NXP Semiconductors Technical Data Document Number: MRF13750H Rev. 1, 01/2018 RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs These 750 W CW transistors are designed for industrial, scientific and medical (ISM) applications in the 700 to 1300 MHz frequency range. The transistors are capable of CW or pulse power in narrowband operation. Typical Performance: VDD = 50 Vdc Signal Type Pout (W) 915 (1) CW 750 19.3 67.1 915 (2) Pulse (100 sec, 10% Duty Cycle) 850 20.5 69.2 1300 (3) CW 700 17.2 56.0 Frequency (MHz) Gps (dB) D (%) MRF13750H MRF13750HS 700-1300 MHz, 750 W CW, 50 V RF POWER LDMOS TRANSISTORS Load Mismatch/Ruggedness Frequency (MHz) 915 (2) Signal Type VSWR Pin (W) Test Voltage Pulse (100 sec, 10% Duty Cycle) > 10:1 at all Phase Angles 15.9 Peak (3 dB Overdrive) 50 Result NI--1230H--4S MRF13750H No Device Degradation 1. Measured in 915 MHz narrowband reference circuit (page 5). 2. Measured in 915 MHz narrowband production test fixture (page 11). 3. Measured in 1300 MHz narrowband reference circuit (page 8). Features Internally input pre--matched for ease of use Device can be used single--ended or in a push--pull configuration Characterized for 30 to 50 V Suitable for linear applications with appropriate biasing Integrated ESD protection Recommended driver: MRFE6VS25GN (25 W) Included in NXP product longevity program with assured supply for a minimum of 15 years after launch Typical Applications 915 MHz industrial heating/welding systems 1300 MHz particle accelerators NI--1230S--4S MRF13750HS Gate A 3 1 Drain A Gate B 4 2 Drain B (Top View) Note: The backside of the package is the source terminal for the transistor. Figure 1. Pin Connections 2017-2018 NXP B.V. RF Device Data NXP Semiconductors MRF13750H MRF13750HS 1 Table 1. Maximum Ratings Symbol Value Unit Drain--Source Voltage Rating VDSS -0.5, +105 Vdc Gate--Source Voltage VGS -6.0, +10 Vdc Operating Voltage VDD 55, +0 Vdc Storage Temperature Range Tstg -65 to +150 C Case Operating Temperature Range TC -40 to +150 C TJ -40 to +225 C PD 1333 6.67 W W/C Symbol Value (2,3) Unit Thermal Resistance, Junction to Case CW: Case Temperature 82C, 700 W CW, 50 Vdc, IDQ(A+B) = 150 mA, 915 MHz RJC 0.15 C/W Thermal Impedance, Junction to Case Pulse: Case Temperature 76C, 850 W Peak, 100 sec Pulse Width, 10% Duty Cycle, 50 Vdc, IDQ(A+B) = 200 mA, 915 MHz ZJC 0.014 C/W Operating Junction Temperature Range (1,2) Total Device Dissipation @ TC = 25C Derate above 25C Table 2. Thermal Characteristics Characteristic Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2, passes 2500 V Charge Device Model (per JESD22--C101) C3, passes 1200 V Table 4. Electrical Characteristics (TA = 25C unless otherwise noted) Characteristic Symbol Min Typ Max Unit IGSS -- -- 1 Adc 105 -- -- Vdc Off Characteristics (4) Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (VGS = 0 Vdc, ID = 10 A) V(BR)DSS Zero Gate Voltage Drain Leakage Current (VDS = 55 Vdc, VGS = 0 Vdc) IDSS -- -- 1 Adc Zero Gate Voltage Drain Leakage Current (VDS = 105 Vdc, VGS = 0 Vdc) IDSS -- -- 10 Adc Gate Threshold Voltage (4) (VDS = 10 Vdc, ID = 275 Adc) VGS(th) 1.3 1.72 2.3 Vdc Gate Quiescent Voltage (VDD = 50 Vdc, IDQ(A+B) = 200 mAdc, Measured in Functional Test) VGS(Q) 1.7 2.2 2.7 Vdc Drain--Source On--Voltage (4) (VGS = 10 Vdc, ID = 2.8 Adc) VDS(on) 0.1 0.23 0.6 Vdc Reverse Transfer Capacitance (VDS = 50 Vdc 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss -- 1.94 -- pF Output Capacitance (VDS = 50 Vdc 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss -- 63.8 -- pF On Characteristics Dynamic Characteristics (4,5) 1. 2. 3. 4. 5. Continuous use at maximum temperature will affect MTTF. MTTF calculator available at http://www.nxp.com/RF/calculators. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955. Each side of device measured separately. Part internally input pre--matched. (continued) MRF13750H MRF13750HS 2 RF Device Data NXP Semiconductors Table 4. Electrical Characteristics (TA = 25C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Functional Tests (In NXP Narrowband Production Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 200 mA, Pout = 850 W Peak (85 W Avg.), f = 915 MHz, 100 sec Pulse Width, 10% Duty Cycle Power Gain Gps 19.5 20.5 21.5 dB Drain Efficiency D 66.0 69.2 -- % Table 5. Load Mismatch/Ruggedness (In NXP Narrowband Production Test Fixture, 50 ohm system) IDQ(A+B) = 200 mA Frequency (MHz) 915 Signal Type VSWR Pin (W) Pulse (100 sec, 10% Duty Cycle) > 10:1 at all Phase Angles 15.9 Peak (3 dB Overdrive) Test Voltage, VDD Result 50 No Device Degradation Table 6. Ordering Information Device MRF13750HR5 MRF13750HSR5 Tape and Reel Information R5 Suffix = 50 Units, 56 mm Tape Width, 13--inch Reel Package NI--1230H--4S NI--1230S--4S MRF13750H MRF13750HS RF Device Data NXP Semiconductors 3 TYPICAL CHARACTERISTICS 1.08 Measured with 30 mV(rms)ac @ 1 MHz VGS = 0 Vdc 1000 Coss 100 500 mA 1.04 1.02 750 mA 1000 mA 1 0.98 0.96 10 0.94 Crss 1 VDD = 50 Vdc IDQ(A+B) = 200 mA 1.06 NORMALIZED VGS(Q) C, CAPACITANCE (pF) 10000 0 10 30 20 40 0.92 -50 50 -25 0 25 50 75 100 TC, CASE TEMPERATURE (C) VDS, DRAIN--SOURCE VOLTAGE (VOLTS) Note: Each side of device measured separately. IDQ (mA) Slope (mV/C) Figure 2. Capacitance versus Drain--Source Voltage 200 -2.168 500 -1.992 750 -1.903 1000 -1.854 Figure 3. Normalized VGS versus Quiescent Current and Case Temperature 108 ID = 17.3 Amps VDD = 50 Vdc MTTF (HOURS) 107 106 22.3 Amps 26.2 Amps 105 104 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (C) Note: MTTF value represents the total cumulative operating time under indicated test conditions. MTTF calculator available at http:/www.nxp.com/RF/calculators. Figure 4. MTTF versus Junction Temperature - CW MRF13750H MRF13750HS 4 RF Device Data NXP Semiconductors 915 MHz NARROWBAND REFERENCE CIRCUIT - 3.0 3.8 (7.6 cm 9.7 cm) Table 7. 915 MHz Narrowband Performance (In NXP Reference Circuit, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 150 mA, Pin = 8.8 W Frequency (MHz) Signal Type Pout (W) Gps (dB) D (%) 915 CW 750 19.3 67.1 MRF13750H MRF13750HS RF Device Data NXP Semiconductors 5 915 MHz NARROWBAND REFERENCE CIRCUIT - 3.0 3.8 (7.6 cm 9.7 cm) C13 C9 C11 C5 C7 R1 C1 D94455 C6 C8 R3 C2* C3* C4* Q1 R11 R2 Rev. 0 Q2 C15 R4 R5 R7 C14 R9 R8 R10 R6 U1 C10 C12 *C2, C3 and C4 are mounted vertically. Figure 5. MRF13750H Narrowband Reference Circuit Component Layout - 915 MHz Table 8. MRF13750H Narrowband Reference Circuit Component Designations and Values - 915 MHz Part Description Part Number Manufacturer C1, C2, C3, C4, C5, C6, C11, C12 47 pF Chip Capacitor ATC100B470JT500XT ATC C7, C8, C15 1 F Chip Capacitor GRM21BR71H105KA12L Murata C9, C10 1000 pF Chip Capacitor ATC100B102JT50XT ATC C13, C14 470 F, 100 V Electrolytic Capacitor MCGPR100V477M16X32--RH Multicomp Q1 RF Power LDMOS Transistor MRF13750H NXP Q2 NPN Bipolar Transistor BC847ALT1G ON Semiconductor R1, R2 10 1/4 W Chip Resistor CRCW120610R0JNEA Vishay R3 5 k Multi--turn Cermet Trimmer Potentiometer 3224W--1--502E Bourns R4 20 k 1/10 W Chip Resistor RR1220P--203--B--T5 Susumu R5 4.7 k 1/10 W Chip Resistor RR1220P--472--D Susumu R6, R8 1.2 k 1/8 W Chip Resistor CRCW08051K20FKEA Vishay R7 10 1/8 W Chip Resistor CRCW080510R0FKEA Vishay R9 2.2 k 1/8 W Chip Resistor CRCW08052K20JNEA Vishay R10 4.7 k 1/2 W Chip Resistor CRCW12104K70FKEA Vishay R11 2 1/2 W Chip Resistor ERJ--14YJ2R0U Panasonic U1 Voltage Regulator 5 V, Micro8 LP2951ACDMR2G ON Semiconductor PCB Rogers TC600, 0.025", r = 6.15 D94455 MTL MRF13750H MRF13750HS 6 RF Device Data NXP Semiconductors TYPICAL CHARACTERISTICS - 915 MHz NARROWBAND REFERENCE CIRCUIT 800 600 500 400 300 200 100 0 0 2 4 6 8 10 12 14 16 90 VDD = 50 Vdc, IDQ = 150 mA, f = 915 MHz 22 700 Gps, POWER GAIN (dB) Pout, OUTPUT POWER (WATTS) 23 VDD = 50 Vdc, IDQ = 150 mA, f = 915 MHz 80 Gps 21 70 60 20 19 50 D 18 40 17 30 16 20 15 0 100 200 300 Pin, INPUT POWER (WATTS) 400 500 600 700 800 D, DRAIN EFFICIENCY (%) 900 10 900 Pout, OUTPUT POWER (WATTS) f (MHz) P1dB (W) P3dB (W) 915 690 800 Figure 7. Power Gain and Drain Efficiency versus CW Output Power Figure 6. CW Output Power versus Input Power f MHz Zsource Zload 915 0.58 + j0.24 0.59 + j1.19 Zsource = Test circuit impedance as measured from gate to ground. Zload 50 = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Zsource 50 Zload Figure 8. Narrowband Series Equivalent Source and Load Impedance - 915 MHz MRF13750H MRF13750HS RF Device Data NXP Semiconductors 7 1300 MHz NARROWBAND REFERENCE CIRCUIT - 3.0 3.9 (7.6 cm 9.9 cm) Table 9. 1300 MHz Narrowband Performance (In NXP Reference Circuit, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 150 mA, Pin = 11 W Frequency (MHz) Signal Type Pout (W) Gps (dB) D (%) 1300 CW 700 17.2 56.0 MRF13750H MRF13750HS 8 RF Device Data NXP Semiconductors 1300 MHz NARROWBAND REFERENCE CIRCUIT - 3.0 3.9 (7.6 cm 9.9 cm) C12 C8 C10 C4 C6 R1 C2 Q1 C1 C3 R11 R2 Rev. 0 D100209 C7 R4 C14 R7 C5 R3 R5 R6 Q2 R9 R8 C13 C9 C11 R10 U1 Figure 9. MRF13750H Narrowband Reference Circuit Component Layout - 1300 MHz Table 10. MRF13750H Narrowband Reference Circuit Component Designations and Values - 1300 MHz Part Description Part Number Manufacturer C1, C4, C5, C10, C11 24 pF Chip Capacitor ATC100B240JT500XT ATC C2, C3 18 pF Chip Capacitor ATC100B180JT500XT ATC C6, C7, C14 1 F Chip Capacitor GRM21BR71H105KA12L Murata C8, C9 1000 pF Chip Capacitor ATC100B102JT50XT ATC C12, C13 470 F, 100 V Electrolytic Capacitor MCGPR100V477M16X32-RH Multicomp R1, R2 10 , 1/4 W Chip Resistor CRCW120610R0JNEA Vishay R3 5 k Multi--turn Cermet Trimmer Potentiometer 3224W-1-502E Bourns R4 20 k, 1/8 W Chip Resistor CRCW080520K0FKEA Vishay R5 4.7 k, 1/8 W Chip Resistor CRCW08054K70FKEA Vishay R6, R8 1.2 k, 1/8 W Chip Resistor CRCW08051K20FKEA Vishay R7 10 , 1/8 W Chip Resistor CRCW080510R0FKEA Vishay R9 2.2 k, 1/8 W Chip Resistor CRCW08052K20JNEA Vishay R10 4.7 k, 1/2 W Chip Resistor CRCW12104K70FKEA Vishay R11 3.3 , 1/2 W Chip Resistor ERJ-14YJ3R3U Panasonic Q1 RF Power LDMOS Transistor MRF13750H NXP Q2 NPN Bipolar Transistor BC847ALT1G ON Semiconductor U1 Voltage Regulator 5 V, Micro8 LP2951ACDMR2G ON Semiconductor PCB Arlon TC350, 0.020, r = 3.5 D100209 MTL MRF13750H MRF13750HS RF Device Data NXP Semiconductors 9 TYPICAL CHARACTERISTICS - 1300 MHz NARROWBAND REFERENCE CIRCUIT 20 700 60 55 19.5 600 500 400 300 200 100 Gps 19 18.5 45 18 40 17.5 4 8 12 16 20 35 D 17 30 16.5 0 0 50 16 25 VDD = 50 Vdc, IDQ(A+B) = 150 mA, f = 1300 MHz 0 100 200 Pin, INPUT POWER (WATTS) 300 400 500 600 D, DRAIN EFFICIENCY (%) VDD = 50 Vdc, IDQ(A+B) = 150 mA, f = 1300 MHz Gps, POWER GAIN (dB) Pout, OUTPUT POWER (WATTS) 800 700 20 800 Pout, OUTPUT POWER (WATTS) f (MHz) P1dB (W) P3dB (W) 1300 600 710 Figure 11. Power Gain and Drain Efficiency versus CW Output Power Figure 10. CW Output Power versus Input Power f MHz Zsource Zload 1300 0.64 + j1.92 0.39 + j0.92 Zsource = Test circuit impedance as measured from gate to ground. Zload 50 = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Zsource 50 Zload Figure 12. Narrowband Series Equivalent Source and Load Impedance - 1300 MHz MRF13750H MRF13750HS 10 RF Device Data NXP Semiconductors 915 MHz NARROWBAND PRODUCTION TEST FIXTURE - 4.0 6.0 (10.2 cm 15.2 cm) C1 C3 C24 C5 C26 B1 Rev. 0 C7 D87851 Coax1 C28 C22 C12 Coax3 L1 R1 C9 C14* CUT OUT AREA C11 C10 R2 Coax2 C13 C8 L2 Coax4 C23 B2 C2 C16* C17* C15* C18* C19* C20* C21* C25 C4 C6 C27 C29 *C14, C15, C16, C17, C18, C19, C20 and C21 are mounted vertically. Figure 13. MRF13750H Narrowband Production Test Fixture Component Layout - 915 MHz Table 11. MRF13750H Narrowband Production Test Fixture Component Designations and Values - 915 MHz Part Description Part Number Manufacturer B1, B2 RF Bead, Short 2743019447 Fair--Rite C1, C2 22 F, 35 V Tantalum Capacitor T491X226K035AT Kemet C3, C4 2.2 F Chip Capacitor C1825C225J5RAC Kemet C5, C6 0.1 F Chip Capacitor CDR33BX104AKWS AVX C7, C8, C22, C23 36 pF Chip Capacitor ATC100B360JT500XT ATC C9, C10 10 pF Chip Capacitor ATC100B100JT500XT ATC C11 13 pF Chip Capacitor ATC100B130JT500XT ATC C12, C13 12 pF Chip Capacitor ATC100B120JT500XT ATC C14, C15 7.5 pF Chip Capacitor ATC100B7R5CT500XT ATC C16, C17, C18, C19, C20, C21 36 pF Chip Capacitor ATC100B360JT500XT ATC C24, C25 0.01 F Chip Capacitor C1825C103K1GAC--TU Kemet C26, C27, C28, C29 470 F, 63 V Electrolytic Capacitor MCGPR63V477M13X26--RH Multicomp Coax1, 2, 3, 4 25 , Semi Rigid Coax, 2.2 Shield Length UT--141C--25 Micro Coax L1, L2 5 nH Inductor A02TKLC Coilcraft R1, R2 10 , 3/4 W Chip Resistor CRCW201010R0FKEF Vishay PCB Arlon, AD255A, 0.03, r = 2.55 D87851 MTL MRF13750H MRF13750HS RF Device Data NXP Semiconductors 11 TYPICAL CHARACTERISTICS - 915 MHz, TC = 25_C PRODUCTION TEST FIXTURE Pout, OUTPUT POWER (WATTS) PEAK 1200 VDD = 50 Vdc, f = 915 MHz Pulse Width = 100 msec, 10% Duty Cycle 1000 Pin = 8.8 W 800 600 Pin = 4.4 W 400 200 0 0.5 0 1 1.5 2 2.5 3 VGS, GATE--SOURCE VOLTAGE (VOLTS) Figure 14. Output Power versus Gate--Source Voltage at a Constant Input Power 23 58 56 54 52 50 48 46 44 26 30 32 34 36 38 40 42 21 20 600 mA 19 17 200 mA 400 mA 1000 mA 600 mA 50 30 800 mA 20 10 0 1000 100 Pin, INPUT POWER (dBm) 60 40 400 mA 200 mA 18 80 70 D 15 30 44 Gps IDQ(A+B) = 1000 mA 800 mA 22 16 28 90 VDD = 50 Vdc, f = 915 MHz Pulse Width = 100 sec, 10% Duty Cycle D, DRAIN EFFICIENCY (%) 60 24 VDD = 50 Vdc, IDQ(A+B) = 200 mA, f = 915 MHz Pulse Width = 100 msec, 10% Duty Cycle Gps, POWER GAIN (dB) Pout, OUTPUT POWER (dBm) PEAK 62 Pout, OUTPUT POWER (WATTS) PEAK f (MHz) P1dB (W) P3dB (W) 915 802 912 Figure 16. Power Gain and Drain Efficiency versus Output Power and Quiescent Current Figure 15. Output Power versus Input Power 90 80 22 70 21 60 20 19 18 Gps 50 TC = -40_C 40 25_C D 17 85_C 16 15 20 85_C 25_C -40_C 30 20 10 100 24 23 22 0 1000 Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 23 VDD = 50 Vdc, IDQ(A+B) = 200 mA, f = 915 MHz Pulse Width = 100 sec, 10% Duty Cycle D, DRAIN EFFICIENCY (%) 24 IDQ(A+B) = 200 mA, f = 915 MHz Pulse Width = 100 sec, 10% Duty Cycle 21 20 19 18 17 16 15 14 13 12 45 V 50 V 40 V 35 V VDD = 30 V 0 200 400 600 800 Pout, OUTPUT POWER (WATTS) PEAK Pout, OUTPUT POWER (WATTS) PEAK Figure 17. Power Gain and Drain Efficiency versus Output Power Figure 18. Power Gain versus Output Power and Drain--Source Voltage 1000 MRF13750H MRF13750HS 12 RF Device Data NXP Semiconductors 915 MHz NARROWBAND PRODUCTION TEST FIXTURE f MHz Zsource Zload 915 3.46 - j1.76 2.39 + j3.92 Zsource = Test fixture impedance as measured from gate to gate, balanced configuration. Zload 50 Input Matching Network = Test fixture impedance as measured from drain to drain, balanced configuration. + -Zsource Device Under Test -- Output Matching Network 50 + Zload Figure 19. Narrowband Series Equivalent Source and Load Impedance - 915 MHz MRF13750H MRF13750HS RF Device Data NXP Semiconductors 13 PACKAGE DIMENSIONS MRF13750H MRF13750HS 14 RF Device Data NXP Semiconductors MRF13750H MRF13750HS RF Device Data NXP Semiconductors 15 MRF13750H MRF13750HS 16 RF Device Data NXP Semiconductors MRF13750H MRF13750HS RF Device Data NXP Semiconductors 17 PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following resources to aid your design process. Application Notes AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins EB212: Using Data Sheet Impedances for RF LDMOS Devices Software Electromigration MTTF Calculator RF High Power Model .s2p File Development Tools Printed Circuit Boards To Download Resources Specific to a Given Part Number: 1. Go to http://www.nxp.com/RF 2. Search by part number 3. Click part number link 4. Choose the desired resource from the drop down menu REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 Dec. 2017 Initial release of data sheet 1 Jan. 2018 On Characteristics, VGS(Q): Min and Max values updated to reflect recent test results of the device, p. 2 MRF13750H MRF13750HS 18 RF Device Data NXP Semiconductors How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. E 2017-2018 NXP B.V. MRF13750H MRF13750HS Document Number: RF Device Data MRF13750H Rev. 1,Semiconductors 01/2018 NXP 19