www.irf.com Page 1 of 35
IRAUDAMP11 REV 1.0
IRAUDAMP11
120W x 3 Channel Class D Audio Power Amplifier
Using the IRS2053M and IRF6665
By
Jun Honda, Liwei Zheng
CAUTION:
International Rectifier suggests the following guidelines for safe operation and handling of
IRAUDAMP11 Demo board;
Always wear safety glasses whenever operating Demo Board
Avoid personal contact with exposed metal surfaces when operating Demo Board
Turn off Demo Board when placing or removing measurement probes
www.irf.com Page 2 of 35
IRAUDAMP11 REV 1.0
TABLE OF CONTENTS PAGE
INTRODUCTION............................................................................................................................................... 3
SPECIFICATIONS ............................................................................................................................................ 3
CONNECTION SETUP ..................................................................................................................................... 5
CONNECTOR DESCRIPTION ......................................................................................................................... 5
TEST PROCEDURES....................................................................................................................................... 6
PERFORMANCE AND TEST GRAPHS .......................................................................................................... 7
CLIPPING CHARACTERISTICS.................................................................................................................... 10
SOFT CLIPPING............................................................................................................................................. 10
EFFICIENCY................................................................................................................................................... 12
THERMAL CONSIDERATIONS..................................................................................................................... 12
THERMAL INTERFACE MATERIALS PRESSURE CONTROL ................................................................................. 13
POWER SUPPLY REJECTION RATIO (PSRR)............................................................................................ 15
SHORT CIRCUIT PROTECTION RESPONSE .............................................................................................. 16
IRAUDAMP11 OVERVIEW ............................................................................................................................ 17
FUNCTIONAL DESCRIPTIONS..................................................................................................................... 19
IRS2053 GATE DRIVER IC ............................................................................................................................ 19
SELF-OSCILLATING FREQUENCY .................................................................................................................... 20
ADJUSTMENTS OF SELF-OSCILLATING FREQUENCY ......................................................................................... 20
SELECTABLE DEAD-TIME................................................................................................................................21
PROTECTION SYSTEM OVERVIEW ............................................................................................................ 22
CLICK AND POP NOISE REDUCTION ......................................................................................................... 24
BUS PUMPING............................................................................................................................................... 24
INPUT SIGNAL AND GAIN SETTING ........................................................................................................... 26
GAIN SETTING............................................................................................................................................... 26
IRAUDAMP11 FABRICATION MATERIALS................................................................................................. 28
IRAUDAMP11 HARDWARE .......................................................................................................................... 31
IRAUDAMP11 PCB SPECIFICATIONS......................................................................................................... 32
REVISION CHANGES DESCRIPTIONS........................................................................................................ 35
www.irf.com Page 3 of 35
IRAUDAMP11 REV 1.0
Introduction
The IRAUDAMP11 Demo board is a reference design which uses only one IC (IRS2053M) to derive
appropriate input signals, amplify the audio input, and achieve a three-channel 120 W/ch (4, THD+N=1%)
half-bridge Class D audio power amplifier. The reference design demonstrates how to use the IRS2053M
Class D audio controller and gate driver IC, implement protection circuits, and design an optimum PCB
layout using IRF6665 DirectFET MOSFETs. The reference design contains all the required housekeeping
power supplies for ease of use. The three-channel design is scalable, for power and number of channels.
Applications
AV receivers
Home theater systems
Mini component stereos
Powered speakers
Sub-woofers
Musical Instrument amplifiers
Automotive after market amplifiers
Features
Output Power: 120W x 3 channels (4, THD+N=1%)
or 170W x 3 channels (4, THD+N=10%)
Residual Noise: 220V, IHF-A weighted, AES-17 filter
Distortion: 0.02% THD+N @ 60W, 4
Efficiency: 90% @ 120W, 4, single-channel driven, Class D stage
Multiple Protection Features: Over-current protection (OCP), high side and low side
Over-voltage protection (OVP),
Under-voltage protection (UVP), high side and low side
Over-temperature protection (OTP)
PWM Modulator: Self-oscillating half-bridge topology with optional clock synchronization
Specifications
General Test Conditions (unless otherwise noted) Notes / Conditions
Supply Voltages ±35V
Load Impedance 4
Self-Oscillating Frequency 400kHz No input signal, Adjustable
Gain Setting 28dB 1Vrms input yields rated power
Electrical Data Typical Notes / Conditions
IR Devices Used IRS2053M Audio Controller and Gate-Driver,
IRF6665 DirectFET MOSFETs
Modulator Self-oscillating, second order sigma-delta modulation, analog input
Power Supply Range ± 25V to ±35V Bipolar power supply
Output Power CH1-3: (1% THD+N) 120W 1kHz, ±35V
Output Power CH1-3: (10% THD+N) 170W 1kHz, ±35V
www.irf.com Page 4 of 35
IRAUDAMP11 REV 1.0
Rated Load Impedance 8-4 Resistive load
Standby Supply Current +75/-95mA No input signal
Total Idle Power Consumption 6W No input signal
Channel Efficiency 90% Single-channel driven,
120W, Class D stage
.
Audio Performance Class D
Output
Notes / Conditions
THD+N, 1W
THD+N, 10W
THD+N, 60W
THD+N, 100W
0.015%
0.01%
0.02%
0.03%
1kHz, Single-channel driven
Dynamic Range 101dB A-weighted, AES-17 filter,
Single-channel operation
Residual Noise, 22Hz - 20kHzAES17 220V
Self-oscillating – 400kHz
Damping Factor 67 1kHz, relative to 4 load
Channel Separation 75dB
75dB
70dB
100Hz
1kHz
10kHz
Frequency Response : 20Hz-20kHz
: 20Hz-35kHz
±1dB
±3dB 1W, 4 - 8 Load
Physical Specifications
Dimensions 3.94”(L) x 2.83”(W) x 0.85”(H)
100 mm (L) x 72 mm (W) x 21.5 mm(H)
Weight 0.130kgm
www.irf.com Page 5 of 35
IRAUDAMP11 REV 1.0
Connection Setup
Fig 1 Typical Test Setup
Connector Description
CH1 IN CN1 Analog input for CH1
CH2 IN CN1 Analog input for CH2
CH3 IN CN1 Analog input for CH3
SUPPLY P1 Positive and negative supply (+B / -B)
CH1 OUT P2 Output for CH1
CH2 OUT P2 Output for CH2
CH3 OUT P3 Output for CH3
250W, 4,
Non-inductive Resistors
Frequency adjustor VCC INDICATOR
IRF6665
CH1 CH2 CH3
IRS2053M
CH2 CH1 +B GND -B CH3
Output
Input
G
DS1
35 V, 5 A DC supply
35 V, 5 A DC supply
A
udio Si
g
nal Generato
r
Output
VR1
www.irf.com Page 6 of 35
IRAUDAMP11 REV 1.0
Test Procedures
Test Setup:
1. Connect 4-200 W dummy loads to 3 output connectors (P2 and P3 as shown on Fig 1)
and an Audio Precision analyzer (AP).
2. Connect the Audio Signal Generator to CN1 for CH1~CH3 respectively (AP).
3. Set up the dual power supply with voltages of ±35V; current limit to 5A.
4. TURN OFF the dual power supply before connecting to On of the unit under test (UUT).
5. Connect the dual power supply to P1. as shown on Fig 1
Power up:
6. Turn ON the dual power supply. The ±B supplies must be applied and removed at the
same time.
7. The Blue LED should turn ON immediately and stay ON
8. Quiescent current for the positive supply should be 75mA 10mA at +35V.
9. Quiescent current for the negative supply should be 95mA 10mA at –35V.
Switching Frequency test
10. With an Oscilloscope, monitor the switching waveform at test points VS1~VS3. Adjust VR1
to set the self oscillating frequency to 400 kHz 25 kHz when DUT in clock synchronize
mode.
Functionality Audio Tests:
11. Set the signal generator to 1kHz, 20 mVRMS output.
12. Connect the audio signal generator to CN1(Input of CH1,CH2,CH3)
13. Sweep the audio signal voltage from 15 mVRMS to 1 VRMS.
14. Monitor the output signals at P2/P3 with an oscilloscope. The waveform must be a non
distorted sinusoidal signal.
15. Observe that a 1 VRMS input generates an output voltage of 25.52 VRMS(CH1/CH2). The
ratio, R4x/(R3x) and R30x/(R31x), determines the voltage gain of IRAUDAMP11.
Test Setup using Audio Precision (Ap):
16. Use an unbalanced-floating signal from the generator outputs.
17. Use balanced inputs taken across output terminals, P2 and P3.
18. Connect Ap frame ground to GND at terminal P1.
19. Select the AES-17 filter(pull-down menu) for all the testing except frequency response.
20. Use a signal voltage sweep range from 15 mVRMS to 1 VRMS.
21. Run Ap test programs for all subsequent tests as shown in Fig 2- Fig 7below.
www.irf.com Page 7 of 35
IRAUDAMP11 REV 1.0
Performance and test graphs
ColorSweep Trace Line Style Thick Data Axis Comment
1 1 Red Solid 2 Anlr.THD+N Ratio Left CH1
1 3 Blue Solid 2 Anlr.THD+N Ratio Left CH2
2 3 Green Solid 2 Anlr.THD+N Ratio Left
0.001
10
0.002
0.005
0.01
0.02
0.05
0.1
0.2
0.5
1
2
5
%
100m 200200m 500m 1 2 5 10 20 50 100
W
±B Supply = ±35V, 4 Resistive Load
Fig 2 IRAUDAMP11, THD+N versus Power, Stereo, 4
.
-10
+4
-9
-8
-7
-6
-5
-4
-3
-2
-1
-0
+1
+2
+3
d
B
r
A
20 200k50 100 200 500 1k 2k 5k 10k 20k 50k 100k
Hz
T
CH1-Blue; CH2-Yellow; CH3-Red
±B Supply = ±35V, 4 Resistive Load
Fig 3 IRAUDAMP11, Frequency response
www.irf.com Page 8 of 35
IRAUDAMP11 REV 1.0
Red CH1, 10W Output
Blue CH1, 50W Output
Fig 4 THD+N Ratio vs. Frequency
Col orSweep Trace Line Style Thick Dat a Axis Comment
1 1 Yellow Solid 2 Fft.Ch.1 Ampl Left CH2
1 2 Blue Solid 2 Fft.Ch.2 Ampl Left CH3
2 1 Red Solid 2 Fft.Ch.1 Ampl Left CH1
-100
+0
-80
-60
-40
-20
d
B
V
20 20k50 100 200 500 1k 2k 5k 10k
Hz
Fig 5, 1V output Frequency Spectrum
www.irf.com Page 9 of 35
IRAUDAMP11 REV 1.0
ColorSweep Trace Line Style Thick Data Axis Comment
1 1 Red Solid 2 Fft.Ch.1 Ampl Left CH1
1 2 Blue Solid 2 Fft.Ch.2 Ampl Left CH3
2 1 Yellow Solid 2 Fft.Ch.1 Ampl Left CH2
-150
+0
-125
-100
-75
-50
-25
d
B
V
10 20k20 50 100 200 500 1k 2k 5k 10k
Hz
No signal, Self Oscillator @ 400kHz
Fig 6, IRAUDAMP11 Noise Floor
.
ColorSweep Trace Line Style Thick Data Axis Com m ent
1 1 Cyan Solid 2 Anlr.Am pl Left CH3_on;CH1_off
3 1 Yellow Solid 2 Anlr.Am pl Left CH1_on;CH3_off
4 1 Red Solid 2 Anlr.Ampl Left CH2_on;CH3_off
5 1 Magenta Solid 2 Anlr.Ampl Left CH3_on;CH2_off
6 1 Blue Solid 1 Anlr.Ampl Left CH2_on;CH1_off
7 1 Cyan Solid 1 Anlr.Am pl Left Ch1_on;CH2_off
-100
+0
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
20 20k50 100 200 500 1k 2k 5k 10k
Hz
Fig 7, Channel separation vs. frequency
www.irf.com Page 10 of 35
IRAUDAMP11 REV 1.0
Clipping characteristics
60W / 4, 1kHz, THD+N=0.02% 174W / 4, 1kHz, THD+N=10%
Measured Output and Distortion Waveforms(CH1/CH2)
Fig 8 Clipping Characteristics
.
Soft Clipping
IRS2053M has Clipping detection function, it monitors error voltage in COMP pin with a window
comparator and pull an open drain nmos referenced to GND. Threshold to detect is at 10% and
90% of VAA-VSS. Each channel has independent CLIP outputs. Once IRS2053M detects
Clipping, the CLIP pin will generate pulses to trigger soft clipping circuit as Fig 9, which limits
output’s maximum power.
Fig10 shows 20Hz and 20 kHz THD+N versus Power graph in CH3; it shows limitation of output’s
power with different frequency.
Red Trace: Total Distortion + Noise Voltage
Green Trace: Output Voltage
www.irf.com Page 11 of 35
IRAUDAMP11 REV 1.0
R3A 1K
GND
C5A
10uF, 50V
Audio signal INPUT
S
G
D
Q6
MMBFJ112
R28A
1K
R29A
220KD3A
1N4148
C15A
10uF, 16V
Q5
DTA144EKA
R27A
3.3K
R5A
47K
R6A
47K
C6A
1uF,50V
R7A
470K
10uF,50V
C0A
Soft Clipping
CLIP Detection
IN-
VSS
GND
VAA
Fig 9 Soft Clipping Circuit
ColorSweep Trace Line Style Thick Data Axis Comment
1 1 Red Solid 2 Anlr.THD+N Ratio Left 20Hz
2 1 Blue Solid 2 Anlr.THD+N Ratio Left 20kHz
0.001
10
0.002
0.005
0.01
0.02
0.05
0.1
0.2
0.5
1
2
5
%
100m 300200m 500m 1 2 5 10 20 50 100
W
±B Supply = ±35V, 4 Resistive Load
Fig 10 IRAUDAMP11/CH3, THD+N versus Power, Stereo, 4
www.irf.com Page 12 of 35
IRAUDAMP11 REV 1.0
Efficiency
Fig 11 shows efficiency characteristics of the IRAUDAMP11. The high efficiency is achieved by
following major factors:
1) Low conduction loss due to the DirectFETs offering low RDS(ON)
2) Low switching loss due to the DirectFETs offering low input capacitance for fast rise and
fall times
Secure dead-time provided by the IRS2053M, avoiding cross-conduction.
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
0 50 100 150
Output power (W)
Efficiency (%)
AMP11 35V 4ohms
Fig 11, IRAUDAMP11 4 ohms load Stereo, ±B supply = ±35V
Thermal Considerations
With this high efficiency, the IRAUDAMP11 design can handle one-eighth of the continuous rated
power, which is generally considered to be a normal operating condition for safety standards,
without additional heatsinks or forced air-cooling.
Efficiency (%)
www.irf.com Page 13 of 35
IRAUDAMP11 REV 1.0
Thermal Interface Material’s Pressure Control
The pressure between DirectFET & TIM (Thermal Interface Material) is controlled by depth of Heat
Spreader’s groove. Choose TIM which is recommended by IR. (Refer to AN-1035 for more
details). TIM’s manufacturer thickness, conductivity, & etc. determine pressure requirement.
Below shows selection options recommended:
Fig 12 TIM Information
www.irf.com Page 14 of 35
IRAUDAMP11 REV 1.0
Check the TIM’s compression deflection with constant rate of strain (example as Fig.13) base on
manufacturer’s datasheet. According to the stress requirement, find strain range for the TIM. Then,
calculate heat spreader groove depth as below:
Groove Depth=DirectFET’s Height +TIM’s Thickness*strain
**DirectFET’s height should be measured from PCB to the top of DirectFET after reflow. The
average height of IRF6665 is 0.6mm.
Fig 13 compression deflection with constant rate of strain
www.irf.com Page 15 of 35
IRAUDAMP11 REV 1.0
Power Supply Rejection Ratio (PSRR)
The IRAUDAMP11 obtains good power supply rejection ratio of -68 dB at 1kHz shown in Fig 14.
With this high PSRR, IRAUDAMP11 accepts any power supply topology when the supply voltages
fit between the min and max range.
ColorSweep Trace Line Style Thick Data Axis Comment
1 1 Magenta Solid 2 Anlr.Ampl Left
-90
+0
-80
-70
-60
-50
-40
-30
-20
-10
d
B
V
20 40k50 100 200 500 1k 2k 5k 10k 20k
Hz
Fig 14 Power Supply Rejection Ratio (PSRR)
www.irf.com Page 16 of 35
IRAUDAMP11 REV 1.0
Short Circuit Protection Response
Figs 15-16 show over current protection reaction time of the IRAUDAMP11 in a short circuit event.
As soon as the IRS2053M detects an over current condition, it shuts down PWM. After one
second, the IRS2053M tries to resume the PWM. If the short circuit persists, the IRS2053M
repeats try and fail sequences until the short circuit is removed.
Short Circuit in Positive and Negative Load Current
Fig 15 Positive and Negative OCP Waveforms
.
OCP Waveforms Showing CSD Trip and Hiccup
Fig 16 OCP Response with Continuous Short Circuit
Load current
CSD
p
in
VS
p
in
Load current
CSD
p
in
VS
p
in
Load current
CSD
p
in
Load current
VS
p
in
CSD
p
in
VS
p
in
Load current
VS
p
in
Load current
VS
p
in
Positive OCP Negative OCP
www.irf.com Page 17 of 35
IRAUDAMP11 REV 1.0
IRAUDAMP11 Overview
The IRAUDAMP11 features a 3CH self-oscillating type PWM modulator for the smallest space,
highest performance and robust design. This topology represents an analog version of a second-
order sigma-delta modulation having a Class D switching stage inside the loop. The benefit of the
sigma-delta modulation, in comparison to the carrier-signal based modulation, is that all the error
in the audible frequency range is shifted to the inaudible upper-frequency range by nature of its
operation. Also, sigma-delta modulation allows a designer to apply a sufficient amount of error
correction.
The IRAUDAMP11 self-oscillating topology consists of following essential functional blocks.
Front-end integrator
PWM comparator
Level shifters
Gate drivers and MOSFETs
Output LPF
Integrator
Referring to Fig 17 below, the input operational amplifier of the IRS2053M forms a front-end
second-order integrator with R3x, C2x, C3x, and R2x. The integrator that receives a rectangular
feedback signal from the PWM output via R4x and audio input signal via R3x generates a
quadratic carrier signal at the COMP pin. The analog input signal shifts the average value of the
quadratic waveform such that the duty cycle varies according to the instantaneous voltage of the
analog input signal.
PWM Comparator
The carrier signal at the COMP pin is converted to a PWM signal by an internal comparator that
has a threshold at middle point between VAA and VSS. The comparator has no hysteresis in its
input threshold.
Level Shifters
The internal input level-shifter transfers the PWM signal down to the low-side gate driver section.
The gate driver section has another level-shifter that level shifts up the high-side gate signal to the
high-side gate driver section.
www.irf.com Page 18 of 35
IRAUDAMP11 REV 1.0
Gate Drivers and DirectFETs
The received PWM signal is sent to the dead-time generation block where a programmable
amount of dead time is added into the PWM signal between the two gate output signals of LO and
HO to prevent potential cross conduction across the output power DirectFETs. The high-side level-
shifter shifts up the high-side gate drive signal out of the dead-time block.
Each channel of the IRS2053M’s drives two DirectFETs, high- and low-sides, in the power stage
providing the amplified PWM waveform.
Output LPF
The amplified PWM output is reconstructed back to an analog signal by the output LC LPF.
Demodulation LC low-pass filter (LPF) formed by L1 and C13, filters out the Class D switching
carrier signal leaving the audio output at the speaker load. A single stage output filter can be used
with switching frequencies of 400 kHz and greater; a design with a lower switching frequency may
require an additional stage of LPF.
Fig 17 Simplified Block Diagram of IRAUDAMP11 Class D Amplifier
www.irf.com Page 19 of 35
IRAUDAMP11 REV 1.0
Functional Descriptions
IRS2053M Gate Driver IC
The IRAUDAMP11 uses the IRS2053M, a 3 Channel high-voltage (up to 200 V), high-speed
power MOSFET driver with internal dead-time and protection functions specifically designed for
Class D audio amplifier applications. These functions include OCP and UVP. The IRS2053M
integrates bi-directional over current protection for both high-side and low-side MOSFETs. The
dead-time can be selected for optimized performance according to the size of the MOSFET,
minimizing dead-time while preventing shoot-through. As a result, there is no gate-timing
adjustment required externally. Selectable dead-time through the DT pin voltage is an easy and
reliable function which requires only two external resistors, R12 and R13 as shown on Fig 18 or
Fig 24 below.
The IRS2053M offers the following functions.
PWM modulator
Dead-time insertion
Over current protection
Under voltage protection
Level shifters
Refer to IRS2053M datasheet and AN-1158 for more details.
C4A
1nF,50V
C2A 2.2nF,50V
R2A 120R
C3B
2.2nF,50V
C4B1nF,50V
C2C
2.2nF,50V
R7 10R
C6 4.7uF,10V
C7 4.7uF,10V
C2B
2.2nF,50V
R6 10R
R20A
22R
R9A
22R
R9B
22R
R9C
22R
R20C
22R
R20B
22R
R21A
10R,1W
C13A
0.47uF, 400V
C13C0.47uF, 400V
C13B
0.47uF, 400V
C14A
0.1uF, 63V
CH3 OUTPUT
CH2 OUTPUT
CH1 OUTPUT
R15B
10K R16B
3.9K
R17B
10K
R15C
10K
R16C
3.9K
R17C
10K
D1C1N4148
D1B
1N4148
D2B1N4148 R18B
4.7R
R14B
4.7R
C9B
10uF,16V
R16A
3.9K
D1A 1N4148
R15A
10K R17A
10K
R14A 4.7R
C9A
10uF,16V
R13 1K
R12 NC
R11 8.2K R10 2.2K
R4A
100K 1%
R2B
120R
R3B 5.6K
R1B 22K
R2C
120R
R1C 22K
R4B
100K 1%
R4C
100K 1%
C4C 1nF,50V
C3C
2.2nF,50V
R3A 1K
R1A 22K
C1A 100pF, 50V
R3C 5.6K
C3A 2.2nF,50V
D2A 1N4148
R18A
4.7R
D2C
1N4148
R18C
4.7R
R21C
10R,1W
R21B
10R,1W
C14C
0.1uF, 63V
C14B
0.1uF, 63V
CLIP1
3
CLIP2
2
CLIP3
1
CSD
48
GND
41
GND
40
DS
37
IN3
39
VAA
43
DCP
5
NC 27
OTP3 30
NC 36
COMP2
45 NC 16
LO1 17
CSH3 23
VS3 26
VB2
8
OTP1 28
VCC 32
COMP1
47
NC 22
VREF 35
OCSET 34
CSH1 15
LO3 21
VB3 24
HO3 25
COM2 20
LO2 18
NC
6COM 31
HO2
9
VS2
10
FAULT
4
NC
11
VS1
12
HO1 13
VB1 14
OTP2 29
DT 33
IN2
44
IN1
46
CSH2
7
VCC2 19
COMP3
38
VSS
42
-B 0
IC1
IRS2053
C19A
0.1uF,100V
R19A
1R
R19C
1R
C19B
0.1uF,100V
R19B
1R
R22
10R
D3
1N4148
R22C
10K
R22B 10K
Q1A
IRF6665
Q2A
IRF6665
Q2C
IRF6665
Q1B
IRF6665
Q2B
IRF6665
Q1C
IRF6665
C1B 100pF, 50V
C1C 100pF, 50V
GND
GND
GND
GND
CSD
GND
GND
GND
D4
1N4148
C5A 10uF, 16V
C5B 10uF, 16V
C5C 10uF, 16V
R24A 2.2K
R24C 2.2K
R24B 2.2K
R3
22k
C1
0.1uF,50V
VR1
10K
C40
N/A
C41
N/A
C8
10uF, 16V
VCC
1OUT 5
SET
3GND
2
DIT 4
IC2
LTC1799
R43
330R,1W
R44
510R,1W
C17B
1000uF,35V
C17A
1000uF,35V
C17C
0.1uF,50V
C17D
0.1uF,50V
R23B
100k
R23A
100k
1A
1
1B
2
2Y
3
GND
42A 5
2B 6
1Y 7
VCC 8
IC8
TC7W00FFCT-ND
L5 220uH
C32
2.2uF, 50V
C37
22uF, 16V
C33
0.1uF, 50V
C34
0.01uF, 25V
C35
2.2nF,50V
C36
0.01uF, 50V
R39
100k
R40
100k
R42
3.3k
R32
1k
R41
120k
D7
R31
5.1k
DS1
Q1
FX491
Q2
MMBT5 4 0 1
R38
10R
R37
47k
Z1
24V
Z2
15V
R36
5.1k
SW
1
BST
2
RCL
3
RTN
4
VIN 8
VCC 7
RON/SD 6
FB 5
IC9
LM5007
Q3
MMBT5551
Q4
MMBT5551
R54
10k
R55
47k
R53
10k
R57
47k
R50
47k
R58
47k
Z3
39V
Z4
18V
OVP UVP
+B
GND
-B
R46
33k
CH3 INPUT
CH2 INPUT
CH1 INPUT
1
2
3
4
P2
1
2
3
4
P3
1
2
3
P1
+B
GND
-B
CH2 OUTPUT
CH1 OUTPUT
GND
GND
CH3 OUTPUT
GND
GND
-5v
+5v
VCC
C12A
220pF
VSS
VAA -B
R22A
10K
C19C
0.1uF,100V
SD
R56
47k
CH2
CH1
C12B
220pF
C12C
220pF
Q8 ZX5T853
Q9
ZX5T953
R45
33k
Z5
5.6V
Z6
5.6V
R4 0R0 or N/A
R1
0R0 or N/A
GND GND
C61
0.01uF, 50V
R61 10k
R62 10k
For EMI
C62
0.01uF, 50V
R12A
N/A
R12B
N/A
R12C
N/A
R26C 10K
DSCDSB
R26B 10K
PROT
R104 10K
CH3 OUTPUT
CH2 OUTPUT
CH1 OUTPUT
R25A 100K
R25B 100K
R25C 100K
RpA 95C
1
2
3
4
5
6
CN1
CH1
GND
CH2
GND
CH3
GND
S
G
D
Q6MMBFJ112
R28A
1K
R29A
220K D3A
1N4148
1OUT
11IN-
21IN+
3VDD
42IN+
52IN-
62OUT
73OUT 8
4IN- 13
4OUT 14
3IN- 9
4IN+ 12
3IN+ 10
GND 11
IC3
TLC084
R30A 10K
R31A 10K
R31B
10K
R31C
10K
R47
330R,1W
GND
GND
GND
VAA
R51 10k
R52 10k
Z7 39 V
Z8 39 V
+B
-B OVP
C15A
10uF, 16V
L1A
22uH
L1B
22uH
L1C
22uH
C10A
0.1uF,50V
C10B
0.1uF,50V
C10C
0.1uF,50V
Q5
DTA144EKA
C9 100uF,4V
R27A
3.3K
R14
10R
C10 4.7uF,10V
DSA
R26A 10K
GND
RpB 95C
RpC 95C
R30C 15K
R15
10R
C11
4.7uF,10V
R30B
15K
GND
C16B
0.01uF
R32B 10R
C16C
0.01uF
R32C 10R
C16A
0.01uF
R32A 10R
R49 10R
GND
R5A
47K
R6A
47K
C6A
1uF,50V
R7A
470K
Fig 18 System-level View of IRAUDAMP11
www.irf.com Page 20 of 35
IRAUDAMP11 REV 1.0
Self-Oscillating Frequency
Self-oscillating frequency is determined by the total delay time along the control loop of the
system; the propagation delay of the IRS2053M, the DirectFETs switching speed, the time-
constant of front-end integrator (R2, R3, R4, C2, C3 ). Variations in +B and –B supply voltages
also affect the self-oscillating frequency.
The self-oscillating frequency changes with the duty ratio. The frequency is highest at idling. It
drops as duty cycle varies away from 50%.
Adjustments of Self-Oscillating Frequency
Use R2 to set different self-oscillating frequencies. The PWM switching frequency in this type of
self-oscillating switching scheme greatly impacts the audio performance, both in absolute
frequency and frequency relative to the other channels. In absolute terms, at higher frequencies,
distortion due to switching-time becomes significant, while at lower frequencies, the bandwidth of
the amplifier suffers. In relative terms, interference between channels is most significant if the
relative frequency difference is within the audible range.
Normally, when adjusting the self-oscillating frequency of the different channels, it is suggested to
either match the frequencies accurately, or have them separated by at least 25kHz. Under the
normal operating condition with no audio input signal, the switching-frequency is set around
400kHz in the IRAUDAMP11.
www.irf.com Page 21 of 35
IRAUDAMP11 REV 1.0
Selectable Dead-time
The dead-time of the IRS2053 is set based on the voltage applied to the DT pin. Fig 19 lists the
suggested component value for each programmable dead-time between 45 and 105 ns.
All the IRAUDAMP11 models use DT1 (45ns) dead-time.
Dead-time Mode R1 R2 DT/SD Voltage
DT1 <10k Open Vcc
DT2 5.6k 4.7k 0.46 x Vcc
DT3 8.2k 3.3k 0.29 x Vcc
DT4 Open <10k COM
Recommended Resistor Values for Dead Time Selection
Vcc 0.57xVcc 0.36xVcc 0.23xVcc
105nS
85nS
65nS
45nS
VDT
Dead- time
Vcc
COM
DT
>0.5mA
R1
R2
IRS2053M
Fig 19 Dead-time Settings vs. VDT Voltage
www.irf.com Page 22 of 35
IRAUDAMP11 REV 1.0
Protection System Overview
The IRS2053M integrates over current protection (OCP) inside the IC. The rest of the protections,
such as over-voltage protection (OVP), under-voltage protection (UVP), and over temperature
protection (OTP), are detected externally to the IRS2053M (Fig 20).
The external shutdown circuit will disable the output by pulling down CSD pins, (Fig 21). If the
fault condition persists, the protection circuit stays in shutdown until the fault is removed.
HT 1
OS
5
VT 3
GND 2
VCC
4
IC6
LM26CIM5-XHA
R51
22k
D51
4.7V
R52
15k
Q5
MMBT5551
R59
22k
Q3
MMBT5551
Q4
MMBT5551
R54
10k
R55
47k
R53
10k
R57
47k
R50
47k
R58
47k
Z3
39V
Z4
18V
OVP UVP
SD
R56
47k
R60
15k
GND
OTP
-B
Fig 20 DCP, OTP, UVP and OVP Protection Circuits
.
Fig 21 Simplified Functional Diagram of OCP
www.irf.com Page 23 of 35
IRAUDAMP11 REV 1.0
Over-Current Protection (OCP)
Low-Side Current Sensing
The low-side current sensing feature protects the low side DirectFET from an overload condition
from negative load current by measuring drain-to-source voltage across RDS(ON) during its on state.
OCP shuts down the switching operation if the drain-to-source voltage exceeds a preset trip level.
The voltage setting on the OCSET pin programs the threshold for low-side over-current sensing.
When the VS voltage becomes higher than the OCSET voltage during low-side conduction, the
IRS2053 turns the outputs off and pulls CSD down to -VSS.
High-Side Current Sensing
The high-side current sensing protects the high side DirectFET from an overload condition from
positive load current by measuring drain-to-source voltage across RDS(ON) during its on state. OCP
shuts down the switching operation if the drain-to-source voltage exceeds a preset trip level.
High-side over-current sensing monitors drain-to-source voltage of the high-side DirectFET during
the on state through the CSH and VS pins. The CSH pin detects the drain voltage with reference
to the VS pin, which is the source of the high-side DirectFET. In contrast to the low-side current
sensing, the threshold of the CSH pin to trigger OC protection is internally fixed at 1.2V. An
external resistive divider R15, R16 and R17 are used to program a threshold as shown in Fig 20.
An external reverse blocking diode D1 is required to block high voltage feeding into the CSH pin
during low-side conduction. By subtracting a forward voltage drop of 0.6V at D1, the minimum
threshold which can be set for the high-side is 0.6V across the drain-to-source.
Over-Voltage Protection (OVP)
OVP is provided externally to the IRS2053M. OVP shuts down the amplifier if the bus voltage
between GND and -B exceeds 39V. The threshold is determined by a Zener diode Z3. OVP
protects the board from harmful excessive supply voltages, such as due to bus pumping at very
low frequency-continuous output in stereo mode.
Under-Voltage Protection (UVP)
UVP is provided externally to the IRS2053M. UVP prevents unwanted audible noise output from
unstable PWM operation during power up and down. UVP shuts down the amplifier if the bus
voltage between GND and -B falls below a voltage set by Zener diode Z4.
www.irf.com Page 24 of 35
IRAUDAMP11 REV 1.0
Offset Null (DC Offset) Adjustment
The IRAUDAMP11 requires no output-offset adjustment. DC offsets are tested to be less than ±20
mV.
Over-Temperature Protection (OTP)
A Preset Thermostat IC, IC6 in Fig 19, is placed in close proximity to the heatsink which has 6
DirectFETs under it; and monitors heatsink temperature. If the heatsink temperature rises above
100 C, the OTP shuts down all 3 channels by pulling down the CSD pins of the IRS2053M. OTP
recovers once the temperature has cooled down.
Click and POP Noise Reduction
Thanks to the click and pop elimination function built into the IRS2053M, the IRAUDAMP11 does
not require any additional components for this function.
Power Supply Requirements
For convenience, the IRAUDAMP11 has all the necessary housekeeping power supplies onboard
and only requires a pair of symmetric power supplies. Or use the IRAUDPS1 reference design
which is a 12 volt systems Audio Power Supply for automotive applications designed to provide
voltage rails (+B and –B) for Class D audio power amplifiers .
House Keeping Power Supply
The internally-generated housekeeping power supplies include ±5V for analog signal processing,
and +12V supply (VCC) referred to the negative supply rail -B for DirectFET gate drive. The gate
driver section of the IRS2053M uses VCC to drive gates of the DirectFETs. VCC is referenced to –
B (negative power supply). D2, R18 and C10 form a bootstrap floating supply for the HO gate
driver.
Bus Pumping
When the IRAUDAMP11 is running in stereo mode, the bus pumping effect takes place with low
frequency, high output. Since the energy flowing in the Class D switching stage is bi-directional,
there is a period where the Class D amplifier feeds energy back to the power supply. The majority
of the energy flowing back to the supply is from the energy stored in the inductor in the output LPF.
www.irf.com Page 25 of 35
IRAUDAMP11 REV 1.0
Usually, the power supply has no way to absorb the energy coming back from the load.
Consequently the bus voltage is pumped up, creating bus voltage fluctuations.
Following conditions make bus pumping worse:
1. Lower output frequencies (bus-pumping duration is longer per half cycle)
2. Higher power output voltage and/or lower load impedance (more energy transfers between
supplies)
3. Smaller bus capacitance (the same energy will cause a larger voltage increase)
The OVP protects IRAUDAMP11 from failure in case of excessive bus pumping. One of the
easiest counter measures of bus pumping is to drive both of the channels in a stereo configuration
out-of-phase so that one channel consumes the energy flow from the other and does not return it
to the power supply. Bus voltage detection monitors only +B supply, assuming the bus pumping
on the supplies is symmetric in +B and -B supplies.
Blue: VS of CH3;Cyan: VS of CH2;Magenta: Voltage of +B;Green:Current of C13A
Fig 22 Auto-phase sync clock’s BUS Pumping when idling
www.irf.com Page 26 of 35
IRAUDAMP11 REV 1.0
Load Impedance
Each channel is optimized for a 4 speaker load in half bridge.
Input Signal and Gain Setting
A proper input signal is an analog signal ranging from 20Hz to 20kHz with up to 3 VRMS amplitude
with a source impedance of no more than 600 . Input signal with frequencies from 30kHz to
60kHz may cause LC resonance in the output LPF, causing a large reactive current flowing
through the switching stage, especially with greater than 8 load impedances, and the LC
resonance can activate OCP.
The IRAUDAMP11 has an RC network called a Zobel network (R21 and C14) to damp the
resonance and prevent peaking frequency response with light loading impedance. (Fig 23)
Fig 23 Output Low Pass Filter and Zobel Network
Gain Setting
The ratio of resistors R4A~C/R1A~C in Fig 24 sets voltage gain. The IRAUDAMP11 has no on board
volume control. To change the voltage gain, change the input resistor term R1A~C. Changing R4A~C
affects PWM control loop design and may result poor audio performance.
www.irf.com Page 27 of 35
IRAUDAMP11 REV 1.0
C4A
1nF,50V
C2A 2.2nF,50V
R2A 120R
C3B
2.2nF,50V
C4B1nF,50V
C2C
2.2nF,50V
R7 10R
C6 4.7uF,10V
C7 4.7uF,10V
C2B
2.2nF,50V
R6 10R
R20A
22R
R9A
22R
R9B
22R
R9C
22R
R20C
22R
R20B
22R
R21A
10R,1W
C13A
0.47uF, 400V
C13C0.47uF, 400V
C13B
0.47uF, 400V
C14A
0.1uF, 63V
CH3 OUTPUT
CH2 OUTPUT
CH1 OUTPUT
R15B
10K R16B
3.9K
R17B
10K
R15C
10K
R16C
3.9K
R17C
10K
D1C1N4148
D1B
1N4148
D2B1N4148 R18B
4.7R
R14B
4.7R
C9B
10uF,16V
R16A
3.9K
D1A 1N4148
R15A
10K R17A
10K
R14A 4.7R
C9A
10uF,16V
R13 1K
R12 NC
R11 8.2K R10 2.2K
R4A
100K 1%
R2B
120R
R3B 5.6K
R1B 22K
R2C
120R
R1C 22K
R4B
100K 1%
R4C
100K 1%
C4C 1nF,50V
C3C
2.2nF,50V
R3A 1K
R1A 22K
C1A 100pF, 50V
R3C 5.6K
C3A 2.2nF,50V
D2A 1N4148
R18A
4.7R
D2C
1N4148
R18C
4.7R
R21C
10R,1W
R21B
10R,1W
C14C
0.1uF, 63V
C14B
0.1uF, 63V
CLIP1
3
CLIP2
2
CLIP3
1
CSD
48
GND
41
GND
40
DS
37
IN3
39
VAA
43
DCP
5
NC 27
OTP3 30
NC 36
COMP2
45 NC 16
LO1 17
CSH3 23
VS3 26
VB2
8
OTP1 28
VCC 32
COMP1
47
NC 22
VREF 35
OCSET 34
CSH1 15
LO3 21
VB3 24
HO3 25
COM2 20
LO2 18
NC
6COM 31
HO2
9
VS2
10
FAULT
4
NC
11
VS1
12
HO1 13
VB1 14
OTP2 29
DT 33
IN2
44
IN1
46
CSH2
7
VCC2 19
COMP3
38
VSS
42
-B 0
IC1
IRS2053
C19A
0.1uF,100V
R19A
1R
R19C
1R
C19B
0.1uF,100V
R19B
1R
R22
10R
D3
1N4148
R22C
10K
R22B 10K
Q1A
IRF6665
Q2A
IRF6665
Q2C
IRF6665
Q1B
IRF6665
Q2B
IRF6665
Q1C
IRF6665
C1B 100pF, 50V
C1C 100pF, 50V
GND
GND
GND
GND
CSD
GND
GND
GND
D4
1N4148
C5A 10uF, 16V
C5B 10uF, 16V
C5C 10uF, 16V
R24A 2.2K
R24C 2.2K
R24B 2.2K
R3
22k
C1
0.1uF,50V
VR1
10K
C40
N/A
C41
N/A
C8
10uF, 16V
VCC
1OUT 5
SET
3GND
2
DIT 4
IC2
LTC1799
R43
330R,1W
R44
510R,1W
C17B
1000uF,35V
C17A
1000uF,35V
C17C
0.1uF,50V
C17D
0.1uF,50V
R23B
100k
R23A
100k
1A
1
1B
2
2Y
3
GND
42A 5
2B 6
1Y 7
VCC 8
IC8
TC7W00FFCT-ND
L5 220uH
C32
2.2uF, 50V
C37
22uF, 16V
C33
0.1uF, 50V
C34
0.01uF, 25V
C35
2.2nF,50V
C36
0.01uF, 50V
R39
100k
R40
100k
R42
3.3k
R32
1k
R41
120k
D7
R31
5.1k
DS1
Q1
FX491
Q2
MMBT5401
R38
10R
R37
47k
Z1
24V
Z2
15V
R36
5.1k
SW
1
BST
2
RCL
3
RTN
4
VIN 8
VCC 7
RON/SD 6
FB 5
IC9
LM5007
Q3
MMBT5551
Q4
MMBT55 51
R54
10k
R55
47k
R53
10k
R57
47k
R50
47k
R58
47k
Z3
39V
Z4
18V
OVP UVP
+B
GND
-B
R46
33k
CH3 INPUT
CH2 INPUT
CH1 INPUT
1
2
3
4
P2
1
2
3
4
P3
1
2
3
P1
+B
GND
-B
CH2 OUTPUT
CH1 OUTPUT
GND
GND
CH3 OUTPUT
GND
GND
-5v
+5v
VCC
C12A
220pF
VSS
VAA -B
R22A
10K
C19C
0.1uF,100V
SD
R56
47k
CH2
CH1
C12B
220pF
C12C
220pF
Q8 ZX5T853
Q9
ZX5T95 3
R45
33k
Z5
5.6V
Z6
5.6V
R4 0R0 or N/A
R1
0R0 or N/A
GND GND
C61
0.01uF, 50V
R61 10k
R62 10k
For EMI
C62
0.01uF, 50V
R12A
N/A
R12B
N/A
R12C
N/A
R26C 10K
DSCDSB
R26B 10K
PROT
R104 10K
CH3 OUTPUT
CH2 OUTPUT
CH1 OUTPUT
R25A 100K
R25B 100K
R25C 100K
RpA 95C
1
2
3
4
5
6
CN1
CH1
GND
CH2
GND
CH3
GND
S
G
D
Q6MMBFJ112
R28A
1K
R29A
220K D3A
1N4148
1OUT
11IN-
21IN+
3VDD
42IN+
52IN-
62OUT
73OUT 8
4IN- 13
4OUT 14
3IN- 9
4IN+ 12
3IN+ 10
GND 11
IC3
TLC084
R30A 10K
R31A 10K
R31B
10K
R31C
10K
R47
330R,1W
GND
GND
GND
VAA
R51 10k
R52 10k
Z7 39V
Z8 39V
+B
-B OVP
C15A
10uF, 16V
L1A
22uH
L1B
22uH
L1C
22uH
C10A
0.1uF,50V
C10B
0.1uF,50V
C10C
0.1uF,50V
Q5
DTA144EKA
C9 100uF,4V
R27A
3.3K
R14
10R
C10 4.7uF,10V
DSA
R26A 10K
GND
RpB 95C
RpC 95C
R30C 15K
R15
10R
C11
4.7uF,10V
R30B
15K
GND
C16B
0.01uF
R32B 10R
C16C
0.01uF
R32C 10R
C16A
0.01uF
R32A 10R
R49 10R
GND
R5A
47K
R6A
47K
C6A
1uF,50V
R7A
470K
Fig 24 IRAUDAMP11 Schematic
Schematic
www.irf.com Page 28 of 35
IRAUDAMP11 REV 1.0
IRAUDAMP11 Fabrication Materials
Table 1 IRAUDAMP11 Electrical Bill of Materials
Quantity Value Description Designator Part Number Vender
1 0.1uF,50V
CAP CER .1UF 50V 10% X7R
0603 C1 490-1519-1-ND
Murata Electronics
North America
3 100pF, 50V
CAP CERAMIC 100PF 50V NP0
0603 C1A, C1B, C1C 399-1061-1-ND Kemet
7 2.2nF,50V
CAP CER 2200PF 50V 10%
X7R 0603
C2A, C2B, C2C,
C3A, C3B,
C3C, C35 490-1500-1-ND
Murata Electronics
North America
3 1nF,50V
CAP 1000PF 50V
CERAMICX7R 0603 C4A, C4B, C4C 399-1082-1-ND Kemet
3 10uF, 16V CAP 10UF 16V HA ELECT SMD C5A, C5B, C5C PCE4179CT-ND Panasonic - ECG
4 4.7uF,10V
CAP CERM 4.7UF 10V Y5V
0805 C6, C7, C10, C11 478-1429-1-ND AVX Corporation
1 1uF,50V CAP CER 1UF 50V X7R 0805 C6A 490-4736-1-ND
Murata Electronics
North America
2 10uF, 16V
CAP CER 10UF 16V X7R 20%
1206 C8, C15A 445-1601-1-ND TDK Corporation
1 100uF,4V
CAP 100UF 4V ELECT WX
SMD C9 493-2079-1-ND Nichicon
2 10uF,16V CAP CER 10UF 16V Y5V 0805 C9A, C9B 490-3347-1-ND
Murata Electronics
North America
3 0.1uF,50V
CAP .10UF 50V CERAMIC X7R
0805 C10A, C10B, C10C 311-1140-1-ND Yageo
3 220pF
CAP CER 220PF 50V 10% X7R
0603 C12A, C12B, C12C 490-1483-1-ND
Murata Electronics
North America
3 0.47uF, 400V
CAP .47UF 400V METAL
POLYPRO C13A, C13B, C13C 495-1315-ND EPCOS Inc
3 0.1uF, 63V
CAP FILM MKP .1UF 63VDC
2% C14A, C14B, C14C BC2054-ND
Vishay/BC
Components
4 0.01uF, 25V
CAP 10000PF 25V CERM X7R
0603
C16A, C16B,
C16C,C34 PCC1763CT-ND Panasonic - ECG
2 1000uF,35V
CAP 1000UF 35V ELECT SMG
RAD C17A, C17B 565-1086-ND United Chemi-Con
2 0.1uF,50V
CAP .10UF 50V CERAMIC X7R
1206 C17C, C17D 399-1249-1-ND Kemet
3 0.1uF,100V
CAP CER .10UF 100V X7R
10% 0805 C19A, C19B, C19C 445-1418-1-ND TDK Corporation
1 2.2uF, 50V CAP CER 2.2UF 50V X7R 1206 C32 490-3367-1-ND
Murata Electronics
North America
1 0.1uF, 50V
CAP CER .1UF 50V 10% X7R
0805 C33 490-1666-1-ND
Murata Electronics
North America
1 0.01uF, 50V
CAP CER 10000PF 50V 20%
X7R 0603 C36 490-1511-1-ND
Murata Electronics
North America
1 22uF, 16V CAP CER 22UF 16V X7R 1210 C37 445-3945-1-ND TDK Corporation
2 N/A C40, C41 N/A
2 0.01uF, 50V
CAP 10000PF 50V CERAMIC
X7R 0603 C61, C62 399-1091-1-ND Kemet
1 Header 6
TERMINAL BLOCK 3.5MM
6POS PCB CN1 ED1518-ND
On Shore Technology
Inc
9 1N4148
DIODE SWITCH 100V 400MW
SOD-123
D1A, D1B, D1C,
D2A, D2B, D2C,
D3, D3A, D4 1N4148W-FDICT-ND Diodes Inc
1 DIODE1
DIODE SCHOTTKY 100V 1.5A
SMA D7 10MQ100NPBFCT-ND Vishay/Semiconductors
4 BLUE LED
LED 468NM BLUE CLEAR 0603
SMD
DS1, DSA, DSB,
DSC 160-1646-1-ND Lite-On Inc
1 IRS2053 3ch Audio Class D Controller IC1 IR2053MPBF International Rectifier
1 LTC1799
IC OSCILLATOR RES SET
TSOT23-5 IC2
LTC1799CS5#TRMPBFCT-
ND Linear Technology
1 TLC084
IC OPAMP GP 10MHZ QUAD
14SOIC IC3 296-7287-1-ND Texas Instruments
www.irf.com Page 29 of 35
IRAUDAMP11 REV 1.0
1
TC7W00FFCT-
ND
IC GATE NAND DUAL 2INPUT
8-SOP IC8 TC7W00FFCT-ND Toshiba
1 LM5007 IC BUCK ADJ .5A 8LLP IC9 LM5007SDCT-ND
National
Semiconductor
3 22uH Class D inductor, 22uH L1A, L1B, L1C 7G14A-220M-B Inductors,Inc.
1 220uH
POWER INDUCTOR 220UH
0.49A SMD L5 308-1538-1-ND
SUMIDA AMERICA
COMPONENTS INC
1 Header 3
CONN TERM BLOCK PCB
5.0MM 3POS P1 281-1415-ND Weidmuller
2 SP OUT
TERMINAL BLOCK 3.5MM
4POS PCB P2, P3 ED1516-ND
On Shore Technology
Inc
1 RED LED LED RED CLEAR 0603 SMD PROT 160-1181-1-ND Lite-On Inc
1 FX491
TRANS HP NPN 60V 1000MA
SOT23-3 Q1 FMMT491CT-ND Diodes/Zetex
6 IRF6665
MOSFET N-CH 100V 4.2A
DIRECTFET
Q1A, Q1B, Q1C,
Q2A,
Q2B, Q2C IRF6665 International Rectifier
1 MMBT5401
TRANS PNP 150V 350MW
SMD SOT23-3 Q2 MMBT5401-FDICT-ND Diodes Inc
2 MMBT5551
TRANS NPN 160V 350MW
SMD SOT23-3 Q3, Q4 MMBT5551-FDICT-ND Diodes Inc
1 DTA144EKA
TRAN DIGITL PNP 50V 30MA
SOT-346 Q5 DTA144EKAT146CT-ND Rohm Semiconductor
1 MMBFJ112
IC SWITCH ANALOG N-CH
SOT-23 Q6 MMBFJ112CT-ND
Fairchild
Semiconductor
1 ZX5T853
TRANSISTOR 4.5A 100V SOT-
89 Q8 ZX5T853ZCT-ND Diodes/Zetex
1 ZX5T953
TRANSISTOR PNP 3.5A 100V
SOT-89 Q9 ZX5T953ZCT-ND Diodes/Zetex
1 0R0 RES 0.0 OHM 1/10W 0603 SMD R1 P0.0GCT-ND Panasonic - ECG
4 22K
RES 22K OHM 1/10W 5% 0603
SMD R1A, R1B, R1C, R3 RHM22KGCT-ND Rohm Semiconductor
3 120R
RES 120 OHM 1/10W 5% 0603
SMD R2A, R2B, R2C RHM120GCT-ND Rohm Semiconductor
3 1K
RES 1.0K OHM 1/10W 5% 0603
SMD R3A, R13, R32 RHM1.0KGCT-ND Rohm Semiconductor
2 5.6K
RES 5.6K OHM 1/10W 5% 0603
SMD R3B, R3C RHM5.6KGCT-ND Rohm Semiconductor
3 100K 1%
RES 100K OHM 1/8W 1% 0805
SMD R4A, R4B, R4C RHM100KCRCT-ND Rohm Semiconductor
8 47K
RES 47K OHM 1/10W 5% 0603
SMD
R5A, R6A, R37,
R50, R55, R56,
R57, R58 RHM47KGCT-ND Rohm Semiconductor
10 10R
RES 10 OHM 1/10W 5% 0603
SMD
R6, R7, R14, R15,
R22,
R32A, R32B,
R32C, R38, R49 RHM10GCT-ND Rohm Semiconductor
1 470K
RES 470K OHM 1/10W 5%
0603 SMD R7A RHM470KGCT-ND Rohm Semiconductor
6 22R
RES 22 OHM 1/10W 5% 0603
SMD
R9A, R9B, R9C,
R20A,
R20B, R20C RHM22GCT-ND Rohm Semiconductor
1 2.2K
RES 2.2K OHM 1/10W 5% 0603
SMD R10 RHM2.2KGCT-ND Rohm Semiconductor
1 8.2K
RES 8.2K OHM 1/10W 5% 0603
SMD R11 RHM8.2KGCT-ND Rohm Semiconductor
1 NC R12 N/A
3 N/A R12A, R12B, R12C N/A
5 4.7R
RES 4.7 OHM 1/10W 5% 0603
SMD
R14A, R14B, R18A,
R18B, R18C RHM4.7GCT-ND Rohm Semiconductor
25 10K
RES 10K OHM 1/10W 5% 0603
SMD
R15A, R15B, R15C,
R17A, R17B,
R17C,R22A, R22B,
R22C, R28A, R29A,
R30A,R31A, R31B,
R31C, R51, R52, RHM10KGCT-ND Rohm Semiconductor
www.irf.com Page 30 of 35
IRAUDAMP11 REV 1.0
R53, R54,R61, R62,
R104, R26A, R26B,
R26C
3 3.9K
RES 3.9K OHM 1/10W 5% 0603
SMD R16A, R16B, R16C RHM3.9KGCT-ND Rohm Semiconductor
3 1R
RES 1.0 OHM 1/8W 5% 0805
SMD R19A, R19B, R19C RHM1.0ARCT-ND Rohm Semiconductor
3 10R,1W
RES 10 OHM 1W 1% 2512
SMD R21A, R21B, R21C PT10AECT-ND Panasonic - ECG
7 100k
RES 100K OHM 1/10W 5%
0603 SMD
R23A, R23B, R25A,
R25B, R25C, R39,
R40 RHM100KGCT-ND Rohm Semiconductor
3 2.2K
RES 2.2K OHM 1/8W 5% 0805
SMD R24A, R24B, R24C RHM2.2KARCT-ND Rohm Semiconductor
2 3.3K
RES 3.3K OHM 1/10W 5% 0603
SMD R27A, R42 RHM3.3KGCT-ND Rohm Semiconductor
2 15K
RES 15K OHM 1/10W 5% 0603
SMD R30B, R30C RHM15KGCT-ND Rohm Semiconductor
1 5.1k
RES 5.1K OHM 1/8W 5% 0805
SMD R31 RHM5.1KARCT-ND Rohm Semiconductor
1 5.1k
RES 5.1K OHM 1/10W 5% 0603
SMD R36 RHM5.1KGCT-ND Rohm Semiconductor
1 120k
RES 120K OHM 1/10W 5%
0603 SMD R41 RHM120KGCT-ND Rohm Semiconductor
2 330R,1W
RES 330 OHM 1W 5% 2512
SMD R43, R47 PT330XCT-ND Panasonic - ECG
1 510R,1W
RES 510 OHM 1W 5% 2512
SMD R44 PT510XCT-ND Panasonic - ECG
2 33k
RES 33K OHM 1/10W 5% 0603
SMD R45, R46 RHM33KGCT-ND Rohm Semiconductor
3 95C
THERMISTOR PTC 470 OHM
95C SMD RpA, RpB, RpC 490-2465-1-ND
Murata Electronics
North America
1 10K TRIM POT ST-32TB 10 KOHMS VR1 ST32ETB103CT-ND
Vishay/BC
Components
1 24V
DIODE ZENER 24V 500MW
SOD-123 Z1 BZT52C24-FDICT-ND Diodes Inc
1 15V
DIODE ZENER 15V 500MW
SOD-123 Z2 BZT52C15-FDICT-ND Diodes Inc
3 39V
DIODE ZENER 39V 500MW
SOD-123 Z3, Z7, Z8 BZT52C39-FDICT-ND Diodes Inc
1 18V
DIODE ZENER 18V 500MW
SOD-123 Z4 BZT52C18-FDICT-ND Diodes Inc
2 5.6V
DIODE ZENER 5.6V 500MW
SOD-123 Z5, Z6 MMSZ5V6T1GOSCT-ND ON Semiconductor
Table 2 IRAUDAMP11 Mechanical Bill of Materials
Quantity Value Description Designator Digikey P/N Vendor
7 Washer #4 SS WASHER LOCK INTERNAL
#4 SS
Lock washer 1, Lock washer 2,
Lock washer 3, Lock washer 4,
Lock washer 5, Lock washer 6
Lock washer 7
H729-ND Building
Fasteners
1 PCB Print Circuit Board
IRAUDAM11 Rev 3.0 .PCB PCB 1 Custom
7 Screw 4-
40X5/16
SCREW MACHINE PHILLIPS
4-40X5/16
Screw 1, Screw 2, Screw 3,
Screw 4, Screw 5, Screw 6,
Screw 7,
H343-ND Building
Fasteners
4 Stand off 0.5" STANDOFF HEX 4-
40THR .500"L ALUM
Stand Off 1, Stand Off 2, Stand
Off 3, Stand Off 4 1893K-ND
Keystone
Electro-
nics
1/16 AAVID 4880G
THERMAL PAD .080" 4X4"
GAPPAD thermal pad under heatsink BER164-ND Therm-
alloy
www.irf.com Page 31 of 35
IRAUDAMP11 REV 1.0
IRAUDAMP11 Hardware
4.5 4.5
33
10827 27
12 14
1.6
6
10.5
16
6
12
IRAUDAMP11 Heat Spreader
All thread holes are 4-40 X 8mm dip ,minimum
Note:
All dimensions are in millimeters
Tolerances are ±0.1mm
Material:ALUMINUM
Fig 25 Heat Spreader
.
Fig 26 Hardware Assemblies
Screw
Screw
H343-ND
Screws
H343-ND
Stand Off 3
1893K-ND
Screw
Stand Off 4
1893K-ND
Lock washers
H729-ND
Lock washer
Lock washer
Stand Off 1
1893K-ND
Stand Off 2
1893K-ND
Lock washer
Screw
H343-ND
Lock washer
Screw
H343-ND
Lock washer
Screw
H343-ND
Lock washer
Screw
Thermal Pad
Th l d
www.irf.com Page 32 of 35
IRAUDAMP11 REV 1.0
IRAUDAMP11 PCB Specifications
PCB:
1. Two Layers SMT PCB with through holes
2. 1/16 thickness
3. 2/0 OZ Cu
4. FR4 material
5. 10 mil lines and spaces
6. Solder Mask to be Green enamel EMP110 DBG (CARAPACE) or Enthone Endplate
DSR-3241or equivalent.
7. Silk Screen to be white epoxy non conductive per IPC–RB 276 Standard.
8. All exposed copper must finished with TIN-LEAD Sn 60 or 63 for 100u inches thick.
9. Tolerance of PCB size shall be 0.010 –0.000 inches
10. Tolerance of all Holes is -.000 + 0.003”
11. PCB acceptance criteria as defined for class II PCB’S standards.
Gerber Files Apertures Description:
All Gerber files stored in the attached CD-ROM were generated from Protel Altium Designer
Altium Designer 6. Each file name extension means the following:
1. .gtl Top copper, top side
2. .gbl Bottom copper, bottom side
3. .gto Top silk screen
4. .gbo Bottom silk screen
5. .gts Top Solder Mask
6. .gbs Bottom Solder Mask
7. .gko Keep Out,
8. .gm1 Mechanical1
9. .gd1 Drill Drawing
10. .gg1 Drill locations
11. .txt CNC data
12. .apr Apertures data
Additional files for assembly that may not be related with Gerber files:
13. .pcb PCB file
14. .bom Bill of materials
15. .cpl Components locations
16. .sch Schematic
17. .csv Pick and Place Components
18. .net Net List
19. .bak Back up files
20. .lib PCB libraries
www.irf.com Page 33 of 35
IRAUDAMP11 REV 1.0
Fig 27 IRAUDAMP11 PCB Top Overlay (Top View)
www.irf.com Page 34 of 35
IRAUDAMP11 REV 1.0
Fig 28 IRAUDAMP11 PCB Bottom Layer (Top View)
www.irf.com Page 35 of 35
IRAUDAMP11 REV 1.0
Revision changes descriptions
Revision Changes description Date
Rev 1.0 Released Oct, 08 2010
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
Data and specifications subject to change without notice. 01/29/2009