AIS328DQ High-performance ultra low-power 3-axis accelerometer with digital output for automotive applications Datasheet -- production data Features Wide supply voltage range: 2.4 V to 3.6 V Low voltage compatible IOs: 1.8 V Ultra low-power mode consumption: down to 10 A 2g/4g/8g dynamically selectable full-scale SPI / I2C digital output interface 16-bit data output 2 independent programmable interrupt generators System sleep/wakeup function Extended temperature range: -40 C to 105 C Embedded self-test High shock survivability: up to 10000 g ECOPACK(R) RoHS and "Green" compliant AEC-Q100 qualification QFN 24 (4 x 4 x 1.8 mm3) Applications Telematics and black boxes In-dash car navigation Tilt / inclination measurement Anti-theft devices Intelligent power saving Impact recognition and logging Vibration monitoring and compensation Motion-activated functions Table 1. Description The AIS328DQ is an ultra low-power high performance 3-axis linear accelerometer with a digital serial interface SPI standard output. An I2C compatible interface is also available. The device features ultra low-power operational modes that allow advanced power saving and smart sleep-towakeup functions. The AIS328DQ has dynamic user-selectable full-scales of 2g/4g/8g and is capable of measuring accelerations with output data rates from 0.5 Hz to 1 kHz. The self-test capability allows the user to check the functioning of the sensor in the final application. The device may be configured to generate an interrupt signal through inertial wakeup events, or by the position of the device itself. Thresholds and the timing of interrupt generators are programmable by the end user on-the-fly. Available in a small quad flat pack no-lead package (QFPN) with a 4x4 mm footprint, the AIS328DQ is able to respond to the trend towards application miniaturization, and is guaranteed to operate over a temperature range from -40 C to +105 C. Device summary Order codes Temperature range [ C] Package Packaging AIS328DQ -40 to +105 QFPN 4x4x1.8 24L Tray AIS328DQTR -40 to +105 QFPN 4x4x1.8 24L Tape and reel April 2012 This is information on a product in full production. Doc ID 18160 Rev 3 1/43 www.st.com 43 Contents AIS328DQ Contents 1 2 3 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.1 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.2 IC - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5.2 Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5.3 Self-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5.4 Sleep-to-wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 Sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 IC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.1 IC serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.1.1 5.2 6 2/43 IC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.2.3 SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Doc ID 18160 Rev 3 AIS328DQ 7 Contents Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.1 WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.2 CTRL_REG1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.3 CTRL_REG2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.4 CTRL_REG3 [Interrupt CTRL register] (22h) . . . . . . . . . . . . . . . . . . . . . . 27 7.5 CTRL_REG4 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.6 CTRL_REG5 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.7 HP_FILTER_RESET (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.8 REFERENCE (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.9 STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.10 OUT_X_L (28h), OUT_X_H (29) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.11 OUT_Y_L (2Ah), OUT_Y_H (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.12 OUT_Z_L (2Ch), OUT_Z_H (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.13 INT1_CFG (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.14 INT1_SRC (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.15 INT1_THS(32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.16 INT1_DURATION (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.17 INT2_CFG (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.18 INT2_SRC (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.19 INT2_THS (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.20 INT2_DURATION (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 9 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 9.1 General guidelines about soldering surface-mounted accelerometers . . 38 9.2 PCB design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 9.2.1 10 PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 9.3 Stencil design and solder paste application . . . . . . . . . . . . . . . . . . . . . . . 39 9.4 Process considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Doc ID 18160 Rev 3 3/43 List of tables AIS328DQ List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. 4/43 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 IC slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 19 Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 19 Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 CTRL_REG1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Power mode and low-power output data rate configurations . . . . . . . . . . . . . . . . . . . . . . . 26 Normal-mode output data rate configurations and low-pass cut-off frequencies . . . . . . . . 26 CTRL_REG2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 CTRL_REG2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 High-pass filter cut-off frequency configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 CTRL_REG3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 CTRL_REG3 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Data signal on INT 1 and INT 2 pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 CTRL_REG4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 CTRL_REG4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 CTRL_REG5 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 CTRL_REG5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Sleep-to-wake configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 REFERENCE description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 STATUS_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 STATUS_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 INT1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 INT1_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Interrupt 1 source configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 INT1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 INT1_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 INT1_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 INT1_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 INT1_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 INT2_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 INT2_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 INT2_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Interrupt mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Doc ID 18160 Rev 3 AIS328DQ Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. List of tables INT2_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 INT2_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 INT2_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 INT2_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 INT2_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 INT2_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Doc ID 18160 Rev 3 5/43 List of figures AIS328DQ List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. 6/43 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Detectable accelerations and pin indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 SPI slave timing diagram (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 IC slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 AIS328DQ electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Multiple byte SPI read protocol (2-byte example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Multiple bytes SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 QFPN 4x4x1.8mm3, 24L: mechanical data and package dimensions . . . . . . . . . . . . . . . . 38 Recommended land and solder mask design for QFPN packages . . . . . . . . . . . . . . . . . . 40 Doc ID 18160 Rev 3 AIS328DQ Block diagram and pin description 1 Block diagram and pin description 1.1 Block diagram Figure 1. Block diagram X+ CHARGE Y+ AMPLIFIER Z+ a CS I2C ADC MUX CONTROL LOGIC Z- SCL/SPC SDA/SDO/SDI SPI SDO/SA0 YX- SELF TEST TRIMMING CIRCUITS REFERENCE CONTROL LOGIC INT 1 INTERRUPT GEN. INT 2 CLOCK AM10246V1 1.2 Pin description Figure 2. Detectable accelerations and pin indicator Z Pin 1 indicator 19 X 1 18 24 1 6 7 12 (BOTTOM VIEW) 13 Y (TOP VIEW) DIRECTION OF THE DETECTABLE ACCELERATIONS Doc ID 18160 Rev 3 7/43 Block diagram and pin description Table 2. 8/43 AIS328DQ Pin description Pin# Name Function 1,2 NC 3 INT_2 Inertial interrupt 2 4 Reserved Connect to GND 5 VDD Power supply 6 GND 0 V supply 7 INT_1 Inertial interrupt 1 8 GND 0 V supply 9 GND 0 V supply 10 GND 0 V supply 11 SPC SCL SPI serial port clock (SPC) IC serial clock (SCL) Internal active pull-up 12 CS 13 Reserved Connect to Vdd 14 VDD_IO Power supply for I/O pins 15 SDO SA0 SPI serial data output (SDO) IC less significant bit of the device address (SA0) Internal active pull-up 16 SDI SDO SDA SPI serial data input (SDI) 3-wire interface serial data output (SDO) IC serial data (SDA) Internal active pull-up 17-24 NC Not connected SPI enable IC/SPI mode selection (0: SPI enabled; 1: IC mode) Internal active pull-up Not internally connected Doc ID 18160 Rev 3 AIS328DQ Mechanical and electrical specifications 2 Mechanical and electrical specifications 2.1 Mechanical characteristics @ Vdd=3.3 V, T=-40 C to +105 C unless otherwise noted(a). Table 3. Symbol FS So Off TyOff TCOff An CrAx Vst Mechanical characteristics Parameter Measurement range Test conditions (2) Sensitivity Zero-g level offset accuracy(3),(4),(5) Typical zero-g level offset accuracy(5),(6) Zero-g level change vs. temperature Acceleration noise density Cross-axis Wh Product weight Top Operating temperature range Typ.(1) FS bit set to 00 2.0 FS bit set to 01 4.0 FS bit set to 11 8.0 Max. Unit g FS bit set to 00 12-bit representation 0.90 0.98 1.06 FS bit set to 01 12-bit representation 1.81 1.95 2.12 FS bit set to 11 12-bit representation 3.62 3.91 4.25 mg/digit X,Y axes -200 200 Z-axis -300 300 FS bit set to 00 -30 20 30 Excursion from 25 C (X, Y axes) -2 0.2 2 Excursion from 25 C (Zaxis) -3 0.8 3 100 218 600 g/Hz +5 % FS bit set to 00 (7) Self-test output change(8),(9),(10) Min. mg mg mg/C -5 FS bit set to 00 X-axis -500 -800 -1100 LSb FS bit set to 00 Y-axis 500 800 1100 LSb FS bit set to 00 Z-axis 400 600 800 LSb 60 -40 mgram +105 C 1. Typical values are not guaranteed. 2. Verified by wafer level test and measurement of initial offset and sensitivity. 3. Zero-g level offset value after MSL3 preconditioning. 4. Zero-g level offset at the FS bit set to 01 and 11 is guaranteed by design. a. The product is factory calibrated at 3.3 V. Operational power supply (Vdd) over 3.6 V is not recommended. Doc ID 18160 Rev 3 9/43 Mechanical and electrical specifications AIS328DQ 5. Offset can be eliminated by enabling the built-in high-pass filter. 6. Typical zero-g level offset as per factory calibration @ T = 25 C. 7. Guaranteed by design. 8. The sign of "Self-test output change" is defined by a sign bit, for all axes. Values in Table 3 are defined with the STsign bit in the CTRL_REG4 register equal to logic "0" (positive self-test), at T = 25 C. 9. Self-test output changes with the power supply. "Self-test output change" is defined as OUTPUT[LSb](CTRL_REG4 ST bit=1) - OUTPUT[LSb](CTRL_REG4 ST bit=0). 1LSb=4g/4096 at 12-bit representation, 2 g fullscale. 10. Output data reaches 99% of final value after 3/ODR when enabling self-test mode, due to device filtering. 2.2 Electrical characteristics @ Vdd = 3.3 V, T = -40 C to +105 C unless otherwise noted(b). Table 4. Symbol Vdd Vdd_IO Electrical characteristics Parameter Test conditions Supply voltage I/O pins supply voltage(2) Idd Current consumption in normal mode 2.4 V to 3.6 V IddLP Current consumption in low-power mode ODR=1 Hz, BW=500 Hz, T=25 C IddPdn Current consumption in power-down mode VIH Digital high level input voltage VIL Digital low level input voltage VOH High level output voltage VOL Low level output voltage ODR ODRLP Output data rate in normal mode Output data rate in low-power mode Min. Typ(1). Max. Unit 2.4 3.3 3.6 V 1.8 Vdd+0.1 V 200 450 A 8 10 12 A 0.1 1 2 A 0.8*Vdd_IO V 0.2*Vdd_IO 0.9*Vdd_IO V V 0.1*Vdd_IO DR bit set to 00 50 DR bit set to 01 100 DR bit set to 10 400 DR bit set to 11 1000 V Hz PM bit set to 010 0.5 PM bit set to 011 1 PM bit set to 100 2 PM bit set to 101 5 PM bit set to 110 10 Hz b. The product is factory calibrated at 3.3 V. Operational power supply (Vdd) over 3.6 V is not recommended. 10/43 Doc ID 18160 Rev 3 AIS328DQ Mechanical and electrical specifications Table 4. Electrical characteristics (continued) Symbol Parameter BW System bandwidth Ton Turn-on time(3) Top Operating temperature range Test conditions Typ(1). Min. Max. Unit ODR/2 ODR = 100 Hz 0.9/ODR +1 ms Hz 1/ODR+1 ms 1.1/ODR +1 ms s +105 C -40 1. Typical values are not guaranteed. 2. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses; in this condition the measurement chain is powered off. 3. Time to obtain valid data after exiting power-down mode. 2.3 Communication interface characteristics 2.3.1 SPI - serial peripheral interface Subject to general operating conditions for Vdd and Top. Table 5. SPI slave timing values Value (1) Symbol Parameter Unit Min. tc(SPC) SPI clock cycle fc(SPC) SPI clock frequency tsu(CS) CS setup time 6 th(CS) CS hold time 8 tsu(SI) SDI input setup time 5 th(SI) SDI input hold time 15 tv(SO) SDO valid output time th(SO) SDO output hold time tdis(SO) Max. 100 ns 10 MHz ns 50 9 SDO output disable time 50 Doc ID 18160 Rev 3 11/43 Mechanical and electrical specifications Figure 3. CS AIS328DQ SPI slave timing diagram (2) (3) (3) tc(SPC) tsu(CS) SPC (3) (3) tsu(SI) SDI th(SI) LSB IN MSB IN (3) tv(SO) SDO th(CS) tdis(SO) th(SO) MSB OUT (3) (3) LSB OUT (3) 1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production. 2. Measurement points are made at 0.2*Vdd_IO and 0.8*Vdd_IO, for both input and output ports. 3. When no communication is ongoing, data on CS, SPC, SDI and SDO are driven by internal pull-up resistors. 2.3.2 IC - inter IC control interface Subject to general operating conditions for Vdd and top. Table 6. IC slave timing values IC standard mode (1) Symbol f(SCL) IC fast mode (1) Parameter SCL clock frequency Unit Min. Max. Min. Max. 0 100 0 400 tw(SCLL) SCL clock low time 4.7 1.3 tw(SCLH) SCL clock high time 4.0 0.6 tsu(SDA) SDA setup time 250 100 th(SDA) SDA data hold time 0.01 th(ST) START condition hold time 4 0.6 tsu(SR) Repeated START condition setup time 4.7 0.6 tsu(SP) STOP condition setup time 4 0.6 4.7 1.3 KHz s 3.45 0.01 ns 0.9 s s tw(SP:SR) Bus free time between STOP and START condition 1. Data based on standard IC protocol requirement, not tested in production. 12/43 Doc ID 18160 Rev 3 AIS328DQ Mechanical and electrical specifications IC slave timing diagram (c) Figure 4. REPEATED START START tsu(SR) START tw(SP:SR) SDA tf(SDA) th(SDA) tsu(SDA) tr(SDA) tsu(SP) STOP SCL th(ST) 2.4 tw(SCLL) tw(SCLH) tr(SCL) tf(SCL) Absolute maximum ratings Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 7. Absolute maximum ratings Symbol Vdd Vdd_IO Vin Ratings Maximum value Unit Supply voltage -0.3 to 4 V I/O pin supply voltage -0.3 to 4 V -0.3 to Vdd_IO +0.3 V Input voltage on any control pin (CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0) 3000 g for 0.5 ms APOW Acceleration (any axis, powered, Vdd = 2.5 V)(1) AUNP Acceleration (any axis, unpowered)(1) TOP Operating temperature range -40 to +105 C TSTG Storage temperature range -40 to +125 C 4 (HBM) kV 1.5 (CDM) kV 200 (MM) V ESD 10000 g for 0.1 ms 3000 g for 0.5 ms 10000 g for 0.1 ms Electrostatic discharge protection c. Measurement points are made at 0.2*Vdd_IO and 0.8*Vdd_IO, for both ports. Doc ID 18160 Rev 3 13/43 Mechanical and electrical specifications AIS328DQ 1. Design guarantee; characterization done at 1500 g/0.5 ms, 3000 g/0.3 ms, 10000 g/0.1 ms; tests under these conditions have passed successfully. Note: Supply voltage on any pin should never exceed 4.0 V. This is a mechanical shock sensitive device, improper handling can cause permanent damage to the part. This is an ESD sensitive device, improper handling can cause permanent damage to the part. 2.5 Terminology 2.5.1 Sensitivity Sensitivity describes the gain of the sensor and can be determined, for example, by applying a 1 g acceleration to it. As the sensor can measure DC accelerations, this can be done easily by pointing the axis of interest towards the center of the earth, noting the output value, rotating the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing so, a 1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and also over time. The sensitivity tolerance describes the range of sensitivity of a large population of sensors. 2.5.2 Zero-g level Zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady-state on a horizontal surface measures 0 g on the X-axis and 0 g on the Y-axis, whereas the Z-axis measures 1 g. The output is ideally in the center of the dynamic range of the sensor (the content of the OUT registers is 00h, data expressed as 2's complement number). A deviation from the ideal value in this case is called zero-g offset. Offset is, to some extent, a result of stress to the MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see "Zero-g level change vs. temperature" in Table 3. The zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a population of sensors. 2.5.3 Self-test Self-test allows the sensor functionality to be tested without moving it. The self-test function is off when the self-test bit (ST) of CTRL_REG4 (control register 4) is programmed to `0`. When the self-test bit of CTRL_REG4 is programmed to `1' an actuation force is applied to the sensor, simulating a definite input acceleration. In this case, the sensor outputs exhibit a change in their DC levels which are related to the selected full-scale through the device sensitivity. When self-test is activated, the device output level is given by the algebraic sum of the signals produced by the acceleration acting on the sensor and by the electrostatic test-force. If the output signals change within the amplitude specified in Table 3, then the sensor is working properly and the parameters of the interface chip are within the defined specifications. 14/43 Doc ID 18160 Rev 3 AIS328DQ 2.5.4 Mechanical and electrical specifications Sleep-to-wakeup The "sleep-to-wakeup" function, in conjunction with low-power mode, allows further reduction of system power consumption and development of new smart applications. The AIS328DQ may be set to a low-power operating mode, characterized by lower data rate refreshments. In this way the device, even if sleeping, continues to sense acceleration and to generate interrupt requests. When the "sleep-to-wakeup" function is activated, the AIS328DQ is able to automatically wake up as soon as the interrupt event has been detected, increasing the output data rate and bandwidth. With this feature, the system may be efficiently switched from low-power mode to fullperformance depending on user-selectable positioning and acceleration events, therefore ensuring power saving and flexibility. Doc ID 18160 Rev 3 15/43 Functionality 3 AIS328DQ Functionality The AIS328DQ is a "nano", low-power, digital output 3-axis linear accelerometer packaged in a QFPN package. The device includes a sensing element and an IC interface capable of taking information from the sensing element and providing a signal to external applications through an IC/SPI serial interface. 3.1 Sensing element A proprietary process is used to create a surface micro-machined accelerometer. The technology makes it possible to construct suspended silicon structures which are attached to the substrate at several points called "anchors", and are free to move in the direction of the sensed acceleration. To be compatible with traditional packaging techniques, a cap is placed on top of the sensing element to prevent blocking of moving parts during the moulding phase of the plastic encapsulation. When an acceleration is applied to the sensor, the proof mass displaces from its nominal position, causing an imbalance in the capacitive half-bridge. This imbalance is measured using charge integration in response to a voltage pulse applied to the capacitor. At steady-state, the nominal value of the capacitors are a few pF, and when an acceleration is applied the maximum variation of the capacitive load is in the fF range. 3.2 IC interface The complete measurement chain is composed of a low-noise capacitive amplifier which converts the capacitive unbalancing of the MEMS sensor into an analog voltage that is made available to the user through an analog-to-digital converter. The acceleration data may be accessed through an IC/SPI interface, therefore making the device particularly suitable for direct interfacing with a microcontroller. The AIS328DQ features a data-ready signal (RDY) which indicates when a new set of measured acceleration data is available, therefore simplifying data synchronization in the digital system that uses the device. The AIS328DQ may also be configured to generate an inertial wakeup and free-fall interrupt signal based on a programmed acceleration event along the enabled axes. Both free-fall and wakeup can be available simultaneously on two different pins. 3.3 Factory calibration The IC interface is factory calibrated for sensitivity (So) and zero-g level (TyOff). The trimming values are stored inside the device in non-volatile memory. When the device is turned on, the trimming parameters are downloaded into the registers to be used during active operation. This allows the device to be used without further calibration. 16/43 Doc ID 18160 Rev 3 AIS328DQ Application hints Figure 5. AIS328DQ electrical connections 24 19 18 1 SDA/SDI/SDO INT 2 TOP VIEW SDO/SA0 Vdd_IO Vdd 13 6 GND X CS 10uF Z 12 SCL/SPC 100nF 7 INT 1 4 Application hints 1 Y Digital signal from/to signal controller. Signal's levels are defined by proper selection of Vdd_IO AM10247v1 The device core is supplied through the Vdd line while the I/O pads are supplied through the Vdd_IO line. Power supply decoupling capacitors (100 nF ceramic, 10 F aluminum) should be placed as near as possible to pin 5 of the device (common design practice). All the voltage and ground supplies must be present at the same time to obtain proper behavior of the IC (refer to Figure 5). It is possible to remove Vdd while maintaining Vdd_IO without blocking the communication bus; in this condition the measurement chain is powered off. The functionality of the device and the measured acceleration data is selectable and accessible through the IC or SPI interfaces. When using the IC, CS must be tied high. The functions, the threshold, and the timing of the two interrupt pins (INT 1 and INT 2) can be completely programmed by the user through the IC/SPI interface. Doc ID 18160 Rev 3 17/43 Digital interfaces 5 AIS328DQ Digital interfaces The registers embedded in the AIS328DQ may be accessed through both the IC and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. The serial interfaces are mapped onto the same pads. To select/exploit the IC interface, the CS line must be tied high (i.e. connected to Vdd_IO). Table 8. Serial interface pin description Pin name SPI enable IC/SPI mode selection (1: IC mode; 0: SPI enabled) CS 5.1 Pin description SCL SPC IC serial clock (SCL) SPI serial port clock (SPC) SDA SDI SDO IC serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO) SA0 SDO IC less significant bit of the device address (SA0) SPI serial data output (SDO) IC serial interface The AIS328DQ IC is a bus slave. The IC is employed to write data into registers, the content of which can also be read back. The relevant IC terminology is provided in Table 9 below. Table 9. Serial interface pin description Term Transmitter Receiver Description The device which sends data to the bus The device which receives data from the bus Master The device which initiates a transfer, generates clock signals and terminates a transfer Slave The device addressed by the master There are two signals associated with the IC bus: the serial clock line (SCL) and the serial data line (SDA). The latter is a bi-directional line used for sending and receiving the data to/from the interface. Both lines are connected to Vdd_IO through a pull-up resistor embedded in the AIS328DQ. When the bus is free, both lines are high. The IC interface is compliant with fast mode (400 kHz) IC standards as well as with the normal mode. 18/43 Doc ID 18160 Rev 3 AIS328DQ 5.1.1 Digital interfaces IC operation The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master. The slave address (SAD) associated to the AIS328DQ is 001100xb. The SDO/SA0 pad can be used to modify the less significant bit of the device address. If the SA0 pad is connected to voltage supply, LSb is `1' (address 0011001b), otherwise if the SA0 pad is connected to ground, the LSb value is `0' (address 0011000b). This solution permits the connection and addressing of two different accelerometers to the same IC lines. Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received. The IC embedded in the AIS328DQ behaves like a slave device, and the following protocol must be adhered to. After the start condition (ST) a slave address is sent. Once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted: the 7 LSb represent the actual register address while the MSb enables address auto-increment. If the MSb of the SUB field is `1', the SUB (register address) is automatically increased to allow multiple data read/write. The slave address is completed with a read/write bit. If the bit is `1' (read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is `0' (write) the master transmits to the slave with direction unchanged. Table 10 explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations. Table 10. SAD+Read/Write patterns Command SAD[6:1] SAD[0] = SA0 R/W Read 001100 0 1 00110001 (31h) Write 001100 0 0 00110000 (30h) Read 001100 1 1 00110011 (33h) Write 001100 1 0 00110010 (32h) Table 11. Transfer when master is writing one byte to slave Master ST SAD + W Slave Table 12. Master Slave SAD+R/W SUB SAK DATA SAK SP SAK Transfer when master is writing multiple bytes to slave ST SAD + W SUB SAK DATA SAK Doc ID 18160 Rev 3 DATA SAK SP SAK 19/43 Digital interfaces Table 13. Master AIS328DQ Transfer when master is receiving (reading) one byte of data from slave ST SAD + W Slave Table 14. Master SUB SAK SR SAD + R SAK NMAK SAK SP DATA Transfer when master is receiving (reading) multiple bytes of data from slave ST SAD+W Slave SUB SAK SR SAD+R SAK MAK SAK DATA MAK DATA NMAK SP DATA Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit (MSb) first. If a receiver cannot receive another complete byte of data until it has performed some other function, it can hold the clock line SCL LOW to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver does not acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition. In order to read multiple bytes, it is necessary to assert the most significant bit of the subaddress field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the address of the first register to be read. In the presented communication format, MAK is master acknowledge and NMAK is no master acknowledge. 5.2 SPI bus interface The AIS328DQ SPI is a bus slave. The SPI allows the writing and reading of the registers of the device. The serial interface interacts with the outside world through 4 wires: CS, SPC, SDI and SDO. Figure 6. Read and write protocol CS SPC SDI DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 RW MS AD5 AD4 AD3 AD2 AD1 AD0 SDO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 20/43 Doc ID 18160 Rev 3 AIS328DQ Digital interfaces CS is the serial port enable and is controlled by the SPI master. It goes low at the start of the transmission and returns high at the end. SPC is the serial port clock and is controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and SDO are, respectively, the serial port data input and output. Those lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC. Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in cases of multiple read/write bytes. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC, after the falling edge of CS, while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC, just before the rising edge of CS. bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In the latter case, the chip drives SDO at the start of bit 8. bit 1: MS bit. When 0, the address remains unchanged in multiple read/write commands. When 1, the address is auto-incremented in multiple read/write commands. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written to the device (MSb first). bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). In multiple read/write commands further blocks of 8 clock periods are added. When MS bit is `0' the address used to read/write data remains the same for every block. When MS bit is `1' the address used to read/write data is increased at every block. The function and the behavior of SDI and SDO remain unchanged. 5.2.1 SPI read Figure 7. SPI read protocol CS SPC SDI RW MS AD5 AD4 AD3 AD2 AD1 AD0 SDO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 The SPI read command is performed with 16 clock pulses. Multiple byte read commands are performed by adding blocks of 8 clock pulses to the previous one. bit 0: READ bit. The value is 1. bit 1: MS bit. When 0, do not increment address; when 1, increment address in multiple readings. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). bit 16-... : data DO(...-8). Further data in multiple byte reading. Doc ID 18160 Rev 3 21/43 Digital interfaces AIS328DQ Figure 8. Multiple byte SPI read protocol (2-byte example) CS SPC SDI RW MS AD5 AD4 AD3 AD2 AD1 AD0 SDO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 DO15DO14DO13DO12DO11DO10DO9 DO8 5.2.2 SPI write Figure 9. SPI write protocol CS SPC SDI DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 RW MS AD5 AD4 AD3 AD2 AD1 AD0 The SPI write command is performed with 16 clock pulses. Multiple byte write commands are performed by adding blocks of 8 clock pulses to the previous one. bit 0: WRITE bit. The value is 0. bit 1: MS bit. When 0, do not increment address; when 1, increment address in multiple writing. bit 2 -7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written to the device (MSb first). bit 16-... : data DI(...-8). Further data in multiple byte writing. Figure 10. Multiple bytes SPI write protocol (2-byte example) CS SPC SDI DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 DI15 DI14 DI13 DI12 DI11 DI10 DI9 DI8 RW MS AD5 AD4 AD3 AD2 AD1 AD0 22/43 Doc ID 18160 Rev 3 AIS328DQ 5.2.3 Digital interfaces SPI read in 3-wire mode 3-wire mode is entered by setting to `1' the bit SIM (SPI serial interface mode selection) in CTRL_REG4. Figure 11. SPI read protocol in 3-wire mode CS SPC SDI/O DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 RW MS AD5 AD4 AD3 AD2 AD1 AD0 The SPI read command is performed with 16 clock pulses: bit 0: READ bit. The value is 1. bit 1: MS bit. When 0, do not increment address; when 1, increment address in multiple reading. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). Multiple read command is also available in 3-wire mode. Note: If AIS328DQ is used in a multi-SPI slave environment (several devices sharing the same SPI bus), the accelerometer can be forced by software to remain in SPI mode. This objective can be achieved by sending at the beginning of the SPI communication the following sequence to the device: a = read(0x17) write(0x17, (0x80 OR a)) The programming of this register is a possibility to enhance the robustness of the SPI system. Doc ID 18160 Rev 3 23/43 Register mapping 6 AIS328DQ Register mapping Table 15 below provides a list of the 8-bit registers embedded in the device, and the related addresses. Table 15. Register address map Register address Name Type Default Hex Reserved (do not modify) WHO_AM_I 00 - 0E r Reserved (do not modify) 0F Reserved 000 1111 00110010 Dummy register 10 - 1F Reserved CTRL_REG1 rw 20 010 0000 00000111 CTRL_REG2 rw 21 010 0001 00000000 CTRL_REG3 rw 22 010 0010 00000000 CTRL_REG4 rw 23 010 0011 00000000 CTRL_REG5 rw 24 010 0100 00000000 r 25 010 0101 REFERENCE rw 26 010 0110 00000000 STATUS_REG r 27 010 0111 00000000 OUT_X_L r 28 010 1000 output OUT_X_H r 29 010 1001 output OUT_Y_L r 2A 010 1010 output OUT_Y_H r 2B 010 1011 output OUT_Z_L r 2C 010 1100 output OUT_Z_H r 2D 010 1101 output HP_FILTER_RESET Reserved (do not modify) INT1_CFG Dummy register 2E - 2F Reserved rw 30 011 0000 00000000 r 31 011 0001 00000000 INT1_THS rw 32 011 0010 00000000 INT1_DURATION rw 33 011 0011 00000000 INT2_CFG rw 34 011 0100 00000000 r 35 011 0101 00000000 INT2_THS rw 36 011 0110 00000000 INT2_DURATION rw 37 011 0111 00000000 INT1_SOURCE INT2_SOURCE Reserved (do not modify) 38 - 3F Comment Binary Reserved Registers marked as Reserved must not be changed. Writing to those registers may change calibration data and therefore lead to a non-proper working device. 24/43 Doc ID 18160 Rev 3 AIS328DQ Register mapping The content of the registers that are loaded at boot should not be changed. They contain the factory calibrated values. Their content is automatically restored when the device is powered up. Doc ID 18160 Rev 3 25/43 Register description 7 AIS328DQ Register description The device contains a set of registers which are used to control its behavior and to retrieve acceleration data. The register addresses, composed of 7 bits, are used to identify the device and to write the data through the serial interface. 7.1 WHO_AM_I (0Fh) Table 16. 0 WHO_AM_I register 0 1 1 0 0 1 0 This is the device identification register. This register contains the device identifier, which for the AIS328DQ is set to 32h. 7.2 CTRL_REG1 (20h) Table 17. PM2 Table 18. CTRL_REG1 register PM1 PM0 DR1 DR0 Zen Yen Xen CTRL_REG1 description PM2 - PM0 Power mode selection. Default value: 000 (000: power-down; Others: refer to Table 19) DR1, DR0 Data rate selection. Default value: 00 (00:50 Hz; Others: refer to Table 20) Zen Z-axis enable. Default value: 1 (0: Z-axis disabled; 1: Z-axis enabled) Yen Y-axis enable. Default value: 1 (0: Y-axis disabled; 1: Y-axis enabled) Xen X-axis enable. Default value: 1 (0: X-axis disabled; 1: X-axis enabled) PM bits allow selection between power-down and two operating active modes. The device is in power-down mode when the PD bits are set to "000" (default value after boot). Table 19 shows all the possible power mode configurations and respective output data rates. Output data in the low-power modes are computed with the low-pass filter cut-off frequency defined by the DR1 and DR0 bits. DR bits, in normal-mode operation, select the data rate at which acceleration samples are produced. In low-power mode they define the output data resolution. Table 20 shows all the possible configurations for the DR1 and DR0 bits. 26/43 Doc ID 18160 Rev 3 AIS328DQ Register description Table 19. PM2 PM1 PM0 Power mode selection Output data rate [Hz] ODRLP 0 0 0 Power-down -- 0 0 1 Normal mode ODR 0 1 0 Low-power 0.5 0 1 1 Low-power 1 1 0 0 Low-power 2 1 0 1 Low-power 5 1 1 0 Low-power 10 Table 20. 7.3 Power mode and low-power output data rate configurations Normal-mode output data rate configurations and low-pass cut-off frequencies DR1 DR0 Output Data Rate [Hz] ODR Low-pass filter cut-off frequency [Hz] 0 0 50 37 0 1 100 74 1 0 400 292 1 1 1000 780 CTRL_REG2 (21h) Table 21. CTRL_REG2 register BOOT Table 22. HPM1 HPM0 FDS HPen2 HPen1 HPCF1 HPCF0 CTRL_REG2 description BOOT HPM1, HPM0 Reboot memory content. Default value: 0 (0: normal mode; 1: reboot memory content) High-pass filter mode selection. Default value: 00 (00: normal mode; Others: refer to Table 23) FDS Filtered data selection. Default value: 0 (0: internal filter bypassed; 1: data from internal filter sent to output register) HPen2 High-pass filter enabled for interrupt 2 source. Default value: 0 (0: filter bypassed; 1: filter enabled) HPen1 High-pass filter enabled for interrupt 1 source. Default value: 0 (0: filter bypassed; 1: filter enabled) HPCF1, HPCF0 High-pass filter cut-off frequency configuration. Default value: 00 (00: HPc=8; 01: HPc=16; 10: HPc=32; 11: HPc=64) Doc ID 18160 Rev 3 27/43 Register description AIS328DQ The BOOT bit is used to refresh the content of internal registers stored in the Flash memory block. At device power-up, the content of the Flash memory block is transferred to the internal registers related to the trimming functions, to permit good behavior of the device. If for any reason the content of the trimming register is changed, this bit can be used to restore the correct values. When the BOOT bit is set to `1' the content of the internal Flash is copied to the corresponding internal registers and is used to calibrate the device. These values are factory-trimmed and they are different for every accelerometer. They permit good behavior of the device and normally do not need to be modified. At the end of the boot process, the BOOT bit is again set to `0'. Table 23. High-pass filter mode configuration HPM1 HPM0 High-pass filter mode 0 0 Normal mode (reset reading HP_RESET_FILTER) 0 1 Reference signal for filtering 1 0 Normal mode (reset reading HP_RESET_FILTER) HPCF[1:0]. These bits are used to configure the high-pass filter cut-off frequency ft which is given by: fs 1 - -----f t = ln 1 - ---------- 2 HPc The equation can be simplified to the following approximated equation: fs ft = --------------------6 HPc Table 24. ft [Hz] ft [Hz] Data rate = 50 Hz Data rate = 100 Hz 00 1 2 8 20 01 0.5 1 4 10 10 0.25 0.5 2 5 11 0.125 0.25 1 2.5 HPcoeff2,1 7.4 ft [Hz] ft [Hz] Data rate = 400 Hz Data rate = 1000 Hz CTRL_REG3 [Interrupt CTRL register] (22h) Table 25. IHL 28/43 High-pass filter cut-off frequency configuration CTRL_REG3 register PP_OD LIR2 I2_CFG1 I2_CFG0 Doc ID 18160 Rev 3 LIR1 I1_CFG1 I1_CFG0 AIS328DQ Register description Table 26. CTRL_REG3 description IHL Interrupt active high, low. Default value: 0 (0: active high; 1: active low) PP_OD Push-pull/open drain selection on interrupt pad. Default value 0. (0: push-pull; 1: open drain) LIR2 Latch interrupt request on the INT2_SRC register, with the INT2_SRC register cleared by reading INT2_SRC itself. Default value: 0. (0: interrupt request not latched; 1: interrupt request latched) I2_CFG1, I2_CFG0 Data signal on INT 2 pad control bits. Default value: 00. (see Table 27) LIR1 Latch interrupt request on the INT1_SRC register, with the INT1_SRC register cleared by reading the INT1_SRC register. Default value: 0. (0: interrupt request not latched; 1: interrupt request latched) I1_CFG1, I1_CFG0 Data signal on INT 1 pad control bits. Default value: 00. (see Table 27) Table 27. 7.5 Data signal on INT 1 and INT 2 pad I1(2)_CFG1 I1(2)_CFG0 INT 1(2) Pad 0 0 Interrupt 1 (2) source 0 1 Interrupt 1 source OR interrupt 2 source 1 0 Data ready 1 1 Boot running CTRL_REG4 (23h) Table 28. BDU Table 29. CTRL_REG4 register BLE FS1 FS0 STsign 0 ST SIM CTRL_REG4 description BDU Block data update. Default value: 0 (0: continuous update; 1: output registers not updated between MSb and LSb reading) BLE Big/little endian data selection. Default value 0. (0: data LSb @ lower address; 1: data MSb @ lower address) FS1, FS0 Full-scale selection. Default value: 00. (00: 2 g; 01: 4 g; 11: 8 g) STsign Self-test sign. Default value: 00. (0: self-test plus; 1 self-test minus) Doc ID 18160 Rev 3 29/43 Register description Table 29. AIS328DQ CTRL_REG4 description (continued) ST Self-test enable. Default value: 0. (0: self-test disabled; 1: self-test enabled) SIM SPI serial interface mode selection. Default value: 0. (0: 4-wire interface; 1: 3-wire interface) The BDU bit is used to inhibit the output register update between the reading of upper and lower register parts. In default mode (BDU = `0'), the lower and upper register parts are updated continuously. If it is not certain to read faster than output data rate, it is recommended to set the BDU bit to `1'. In this way, after the reading of the lower (upper) register part, the content of that output register is not updated until the upper (lower) part is read also. This feature prevents the reading of LSb and MSb related to different samples. 7.6 CTRL_REG5 (24h) Table 30. 0 CTRL_REG5 register 0 Table 31. TurnOn1, TurnOn0 0 0 0 0 TurnOn1 TurnOn0 CTRL_REG5 description Turn-on mode selection for sleep-to-wake function. Default value: 00. TurnOn bits are used for turning on the sleep-to-wake function. Table 32. Sleep-to-wake configuration TurnOn1 TurnOn0 Sleep-to-wake status 0 0 Sleep-to-wake function is disabled 1 1 Turned on: the device is in low power mode (ODR is defined in CTRL_REG1) By setting TurnOn[1:0] bits to 11, the "sleep-to-wake" function is enabled. When an interrupt event occurs, the device is switched to normal mode, increasing the ODR to the value defined in CTRL_REG1. Although the device is in normal mode, the CTRL_REG1 content is not automatically changed to "normal mode" configuration. 7.7 HP_FILTER_RESET (25h) Dummy register. Reading at this address instantaneously zeroes the content of the internal high-pass filter. If the high-pass filter is enabled, all three axes are instantaneously set to 0 g. This makes it possible to surmount the settling time of the high-pass filter. 30/43 Doc ID 18160 Rev 3 AIS328DQ 7.8 Register description REFERENCE (26h) Table 33. Ref7 Table 34. Ref7 - Ref0 REFERENCE register Ref6 Ref5 Ref4 Ref3 Ref2 Ref1 Ref0 REFERENCE description Reference value for high-pass filter. Default value: 00h. This register sets the acceleration value taken as a reference for the high-pass filter output. When the filter is turned on (at least one FDS, HPen2, or HPen1 bit is equal to `1') and HPM bits are set to "01", filter out is generated taking this value as a reference. 7.9 STATUS_REG (27h) Table 35. ZYXOR Table 36. STATUS_REG register ZOR YOR XOR ZYXDA ZDA YDA XDA STATUS_REG description ZYXOR X, Y and Z-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data has overwritten the previous one before it was read) ZOR Z-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the Z-axis has overwritten the previous one) YOR Y-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the Y-axis has overwritten the previous one) XOR X-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the X-axis has overwritten the previous one) ZYXDA X, Y and Z-axis new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available) ZDA Z-axis new data available. Default value: 0 (0: new data for the Z-axis is not yet available; 1: new data for the Z-axis is available) YDA Y-axis new data available. Default value: 0 (0: new data for the Y-axis is not yet available; 1: new data for the Y-axis is available) XDA X-axis new data available. Default value: 0 (0: new data for the X-axis is not yet available; 1: new data for the X-axis is available) Doc ID 18160 Rev 3 31/43 Register description 7.10 AIS328DQ OUT_X_L (28h), OUT_X_H (29) X-axis acceleration data. The value is expressed as 2's complement. 7.11 OUT_Y_L (2Ah), OUT_Y_H (2Bh) Y-axis acceleration data. The value is expressed as 2's complement. 7.12 OUT_Z_L (2Ch), OUT_Z_H (2Dh) Z-axis acceleration data. The value is expressed as 2's complement. 7.13 INT1_CFG (30h) Table 37. AOI Table 38. INT1_CFG register 6D ZHIE ZLIE YLIE XHIE XLIE INT1_CFG description AOI AND/OR combination of interrupt events. Default value: 0. (See Table 39) 6D 6 direction detection function enable. Default value: 0. (See Table 39) ZHIE Enable interrupt generation on Z high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) ZLIE Enable interrupt generation on Z low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) YHIE Enable interrupt generation on Y high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) YLIE Enable interrupt generation on Y low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) XHIE Enable interrupt generation on X high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) XLIE Enable interrupt generation on X low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) Configuration register for interrupt 1 source. 32/43 YHIE Doc ID 18160 Rev 3 AIS328DQ Register description Table 39. 7.14 Interrupt 1 source configurations AOI 6D Interrupt mode 0 0 OR combination of interrupt events 0 1 6-direction movement recognition 1 0 AND combination of interrupt events 1 1 6-direction position recognition INT1_SRC (31h) Table 40. 0 Table 41. INT1_SRC register IA ZH ZL YH YL XH XL INT1_SRC description IA Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated) ZH Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred) ZL Z low. Default value: 0 (0: no interrupt; 1: Z low event has occurred) YH Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred) YL Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred) XH X high. Default value: 0 (0: no interrupt, 1: X high event has occurred) XL X low. Default value: 0 (0: no interrupt, 1: X low event has occurred) Interrupt 1 source register. Read-only register. Reading at this address clears the INT1_SRC IA bit (and the interrupt signal on the INT 1 pin) and allows the refreshing of data in the INT1_SRC register if the latched option was chosen. 7.15 INT1_THS(32h) Table 42. 0 INT1_THS register THS6 THS5 THS4 Doc ID 18160 Rev 3 THS3 THS2 THS1 THS0 33/43 Register description Table 43. AIS328DQ INT1_THS description THS6 - THS0 7.16 Interrupt 1 threshold. Default value: 000 0000 INT1_DURATION (33h) Table 44. 0 Table 45. D6 - D0 INT1_DURATION register D6 D5 D4 D3 D2 D1 D0 INT2_DURATION description Duration value. Default value: 000 0000 The D6 - D0 bits set the minimum duration of the interrupt 2 event to be recognized. Duration steps and maximum values depend on the ODR chosen. 7.17 INT2_CFG (34h) Table 46. AOI Table 47. 34/43 INT2_CFG register 6D ZHIE ZLIE YHIE YLIE XHIE XLIE INT2_CFG description AOI AND/OR combination of interrupt events. Default value: 0. (see Table 48) 6D 6-direction detection function enable. Default value: 0. (see Table 48) ZHIE Enable interrupt generation on Z high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) ZLIE Enable interrupt generation on Z low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) YHIE Enable interrupt generation on Y high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) YLIE Enable interrupt generation on Y low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) XHIE Enable interrupt generation on X high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) XLIE Enable interrupt generation on X low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) Doc ID 18160 Rev 3 AIS328DQ Register description Configuration register for interrupt 2 source. Table 48. 7.18 Interrupt mode configuration AOI 6D Interrupt mode 0 0 OR combination of interrupt events 0 1 6-direction movement recognition 1 0 AND combination of interrupt events 1 1 6-direction position recognition INT2_SRC (35h) Table 49. 0 Table 50. INT2_SRC register IA ZH ZL YH YL XH XL INT2_SRC description IA Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated) ZH Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred) ZL Z low. Default value: 0 (0: no interrupt; 1: Z low event has occurred) YH Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred) YL Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred) XH X high. Default value: 0 (0: no interrupt, 1: X high event has occurred) XL X Low. Default value: 0 (0: no interrupt, 1: X low event has occurred) Interrupt 2 source register. Read only register. Reading at this address clears the INT2_SRC IA bit (and the interrupt signal on the INT 2 pin) and allows the refreshing of data in the INT2_SRC register if the latched option was chosen. 7.19 INT2_THS (36h) Table 51. 0 INT2_THS register THS6 THS5 THS4 Doc ID 18160 Rev 3 THS3 THS2 THS1 THS0 35/43 Register description Table 52. AIS328DQ INT2_THS description THS6 - THS0 7.20 Interrupt 1 threshold. Default value: 000 0000 INT2_DURATION (37h) Table 53. 0 Table 54. D6 - D0 INT2_DURATION register D6 D5 D4 D3 D2 D1 INT2_DURATION description Duration value. Default value: 000 0000 The D6 - D0 bits set the minimum duration of the interrupt 2 event to be recognized. Duration time steps and maximum values depend on the ODR chosen. 36/43 Doc ID 18160 Rev 3 D0 AIS328DQ 8 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK(R) packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. Doc ID 18160 Rev 3 37/43 Package information AIS328DQ Figure 12. QFPN 4x4x1.8mm3, 24L: mechanical data and package dimensions mm Dim. A A1 A3 b D D2 E E2 e L aaa eee Min. Typ. Max. 1.75 0.00 1.80 1.85 0.05 0.20 2.20 2.20 0.35 0.203 ref 0.25 4.00 bsc 2.30 4.00 bsc 2.30 0.50 bsc 0.40 0.10 0.08 0.30 2.40 2.40 0.45 QFPN-24 (4x4x1.8 mm3) Quad Flat Package No lead 8212912_C 38/43 Doc ID 18160 Rev 3 AIS328DQ 9 Soldering information Soldering information The QFPN-24 package is compliant with the ECOPACK(R), RoHS and "Green" standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020C, in MSL3 conditions. For complete land pattern and soldering recommendations, please refer to the TN0019 technical note TN0019 available on www.st.com. 9.1 General guidelines about soldering surface-mounted accelerometers As common PCB design and industrial practice when considering accelerometer soldering, there are always 3 elements to take into consideration: 1. PCB with its own conductive layers (i.e. copper) and other organic materials used for board protection and dielectric isolation. 2. ACCELEROMETER to be mounted on the board. The accelerometer senses acceleration, but it senses also the mechanical stress coming from the board. This stress is minimized with simple PCB design rules. 3. SOLDERING PASTE like SnAgCu. This soldering paste can be dispensed on the board with a screen printing method through a stencil. The pattern of the soldering paste on the PCB is given by the stencil mask itself. 9.2 PCB design guidelines PCB land and solder masking general recommendations are shown in Figure 13. Refer to Figure 12 for specific device size, land count and pitch. It is recommended to open solder mask external to PCB land It is mandatory, for correct device functionality, to ensure that some clearance is present between the accelerometer thermal pad and PCB. In order to obtain this clearance it is recommended to open the PCB thermal pad solder mask The area below the sensor (on the same side of the board) must be defined as keepout area. It is strongly recommended not to place any structure in the top metal layer underneath the sensor Traces connected to pads should be as symmetrical as possible. Symmetry and balance for pad connection helps component self alignment and leads to a better control of solder paste reduction after reflow For better performances over temperature it is strongly recommended not to place large insertion components like buttons or shielding boxes at distances less than 2 mm from the sensor Central die pad and "Pin 1 Indicator" are physically connected to GND. Leave "Pin 1 Indicator" unconnected during soldering. Doc ID 18160 Rev 3 39/43 Soldering information 9.2.1 AIS328DQ PCB design rules Figure 13. Recommended land and solder mask design for QFPN packages PACKAGE FOOTPRINT PCB LAND SOLDER MASK OPENING PCB THERMAL PAD NOT TO BE DESIGNED ON PCB PCB THERMAL PAD SOLDER MASK OPENING SUGGESTED TO INCREASE DEVICE THERMAL PAD TO PCB CLEARANCE C A D B AM10242V1 A = Clearance from PCB land edge to solder mask opening 0.1 mm to ensure that some solder mask remains between PCB pads B = PCB land length = QFPN solder pad length + 0.1 mm C = PCB land width = QFPN solder pad width + 0.1 mm D = PCB thermal pad solder mask opening = QFPN thermal pad side + 0.2 mm 9.3 Stencil design and solder paste application The thickness and the pattern of the soldering paste are important for proper accelerometer mounting process. 40/43 Doc ID 18160 Rev 3 AIS328DQ 9.4 Soldering information Stainless steel stencils are recommended for solder paste applications A stencil thickness of 125 - 150 m (5 - 6 mils) is recommended for screen printing The final thickness of soldering paste should allow proper cleaning of flux residuals and clearance between sensor package and PCB Stencil aperture should have a rectangular shape with a dimension up to 25 m (1mil) smaller than PCB land The openings of the stencil for the signal pads should be between 50% and 80% of the PCB pad area Optionally, for better solder paste release, the aperture walls should be trapezoidal and the corners rounded The fine pitch of the IC leads requires accurate alignment of the stencil to the printed circuit board. The stencil and printed circuit assembly should be aligned to within 25 m (1 mil) prior to application of the solder paste. Process considerations In the case of using no self-cleaning solder paste, it is mandatory to properly wash the board after soldering to eliminate any possible source of leakage between adjacent pads due to flux residues The PCB soldering profile depends on the number, size and placement of components in the application board. It is not functional to define a specific soldering profile for the accelerometer only. The user should use a time and temperature reflow profile that is derived from the PCB design and manufacturing experience. Doc ID 18160 Rev 3 41/43 Revision history 10 AIS328DQ Revision history Table 55. 42/43 Document revision history Date Revision Changes 26-Oct-2010 1 Initial release. 26-Jan-2012 2 Updated Figure 2: Detectable accelerations and pin indicator and Figure 12: QFPN 4x4x1.8mm3, 24L: mechanical data and package dimensions. Updated Table 2: Pin description, Table 3: Mechanical characteristics, Table 4: Electrical characteristics and Table 6: IC slave timing values. Added new Section 9: Soldering information. Document promoted from preliminary data to datasheet. 13-Apr-2012 3 Minor text changes in Section 4: Application hints. Doc ID 18160 Rev 3 AIS328DQ Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. (c) 2012 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 18160 Rev 3 43/43 Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: STMicroelectronics: AIS328DQ AIS328DQTR