Freescale Semiconductor
Data Sheet: Technical Data
© Freescale Semiconductor, Inc., 2009. All rights reserved.
Freescale reserves the right to change the detail specifications as may be required to permit
improvements in the design of its products.
DSP56720/DSP56721
DSP56720
144-Pin LQFP
20 mm × 20 mm
0.5 mm pitch DSP56721
80-Pin LQFP
14 mm × 14 mm
0.65 mm pitch
144-Pin LQFP
20 mm × 20 mm
0.5 mm pitch
Document Number: DSP56720EC
Rev. 5, 02/2009
The Symphony DSP56720/DSP56721 Multi-Core Audio
Processors are part of the DSP5672x fa mily of progra mmable
CMOS DSPs, des igned using mult iple DSP56300 24- bit
cores.
The DSP56720/DSP56721 devices are intended for
autom otive, consumer, and professional audio applications
that require high perf ormance for audio processing. In
addition, the DSP56720 is ideally suited for applications that
need the c apabil it y to expa nd memory of f-chip or to int erface
to exte rna l par alle l peri pheral s. P ot entia l appl icat ions inc lude
A/V receivers, HD-DVD and B lu-Ray players, car
audio/amplifiers, and professiona l recording equipment.
The DSP56720/DSP56721 devices exc el at audi o processing
for automotive and co nsumer audio applications requiring
high MIPs. Higher MIPs and memory requirements are driven
by the new high-de finition audio s tandards (Dolby Digital+,
Dolby TrueHD, DTS-HD, for example) and the desire to
pr ocess multiple audio streams.
In addi tion, DSP56720/ DSP56721 device s are optimal for the
professional audio market requiring audio recording, signal
pr ocessing, and digital audio synt hes is .
The DSP56720/DSP56721 proc essors provide a wealth of
on-chip audio proc essing funct ions , via a plug and play
software architecture system that supports audio decoding
algorithms, various equalization algorithm s, compression,
signal gen erator, tone control, fade/balance, level
meter/spectrum analy ze r, among others . The
DSP56720/DSP56721 devices also support various matrix
decoders and sound field processing algorithms.
W ith two DSP56 300 cores, a si ngle DSP5 6720 or DSP56721
device can replace dual-DSP des igns, saving costs while
meeting high MIPs requirements. Legacy peripherals from the
previous DSP5636x/7x familie s are included, as well as a
varie ty of new modul es. Included among the new module s are
an Asynchronous Sample Rate Converter (ASRC), Inter-Core
Communication (ICC), an E xternal Memory Controller
(EMC) to support SDRAM, and a Sony/ P hilips Digita l
Interf ac e (S/PDIF).
The DSP56720/DSP56721 offer 200 million instructions per
second (MIPs) per core using an internal 200 MHz clock.
The DSP56720/DSP56721 are high density CMOS devices
with 3.3 V inputs and out puts.
The DSP56720 device is slightly different than the DSP56721
device—the DSP56720 includes an e xternal memory
interface whil e the DSP56 721 device doe s not . Th e
DSP56720 block diagram is shown in Figure 1; the
DSP56721 block diagram is shown in Figure 2.
Symphony
DSP56720/DSP56721
Multi-Core Audio Processors
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor2
Table of Contents
1 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
1.1 Pinout for DSP56720 144-Pin Plastic LQFP Package . .5
1.2 Pinout for DSP56721 80-Pin Plastic LQFP Package . . .6
1.3 Pinout for DSP56721 144-Pin Plastic LQFP Package . .7
1.4 Pin Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . .8
2.2 Thermal Characteristics. . . . . . . . . . . . . . . . . . . .9
2.3 Power Requirements . . . . . . . . . . . . . . . . . . . . .10
2.5 DC Electrical Characteristics . . . . . . . . . . . . . . .12
2.6 AC Electrical Characteristics . . . . . . . . . . . . . . .13
2.7 Internal Clocks . . . . . . . . . . . . . . . . . . . . . . . . . .13
2.8 External Clock Operation. . . . . . . . . . . . . . . . . .13
2.9 Reset, Stop, Mode Select, and Interrupt Timing 15
2.10 Serial Host Interface (SHI) SPI Protocol Timing 18
2.11 Serial Host Interface (SHI) I2C Protocol Timing.24
2.12 Programming the SHI I2C Serial Clock . . . . . . 26
2.13 Enhanced Serial Audio Interface (ESAI) Timing27
2.14 Timer Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.15 GPIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.16 JTAG Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.17 Watchdog Timer Timing . . . . . . . . . . . . . . . . . . 35
2.18 Host Data Interface (HDI24) Timing . . . . . . . . . 35
2.19 S/PDIF Timing . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.20 EMC Timing (DSP56720 Only) . . . . . . . . . . . . 43
3 Functional Description and Application Information . . . . . . . 47
4 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1 80-Pin Package Outline Drawing . . . . . . . . . . . . . . . . . 49
5.2 144-Pin Package Outline Drawing. . . . . . . . . . . . . . . . 51
6 Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 3
Figure 1. DSP56720 Block Diagram
Figure 2. DSP56721 Block Diagram
SHI
TEC
ESAI
ESAI_1
WDT
GPIO
SHI_1
TEC_1
ESAI_2
ESAI_3
WDT_1
GPIO
PCU
/ AGU
/ ALU
DMA OnCE OnCE
PCU
/ AGU
/ ALU
DMA
On-Chip
Memory
P X Y
On-Chip
Memory
P X Y
DSP
Core-0
EMC
S/PDIF
GPIO
ASRC
Arbiter 8
Arbiters 0–7
2 JTAGs
Shared Memory 8 Kbytes
Blocks 0–7 (64 Kbytes total)
MODA1, MODB1,
MODC1, MODD1
MODA0, MODB0,
MODC0, MODD0 JTAG
EXTAL/XTAL
DSP
Core-1
Chip Config
Arbiter 9
CGM
Shared Bus 0
Shared Bus 1
SHI
TIMER
ESAI
ESAI_1
WDT
GPIO
HDI24
SHI_1
TIMER_1
ESAI_2
ESAI_3
WDT_1
GPIO
HDI24_1
PCU
/ AGU
/ ALU
DMA OnCE OnCE
PCU
/ AGU
/ ALU
DMA
On-Chip
Memory
P X Y
On-Chip
Memory
P X Y
DSP
Core-0
SPDIF
GPIO
ASRC
Arbiter 8
Arbiters 0–7
2 JTAGs
Shared Memory 8 Kbytes
Blocks 0–7 (64 Kbytes total)
MODA1, MODB1,
MODC1, MODD1
MODA0, MODB0,
MODC0, MODD0 JTAG
HDI24 EXTAL/XTAL
DSP
Core-1
Chip Config
CGM
Shared Bus 0 Shared Bus 1
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor4
1 Pin Assignments
DSP56720 devices are available in one package type; DSP56721 devices are available in two pack age types. For the pin
ass ig n m e n ts o f a sp ec if i c dev ice in a s p ec if i c pa ck a ge , r ef er to Section 1.1, “Pinout for DSP56720 144-Pin Pl astic LQFP
Package,” through Section 1.3, “Pinout for DSP56721 144-Pin Plastic LQFP Package.”
For more detaile d information about signals, refer to the Symphony™ DSP56720/DSP56721 Mul ti-Core Audio Processors
Ref erence Man uall (DSP56720RM).
Table 1. Pin Assignments by Package
Device Package See
DSP56720 144-pin plastic LQFP Figure 3 on page 5
DSP56721 80-pin plastic LQFP Figure 4 on page 6
144-pin plastic LQFP Figure 5 on page 7
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 5
1.1 Pinout for DSP56720 144-Pin Plastic LQFP Package
Figure 3 shows the pinout of the DSP56720 144-pin plastic LQFP package.
Figure 3. DSP56720 144-Pin Package Pinout
108 IO_GND
107 IO_VDD
106 WDT
105 PINIT/NMI
104 TDO
103 TDI
102 TCK
101 TMS
100 SDO2_1/SDI3_1
99 SDO3_1/SDI2_1
98 SDO4_1/SDI1_1
97 SDO5_1/SDI0_1
96 CORE_GND
95 CORE_VDD
94 FSR
93 SCKR
92 HCKR
91 SCKT
90 FST
89 HCKT
88 SDO2/SDI3
87 SDO3/SDI2
86 SDO4/SDI1
85 SDO5/SDI0
84 SPDIFOUT1
83 SPDIFIN1
82 IO_GND
81 IO_VDD
80 EXTAL
79 XTAL
78 PLLP_GND
77 PLLD_GND
76 PLLD_VDD
75 PLLA_GND
74 PLLA_VDD
73 PLLP_VDD
LSYNC_IN 37
LSYNC_OUT 38
LAD23 39
LAD22 40
LAD21 41
LAD20 42
LAD19 43
LAD18 44
LAD17 45
CORE_VDD 46
CORE_GND 47
IO_VDD 48
IO_GND 49
LAD16 50
LAD15 51
LAD14 52
LAD13 53
LAD12 54
LAD11 55
LAD10 56
LAD9 57
IO_VDD 58
IO_GND 59
CORE_VDD 60
CORE_GND 61
LAD8 62
LAD7 63
LAD6 64
LAD5 65
LAD4 66
LAD3 67
LAD2 68
LAD1 69
LAD0 70
IO_GND 71
IO_VDD 72
CORE_VDD 1
CORE_GND 2
LALE 3
LCS0 4
LCS1 5
LCS2 6
LCS3 7
LCS4 8
LCS5 9
LCS6 10
LCS7 11
IO_VDD 12
IO_GND 13
CORE_VDD 14
CORE_GND 15
LWE 16
LOE 17
LGPL5 18
LSDA10 19
LCKE 20
LCLK 21
LBCTL 22
LSDWE 23
LSDCAS 24
LGTA 25
LA0 26
LA1 27
LA2 28
IO_VDD 29
IO_GND 30
PLLP1_GND 31
PLLP1_VDD 32
PLLD1_GND 33
PLLD1_VDD 34
PLLA1_GND 35
PLLA1_VDD 36
144 SCAN
143 MODA0/IRQA
142 MODB0/IRQB
141 MODC0/PLOCK
140 MODD0/PG1
139 FSR_3
138 SCKR_3
137 HCKR_3
136 SCKT_3
135 FST_3
134 HCKT_3
133 IO_GND
132 IO_VDD
131 CORE_GND
130 CORE_VDD
129 MODA1/IRQC
128 MODB1/IRQD
127 MODC1/NMI_1
126 MODD1/PG2
125 SDO2_2/SDI3_2
124 SDO3_2/SDI2_2
123 SDO4_2/SDI1_2
122 SDO5_2/SDI0_2
121 SDO2_3/SDI3_3
120 SDO3_3/SDI2_3
119 SDO4_3/SDI1_3
118 SDO5_3/SDI0_3
117 SS/HA2
116 HREQ/PH4
115 SCK/SCL
114 MOSI/HA0
113 MISO/SDA
112 SS_1/HA2_1
111 RESET
110 CORE_GND
109 CORE_VDD
DSP56720
144-Pin
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor6
1.2 Pinout for DSP56721 80-Pin Plastic LQFP Package
Figure 4 shows the pinout of the DSP56721 80-pin plastic LQFP package.
Figure 4. DSP56721 80-Pin Package
60 WDT
59 PINIT/NMI
58 TDO
57 TDI
56 TCK
55 TMS
54 CORE_GND
53 CORE_VDD
52 SDO4/SDI1
51 SDO5/SDI0
50 IO_GND
49 IO_VDD
48 EXTAL
47 XTAL
46 PLLP_GND
45 PLLD_GND
44 PLLD_VDD
43 PLLA_GND
42 PLLA_VDD
41 PLLP_VDD
FST_3 21
HCKT_3 22
SDO2_1/SDI3_1 23
SDO3_1/SDI2_1 24
CORE_VDD 25
CORE_GND 26
SDO4_1/SDI1_1 27
SDO5_1/SDI0_1 28
FSR 29
SCKR 30
HCKR 31
SCKT 32
IO_VDD 33
IO_GND 34
CORE_VDD 35
CORE_GND 36
FST 37
HCKT 38
SDO2/SDI3 39
SDO3/SDI2 40
SDO2_3/SDI3_3 1
SDO3_3/SDI2_3 2
SDO4_3/SDI1_3 3
SDO5_3/SDI0_3 4
IO_VDD 5
IO_GND 6
CORE_VDD 7
CORE_GND 8
SPDIFIN1/SDO2_2/SDI3_2 9
SPDIFOUT1/SDO3_2/SDI2_2 10
SDO4_2/SDI1_2 11
SDO5_2/SDI0_2 12
FSR_3 13
SCKR_3 14
SCKT_3 15
GND 16
GND 17
GND 18
GND 19
GND 20
80 SCAN
79 MODA0/IRQA
78 MODB0/IRQB
77 MODC0/PLOCK
76 IO_GND
75 IO_VDD
74 CORE_GND
73 CORE_VDD
72 MODA1/IRQC
71 MODB1/IRQD
70 MODC1/NMI_1
69 SS/HA2
68 HREQ/PH4
67 SCK/SCL
66 MOSI/HA0
65 MISO/SDA
64 SS_1/HA2_1
63 RESET
62 CORE_GND
61 CORE_VDD
DSP56721
80-Pin
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 7
1.3 Pinout for DSP56721 144-Pin Plastic LQFP Package
Figure 5 shows the pinout of the DSP56721 144-pin plastic LQFP package.
Figure 5. DSP56721 144-Pin Package Pinout
1.4 Pin Multiplexing
Many pi ns are multi plexed. For more about pi n multi plexing, re fer to the Symphon y™ DSP56720/DSP 56721 Multi- Core Audio
Processors Reference Manual (DSP56720RM).
108 IO_GND
107 IO_VDD
106 WDT
105 PIINT/NMI
104 TDO
103 TDI
102 TCK
101 TMS
100 SCKR_1
99 FSR_1
98 SCKT_1
97 FST_1
96 SDO0_1
95 SDO1_1
94 IO_GND
93 IO_VDD
92 CORE_GND
91 CORE_VDD
90 SDO0
89 SDO1
88 SDO4/SDI1
87 SDO5/SDI0
86 SPDIFOUT1/H12/HAD12
85 SPDIFIN1/H8/HAD8
84 HACK/HRRQ
83 HOREQ/HTRQ
82 IO_GND
81 IO_VDD
80 EXTAL
79 XTAL
78 PLLP_GND
77 PLLD_GND
76 PLLD_VDD
75 PLLA_GND
74 PLLA_VDD
73 PLLP_VDD
HAS/HA0 37
HA1/HA8 38
HA2/HA9 38
HRW/HRD 40
HDS/HWR 41
HCS/HA10 42
IO_VDD 43
IO_GND 44
FST_3 45
HCKT_3 46
SDO2_1/SDI3_1 47
SDO3_1/SDI2_1 48
CORE_VDD 49
CORE_GND 50
SDO4_1/SDI1_1 51
SDO5_1/SDI0_1 52
FSR 53
SCKR 54
HCKR 55
SCKT 56
IO_VDD 57
IO_GND 58
CORE_VDD 59
CORE_GND 60
FST 61
HCKT 62
SDO2/SDI3 63
SDO3/SDI2 64
IO_GND 65
IO_VDD 66
H0/HAD0 67
H1/HAD1 68
H2/HAD2 69
H3/HAD3 70
H4/HAD4 71
H5/HAD5 72
TIO0/H15/HAD15 1
PG18/HDI_SEL 2
IO_GND 3
TIO0_1/H18/HAD18 4
CORE_VDD 5
CORE_GND 6
SDO2_3/SDI3_3 7
SDO3_3/SDI2_3 8
SDO4_3/SDI1_3 9
SDO5_3/SDI0_3 10
IO_VDD 11
IO_GND 12
CORE_VDD 13
CORE_GND 14
SDO2_2/SDI3_2 15
SDO3_2/SDI2_2 16
SDO4_2/SDI1_2 17
SDO5_2/SDI0_2 18
HCKR_3 19
FSR_3 20
SCKR_3 21
SCKT_3 22
IO_VDD 23
IO_GND 24
H6/HAD6 25
H7/HAD7 26
SPDIFIN2/H9/HAD9 27
SPDIFIN3/H10/HAD10 28
SPDIFIN4/H11/HAD11 29
SPDIFOUT2/H13/HAD13 30
SPLOCK/H14/HAD14 31
GND 32
GND 33
GND 34
GND 35
GND 36
144 SCAN
143 MODA0/IRQA
142 MODB0/IRQB
141 MODC0/PLOCK
140 MODD0/PG1
139 IO_GND
138 IO_VDD
137 CORE_GND
136 CORE_VDD
135 MODA1/IRQC
134 MODB1/IRQD
133 MODC1/NMI_1
132 MODD1/PG2
131 FSR_2
130 SCKR_2
129 SCKT_2
128 FST_2
127 SDO0_2
126 SDO1_2
125 IO_GND
124 IO_VDD
123 SDO0_3
122 SDO1_3
121 SS/HA2
120 HREQ/PH4
119 SCK/SCL
118 MOSI/HA0
117 MISO/SDA
116 SS_1/HA2_1
115 HREQ_1/PH4_1
114 SCK_1/SCL_1
113 MOSI_1/HA0_1
112 MISO_1/SDA_1
111 RESET
110 CORE_GND
109 CORE_VDD
DSP56721
144-Pin
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor8
2 Electrical Characteristics
2.1 Maximum Ratings
Table 2 shows the maxi mum rat ings .
CAUTION
This device contains cir cuitry protec ting against damage due to high static voltage or
electric al fields. However, normal prec autions should be ta ken to avoid exceeding
max im um voltage r atings. Reliability of operation i s enha nced if unused inputs are pulled
to an app r opriate logi c voltage level (for example , either GND or VDD). The suggested
value for a pull-up or pul l-down resistor is 4.7 kΩ.
NOTE
In the c alcul ation of t iming requi remen ts, addin g a maximum val ue of one spec ifica tion to
a minim um value of another specification does not yield a reasonable sum. A maximum
spe cificat ion is calculated using a worst ca se variation of proce ss parameter values in one
direction. The minimum specification is calculated using the worst case for the same
para meters in the opp osite di rection. There fore, a “maximum” val ue for a spe cificat ion will
never occur in the same device that has a “minimum” value for another specification;
adding a maximum to a minimum represents a condition that can never exist.
Table 2. Maximum Ratings
Rating1Symbol Value1, 2 Unit
Supply Voltage VCORE_VDD,
VPLLD_VDD
–0.3 to + 1.26 V
VPLLP_VDD,
VIO_VDD,
VPLLA_VDD,
–0.3 to + 4.0 V
Maximum CORE_VDD power supply ramp time3Tr 10 ms
Input Voltage per pin excluding VDD and GND VIN GND –0.3 to 5.5 V V
Current drain per pin excluding VDD and GND
(Except for pads listed below)
I12mA
LSYNC_OUT Ilsync_out 16 mA
LCLK Ilclk 16 mA
LALE Iale 16 mA
TDO IJTAG 24 mA
Operating temperature range TJ–40 to +100 °C
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 9
2.2 Thermal Characteristics
Table 3 provides the thermal characteristic s for the de vice.
The average chip-junction temperature (TJ) in °C can be obtained from:
TJ = TA + (PD × θJMA)
Where:
•T
A = Am b i en t Temp e r at ur e , °C
θJMA= Pa ck a ge Th er m a l R e si s t an ce , J u n ct io n - to - A mb i en t, °C /W
•P
D = PINT + PI/O
•P
INT = I DD × V DD, Watts Chip Internal Power
•P
I/O = Power Dissipation on Input and Outp ut P ins—User Determined
For mos t applications, PI/O < PINT and can be ignored. PD can be calculated using the worst-case conditions of 1.1 V and
780 mA. See Table 4 for more information.
To find TJ at 100° C, using the worst-case conditions and a four-layer board:
Storage temperature TSTG –65 to +150 °C
ESD protected voltage (Human Body Model) 2000 V
ESD protected voltage (Charged Device)
All pins
Corner pins
500
750
V
Note:
1. GND = 0 V, TJ = –40° C to 100° C, CL = 50 pF
2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress
beyond the maximum rating may affect device reliability or cause permanent damage to the device.
3. If the power supply ramp to full supply time is longer than 10 ms, the POR circuitry will not operate correctly, causing
erroneous operation.
Table 3. Thermal Characteristics
Characteristic Board Type Symbol LQFP Values Unit
Natural Convection, Junction-to-ambient thermal resistance1,2 Single layer board
(1s)
RθJA or θJA
57 for 80 QFP
49 for 144 QFP
°C/W
Four layer board
(2s2p)
44 for 80 QFP
40 for 144 QFP
°C/W
Junction-to-case thermal resistance3—R
θJC or θJC 10 for 80 QFP
9 for 144 QFP
°C/W
Notes:
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.
2, Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
3. Thermal resistance between the die and the case top surface as measured by the cold plate method
(MIL SPEC-883 Method 1012.1).
Table 2. Maximum Ratings (Continued)
Rating1Symbol Value1, 2 Unit
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor10
PD = 1.1 V × 625 mA
= 0.6875 W
TJ = 70 + (0.6875 × 40)
= 97.5° C
2.3 Power Requirements
To preven t high cur rent conditions due to possibl e improper sequenci ng of the power s upplies, use an externa l S chottky diode
as shown in Figure 6, connected between the DSP56720/ DSP56721 IO_VDD and Core _VDD power pins.
Figure 6. Prevent High Current Conditions by Using External Schottky Diode
If an extern al Schottky diode is not used (to prevent a high current condit ion at power -up), then IO_VDD must be appl ied ahead
of Core_VDD, as shown in Figure 7.
Figure 7. Prevent High Current Conditions by Applying IO_VDD Before Core_VDD
For corre ct opera tion of th e in ternal power-o n rese t logic , the Core _VDD ramp rate (T r ) to ful l suppl y must be le ss than 10 ms,
as shown in Figure 8.
Ther e are no power down r equireme nt for the dig ital 1. 0 V (CORE) and 3.3 V (IO). For the an alog PLL power, the digit al (IO)
3.3 V must be power up before the analog 3.3 V power. Similarly, for power down the digital (IO) 3.3 V must be power down
after the analog power 3.3 V. This re quirement is for avoiding possible leakage.
Figure 8. Ensure Correct Operation of Power-On Reset with Fast Ramp of Core_VDD
IO_VDD
Core_VDD
External
Schottky
Diode
Core_VDD
IO_VDD
Core_VDD
Tr must be < 10 ms
0 V
1.0 V
Tr
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 11
2.4 Power Consumption Considerations
Power dissipation is a key issue in portable DSP a pplications . Some of the factors which affect current consumption are
des cribed in this s ec tion. Most of th e current consumed by CMOS devi ces is alternating current (ac), whic h is charging and
discharging the capacita nces of the pins an d internal node s.
Current consumption is desc ribed by the following for mul a:
Eqn. 1
where C=node/pin capacitance
V=voltage swing
f=frequency of node /pin toggle
The maximum intern al current (ICCImax) value reflects the typical possible switching of the internal buses on best-case
operation conditions , which is not necessarily a real applicati on case. The typical inte rnal current (ICCItyp) value reflects the
average switching of the internal buses on typical operating conditions .
For applications tha t require very low current consumption, do the following:
Minimize the number of pins that are sw itching.
Min im i ze the ca p a citi ve lo ad on th e pi ns.
One way to ev aluate power cons umption is to use a curr ent per MIPS meas urem ent metho dology to minimize specific board
effects (for example, to compensate for measured board current not caused by the DSP). Use the test algorithm, specific test
current measurem ents, and the following equati on to derive the current per MIPS value.
I/MIPS = I/MHz = (ItypF2 - ItypF1)/(F2 - F1)
Eqn. 3
where : ItypF2=current at F2
ItypF1=current at F1
F2=high frequency (any sp ec ified operating frequenc y)
F1=low frequ ency (any specified opera ting frequency lower tha n F2 )
NOTE
F1 shou ld b e sig nifi cantl y les s tha n F2. Fo r example , F2 could be 66 MHz and F1 co uld b e
33 MHz. The degree of difference between F1 and F2 determines the amount of precision
with which the current rating can be det erm ined for an application.
Example 1. Power Consumption Example
For a GPIO address pin loaded with 50 pF capacitance, operating at 3.3 V, and with a 150 MHz clock, toggling at
its maximum possible rate (75 MHz), the current consumption is
Eqn. 2
ICV×f×=
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor12
2.5 DC Electrical Characteristics
Table 4 sho ws the DC electrical ch aracte ristics.
Table 4. DC Electrical Characteristics
Characteristics Symbol Min Typ Max Unit
Commercial Supply voltages:
Core (Core_VDD)
PLL (PLLD_VDD, PLLD1_VDD)
VDD 0.9 1 1.1 V
Supply voltages:
I/O (IO_VDD)
PLL (PLLP_VDD, PLLP1_VDD)
PLL (PLLA_VDD, PLLA1_VDD)
VDDIO 3.14 3.3 3.46 V
Automotive Supply voltages:
Core (Core_VDD)
PLL (PLLD_VDD, PLLD1_VDD)
VDD 0.95 1 1.05 V
Supply voltages:
I/O (IO_VDD)
PLL (PLLP_VDD, PLLP1_VDD)
PLL (PLLA_VDD, PLLA1_VDD)
VDDIO 3.14 3.3 3.46 V
Note: To avoid a high current condition and possible system damage, all 3.3 V supplies must rise before the 1.0 V supplies rise.
Input low voltage VIL –0.3 0.8 V
Input leakage current IIN ——± 84μA
Clock pin Input Capacitance (EXTAL) CIN —18—pF
High impedance (off-state) input current (@ 3.3 V or 0 V) ITSI –10 10 μA
Output high voltage
IOH = -12 mA
LSYNC_OUT, LALE, LCLK Pins IOH = -16 mA, TDO Pin IOH = -24 mA
VOH 2.4 V
Output low voltage
IOL = 12 mA
LSYNC_OUT, LALE, LCLK Pins IOL = 16 mA, TDO Pins IOL = 24 mA
VOL ——0.4V
Internal pull-up resistor RPU 64 92 142 kΩ
Internal pull-down resistor RPD 57 90 157 kΩ
Commercial Internal supply current1 (core only) at internal clock of
200 MHz
In Normal mode ICCI 224 445 mA
In Wait mode ICCW 121 353 mA
In Stop mode2ICCS 90 327 mA
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 13
2.6 AC Electrical Characteristics
The timing waveforms shown i n t h e AC electrical characteristics section ar e tested w i th a VIL m aximum of 0.8 V and a VIH
mini mum of 2.0 V for all pins. AC timing spe cifications, which a r e referenced to a device input s ignal, are meas ured in
pr oduction with respect to the 50% point of the respec tive input signal s transiti on. DSP56720/DSP 56721 output leve ls are
measured with the production test machine VOL and VOH reference levels set at 0.4 V and 2.4 V, res pec tively.
2.7 Internal Clocks
Internal clock characteristics are listed in Table 5.
2.8 External Clock Operation
The DSP56720/DSP56721 syste m clock is derived from the on-chip oscilla tor or is externally supplied. To use the on-chip
osc illator, conne ct a crystal and asso cia ted resistor/capacitor components to EXTAL and XTAL; see the example in Figure 9.
Automotive In Normal Mode ICCI 242 496 mA
In Wait Mode ICCW 125 409 mA
In Stop mode ICCS 107 376 mA
Input capacitance CIN ——10pF
Notes:
1. The Current Consumption section provides a formula to compute the estimated current requirements in Normal mode. In
order to obtain these results, all inputs must be terminated (i.e., not allowed to float). Measurements are based on synthetic
intensive DSP benchmarks. The power consumption numbers in this specification are 90% of the measured results of this
benchmark. This reflects typical DSP applications. Typical internal supply current is measured with VCORE_VDD = 1.0 V,
VDD_IO = 3.3 V at TJ = 25° C. Maximum internal supply current is measured with VCORE_VDD = 1.10 V, VIO_VDD) = 3.4 V at
TJ= 100°C.
2. In order to obtain these results, all inputs, which are not disconnected at Stop mode, must be terminated (i.e., not allowed
to float).
Table 5. Internal Clocks
No. Characteristics Symbol Min Typ Max Unit Condition
1 Comparison Frequency Fref 2 8 MHz Fref = Fin/NR
2 Input Clock Frequency Fin Max = 200 MHz
3 PLL VCO Frequency Fvco 200 400 MHz Fvco = (Fin × NF)/NR
4 Output Clock Frequency[1]
with PLL enabled
with PLL disabled
Fout
25
200
200
MHz
Fout= Fvco/NO
Fout = Fin
5 Duty Cycle 40 50 60 % Fvco=
200 MHz–400 MHz
Notes:
Fin = External frequency, NF = Multiplication Factor, NR = Predivision Factor, NO = Output Divider
Table 4. DC Electrical Characteristics (Continued)
Characteristics Symbol Min Typ Max Unit
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor14
Figure 9. Using the On-Chip Oscillator
If the DSP5 6720/DSP56721 s ys tem clock is an exte rnally supplied square wave voltage sour ce , it is connecte d to EXTAL
(Figure 10). When the external square wave source is conne cted to EXTAL , the XTAL pin is not used.
Figure 10. External Clock Timing
Table 6 li st s the cl ock operation.
Table 6. Clock Operation
No. Characteristics Symbol Min Max Units
1 EXTAL input high 1
(40% to 60% duty cycle)
Crystal oscillator
Square wave input
Eth 16.67
2.5
100
inf
ns
2 EXTAL input low1
(40% to 60% duty cycle)
Crystal oscillator
Square wave input
Etl 16.67
2.5
100
inf
ns
3 EXTAL cycle time
With PLL disabled
With PLL enabled
Etc 5
33.3
inf
500
ns
4 Instruction cycle time
With PLL disabled
With PLL enabled
Tc 5.00
5.00
inf
5120
ns
Notes:
1. Measured at 50% of the input transition.
2. The indicated duty cycle is for the specified maximum frequency for which a part is rated. The minimum clock high or low time
required for correct operation, however, remains the same at lower operating frequencies; therefore, when a lower clock
frequency is used, the signal symmetry may vary from the specified duty cycle as long as the minimum high time and low time
requirements are met.
XTALEXTAL Suggested component values:
Fosc = 24.576 MHz
R = 1 M ±10%
C (EXTAL)= 18 pF
Calculations are for a 5 – 30 MHz crystal with the following parameters:
• Shunt capacitance (C0) of 10 pF – 12 pF
• Series resistance 40 Ohm
C (XTAL) = 18 pF
• Drive level of 10 μW
R
XTAL1 CC
EXTAL
VIL
VIH
Midpoint
Note: The midpoint is 0.5 (VIH + VIL).
ETH ETL
ETC
2
3
1
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 15
2.9 Reset, Stop, Mode Select, and Interrupt Timing
Table 7 s hows the reset, stop, mode select, and interrupt timing.
Table 7. Reset, Stop, Mode Select, and Interrupt Timing Parameters
No. Characteristics Expression Min Max Unit
10 Delay from RESET assertion to all pins at reset value3 11 ns
11 Required RESET duration4
Power on, external clock generator, PLL disabled
Power on, external clock generator, PLL enabled
2 ×TC
2 × TC
10
10
ns
ns
13 Syn reset deassert delay time
Minimum 2 × TC 10 ns
Maximum (PLL enabled) (2 x TC)+T
LOCK 200 us
14 Mode select setup time 10.0 ns
15 Mode select hold time 12 ns
16 Minimum edge-triggered interrupt request assertion width 7 ns
17 Minimum edge-triggered interrupt request deassertion width 4 ns
18 Delay from interrupt trigger to interrupt code execution 10 × TC + 4 54 ns
19 Duration of level sensitive IRQA assertion to ensure interrupt service
(when exiting Stop)1, 2, 3
PLL is active during Stop and Stop delay is enabled (OMR Bit 6 = 0) (128 Kbytes × TC) 655 μs
PLL is active during Stop and Stop delay is not enabled (OMR Bit 6 =
1)
25 × TC125 ns
PLL is not active during Stop and Stop delay is enabled (OMR Bit 6 =
0)
(128 Kbytes ×TC) +
TLOCK
855 μs
PLL is not active during Stop and Stop delay is not enabled (OMR Bit
6 = 1)
(25 × TC) + TLOCK 200 μs
20 Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to
general-purpose transfer output valid caused by first interrupt
instruction execution1
10 × TC + 3.8 53.8 ns
21 Interrupt Requests Rate1
ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1, Timer, Timer_1 12 × TC 60.0 ns
•DMA 8 × TC 40.0 ns
•IRQ
, NMI (edge trigger) 8 × TC 40.0 ns
•IRQ
(level trigger) 12 × TC 60.0 ns
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor16
Figure 11 shows th e reset timing diagram.
Figure 11. Reset Timing Diagram
22 DMA Requests Rate
Data read from ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1 6 × TC 30.0 ns
Data write to ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1 7 × TC 35.0 ns
Timer, Timer_1 2 × TC 10.0 ns
•IRQ
, NMI (edge trigger) 3 × TC 15.0 ns
Notes:
1. When using fast interrupts and when IRQA, IRQB, IRQC, and IRQD are defined as level-sensitive, timings 19 through 21 apply
to prevent multiple interrupt service. To avoid these timing restrictions, the Edge-triggered mode is recommended when using
fast interrupts. Long interrupts are recommended when using Level-sensitive mode.
2. For PLL disable, if using an external clock (PCTL Bit 13 = 1), no stabilization delay is required and recovery time will be defined
by the OMR Bit 6 settings.
For PLL enable, (if bit 12 of the PCTL register is 0), the PLL is shut down during Stop. Recovering from Stop requires the PLL
to get locked. The PLL lock procedure duration, PLL Lock Cycles (PLC), may be in the range of 200 μs.
3. Periodically sampled and not 100% tested.
4. RESET duration is measured during the time in which RESET is asserted, VDD is valid, and the EXTAL input is active and
valid. When VDD is valid, but the other “required RESET duration” conditions (as specified above) have not been yet met, the
device circuitry will be in an uninitialized state that can result in significant power consumption and heat-up. Designs should
minimize this state to the shortest possible duration.
Table 7. Reset, Stop, Mode Select, and Interrupt Timing Parameters
No. Characteristics Expression Min Max Unit
VIH
RESET
All Pins
10
11 13
Reset Value
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 17
Figure 12 shows the externa l fast interrupt timing diagram.
Figure 12. External Fast Interrupt Timing Diagram
Figure 13 shows the negative edg e-triggered external in terrupt ti m ing diagram.
Figure 13. External Interrupt Timing Diagram (Negative Edge-Triggered)
a) First Interrupt Instruction Execution
General
Purpose
I/O
IRQA, IRQB,
IRQC, IRQD,
NMI,
NMI_1
b) General Purpose I/O
IRQA, IRQB,
IRQC, IRQD,
NMI,
NMI_1
1819
20
IRQA, IRQB,
IRQC, IRQD,
NMI,
NMI_1
IRQA, IRQB,
IRQC, IRQD,
NMI,
NMI_1
16
17
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor18
Figure 14 shows the MODE select set up and hold timing diagram.
Figure 14. MODE Select Set Up and Hold Timing Diagram
2.10 Serial Host Interface (SHI) SPI Protocol Timing
Table 8 shows the SHI SPI protocol timing paramete rs and Figure 15 through Figure 18 show the timing diagrams.
Table 8. Serial Host Interface SPI Protocol Timing Parameters
No. Characteristics1,3,4 Mode Filter Mode Expression Min Max Unit
23 Minimum serial clock cycle = tSPICC(min) Master Bypassed 10 × TC + 9 59.0 ns
Very Narrow 10 × TC + 9 59.0 ns
Narrow 10 × TC + 133 183.0 ns
Wide 10 × TC + 333 373.0 ns
Slave Bypassed 2.0 × TC + 19.6 59.2 ns
Very Narrow 2.0 × TC + 19.6 59.2 ns
Narrow 2.0 × TC + 86.6 193.2 ns
Wide 2.0 × TC + 186.6 393.2 ns
XX Tolerable Spike width on data or clock in Bypassed 0 ns
Very Narrow 10 ns
Narrow 50 ns
Wide 100 ns
24 Serial clock high period Master Bypassed 0.5 × (tSPICC)29.5 ns
Very Narrow 0.5 × (tSPICC) 29.5 ns
Narrow 0.5 × (tSPICC) 91.5 ns
Wide 0.5 × (tSPICC)186.5 ns
Slave Bypassed 2.0 × TC + 19.6 29.6 ns
Very Narrow 2.0 × TC + 19.6 29.6 ns
Narrow 2.0 × TC + 86.6 96.6 ns
Wide 2.0 × TC + 186.6 196.6 ns
RESET
MODA, MODB,
MODC, MODD,
PINIT
VIH
IRQA, IRQB,
IRQC,IRQD, NMI
VIH VIH
14
15
VIL VIL
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 19
25 Serial clock low period Master Bypassed 0.5 × (tSPICC)29.5 ns
Very Narrow 0.5 × (tSPICC) 29.5 ns
Narrow 0.5 × (tSPICC 91.5 ns
Wide 0.5 × (tSPICC)186.5 ns
Slave Bypassed 2.0 × TC + 19.6 29.6 ns
Very Narrow 2.0 × TC + 19.6 29.6 ns
Narrow 2.0 × TC + 86.6 96.6 ns
Wide 2.0 × TC + 186.6 196.6 ns
26 Serial clock rise/fall time Master
Slave
5
ns
ns
27 SS assertion to first SCK edge
CPHA = 0
Slave Bypassed 2.0 × TC+15 25 ns
Very Narrow 2.0 × TC+5 15 ns
Narrow 0 ns
Wide 0 ns
CPHA = 1 Slave Bypassed 10 ns
Very Narrow 0 ns
Narrow 0 ns
Wide 0 ns
28 Last SCK edge to SS not asserted Slave Bypassed 12 ns
Very Narrow 22 ns
Narrow 100 ns
Wide 200 ns
29 Data input valid to SCK edge (data input
set-up time)
Master
/Slave
Bypassed 0 ns
Very Narrow 0 ns
Narrow 0 ns
Wide 0 ns
30 SCK last sampling edge to data input not
valid
Master
/Slave
Bypassed 3.0 × TC15 ns
Very Narrow 3.0 × TC + 25 40 ns
Narrow 3.0 × TC + 55 70 ns
Wide 3.0 × TC + 85 100.0 ns
31 SS assertion to data out active Slave 5 ns
32 SS deassertion to data high impedance2Slave 9 ns
Table 8. Serial Host Interface SPI Protocol Timing Parameters (Continued)
No. Characteristics1,3,4 Mode Filter Mode Expression Min Max Unit
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor20
33 SCK edge to data out valid
(data out delay time)
Master
/Slave
Bypassed 3.0 × TC + 30 45 ns
Very Narrow 3.0 × TC + 95 110 ns
Narrow 3.0 × TC + 120 135 ns
Wide 3.0 × TC + 210 225 ns
34 SCK edge to data out not valid
(data out hold time)
Master
/Slave
Bypassed 2.0 × TC 10 ns
Very Narrow 2.0 × TC + 5 15 ns
Narrow 2.0 × TC + 45 55 ns
Wide 2.0 × TC + 95 105 ns
35 SS assertion to data out valid
(CPHA = 0)
Slave 14.0 ns
36 First SCK sampling edge to HREQ output
deassertion
Slave Bypassed 3.0 × TC + 30 45 ns
Very Narrow 3.0 × TC + 40 55 ns
Narrow 3.0 × TC + 80 95 ns
Wide 3.0 × TC + 130 145 ns
37 Last SCK sampling edge to HREQ output
not deasserted (CPHA = 1)
Slave Bypassed 4.0 × TC + 30 50.0 ns
Very Narrow 4.0 × TC + 40 60.0 ns
Narrow 4.0 × TC + 80 100.0 ns
Wide 4.0 × TC + 130 150.0 ns
38 SS deassertion to HREQ output not
deasserted (CPHA = 0)
Slave 3.0 × TC + 30 45.0 ns
39 SS deassertion pulse width (CPHA = 0) Slave 2.0 × TC10.0 ns
40 HREQ in assertion to first SCK edge Master Bypassed 0.5 × T SPICC + 3.0 ×
TC + 5
49.5 ns
Very Narrow 0.5 × T SPICC + 3.0 ×
TC + 5
49.5 ns
Narrow 0.5 × T SPICC + 3.0 ×
TC + 5
111.5 ns
Wide 0.5 × T SPICC + 3.0 ×
TC + 5
206.5 ns
Table 8. Serial Host Interface SPI Protocol Timing Parameters (Continued)
No. Characteristics1,3,4 Mode Filter Mode Expression Min Max Unit
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 21
Figure 15. SPI Master Timing Diagram (CPHA = 0)
41 HREQ in deassertion to last SCK sampling
edge (HREQ in set-up time) (CPHA = 1)
Master 0 ns
42 First SCK edge to HREQ in not asserted
(HREQ in hold time)
Master 0 ns
43 HREQ assertion width Master 3.0 × TC15 ns
Notes:
1.VCORE_VDD = 1.0± 0.10 V; TJ = –40°C to 100°C; CL = 50 pF.
2. Pejriodically sampled, not 100% tested.
3. All times assume noise free inputs.
4. All times assume internal clock frequency of 200 MHz.
5. SHI_1 specs match those of SHI.
Table 8. Serial Host Interface SPI Protocol Timing Parameters (Continued)
No. Characteristics1,3,4 Mode Filter Mode Expression Min Max Unit
SS
(Input)
SCK (CPOL = 0)
(Output)
SCK (CPOL = 1)
(Output)
MISO
(Input)
MOSI
(Output)
HREQ
(Input)
23
24
25
26 26
23
26
26
25
24
29
30
30
29
33 34
42
40
43
MSB LSB
LSB
Vali d
MSB
Vali d
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor22
Figure 16. SPI Master Timing Diagram (CPHA = 1)
SS
(Input)
SCK (CPOL = 0)
(Output)
SCK (CPOL = 1)
(Output)
MISO
(Input)
MOSI
(Output)
HREQ
(Input)
23
24
25
26 26
23
26
26
25
24
29 29
30
33 34
42
40 41
30
43
MSB LSB
MSB
Valid
LSB
Valid
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 23
Figure 17. SPI Slave Timing Diagram (CPHA = 0)
SS
(Input)
SCK (CPOL = 0)
(Input)
SCK (CPOL = 1)
(Input)
MISO
(Output)
MOSI
(Input)
HREQ
(Output)
23
24
25
26 26
23
26
26
25
24
35
31
33
34
29
30
3836
34 32
29
30
28
39
27
LSBMSB
MSB
Valid
LSB
Valid
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor24
Figure 18. SPI Slave Timing Diagram (CPHA = 1)
2.11 Serial Host Interface (SHI) I2C Protocol Timing
Table 9 li sts the SHI I2C protocol timing param eters and Figure 19 shows the tim ing diagram.
Table 9. SHI I2C Protocol Timing Parameters
Standard I2C
No. Characteristics1,2,3,4,5 Symbol/
Expression
Standard Fast-Mode
Unit
Min Max Min Max
Tolerable Spike Width on SCL or SDA
Filters Bypassed
Very Narrow Filters enabled
Narrow Filters enabled
Wide Filters enabled.
0
10
50
100
0
10
50
100
ns
ns
ns
ns
44 SCL clock frequency FSCL 100 400 kHz
44 SCL clock cycle TSCL 10 2.5 μs
45 Bus free time TBUF 4.7 1.3 μs
46 Start condition set-up time TSUSTA 4.7 0.6 μs
47 Start condition hold time THD;STA 4.0 0.6 μs
SS
(Input)
SCK (CPOL = 0)
(Input)
SCK (CPOL = 1)
(Input)
MISO
(Output)
MOSI
(Input)
HREQ
(Output)
23
24
25
26 26
26
26
25
24
31
33
29
30
37
34 32
29
28
27
33
30
36
MSB LSB
MSB
Vali d
LSB
Valid
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 25
48 SCL low period TLOW 4.7 1.3 μs
49 SCL high period THIGH 4.0 1.3 μs
50 SCL and SDA rise time7TR 1000 300 ns
51 SCL and SDA fall time7 TF—5.05.0ns
52 Data set-up time TSU;DAT 250 100 ns
53 Data hold time THD;DAT 0.0 0.0 0.9 μs
54 DSP clock frequency
Filters bypassed
Very Narrow filters enabled
Narrow filters enabled
Wide filters enabled
FOSC
10.6
10.6
11.8
13.1
28.5
28.5
39.7
61.0
MHz
MHz
MHz
MHz
55 SCL low to data out valid TVD;DAT —3.40.9μs
56 Stop condition setup time TSU;STO 4.0 0.6 μs
57 HREQ in deassertion to last SCL edge
(HREQ in set-up time)
tSU;RQI 0.0 0.0 ns
58 First SCL sampling edge to HREQ output
deassertion2
Filters bypassed
Very Narrow filters enabled
Narrow filters enabled
Wide filters enabled
TNG;RQO
4 × TC + 30
4 × TC + 50
4 × TC + 130
4 × TC + 230
50.0
70.0
250.0
150.0
50.0
70.0
150.0
250.0
ns
ns
ns
ns
59 Last SCL edge to HREQ output not
deasserted2
Filters bypassed
Very Narrow filters enabled
Narrow filters enabled
Wide filters enabled
TAS;RQO
2 × TC + 30
2 × TC + 40
2 × TC + 80
2 × TC + 130
40
50
90
140
40
50
90
140
ns
ns
ns
ns
Table 9. SHI I2C Protocol Timing Parameters (Continued)
Standard I2C
No. Characteristics1,2,3,4,5 Symbol/
Expression
Standard Fast-Mode
Unit
Min Max Min Max
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor26
2.12 Programming the SHI I2C Serial Clock
The programmed serial clock cycle, TI2CCP, is specifi ed by the value of the HDM[7: 0] and HRS bits of the HCKR (S HI clock
control register).
The expression for TI2CCP is
TI2CCP = [TC × 2 × (HDM[7:0] + 1) × (7 × (1 — HRS) + 1)]
Eqn. 4
where
HRS is the pr e scaler rate select bit. When HRS is clear ed, the fixe d
divide-by- eight pre scal er is operational. When HRS is set, the pre scaler is bypassed.
HDM[7:0] are the divider modulus select bits. A divide ratio from 1 to 256 (HDM[7:0] = $00 to $FF) may be
selected.
In I2C mode, the user may sel ec t a val ue for the programmed serial clock cycle from
6 × TC (if HDM[7:0] = $02 and HRS = 1)
Eqn. 5
to
4096 × TC (if HDM[7:0] = $FF and HRS = 0)
Eqn. 6
The programmed serial clock cycle (TI2CCP) shou ld be chose n in order to achiev e the de sired SCL seri al clo ck cycle (TSCL), as
shown in Equation 4.
TI2CCP + 3 × TC + 45ns + TR (Nominal, SCL Serial Clock Cycle (TSCL) generated as master)
Eqn. 7
60 HREQ in assertion to first SCL edge
Filters bypassed
Very Narrow filters enabled
Narrow filters enabled
Wide filters enabled
TAS;RQI
4327
4317
4282
4227
927
917
877
827
ns
ns
ns
ns
61 First SCL edge to HREQ is not asserted
(HREQ in hold time.)
tHO;RQI 0.0 0.0 ns
Notes:
1. VCORE_VDD = 1.00± 0.10 V; TJ = –40°C to 100°C; CL = 50 pF.
2. Pull-up resistor: R P (min) = 1.5kΩ.
3. Capacitive load: C b (max) = 50 pF.
4. All times assume noise free inputs.
5. All times assume internal clock frequency of 200 MHz.
6. SHI_1 specs match those of SHI.
7. Master Mode
Table 9. SHI I2C Protocol Timing Parameters (Continued)
Standard I2C
No. Characteristics1,2,3,4,5 Symbol/
Expression
Standard Fast-Mode
Unit
Min Max Min Max
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 27
Figure 19. I2C Timing Diagram
2.13 Enhanced Serial Audio Interface (ESAI) Timing
Table 10 lists the ESAI ti m ing parameters and Figure 20 through Figure 23 show the timing diagrams.
Table 10. Enhanced Serial Audio Interface Timing Parameters
No. Characteristics1, 3, 4 Symbol Expression5Min Max Condition2Unit
62 Clock cycle5tSSICC 4 × Tc
4 × Tc
20.0
20.0
i ck
i ck
ns
63 Clock high period
For internal clock 2 × Tc 10
ns
For external clock 2 × Tc10
64 Clock low period
For internal clock 2 × Tc 10
ns
For external clock 2 × Tc10
65 SCKR rising edge to FSR out (bl) high
17.0
7.0
x ck
i ck a
ns
66 SCKR rising edge to FSR out (bl) low
17.0
7.0
x ck
i ck a
ns
67 SCKR rising edge to FSR out (wr) high6——
19.0
9.0
x ck
i ck a
ns
68 SCKR rising edge to FSR out (wr) low6——
19.0
9.0
x ck
i ck a
ns
69 SCKR rising edge to FSR out (wl) high
16.0
6.0
x ck
i ck a
ns
70 SCKR rising edge to FSR out (wl) low
17.0
7.0
x ck
i ck a
ns
44
46 49 48
50 51 53
52
45
58 55 56
61
47
60
57
59
SCL
SDA
HREQ
Stop Start MSB LSB ACK Stop
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor28
71 Data in setup time before SCKR (SCK in synchronous
mode) falling edge
——5
19.0
x ck
i ck
ns
72 Data in hold time after SCKR falling edge 3.5
9.0
x ck
i ck
ns
73 FSR input (bl, wr) high before SCKR falling edge 6——2.0
12.0
x ck
i ck a
ns
74 FSR input (wl) high before SCKR falling edge 2.0
12.0
x ck
i ck a
ns
75 FSR input hold time after SCKR falling edge 2.5
8.5
x ck
i ck a
ns
76 Flags input setup before SCKR falling edge 0.0
19.0
x ck
i ck s
ns
77 Flags input hold time after SCKR falling edge 6.0
0.0
x ck
i ck s
ns
78 SCKT rising edge to FST out (bl) high
14
8.0
x ck
i ck
ns
79 SCKT rising edge to FST out (bl) low
20.0
10.0
x ck
i ck
ns
80 SCKT rising edge to FST out (wr) high6——
20.0
10.0
x ck
i ck
ns
81 SCKT rising edge to FST out (wr) low6 ——
22.0
12.0
x ck
i ck
ns
82 SCKT rising edge to FST out (wl) high
14
9.0
x ck
i ck
ns
83 SCKT rising edge to FST out (wl) low
14
10.0
x ck
i ck
ns
84 SCKT rising edge to data out enable from high
impedance
——
22.0
17.0
x ck
i ck
ns
85 SCKT rising edge to transmitter #0 drive enable
assertion
——
17.0
11.0
x ck
i ck
ns
86 SCKT rising edge to data out valid
13
13.0
x ck
i ck
ns
87 SCKT rising edge to data out high impedance7——
13
16.0
x ck
i ck
ns
88 SCKT rising edge to transmitter #0 drive enable
deassertion7——
14.0
9.0
x ck
i ck
ns
89 FST input (bl, wr) setup time before SCKT falling edge6——2.0
18.0
x ck
i ck
ns
90 FST input (wl) setup time before SCKT falling edge 2.0
18.0
x ck
i ck
ns
91 FST input hold time after SCKT falling edge 4.0
5.0
x ck
i ck
ns
Table 10. Enhanced Serial Audio Interface Timing Parameters (Continued)
No. Characteristics1, 3, 4 Symbol Expression5Min Max Condition2Unit
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 29
92 FST input (wl) to data out enable from high impedance 21.0 ns
93 FST input (wl) to transmitter #0 drive enable assertion 14.0 ns
94 Flag output valid after SCKT rising edge
14.0
9.0
x ck
i ck
ns
95 HCKR/HCKT clock cycle 2 × TC10 ns
96 HCKT input rising edge to SCKT output 18.0 ns
97 HCKR input rising edge to SCKR output 18.0 ns
Notes:
1. VCORE_VDD = 1.00 ± 0.10 V; TJ = –40°C to 100°C; CL = 50 pF.
2. i ck = internal clock
x ck = external clock
i ck a = internal clock, asynchronous mode
(Asynchronous implies that SCKT and SCKR are two different clocks.)
i ck s = internal clock, synchronous mode
(Synchronous implies that SCKT and SCKR are the same clock.)
3. bl = bit length
wl = word length
wr = word length relative
4. SCKT(SCKT pin) = transmit clock
SCKR(SCKR pin) = receive clock
FST(FST pin) = transmit frame sync
FSR(FSR pin) = receive frame sync
HCKT(HCKT pin) = transmit high frequency clock
HCKR(HCKR pin) = receive high frequency clock
5. For the internal clock, the external clock cycle is defined by Tc and the ESAI control register.
6. The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync
signal waveform, but spreads from one serial clock before first bit clock (same as bit length frame sync signal), until the one
before last bit clock of the first word in frame.
7. Periodically sampled and not 100% tested.
8. ESAI_1, ESAI_2, ESAI_3 specs match those of ESAI.
Table 10. Enhanced Serial Audio Interface Timing Parameters (Continued)
No. Characteristics1, 3, 4 Symbol Expression5Min Max Condition2Unit
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor30
Figure 20. ESAI Transmitter Timing Diagram
See Note
SCKT
(Input/Output)
FST (Bit)
Out
FST (Word)
Out
Data Out
Transmitter #0
Drive Enable
(Internal Signal)
FST (Bit) In
FST (Word) In
Flags Out
Note: In network mode, output flag transitions can occur at the start of each time slot within the
frame. In normal mode, the output flag state is asserted for the entire frame period.
62
64
78 79
82 83
87
8686
84
93
8885
91
89
92
90 91
94
63
Last BitFirst Bit
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 31
Figure 21. ESAI Receiver Timing Diagram
Figure 22. ESAI HCKT Timing Diagram
SCKR
(Input/Output)
FSR (Bit)
Out
FSR (Word)
Out
Data In
FSR (Bit)
In
FSR (Word)
In
Flags In
62
64
65
69 70
72
71
75
73
74 75
77
76
63
66
First Bit Last Bit
96
95
HCKT
SCKT
(Output)
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor32
Figure 23. ESAI HCKR Timing
2.14 Timer Timing
Table 11 lists the time r tim ing parameters and Figure 24 shows the timing diagram.
Figure 24. TIO Timer Event Input Restrictions Diagram
2.15 GPIO Timing
Table 12 lists the general purpos e input and output (GPIO) timing and Figure 25 shows the timing diagram.
Table 11. Timer Timing Parameters
No. Characteristics Expression Unit
Min Max
98 TIO Low 2 × TC + 2.0 12.0 ns
99 TIO High 2 × TC + 2.0 12.0 ns
Notes:
1. VCORE_VDD = 1.00 V ± 0.10 V; TJ = –40°C to 100°C, CL = 50 pF
2. TIMER_1 specs match those of TIMER
Table 12. GPIO Timing Parameters
No. Characteristics1Expression Min Max Unit
100 Fsys edge to GPIO out valid (GPIO out delay time)2——7ns
101 Fsys edge to GPIO out not valid (GPIO out hold time)2——7ns
102 Fsys In valid to EXTAL edge (GPIO in set-up time)2—2ns
103 Fsys edge to GPIO in not valid (GPIO in hold time)2—0ns
104 Minimum GPIO pulse high width 2 × TC 10 ns
97
95
HCKR
SCKR
(Output)
9998
TIO
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 33
Figure 25. GPIO Timing Diagram
2.16 JTAG Timing
Table 13 lis ts th e joint test actio n group (JTAG) timi ng parame ters, and Figure 26 through Figure 28 show the t iming di agrams.
105 Minimum GPIO pulse low width 2 × TC 10 ns
106 GPIO out rise time 13.0 ns
107 GPIO out fall time 13.0 ns
Notes:
VCORE_VDD = 1.0 V ± 0.10 V; TJ = –40°C to 100°C; CL = 50 pF
Table 13. JTAG Timing Parameters
No. Characteristics
All Frequencies
Unit
Min Max
108 TCK frequency of operation (1/(TC × 3); maximum 10 MHz) 10.0 MHz
109 TCK cycle time in Crystal mode 100.0 ns
110 TCK clock pulse width measured at 1.65 V 50.0 ns
111 TCK rise and fall times 3.0 ns
112 Boundary scan input data setup time 15.0 ns
113 Boundary scan input data hold time 24.0 ns
114 TCK low to output data valid 40.0 ns
115 TCK low to output high impedance 40.0 ns
Table 12. GPIO Timing (Continued)Parameters (Continued)
No. Characteristics1Expression Min Max Unit
100
101
102 103
104 105
106 107
Fsys
Valid
GPIO
(Output)
GPIO
Input)
GPIO
(Output)
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor34
Figure 26. Test Clock Input Timing Diagram
Figure 27. Debugger Port Timing Diagram
116 TMS, TDI data setup time 5.0 ns
117 TMS, TDI data hold time 25.0 ns
118 TCK low to TDO data valid 44.0 ns
119 TCK low to TDO high impedance 44.0 ns
Notes:
1. VCORE_VDD = 1.0 V ± 0.10 V; TJ = –40°C to 100°C , CL = 50 pF
2. All timings apply to OnCE module data transfers because it uses the JTAG port as an interface.
Table 13. JTAG Timing Parameters (Continued)
No. Characteristics
All Frequencies
Unit
Min Max
109
110 110
111111
TCK
(Input)
VIL
VM
VIH VM
VIH
VIL
113112
114
115
114
TCK
(Input)
Data
Inputs
Data
Outputs
Data
Outputs
Data
Outputs
Input Data Valid
Output Data Valid
Output Data Valid
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 35
Figure 28. Test Access Port Timing Diagram
2.17 Watchdog Timer Timing
Table 14 lists the watchdog timer timing .
2.18 Host Data Interface (HDI24) Timing
The HDI24 module is only on the DSP56721 devic e; the DSP 56720 device does not have a HDI24 module. Also, only 16 bits
of the HDI24 interfac e are pinned out on the DSP56721 device. Table 15 lists HDI24 timi ng and Figure 29 through Figure 35
show the timing diagrams.
Table 14. Watchdog Timer Timing Parameters
No. Characteristics Expression Min Max Unit
120 Delay from time-out to fall of WDT, WDT_1 2 × Tc10.0 ns
121 Delay from timer clear to rise of WDT
, WDT_1 2 × Tc 10.0 ns
Table 15. HDI24 Timing Parameters
No. Characteristics2Expression
200 MHz
Unit
Min Max
317 Read data strobe assertion width3
HACK read assertion width
TC + 9.9 14.9 ns
318 Read data strobe deassertion width3
HACK read deassertion width
—9.9ns
319 Read data strobe deassertion width3 after “Last Data Register” reads4,5,
or between two consecutive CVR, ICR, or ISR reads6
HACK deassertion width after “Last Data Register” reads4,5
2 × TC + 6.6 16.6 ns
VIH
VIL
116 117
118
119
118
TCK
(Input)
TDI
TMS
(Input)
TDO
(Output)
TDO
(Output)
TDO
(Output)
Input Data Valid
Output Data Valid
Output Data Valid
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor36
320 Write data strobe assertion width7
HACK write assertion width
—13.2ns
321 Write data strobe deassertion width7
HACK write deassertion width
after ICR, CVR and “Last Data Register” writes4
2 × TC + 6.6 16.6 ns
after IVR writes, or
after TXH:TXM writes (with HBE=0), or
after TXL:TXM writes (with HBE=1)
—16.5
322 HAS assertion width 9.9 ns
323 HAS deassertion to data strobe assertion8—0.0ns
324 Host data input setup time before write data strobe deassertion7
Host data input setup time before HACK write deassertion
—9.9ns
325 Host data input hold time after write data strobe deassertion7
Host data input hold time after HACK write deassertion
—3.3ns
326 Read data strobe assertion to output data active from high impedance3
HACK read assertion to output data active from high impedance
—5.9ns
327 Read data strobe assertion to output data valid3
HACK read assertion to output data valid
29.6 ns
328 Read data strobe deassertion to output data high impedance3
HACK read deassertion to output data high impedance
——9.9ns
329 Output data hold time after read data strobe deassertion3
Output data hold time after HACK read deassertion
—3.3ns
330 HCS assertion to read data strobe deassertion3TC + 9.9 14.9 ns
331 HCS assertion to write data strobe deassertion7—9.9ns
332 HCS assertion to output data valid 19.1 ns
333 HCS hold time after data strobe deassertion8—0.0ns
334 Address (AD7—AD0) setup time before HAS deassertion (HMUX=1) 4.7 ns
335 Address (AD7—AD0) hold time after HAS deassertion (HMUX=1) 3.3 ns
336 A10—A8 (HMUX=1), A2—A0 (HMUX=0), HR/W setup time before data
strobe assertion8
•Read
—0ns
•Write —4.7
337 A10—A8 (HMUX=1), A2—A0 (HMUX=0), HR/W hold time after data
strobe deassertion8—3.3ns
338 Delay from read data strobe deassertion to
host request assertion for “Last Data Register” read3, 4, 9 TC5.0 ns
Table 15. HDI24 Timing Parameters (Continued)
No. Characteristics2Expression
200 MHz
Unit
Min Max
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 37
339 Delay from write data strobe deassertion to
host request assertion for “Last Data Register” write4, 7, 9 2 × TC10.0 ns
340 Delay from data strobe assertion to
host request deassertion for “Last Data Register” read or write (HROD =
0)4, 8, 9
19.1 ns
341 Delay from data strobe assertion to
host request deassertion for “Last Data Register” read or write (HROD =
1, open drain Host Request)4, 8, 9, 10
300.0 ns
342 Delay from DMA HACK deassertion to HOREQ assertion ns
For “Last Data Register” read42 × TC + 19.1 29.1
For “Last Data Register” write41 × TC + 19.1 24.1
For other cases 0.0
343 Delay from DMA HACK assertion to HOREQ deassertion
•HROD = 0
4 20.2 ns
344 Delay from DMA HACK assertion to HOREQ deassertion for “Last Data
Register” read or write
HROD = 1, open drain Host Request4, 10
300.0 ns
Notes:
1. In the timing diagrams that follow, the controls pins are drawn as active low. The pin polarity is programmable.
2. VCC = 1.0 V ± 10%; TJ = 40°C to +100°C; CL = 50 pF.
3. The read data strobe is HRD in the dual data strobe mode and HDS in the single data strobe mode.
4. The “last data register” is the register at address $7, which is the last location to be read or written in data transfers.
5. This timing is applicable only if a read from the “last data register” is followed by a read from the RXL, RXM, or RXH registers
without first polling RXDF or HREQ bits, or waiting for the assertion of the HOREQ signal.
6. This timing is applicable only if two consecutive reads from one of these registers are executed.
7. The write data strobe is HWR in the dual data strobe mode and HDS in the single data strobe mode.
8. The data strobe is host read (HRD) or host write (HWR) in the dual data strobe mode and host data strobe (HDS) in the
single data strobe mode.
9. The host request is HOREQ in the single host request mode and HRRQ and HTRQ in the double host request mode.
10. In this calculation, the host request signal is pulled up by a 4.7 kW resistor in the open-drain mode.
11. HDI24_1 specs match those of HDI24.
Table 15. HDI24 Timing Parameters (Continued)
No. Characteristics2Expression
200 MHz
Unit
Min Max
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor38
Figure 29. HDI24 Host Interrupt Vector Register (IVR) Read Timing Diagram
Figure 30. HDI24 Read Timing Diagram, Non-Multiplexed Bus
329
317 318
328
326
327
HACK
HD23HD0
HOREQ
327
332 319
318
317
330
329
337336
328
326
338
341
340
333
HA0HA2
HCS
HRD, HDS
HD0HD23
HOREQ,
HRRQ,
HTRQ
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 39
Figure 31. HDI24 Write Timing Diagram, Non-Multiplexed Bus
336 331
337
321
320
324
325
339340
341
333
HA0HA2
HCS
HWR, HDS
HD0HD23
HOREQ,
HRRQ,
HTRQ
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor40
Figure 32. HDI24 Read Timing Diagram, Multiplexed Bus
317
318
319
328
329
327
326
335
336 337
334
341
340 338
323
322
HA8HA10
HAS
HRD, HDS
HAD0HAD23
HOREQ,
HRRQ,
HTRQ
Address Data
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 41
Figure 33. HDI24 Write Timing Diagram, Multiplexed Bus
Figure 34. HDI24 Host DMA Write Timing Diagram
320
321
325
324
335
341
339
336
334
340
322
323
HA8HA10
HAS
HWR, HDS
HAD0HAD23
HOREQ,
HRRQ,
HTRQ
Address Data
HOREQ
(Output)
HACK
(Input)
H0–H23
(Input)
320 321
343 342
324
344
325
TXH/M/L
Write
Data
Valid
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor42
Figure 35. HDI24 Host DMA Read Timing Diagram
2.19 S/PDIF Timing
Table 16 lists the Sony/P hilips Digit al Interc onnect Form at (S/PDIF) timing parameters and Figure 36 an d Figure 37 show the
tim ing diagrams.
Table 16. S/PDIF Timing Parameters
Characteristics Symbol
All Frequency
Unit
Min Max
SPDIFIN1, SPDIFIN2, SPDIFIN3, SPDIFIN4 Skew:
asynchronous inputs, no specs apply
—— 0.7ns
SPDIFOUT1,SPDIFOUT2 output (Load = 50 pf)
•Skew
Transition Risng
Transition Falling
1.5
24.2
31.3
ns
SPDIFOUT1, SPDIFOUT2 output (Load = 30 pf)
•Skew
Transition Risng
Transition Falling
1.5
13.6
18.0
ns
SRCK period srckp 40.0 ns
SRCK high period srckph 16.0 ns
SRCK low period srckpl 16.0 ns
STCLK period stclkp 40.0 ns
STCLK high period stclkph 16.0 ns
STCLK low period stclkpl 16.0 ns
326
317 318
327 328
329
HOREQ
(Output)
HACK
(Input)
H0-H23
(Output)
Data
Valid
RXH
Read
342
342
343
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 43
Figure 36. S/PDIF SRCK Timing Diagram
Figure 37. S/PIDF STCLK Timing Diagram
2.20 EMC Timing (DSP56720 Only)
The DSP56721 d evice does not have an EMC modul e. For E MC timing parameters i n DSP56720 devic es, see Table 17, through
Table 19; for timing diagrams, see Figure 38 through Figure 40.
Chapter 22, “External Memory Controller (E MC), in the Symphony DSP56720/DSP56721 Mult i-Core Audio Pr ocessors
Ref erence Manual explain s in detail the inter facing and features of EM C. The applicable sectio n s are as follows :
Sect ion 22.4.4.3, “UPM Signal Timing”
Section 22.4.4.7, “Memory System Interface Example Using UPM”
Table 17. EMC Timing Parameters (EMC PLL Enabled; LCRR[CLKDIV] = 2)
Parameter Symbol Min Max Unit
LCLK cycle time Tclk 10 ns
LCLK skew to LSYNC_OUT Tclk_skew 160 ps
Input setup to LSYNC_IN (except LGTA/LUPWAIT) Tin_s 3—ns
Input hold from LSYNC_IN (except LGTA/LUPWAIT) Tin_h 2—ns
LGTA valid time Tgta 12 ns
LUPWAIT valid time Tupwait 12 ns
LALE negedge to LAD(address phase) invaild (address latch hold time) Tale_h 3—ns
LALE valid time Tale 3.8 ns
Output setup from LSYNC_IN (except LAD[23:0] and LALE) Tout_s 4—ns
Output hold from LSYNC_IN (except LAD[23:0] and LALE) Tout_h 2—ns
LAD[23:0] output setup from LSYNC_IN Tad_s 3.5 ns
LAD[23:0] output hold from LSYNC_IN Tad_h 1.5 ns
LSYNC_IN to output high impedance for LAD[23:0] Tad_z —4.3ns
SRCK
(Output)
srckp
srckph
srckpl
VM
VM
STCLK
(Input)
stclkp
stclkph
stclkpl
VM
VM
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor44
Figure 38. EMC Signals (EMC PLL Enabled; LCRR[CLKDIV] = 2)
Tin_s
Tin_h
LGTA
asynchronous input
LA[2:0]/LBCTL/LCS[7:0]
LOE/LWE
LCKE/LSDA10/LSDDQM
LGPL[5:0]
Output Signals
LSYNC_IN
LSYNC_OUT
LCLK
LAD[23:0] (data)
Tclk
Tclk_skew
LUPWAIT
asynchronous input
Tgta
Tupwait
Tout_s Tout_h
Tsync_in_skew
LALE
Tad_s Tad_h
LAD[23:0]
Tad_z
LSDWE/LSDRAS/LSDCAS
Tale Tale_h
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 45
Table 18. EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 4)
Parameter Symbol Min Max Unit
LCLK cycle time Tclk 20 ns
Input setup to LCLK (except LGTA/LUPWAIT) Tin_s 8—ns
Input hold from LCLK (except LGTA/LUPWAIT)1Tin_h -1 ns
LGTA valid time Tgta 22 ns
LUPWAIT valid time Tupwait 22 ns
LALE negedge to LAD (address phase) invalid (address latch hold time) Tale_h 4—ns
LALE valid time Tale 14 ns
Output setup from LCLK (except LAD[23:0] and LALE) Tout_s 9—ns
Output hold from LCLK (except LAD[23:0] and LALE) Tout_h 8—ns
LAD[23:0] output setup from LCLK Tad_s 8—ns
LAD[23:0] output hold from LCLK Tad_h 7—ns
LCLK to output high impedance for LAD[23:0] Tad_z —8.1ns
Notes:
1. A negative hold time means that the signal could be invalid before the LCLK rising edge.
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor46
Figure 39. EMC Signals (EMC PLL Bypassed; LRCC[CLKDIV] = 4)
Table 19. EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 8)
Parameter Symbol Min Max Unit
LCLK cycle time Tclk 40 ns
Input setup to LCLK (except LGTA/LUPWAIT) Tin_s 8—ns
Input hold from LCLK (except LGTA/LUPWAIT)1Tin_h –1 ns
LGTA valid time Tgta 42 ns
LUPWAIT valid time Tupwait 42 ns
LALE negedge to LAD (address phase) invalid (address latch hold time) Tale_h 5—ns
LALE valid time Tale 34 ns
Output setup from LCLK (except LAD[23:0] and LALE) Tout_s 19 ns
Output hold from LCLK (except LAD[23:0] and LALE) Tout_h 18 ns
Tin_s
Tin_h
LGTA
asynchronous input
LA[2:0]/LBCTL/LCS[7:0]
LOE/LWE
LCKE/LSDA10/LSDDQM
LGPL[5:0]
Output Signals
LCLK
LAD[23:0] (data)
Tclk
LUPWAIT
asynchronous input
Tgta
Tupwait
Tout_s Tout_h
LALE
Tad_s Tad_h
LAD[23:0]
Tad_z
LSDWE/LSDRAS/LSDCAS
Tale Tale_h
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 47
Figure 40. EMC Signals (EMC PLL Bypassed; LRCC[CLKDIV] = 8)
3 Functional Description and Application Information
See the Symphony™ DSP56720/DSP 56721 Multi-Core Audio Processor s Refer ence Manua l (DSP 56720RM ) for detaile d
functional an d applicat ions information.
LAD[23:0] output setup from LCLK Tad_s 12 ns
LAD[23:0] output hold from LCLK Tad_h 17 ns
LCLK to output high impedance for LAD[23:0] Tad_z —17.1ns
Notes:
1. A negative hold time means that the signal could be invalid before the LCLK rising edge.
Table 19. EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 8) (Continued)
Parameter Symbol Min Max Unit
Tin_s
Tin_h
LGTA
asynchronous input
LA[2:0]/LBCTL/LCS[7:0]
LOE/LWE
LCKE/LSDA10/LSDDQM
LGPL[5:0]
Output Signals
LCLK
LAD[23:0] (data)
Tclk
LUPWAIT
asynchronous input
Tgta
Tupwait
Tout_s Tout_h
LALE
Tad_s Tad_h
LAD[23:0]
Tad_z
LSDWE/LSDRAS/LSDCAS
Tale Tale_h
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor48
4 Ordering Information
Table 20 provides ordering informati on f or both the DSP56720 and DSP56721.
5 Package Information
For the outline drawings of available device packag es , s ee Table 21 and s ections 5.15.2.
Table 20. Ordering Information
Device Device Marking Ambient Temp. LQFP Package
DSP56720 Commercial DSPA56720AG 0°C–70°C 20 mm × 20 mm
DSPB56720AG 0°C–70°C 20 mm × 20 mm
DSPC56720AG 0°C–70°C 20 mm × 20 mm
DSP56720 Automotive DSPA56720CAG –40°C–85°C 20 mm × 20 mm
DSPB56720CAG –40°C–85°C 20 mm × 20 mm
DSPC56720CAG –40°C–85°C 20 mm × 20 mm
DSP56721 Commercial DSPA56721AG 0°C–70°C 20 mm × 20 mm
DSPB56721AG 0°C–70°C 20 mm × 20 mm
DSPC56721AG 0°C–70°C 20 mm × 20 mm
DSPA56721AF 0°C–70°C 14 mm × 14 mm
DSPB56721AF 0°C–70°C 14 mm × 14 mm
DSPC56721AF 0°C–70°C 14 mm × 14 mm
DSP56721 Automotive DSPA56721CAG –40°C–85°C 20 mm × 20 mm
DSPB56721CAG –40°C–85°C 20 mm × 20 mm
DSPC56721CAG –40°C–85°C 20 mm × 20 mm
DSPA56721CAF –40°C–85°C 14 mm × 14 mm
DSPB56721CAF –40°C–85°C 14 mm × 14 mm
DSPC56721CAF –40°C–85°C 14 mm × 14 mm
Table 21. Package Outline Drawings
Device Package See
DSP56720 144-pin plastic LQFP Figure 43 on page 51 and
Figure 44 on page 52
DSP56721 80-pin plastic LQFP Figure 43 on page 51 and
Figure 42 on page 50
144-pin plastic LQFP Figure 43 on page 51 and
Figure 44 on page 52
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 49
5.1 80-Pin Package Outline Drawing
Figure 41 and Figure 42 show the 80-pin package outline drawi ngs.
Figure 41. 80-Pin Package Outline Drawing (1 of 2)
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor50
Figure 42. 80-Pin Package Outline Drawing (2 of 2)
NOTES
1Dimensioning and tolerancing per asme Y14.5M-1994.
2Controlling dimension: millimeter
3Datum plane H is located at the bottom of lead and is coincident with the lead where the lead exits the plastic body at the
bottom of the parting line.
4Datum E, F and D to be determined at datum plane H.
5Dimensions to be determined at seating plane C.
6Dimensions do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions include mold mismatch and
are determined at datum plane H.
7Dimension does not include dambar protrusion. Dambar protrusion shall not cause the lead width to exceed 0.46 mm.
Minimnum space between protrusion and adjacent lead or protrusion 0.07 mm.
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 51
5.2 144-Pin Package Outline Drawing
Figure 43 and Figure 44 show the 144-pin package drawings.
Figure 43. 144-Pin Package Outline Drawing (1 of 2)
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor52
Figure 44. 144-Pin Package Outline Drawing (2 of 2)
NOTES
1All dimensinos are in millimeters
2Interpret dimensions and tolerances per ASME Y14.5M-1994.
3Datums B, C and D to be determined at datum plane H.
4The top ppackage body size may be smaller than the bottom package size by a maximum of 0.1 mm.
5These dimensions do not include mold protrusions. The maximum allowable protrusion is 0.25 mm per side. These dimensions
are maximum body size dimensions including mold mismatch.
6This dimension does not include dambar protrusion. Protrusions shall not cause the lead width to exceed 0.35 mm minimum
space between protrusion and an adjacent lead shall be 0.07 mm.
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5
Freescale Semiconductor 53
7These dimensions are determined at the seating plane, datum A.
6 Product Documentation
This Data Sheet is labeled as a particular type: Product P review, Advance Information, or Technical Data. Definitions of these
types are avail able at: htt p://www.freescale.com. Documentation is available from a local F r eescale Semic onductor, Inc.
dis tributo r , semiconduc tor sa les of fi ce, Lite rature Dis tributi on Ce nter, or through th e Frees cale DSP home pa ge on the Int ernet
(the source for the latest information).
The fol lowing documents are require d f or a complete description of the device and are neces sary to design properly with the
parts:
DSP56300 Family Manual (document number DSP 56300FM). Detailed description of the 56300-family architecture and the
24-bit core processor and instruction set.
Symphony™ DSP56720/DSP56721 Multi -Core Audio Processo rs Re ference Manual (document number DSP56720RM).
Detailed description of memory, peripherals, and interfaces.
DSP56720 Product Brief (DS P5 6720P B). Brief description of the DSP56720 device.
DSP56721 Product Brief (DS P5 6721P B). Brief description of the DSP56721 device.
7 Revision History
Table 22 summarizes revis ions to this document.
Table 22. Revision History
Revision Date Description
5 02/2009 Updated values and added Commercial and Automotive columns in Table 4, “DC
Electrical Characteristics.
Updated values in the following tables: Table 7, Ta b l e 9 , Ta ble 1 0, Ta b l e 1 1 , Ta b le 1 2 ,
Tab le 13 , Ta b le 1 5 , Ta b l e 1 7 , Table 18, and Ta ble 19.
•In Table 10, “Enhanced Serial Audio Interface Timing Parameters, changed value for 87
to “13”.
Added Section 2.4, “Power Consumption Considerations.”
•In Section 2.20, “EMC Timing (DSP56720 Only),” added text regarding the EMC chapter
and applicable sections.
Added automotive information to Ta bl e 2 0 , “Ordering Information.
4 04/2008 Added formula for thermal characteristics on page 10.
Added values for pull-up and pull-down resistors on page 12.
3 03/2008 Updated order information on page 1 to include additional parts with temperature
specification.
2 02/2008 Timing updates.
1 12/2007 Initial release
Document Number: DSP56720EC
Rev. 5
02/2009
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.
For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc., 2009. All rights reserved.