteristics.
CL1 and CL2 replaced by C in Table 22: HSE 3-25 MHz oscillator
characteristics and Table 23: LSE oscillator characteristics (fLSE =
32.768 kHz), notes modified and moved below the tables. Note 1
modified below Figure 16: Typical application with an 8 MHz crystal.
Conditions removed from Table 26: Low-power mode wakeup
timings.
Standards modified in Section 5.3.10: EMC characteristics on
page 52, conditions modified in Table 31: EMS characteristics.
Jitter maximum values added to Table 27: PLL characteristics and
Table 28: PLL2 and PLL3 characteristics.
RPU and RPD modified in Table 36: I/O static characteristics.
Condition added for VNF(NRST) parameter in Table 39: NRST pin
characteristics. Note removed and RPD, RPU values added in
Table 46: USB OTG FS DC electrical characteristics.
Table 48: Ethernet DC electrical characteristics added.
Parameter values added to Table 49: Dynamic characteristics:
Ethernet MAC signals for SMI, Table 50: Dynamic characteristics:
Ethernet MAC signals for RMII and Tab l e 5 1 : D y n a m i c
characteristics: Ethernet MAC signals for MII.
CADC and RAIN parameters modified in Table 52: ADC
characteristics. RAIN max values modified in Table 53: RAIN max for
fADC = 14 MHz.
Table 56: DAC characteristics modified. Figure 38: 12-bit buffered
/non-buffered DAC added.
Table 64: Applicative current consumption in Run mode, code with
data processing running from Flash added.
Small text changes.
Table 65. Document revision history (continued)
Date Revision Changes
Revision history STM32F105xx, STM32F107xx
102/104 Doc ID 15274 Rev 6
11-May-2010 5
Added BGA package.
Table 5: Pin definitions:
ETH_RMII_RXD0 and ETH_RMII_RXD1 added in remap column for
PD9 and PD10, respectively.
Note added to ETH_MII_RX_DV, ETH_MII_RXD0, ETH_MII_RXD1,
ETH_MII_RXD2 and ETH_MII_RXD3
Updated Table 36: I/O static characteristics on page 55
Added Figure 18: Standard I/O input characteristics - CMOS port
to Figure 21: 5 V tolerant I/O input characteristics - TTL port
Updated Table 43: SPI characteristics on page 65.
Updated Table 44: I2S characteristics on page 68.
Updated Table 48: Ethernet DC electrical characteristics on page 71.
Updated Table 49: Dynamic characteristics: Ethernet MAC signals
for SMI on page 71.
Updated Table 50: Dynamic characteristics: Ethernet MAC signals
for RMII on page 72
Updated Figure 55: USB OTG FS + Ethernet solution on page 96.
Updated Figure 56: USB OTG FS + I2S (Audio) solution on page 96
01-Aug-2011 6
Changed SRAM size to 64 KB on all parts.
Updated PD0 and PD1 description in Table 5: Pin definitions on
page 26
Updated footnotes below Table 6: Voltage characteristics on page 34
and Table 7: Current characteristics on page 34
Updated tw min in Table 20: High-speed external user clock
characteristics on page 45
Updated startup time in Table 23: LSE oscillator characteristics
(fLSE = 32.768 kHz) on page 48
Added Section 5.3.12: I/O current injection characteristics on
page 55
Updated Table 36: I/O static characteristics on page 55
Add Interna code V to Table 62: Ordering information scheme on
page 89
Table 65. Document revision history (continued)
Date Revision Changes
STM32F105xx, STM32F107xx
Doc ID 15274 Rev 6 103/103
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com