This is information on a product in full production.
April 2012 Doc ID 18160 Rev 3 1/43
43
AIS328DQ
High-performance ultra low-power 3-axis accelerometer with digital
output for automotive applications
Datasheet — production data
Features
Wide supply voltage range: 2.4 V to 3.6 V
Low voltage compatible IOs: 1.8 V
Ultra low-power mode consumption: down to
10 µA
±2g/±4g/±8g dynamically selectable full-scale
SPI / I2C digital output interface
16-bit data output
2 independent programmable interrupt
generators
System sleep/wakeup function
Extended temperature range: -40 °C to 105 °C
Embedded self-test
High shock survivability: up to 10000 g
ECOPACK® RoHS and “Green” compliant
AEC-Q100 qualification
Applications
Telematics and black boxes
In-dash car navigation
Tilt / inclination measurement
Anti-theft devices
Intelligent power saving
Impact recognition and logging
Vibration monitoring and compensation
Motion-activated functions
Description
The AIS328DQ is an ultra low-power high
performance 3-axis linear accelerometer with a
digital serial interface SPI standard output. An I2C
compatible interface is also available. The device
features ultra low-power operational modes that
allow advanced power saving and smart sleep-to-
wakeup functions. The AIS328DQ has dynamic
user-selectable full-scales of ±2g/±4g/±8g and is
capable of measuring accelerations with output
data rates from 0.5 Hz to 1 kHz. The self-test
capability allows the user to check the functioning
of the sensor in the final application. The device
may be configured to generate an interrupt signal
through inertial wakeup events, or by the position
of the device itself. Thresholds and the timing of
interrupt generators are programmable by the end
user on-the-fly. Available in a small quad flat pack
no-lead package (QFPN) with a 4x4 mm footprint,
the AIS328DQ is able to respond to the trend
towards application miniaturization, and is
guaranteed to operate over a temperature range
from -40 °C to +105 °C.
QFN 24
(4 x 4 x 1.8 mm3)
Table 1. Device summary
Order codes Temperature range [°C] Package Packaging
AIS328DQ -40 to +105 QFPN 4x4x1.8 24L Tray
AIS328DQTR -40 to +105 QFPN 4x4x1.8 24L Tape and reel
www.st.com
Contents AIS328DQ
2/43 Doc ID 18160 Rev 3
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 I²C - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.2 Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.3 Self-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.4 Sleep-to-wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 IC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1 I²C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.1 I²C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.3 SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
AIS328DQ Contents
Doc ID 18160 Rev 3 3/43
7 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.1 WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2 CTRL_REG1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.3 CTRL_REG2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.4 CTRL_REG3 [Interrupt CTRL register] (22h) . . . . . . . . . . . . . . . . . . . . . . 27
7.5 CTRL_REG4 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.6 CTRL_REG5 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.7 HP_FILTER_RESET (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.8 REFERENCE (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.9 STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.10 OUT_X_L (28h), OUT_X_H (29) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.11 OUT_Y_L (2Ah), OUT_Y_H (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.12 OUT_Z_L (2Ch), OUT_Z_H (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.13 INT1_CFG (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.14 INT1_SRC (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.15 INT1_THS(32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.16 INT1_DURATION (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.17 INT2_CFG (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.18 INT2_SRC (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.19 INT2_THS (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.20 INT2_DURATION (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.1 General guidelines about soldering surface-mounted accelerometers . . 38
9.2 PCB design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.2.1 PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.3 Stencil design and solder paste application . . . . . . . . . . . . . . . . . . . . . . . 39
9.4 Process considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
List of tables AIS328DQ
4/43 Doc ID 18160 Rev 3
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 5. SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 6. I²C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 7. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 8. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 9. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 10. SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 11. Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 12. Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 13. Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 19
Table 14. Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 19
Table 15. Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 16. WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 17. CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 18. CTRL_REG1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 19. Power mode and low-power output data rate configurations . . . . . . . . . . . . . . . . . . . . . . . 26
Table 20. Normal-mode output data rate configurations and low-pass cut-off frequencies . . . . . . . . 26
Table 21. CTRL_REG2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 22. CTRL_REG2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 23. High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 24. High-pass filter cut-off frequency configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 25. CTRL_REG3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 26. CTRL_REG3 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 27. Data signal on INT 1 and INT 2 pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 28. CTRL_REG4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 29. CTRL_REG4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 30. CTRL_REG5 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 31. CTRL_REG5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 32. Sleep-to-wake configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 33. REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 34. REFERENCE description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 35. STATUS_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 36. STATUS_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 37. INT1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 38. INT1_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 39. Interrupt 1 source configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 40. INT1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 41. INT1_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 42. INT1_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 43. INT1_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 44. INT1_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 45. INT2_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 46. INT2_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 47. INT2_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 48. Interrupt mode configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
AIS328DQ List of tables
Doc ID 18160 Rev 3 5/43
Table 49. INT2_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 50. INT2_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 51. INT2_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 52. INT2_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 53. INT2_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 54. INT2_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 55. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
List of figures AIS328DQ
6/43 Doc ID 18160 Rev 3
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2. Detectable accelerations and pin indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. SPI slave timing diagram (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 4. I²C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 5. AIS328DQ electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 6. Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 7. SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 8. Multiple byte SPI read protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 9. SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 10. Multiple bytes SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 11. SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 12. QFPN 4x4x1.8mm3, 24L: mechanical data and package dimensions . . . . . . . . . . . . . . . . 38
Figure 13. Recommended land and solder mask design for QFPN packages . . . . . . . . . . . . . . . . . . 40
AIS328DQ Block diagram and pin description
Doc ID 18160 Rev 3 7/43
1 Block diagram and pin description
1.1 Block diagram
Figure 1. Block diagram
1.2 Pin description
Figure 2. Detectable accelerations and pin indicator
Y+
Z+
Y-
Z
-
a
X+
X-
I2C
SPI
CS
SCL/SPC
SDA/SDO/SDI
SDO/SA0
CONTROL LOGIC
INTERRUPT GEN.
INT 1
CLOCK
TRIMMING
CIRCUITS
REFERENCESELF TEST
CONTROL
LOGIC
ADC
INT 2
MUX
CHARGE
AMPLIFIER
AM10246V1
(TOP VIEW)
DIRECTION OF THE
DETECTABLE
ACCELERATIONS
(BOTTOM VIEW)
Y
1
X
Z
Pin 1 indicator
1
6
13
18
7
12
19 24
Block diagram and pin description AIS328DQ
8/43 Doc ID 18160 Rev 3
Table 2. Pin description
Pin# Name Function
1,2 NC Not connected
3 INT_2 Inertial interrupt 2
4 Reserved Connect to GND
5 VDD Power supply
6 GND 0 V supply
7 INT_1 Inertial interrupt 1
8 GND 0 V supply
9 GND 0 V supply
10 GND 0 V supply
11 SPC
SCL
SPI serial port clock (SPC)
I²C serial clock (SCL)
Internal active pull-up
12 CS
SPI enable
I²C/SPI mode selection (0: SPI enabled; 1: I²C mode)
Internal active pull-up
13 Reserved Connect to Vdd
14 VDD_IO Power supply for I/O pins
15 SDO
SA0
SPI serial data output (SDO)
I²C less significant bit of the device address (SA0)
Internal active pull-up
16
SDI
SDO
SDA
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
I²C serial data (SDA)
Internal active pull-up
17-24 NC Not internally connected
AIS328DQ Mechanical and electrical specifications
Doc ID 18160 Rev 3 9/43
2 Mechanical and electrical specifications
2.1 Mechanical characteristics
@ Vdd=3.3 V, T=-40 °C to +105 °C unless otherwise noted(a).
a. The product is factory calibrated at 3.3 V. Operational power supply (Vdd) over 3.6 V is not recommended.
Table 3. Mechanical characteristics
Symbol Parameter Test conditions Min. Typ.(1) Max. Unit
FS Measurement range(2)
FS bit set to 00 ±2.0
gFS bit set to 01 ±4.0
FS bit set to 11 ±8.0
So Sensitivity
FS bit set to 00
12-bit representation 0.90 0.98 1.06
mg/digit
FS bit set to 01
12-bit representation 1.81 1.95 2.12
FS bit set to 11
12-bit representation 3.62 3.91 4.25
Off Zero-g level offset
accuracy(3),(4),(5)
X,Y axes -200 200 mg
Z-axis -300 300
Ty O ff Ty pi c a l z e r o - g level offset
accuracy(5),(6) FS bit set to 00 -30 ±20 30 mg
TCOff Zero-g level change vs.
temperature
Excursion from 25 °C (X, Y
axes) -2 ±0.2 2
mg/°C
Excursion from 25 °C (Z-
axis) -3 ±0.8 3
An Acceleration noise density FS bit set to 00 100 218 600 µg/Hz
CrAx Cross-axis(7) -5 +5 %
Vst Self-test output
change(8),(9),(10)
FS bit set to 00
X-axis -500 -800 -1100 LSb
FS bit set to 00
Y- a x i s 500 800 1100 LSb
FS bit set to 00
Z-axis 400 600 800 LSb
Wh Product weight 60 mgram
Top Operating temperature range -40 +105 °C
1. Typical values are not guaranteed.
2. Verified by wafer level test and measurement of initial offset and sensitivity.
3. Zero-g level offset value after MSL3 preconditioning.
4. Zero-g level offset at the FS bit set to 01 and 11 is guaranteed by design.
Mechanical and electrical specifications AIS328DQ
10/43 Doc ID 18160 Rev 3
2.2 Electrical characteristics
@ Vdd = 3.3 V, T = -40 °C to +105 °C unless otherwise noted(b).
5. Offset can be eliminated by enabling the built-in high-pass filter.
6. Typical zero-g level offset as per factory calibration @ T = 25 °C.
7. Guaranteed by design.
8. The sign of “Self-test output change” is defined by a sign bit, for all axes. Values in Table 3 are defined with the STsign bit
in the CTRL_REG4 register equal to logic “0” (positive self-test), at T = 25 °C.
9.
Self-test output changes with the power supply. “Self-test output change” is defined as
OUTPUT[LSb]
(CTRL_REG4 ST bit=1)
- OUTPUT[LSb](CTRL_REG4 ST bit=0). 1LSb=4g/4096 at 12-bit representation, ±2 g full-
scale.
10. Output data reaches 99% of final value after 3/ODR when enabling self-test mode, due to device filtering.
b. The product is factory calibrated at 3.3 V. Operational power supply (Vdd) over 3.6 V is not recommended.
Table 4. Electrical characteristics
Symbol Parameter Test conditions Min. Typ(1).Max.Unit
Vdd Supply voltage 2.4 3.3 3.6 V
Vdd_IO I/O pins supply voltage(2) 1.8 Vdd+0.1 V
Idd Current consumption
in normal mode 2.4 V to 3.6 V 200 450 µA
IddLP Current consumption
in low-power mode
ODR=1 Hz, BW=500
Hz, T=25 °C 81012µA
IddPdn Current consumption in
power-down mode 0.1 1 2 µA
VIH Digital high level input
voltage 0.8*Vdd_IO V
VIL Digital low level input voltage 0.2*Vdd_IO V
VOH High level output voltage 0.9*Vdd_IO V
VOL Low level output voltage 0.1*Vdd_IO V
ODR Output data rate
in normal mode
DR bit set to 00 50
Hz
DR bit set to 01 100
DR bit set to 10 400
DR bit set to 11 1000
ODRLP
Output data rate
in low-power mode
PM bit set to 010 0.5
Hz
PM bit set to 011 1
PM bit set to 100 2
PM bit set to 101 5
PM bit set to 110 10
AIS328DQ Mechanical and electrical specifications
Doc ID 18160 Rev 3 11/43
2.3 Communication interface characteristics
2.3.1 SPI - serial peripheral interface
Subject to general operating conditions for Vdd and Top.
BW System bandwidth ODR/2 Hz
Ton Turn-on time(3) ODR = 100 Hz 0.9/ODR
+1 ms 1/ODR+1 ms 1.1/ODR
+1 ms s
Top Operating temperature range -40 +105 °C
1. Typical values are not guaranteed.
2. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses; in this condition the
measurement chain is powered off.
3. Time to obtain valid data after exiting power-down mode.
Table 4. Electrical characteristics (continued)
Symbol Parameter Test conditions Min. Typ(1).Max.Unit
Table 5. SPI slave timing values
Symbol Parameter
Value (1)
Unit
Min. Max.
tc(SPC) SPI clock cycle 100 ns
fc(SPC) SPI clock frequency 10 MHz
tsu(CS) CS setup time 6
ns
th(CS) CS hold time 8
tsu(SI) SDI input setup time 5
th(SI) SDI input hold time 15
tv(SO) SDO valid output time 50
th(SO) SDO output hold time 9
tdis(SO) SDO output disable time 50
Mechanical and electrical specifications AIS328DQ
12/43 Doc ID 18160 Rev 3
Figure 3. SPI slave timing diagram (2)
1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not
tested in production.
2. Measurement points are made at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports.
3. When no communication is ongoing, data on CS, SPC, SDI and SDO are driven by internal pull-up resistors.
2.3.2 I²C - inter IC control interface
Subject to general operating conditions for Vdd and top.
SPC
CS
SDI
SDO
t
su(CS)
t
v(SO)
t
h(SO)
t
h(SI)
t
su(SI)
t
h(CS)
t
dis(SO)
t
c(SPC)
MSB IN
MSB OUT LSB OUT
LSB IN
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
Table 6. I²C slave timing values
Symbol Parameter
I²C standard mode (1) I²C fast mode (1)
Unit
Min. Max. Min. Max.
f(SCL) SCL clock frequency 0 100 0 400 KHz
tw(SCLL) SCL clock low time 4.7 1.3
µs
tw(SCLH) SCL clock high time 4.0 0.6
tsu(SDA) SDA setup time 250 100 ns
th(SDA) SDA data hold time 0.01 3.45 0.01 0.9 µs
th(ST) START condition hold time 4 0.6
µs
tsu(SR) Repeated START condition
setup time 4.7 0.6
tsu(SP) STOP condition setup time 4 0.6
tw(SP:SR) Bus free time between STOP
and START condition 4.7 1.3
1. Data based on standard I²C protocol requirement, not tested in production.
AIS328DQ Mechanical and electrical specifications
Doc ID 18160 Rev 3 13/43
Figure 4. I²C slave timing diagram (c)
2.4 Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
c. Measurement points are made at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.
SDA
SCL
t
f(SDA)
su(SP)
t
w(SCLL)
t
su(SDA)
t
r(SDA)
t
su(SR)
t
h(ST)
t
w(SCLH)
t
h(SDA)
t
r(SCL)
t
f(SCL)
t
w(SP:SR)
START
REPEATED
START
STOP
STAR
T
Table 7. Absolute maximum ratings
Symbol Ratings Maximum value Unit
Vdd Supply voltage -0.3 to 4 V
Vdd_IO I/O pin supply voltage -0.3 to 4 V
Vin Input voltage on any control pin
(CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0) -0.3 to Vdd_IO +0.3 V
APOW Acceleration (any axis, powered, Vdd = 2.5 V)(1) 3000 g for 0.5 ms
10000 g for 0.1 ms
AUNP Acceleration (any axis, unpowered)(1) 3000 g for 0.5 ms
10000 g for 0.1 ms
TOP Operating temperature range -40 to +105 °C
TSTG Storage temperature range -40 to +125 °C
ESD Electrostatic discharge protection
4 (HBM) kV
1.5 (CDM) kV
200 (MM) V
Mechanical and electrical specifications AIS328DQ
14/43 Doc ID 18160 Rev 3
Note: Supply voltage on any pin should never exceed 4.0 V.
2.5 Terminology
2.5.1 Sensitivity
Sensitivity describes the gain of the sensor and can be determined, for example, by applying
a 1 g acceleration to it. As the sensor can measure DC accelerations, this can be done
easily by pointing the axis of interest towards the center of the earth, noting the output value,
rotating the sensor by 180 degrees (pointing to the sky) and noting the output value again.
By doing so, a ±1 g acceleration is applied to the sensor. Subtracting the larger output value
from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the
sensor. This value changes very little over temperature and also over time. The sensitivity
tolerance describes the range of sensitivity of a large population of sensors.
2.5.2 Zero-g level
Zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal
output signal if no acceleration is present. A sensor in a steady-state on a horizontal surface
measures 0 g on the X-axis and 0 g on the Y-axis, whereas the Z-axis measures 1 g. The
output is ideally in the center of the dynamic range of the sensor (the content of the OUT
registers is 00h, data expressed as 2’s complement number). A deviation from the ideal
value in this case is called zero-g offset. Offset is, to some extent, a result of stress to the
MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a
printed circuit board or exposing it to extensive mechanical stress. Offset changes little over
temperature, see “Zero-g level change vs. temperature” in Tabl e 3 . The zero-g level
tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a
population of sensors.
2.5.3 Self-test
Self-test allows the sensor functionality to be tested without moving it. The self-test function
is off when the self-test bit (ST) of CTRL_REG4 (control register 4) is programmed to ‘0‘.
When the self-test bit of CTRL_REG4 is programmed to ‘1’ an actuation force is applied to
the sensor, simulating a definite input acceleration. In this case, the sensor outputs exhibit a
change in their DC levels which are related to the selected full-scale through the device
sensitivity.
When self-test is activated, the device output level is given by the algebraic sum of the
signals produced by the acceleration acting on the sensor and by the electrostatic test-force.
If the output signals change within the amplitude specified in Ta bl e 3 , then the sensor is
working properly and the parameters of the interface chip are within the defined
specifications.
1. Design guarantee; characterization done at 1500 g/0.5 ms, 3000 g/0.3 ms, 10000 g/0.1 ms; tests under
these conditions have passed successfully.
This is a mechanical shock sensitive device, improper handling can cause permanent
damage to the part.
This is an ESD sensitive device, improper handling can cause permanent damage to
the part.
AIS328DQ Mechanical and electrical specifications
Doc ID 18160 Rev 3 15/43
2.5.4 Sleep-to-wakeup
The “sleep-to-wakeup” function, in conjunction with low-power mode, allows further
reduction of system power consumption and development of new smart applications. The
AIS328DQ may be set to a low-power operating mode, characterized by lower data rate
refreshments. In this way the device, even if sleeping, continues to sense acceleration and
to generate interrupt requests.
When the “sleep-to-wakeup” function is activated, the AIS328DQ is able to automatically
wake up as soon as the interrupt event has been detected, increasing the output data rate
and bandwidth.
With this feature, the system may be efficiently switched from low-power mode to full-
performance depending on user-selectable positioning and acceleration events, therefore
ensuring power saving and flexibility.
Functionality AIS328DQ
16/43 Doc ID 18160 Rev 3
3 Functionality
The AIS328DQ is a “nano”, low-power, digital output 3-axis linear accelerometer packaged
in a QFPN package. The device includes a sensing element and an IC interface capable of
taking information from the sensing element and providing a signal to external applications
through an I²C/SPI serial interface.
3.1 Sensing element
A proprietary process is used to create a surface micro-machined accelerometer. The
technology makes it possible to construct suspended silicon structures which are attached
to the substrate at several points called “anchors”, and are free to move in the direction of
the sensed acceleration. To be compatible with traditional packaging techniques, a cap is
placed on top of the sensing element to prevent blocking of moving parts during the
moulding phase of the plastic encapsulation.
When an acceleration is applied to the sensor, the proof mass displaces from its nominal
position, causing an imbalance in the capacitive half-bridge. This imbalance is measured
using charge integration in response to a voltage pulse applied to the capacitor.
At steady-state, the nominal value of the capacitors are a few pF, and when an acceleration
is applied the maximum variation of the capacitive load is in the fF range.
3.2 IC interface
The complete measurement chain is composed of a low-noise capacitive amplifier which
converts the capacitive unbalancing of the MEMS sensor into an analog voltage that is
made available to the user through an analog-to-digital converter.
The acceleration data may be accessed through an I²C/SPI interface, therefore making the
device particularly suitable for direct interfacing with a microcontroller.
The AIS328DQ features a data-ready signal (RDY) which indicates when a new set of
measured acceleration data is available, therefore simplifying data synchronization in the
digital system that uses the device.
The AIS328DQ may also be configured to generate an inertial wakeup and free-fall interrupt
signal based on a programmed acceleration event along the enabled axes. Both free-fall
and wakeup can be available simultaneously on two different pins.
3.3 Factory calibration
The IC interface is factory calibrated for sensitivity (So) and zero-g level (TyOff).
The trimming values are stored inside the device in non-volatile memory. When the device is
turned on, the trimming parameters are downloaded into the registers to be used during
active operation. This allows the device to be used without further calibration.
AIS328DQ Application hints
Doc ID 18160 Rev 3 17/43
4 Application hints
Figure 5. AIS328DQ electrical connections
The device core is supplied through the Vdd line while the I/O pads are supplied through the
Vdd_IO line. Power supply decoupling capacitors (100 nF ceramic, 10 µF aluminum) should
be placed as near as possible to pin 5 of the device (common design practice).
All the voltage and ground supplies must be present at the same time to obtain proper
behavior of the IC (refer to Figure 5). It is possible to remove Vdd while maintaining Vdd_IO
without blocking the communication bus; in this condition the measurement chain is
powered off.
The functionality of the device and the measured acceleration data is selectable and
accessible through the I²C or SPI interfaces. When using the I²C, CS must be tied high.
The functions, the threshold, and the timing of the two interrupt pins (INT 1 and INT 2) can
be completely programmed by the user through the I²C/SPI interface.
CS
Vdd
GND
Vdd_IO
SDO/SA0
SDA/SDI/SDO
INT 1
SCL/SPC
1
TOP VIEW
INT 2
6
712
13
18
19
24
Y
X
Z
1
10uF
Digital signal from/to signal controller. Signal’s levels are defined by proper selection of Vdd_IO
100nF
AM10247v1
Digital interfaces AIS328DQ
18/43 Doc ID 18160 Rev 3
5 Digital interfaces
The registers embedded in the AIS328DQ may be accessed through both the I²C and SPI
serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire
interface mode.
The serial interfaces are mapped onto the same pads. To select/exploit the I²C interface, the
CS line must be tied high (i.e. connected to Vdd_IO).
5.1 I²C serial interface
The AIS328DQ I²C is a bus slave. The I²C is employed to write data into registers, the
content of which can also be read back.
The relevant I²C terminology is provided in Tabl e 9 below.
There are two signals associated with the I²C bus: the serial clock line (SCL) and the serial
data line (SDA). The latter is a bi-directional line used for sending and receiving the data
to/from the interface. Both lines are connected to Vdd_IO through a pull-up resistor
embedded in the AIS328DQ. When the bus is free, both lines are high.
The I²C interface is compliant with fast mode (400 kHz) I²C standards as well as with the
normal mode.
Table 8. Serial interface pin description
Pin name Pin description
CS SPI enable
I²C/SPI mode selection (1: I²C mode; 0: SPI enabled)
SCL
SPC
I²C serial clock (SCL)
SPI serial port clock (SPC)
SDA
SDI
SDO
I²C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
SA0
SDO
I²C less significant bit of the device address (SA0)
SPI serial data output (SDO)
Table 9. Serial interface pin description
Term Description
Transmitter The device which sends data to the bus
Receiver The device which receives data from the bus
Master The device which initiates a transfer, generates clock signals and terminates a
transfer
Slave The device addressed by the master
AIS328DQ Digital interfaces
Doc ID 18160 Rev 3 19/43
5.1.1 I²C operation
The transaction on the bus is started through a START (ST) signal. A START condition is
defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After
this has been transmitted by the master, the bus is considered busy. The next byte of data
transmitted after the start condition contains the address of the slave in the first 7 bits and
the eighth bit tells whether the master is receiving data from the slave or transmitting data to
the slave. When an address is sent, each device in the system compares the first seven bits
after a start condition with its address. If they match, the device considers itself addressed
by the master.
The slave address (SAD) associated to the AIS328DQ is 001100xb. The SDO/SA0 pad can
be used to modify the less significant bit of the device address. If the SA0 pad is connected
to voltage supply, LSb is ‘1’ (address 0011001b), otherwise if the SA0 pad is connected to
ground, the LSb value is ‘0’ (address 0011000b). This solution permits the connection and
addressing of two different accelerometers to the same I²C lines.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line LOW so that it
remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which
has been addressed is obliged to generate an acknowledge after each byte of data
received.
The I²C embedded in the AIS328DQ behaves like a slave device, and the following protocol
must be adhered to. After the start condition (ST) a slave address is sent. Once a slave
acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted: the 7
LSb represent the actual register address while the MSb enables address auto-increment. If
the MSb of the SUB field is ‘1’, the SUB (register address) is automatically increased to
allow multiple data read/write.
The slave address is completed with a read/write bit. If the bit is ‘1’ (read), a repeated
START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (write)
the master transmits to the slave with direction unchanged. Ta b le 10 explains how the
SAD+Read/Write bit pattern is composed, listing all the possible configurations.
Table 10. SAD+Read/Write patterns
Command SAD[6:1] SAD[0] = SA0 R/W SAD+R/W
Read 001100 0 1 00110001 (31h)
Write 001100 0 0 00110000 (30h)
Read 001100 1 1 00110011 (33h)
Write 001100 1 0 00110010 (32h)
Table 11. Transfer when master is writing one byte to slave
Master ST SAD + W SUB DATA SP
Slave SAK SAK SAK
Table 12. Transfer when master is writing multiple bytes to slave
Master ST SAD + W SUB DATA DATA SP
Slave SAK SAK SAK SAK
Digital interfaces AIS328DQ
20/43 Doc ID 18160 Rev 3
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number
of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit
(MSb) first. If a receiver cannot receive another complete byte of data until it has performed
some other function, it can hold the clock line SCL LOW to force the transmitter into a wait
state. Data transfer only continues when the receiver is ready for another byte and releases
the data line. If a slave receiver does not acknowledge the slave address (i.e. it is not able to
receive because it is performing some real-time function) the data line must be left HIGH by
the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line
while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be
terminated by the generation of a STOP (SP) condition.
In order to read multiple bytes, it is necessary to assert the most significant bit of the sub-
address field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the
address of the first register to be read.
In the presented communication format, MAK is master acknowledge and NMAK is no
master acknowledge.
5.2 SPI bus interface
The AIS328DQ SPI is a bus slave. The SPI allows the writing and reading of the registers of
the device.
The serial interface interacts with the outside world through 4 wires: CS, SPC, SDI and
SDO.
Figure 6. Read and write protocol
Table 13. Transfer when master is receiving (reading) one byte of data from slave
Master ST SAD + W SUB SR SAD + R NMAK SP
Slave SAK SAK SAK DATA
Table 14. Transfer when master is receiving (reading) multiple bytes of data from slave
Master ST SAD+W SUB SR SAD+R MAK MAK NMAK SP
Slave SAK SAK SAK DATA DATA DATA
CS
SPC
SDI
SDO
RW
AD5 AD4 AD3 AD2 AD1 AD0
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
MS
AIS328DQ Digital interfaces
Doc ID 18160 Rev 3 21/43
CS is the serial port enable and is controlled by the SPI master. It goes low at the start of the
transmission and returns high at the end. SPC is the serial port clock and is controlled by
the SPI master. It is stopped high when CS is high (no transmission). SDI and SDO are,
respectively, the serial port data input and output. Those lines are driven at the falling edge
of SPC and should be captured at the rising edge of SPC.
Both the read register and write register commands are completed in 16 clock pulses or in
multiples of 8 in cases of multiple read/write bytes. Bit duration is the time between two
falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC, after the falling
edge of CS, while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC, just
before the rising edge of CS.
bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0)
from the device is read. In the latter case, the chip drives SDO at the start of bit 8.
bit 1: MS bit. When 0, the address remains unchanged in multiple read/write commands.
When 1, the address is auto-incremented in multiple read/write commands.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written to the device (MSb first).
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
In multiple read/write commands further blocks of 8 clock periods are added. When MS bit is
‘0’ the address used to read/write data remains the same for every block. When MS bit is ‘1
the address used to read/write data is increased at every block.
The function and the behavior of SDI and SDO remain unchanged.
5.2.1 SPI read
Figure 7. SPI read protocol
The SPI read command is performed with 16 clock pulses. Multiple byte read commands
are performed by adding blocks of 8 clock pulses to the previous one.
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, do not increment address; when 1, increment address in multiple
readings.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
bit 16-... : data DO(...-8). Further data in multiple byte reading.
CS
SPC
SDI
SDO
RW
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
AD5 AD4 AD3 AD2 AD1 AD0
MS
Digital interfaces AIS328DQ
22/43 Doc ID 18160 Rev 3
Figure 8. Multiple byte SPI read protocol (2-byte example)
5.2.2 SPI write
Figure 9. SPI write protocol
The SPI write command is performed with 16 clock pulses. Multiple byte write commands
are performed by adding blocks of 8 clock pulses to the previous one.
bit 0: WRITE bit. The value is 0.
bit 1: MS bit. When 0, do not increment address; when 1, increment address in multiple
writing.
bit 2 -7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written to the device (MSb first).
bit 16-... : data DI(...-8). Further data in multiple byte writing.
Figure 10. Multiple bytes SPI write protocol (2-byte example)
CS
SPC
SDI
SDO
RW
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
AD5 AD4 AD3 AD2 AD1 AD0
DO15 DO14 DO13 DO12 DO11 DO10 DO9 DO8
MS
CS
SPC
SDI
RW DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
AD5 AD4 AD3 AD2 AD1 AD0MS
CS
SPC
SDI
RW
AD5 AD4 AD3 AD2 AD1 AD0
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 DI15 DI14 DI13 DI12 DI11 DI10 DI9 DI8
MS
AIS328DQ Digital interfaces
Doc ID 18160 Rev 3 23/43
5.2.3 SPI read in 3-wire mode
3-wire mode is entered by setting to ‘1’ the bit SIM (SPI serial interface mode selection) in
CTRL_REG4.
Figure 11. SPI read protocol in 3-wire mode
The SPI read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, do not increment address; when 1, increment address in multiple
reading.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
Multiple read command is also available in 3-wire mode.
Note: If AIS328DQ is used in a multi-SPI slave environment (several devices sharing the same
SPI bus), the accelerometer can be forced by software to remain in SPI mode. This
objective can be achieved by sending at the beginning of the SPI communication the
following sequence to the device:
a = read(0x17)
write(0x17, (0x80 OR a))
The programming of this register is a possibility to enhance the robustness of the SPI
system.
CS
SPC
SDI/O
RW DO7DO6DO5DO4DO3DO2DO1DO0
AD5 AD4 AD3 AD2 AD1 AD0
MS
Register mapping AIS328DQ
24/43 Doc ID 18160 Rev 3
6 Register mapping
Ta bl e 1 5 below provides a list of the 8-bit registers embedded in the device, and the related
addresses.
Registers marked as Reserved must not be changed. Writing to those registers may change
calibration data and therefore lead to a non-proper working device.
Table 15. Register address map
Name Type
Register address
Default Comment
Hex Binary
Reserved (do not modify) 00 - 0E Reserved
WHO_AM_I r 0F 000 1111 00110010 Dummy register
Reserved (do not modify) 10 - 1F Reserved
CTRL_REG1 rw 20 010 0000 00000111
CTRL_REG2 rw 21 010 0001 00000000
CTRL_REG3 rw 22 010 0010 00000000
CTRL_REG4 rw 23 010 0011 00000000
CTRL_REG5 rw 24 010 0100 00000000
HP_FILTER_RESET r 25 010 0101 Dummy register
REFERENCE rw 26 010 0110 00000000
STATUS_REG r 27 010 0111 00000000
OUT_X_L r 28 010 1000 output
OUT_X_H r 29 010 1001 output
OUT_Y_L r 2A 010 1010 output
OUT_Y_H r 2B 010 1011 output
OUT_Z_L r 2C 010 1100 output
OUT_Z_H r 2D 010 1101 output
Reserved (do not modify) 2E - 2F Reserved
INT1_CFG rw 30 011 0000 00000000
INT1_SOURCE r 31 011 0001 00000000
INT1_THS rw 32 011 0010 00000000
INT1_DURATION rw 33 011 0011 00000000
INT2_CFG rw 34 011 0100 00000000
INT2_SOURCE r 35 011 0101 00000000
INT2_THS rw 36 011 0110 00000000
INT2_DURATION rw 37 011 0111 00000000
Reserved (do not modify) 38 - 3F Reserved
AIS328DQ Register mapping
Doc ID 18160 Rev 3 25/43
The content of the registers that are loaded at boot should not be changed. They contain the
factory calibrated values. Their content is automatically restored when the device is powered
up.
Register description AIS328DQ
26/43 Doc ID 18160 Rev 3
7 Register description
The device contains a set of registers which are used to control its behavior and to retrieve
acceleration data. The register addresses, composed of 7 bits, are used to identify the
device and to write the data through the serial interface.
7.1 WHO_AM_I (0Fh)
This is the device identification register. This register contains the device identifier, which for
the AIS328DQ is set to 32h.
7.2 CTRL_REG1 (20h)
PM bits allow selection between power-down and two operating active modes. The device is
in power-down mode when the PD bits are set to “000” (default value after boot). Ta b l e 1 9
shows all the possible power mode configurations and respective output data rates. Output
data in the low-power modes are computed with the low-pass filter cut-off frequency defined
by the DR1 and DR0 bits.
DR bits, in normal-mode operation, select the data rate at which acceleration samples are
produced. In low-power mode they define the output data resolution. Ta bl e 2 0 shows all the
possible configurations for the DR1 and DR0 bits.
Table 16. WHO_AM_I register
00110010
Table 17. CTRL_REG1 register
PM2 PM1 PM0 DR1 DR0 Zen Yen Xen
Table 18. CTRL_REG1 description
PM2 - PM0 Power mode selection. Default value: 000
(000: power-down; Others: refer to Ta bl e 1 9 )
DR1, DR0 Data rate selection. Default value: 00
(00:50 Hz; Others: refer to Ta bl e 2 0 )
Zen Z-axis enable. Default value: 1
(0: Z-axis disabled; 1: Z-axis enabled)
Ye n Y-axis enable. Default value: 1
(0: Y-axis disabled; 1: Y-axis enabled)
Xen X-axis enable. Default value: 1
(0: X-axis disabled; 1: X-axis enabled)
AIS328DQ Register description
Doc ID 18160 Rev 3 27/43
7.3 CTRL_REG2 (21h)
Table 19. Power mode and low-power output data rate configurations
PM2 PM1 PM0 Power mode selection Output data rate [Hz]
ODRLP
0 0 0 Power-down --
0 0 1 Normal mode ODR
0 1 0 Low-power 0.5
0 1 1 Low-power 1
1 0 0 Low-power 2
1 0 1 Low-power 5
1 1 0 Low-power 10
Table 20. Normal-mode output data rate configurations and low-pass cut-off
frequencies
DR1 DR0 Output Data Rate [Hz]
ODR
Low-pass filter cut-off
frequency [Hz]
00 50 37
01 100 74
10 400 292
1 1 1000 780
Table 21. CTRL_REG2 register
BOOT HPM1 HPM0 FDS HPen2 HPen1 HPCF1 HPCF0
Table 22. CTRL_REG2 description
BOOT Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content)
HPM1, HPM0 High-pass filter mode selection. Default value: 00
(00: normal mode; Others: refer to Ta bl e 2 3 )
FDS Filtered data selection. Default value: 0
(0: internal filter bypassed; 1: data from internal filter sent to output register)
HPen2 High-pass filter enabled for interrupt 2 source. Default value: 0
(0: filter bypassed; 1: filter enabled)
HPen1 High-pass filter enabled for interrupt 1 source. Default value: 0
(0: filter bypassed; 1: filter enabled)
HPCF1,
HPCF0
High-pass filter cut-off frequency configuration. Default value: 00
(00: HPc=8; 01: HPc=16; 10: HPc=32; 11: HPc=64)
Register description AIS328DQ
28/43 Doc ID 18160 Rev 3
The BOOT bit is used to refresh the content of internal registers stored in the Flash memory
block. At device power-up, the content of the Flash memory block is transferred to the
internal registers related to the trimming functions, to permit good behavior of the device. If
for any reason the content of the trimming register is changed, this bit can be used to restore
the correct values. When the BOOT bit is set to ‘1’ the content of the internal Flash is copied
to the corresponding internal registers and is used to calibrate the device. These values are
factory-trimmed and they are different for every accelerometer. They permit good behavior
of the device and normally do not need to be modified. At the end of the boot process, the
BOOT bit is again set to ‘0’.
HPCF[1:0]. These bits are used to configure the high-pass filter cut-off frequency ft which is
given by:
The equation can be simplified to the following approximated equation:
7.4 CTRL_REG3 [Interrupt CTRL register] (22h)
Table 23. High-pass filter mode configuration
HPM1 HPM0 High-pass filter mode
0 0 Normal mode (reset reading HP_RESET_FILTER)
0 1 Reference signal for filtering
1 0 Normal mode (reset reading HP_RESET_FILTER)
Table 24. High-pass filter cut-off frequency configuration
HPcoeff2,1 ft [Hz]
Data rate = 50 Hz
ft [Hz]
Data rate = 100 Hz
ft [Hz]
Data rate = 400 Hz
ft [Hz]
Data rate = 1000 Hz
00 1 2 8 20
01 0.5 1 4 10
10 0.25 0.5 2 5
11 0.125 0.25 1 2.5
ft11
HPc
------ ---- --
⎝⎠
⎛⎞
fs
2π
------
ln=
ft
fs
6HPc
------ ---- ------------=
Table 25. CTRL_REG3 register
IHL PP_OD LIR2 I2_CFG1 I2_CFG0 LIR1 I1_CFG1 I1_CFG0
AIS328DQ Register description
Doc ID 18160 Rev 3 29/43
7.5 CTRL_REG4 (23h)
Table 26. CTRL_REG3 description
IHL Interrupt active high, low. Default value: 0
(0: active high; 1: active low)
PP_OD Push-pull/open drain selection on interrupt pad. Default value 0.
(0: push-pull; 1: open drain)
LIR2
Latch interrupt request on the INT2_SRC register, with the INT2_SRC register
cleared by reading INT2_SRC itself. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
I2_CFG1,
I2_CFG0
Data signal on INT 2 pad control bits. Default value: 00.
(see Ta bl e 2 7 )
LIR1
Latch interrupt request on the INT1_SRC register, with the INT1_SRC register
cleared by reading the INT1_SRC register. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
I1_CFG1,
I1_CFG0
Data signal on INT 1 pad control bits. Default value: 00.
(see Ta bl e 2 7 )
Table 27. Data signal on INT 1 and INT 2 pad
I1(2)_CFG1 I1(2)_CFG0 INT 1(2) Pad
0 0 Interrupt 1 (2) source
0 1 Interrupt 1 source OR interrupt 2 source
1 0 Data ready
1 1 Boot running
Table 28. CTRL_REG4 register
BDU BLE FS1 FS0 STsign 0 ST SIM
Table 29. CTRL_REG4 description
BDU
Block data update. Default value: 0
(0: continuous update; 1: output registers not updated between MSb and LSb
reading)
BLE Big/little endian data selection. Default value 0.
(0: data LSb @ lower address; 1: data MSb @ lower address)
FS1, FS0 Full-scale selection. Default value: 00.
(00: ±2 g; 01: ±4 g; 11: ±8 g)
STsign Self-test sign. Default value: 00.
(0: self-test plus; 1 self-test minus)
Register description AIS328DQ
30/43 Doc ID 18160 Rev 3
The BDU bit is used to inhibit the output register update between the reading of upper and
lower register parts. In default mode (BDU = ‘0’), the lower and upper register parts are
updated continuously. If it is not certain to read faster than output data rate, it is
recommended to set the BDU bit to ‘1’. In this way, after the reading of the lower (upper)
register part, the content of that output register is not updated until the upper (lower) part is
read also. This feature prevents the reading of LSb and MSb related to different samples.
7.6 CTRL_REG5 (24h)
TurnOn bits are used for turning on the sleep-to-wake function.
By setting TurnOn[1:0] bits to 11, the “sleep-to-wake” function is enabled. When an interrupt
event occurs, the device is switched to normal mode, increasing the ODR to the value
defined in CTRL_REG1. Although the device is in normal mode, the CTRL_REG1 content is
not automatically changed to “normal mode” configuration.
7.7 HP_FILTER_RESET (25h)
Dummy register. Reading at this address instantaneously zeroes the content of the internal
high-pass filter. If the high-pass filter is enabled, all three axes are instantaneously set to
0 g. This makes it possible to surmount the settling time of the high-pass filter.
ST Self-test enable. Default value: 0.
(0: self-test disabled; 1: self-test enabled)
SIM SPI serial interface mode selection. Default value: 0.
(0: 4-wire interface; 1: 3-wire interface)
Table 29. CTRL_REG4 description (continued)
Table 30. CTRL_REG5 register
000000TurnOn1TurnOn0
Table 31. CTRL_REG5 description
TurnOn1,
Tu r n O n 0 Turn-on mode selection for sleep-to-wake function. Default value: 00.
Table 32. Sleep-to-wake configuration
TurnOn1 TurnOn0 Sleep-to-wake status
0 0 Sleep-to-wake function is disabled
11
Turned on: the device is in low power mode (ODR is defined in
CTRL_REG1)
AIS328DQ Register description
Doc ID 18160 Rev 3 31/43
7.8 REFERENCE (26h)
This register sets the acceleration value taken as a reference for the high-pass filter output.
When the filter is turned on (at least one FDS, HPen2, or HPen1 bit is equal to ‘1’) and HPM
bits are set to “01”, filter out is generated taking this value as a reference.
7.9 STATUS_REG (27h)
Table 33. REFERENCE register
Ref7 Ref6 Ref5 Ref4 Ref3 Ref2 Ref1 Ref0
Table 34. REFERENCE description
Ref7 - Ref0 Reference value for high-pass filter. Default value: 00h.
Table 35. STATUS_REG register
ZYXOR ZOR YOR XOR ZYXDA ZDA YDA XDA
Table 36. STATUS_REG description
ZYXOR
X, Y and Z-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data has overwritten the previous one before it was read)
ZOR
Z-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data for the Z-axis has overwritten the previous one)
YOR
Y-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data for the Y-axis has overwritten the previous one)
XOR
X-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data for the X-axis has overwritten the previous one)
ZYXDA X, Y and Z-axis new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
ZDA Z-axis new data available. Default value: 0
(0: new data for the Z-axis is not yet available;
1: new data for the Z-axis is available)
YDA Y-axis new data available. Default value: 0
(0: new data for the Y-axis is not yet available;
1: new data for the Y-axis is available)
XDA X-axis new data available. Default value: 0
(0: new data for the X-axis is not yet available;
1: new data for the X-axis is available)
Register description AIS328DQ
32/43 Doc ID 18160 Rev 3
7.10 OUT_X_L (28h), OUT_X_H (29)
X-axis acceleration data. The value is expressed as 2’s complement.
7.11 OUT_Y_L (2Ah), OUT_Y_H (2Bh)
Y-axis acceleration data. The value is expressed as 2’s complement.
7.12 OUT_Z_L (2Ch), OUT_Z_H (2Dh)
Z-axis acceleration data. The value is expressed as 2’s complement.
7.13 INT1_CFG (30h)
Configuration register for interrupt 1 source.
Table 37. INT1_CFG register
AOI 6D ZHIE ZLIE YHIE YLIE XHIE XLIE
Table 38. INT1_CFG description
AOI AND/OR combination of interrupt events. Default value: 0.
(See Ta bl e 3 9)
6D 6 direction detection function enable. Default value: 0.
(See Ta bl e 3 9)
ZHIE
Enable interrupt generation on Z high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
ZLIE
Enable interrupt generation on Z low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
YHIE
Enable interrupt generation on Y high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
YLIE
Enable interrupt generation on Y low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
XHIE
Enable interrupt generation on X high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
XLIE
Enable interrupt generation on X low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
AIS328DQ Register description
Doc ID 18160 Rev 3 33/43
7.14 INT1_SRC (31h)
Interrupt 1 source register. Read-only register.
Reading at this address clears the INT1_SRC IA bit (and the interrupt signal on the INT 1
pin) and allows the refreshing of data in the INT1_SRC register if the latched option was
chosen.
7.15 INT1_THS(32h)
Table 39. Interrupt 1 source configurations
AOI 6D Interrupt mode
0 0 OR combination of interrupt events
0 1 6-direction movement recognition
1 0 AND combination of interrupt events
1 1 6-direction position recognition
Table 40. INT1_SRC register
0 IA ZHZLYHYLXHXL
Table 41. INT1_SRC description
IA Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH Z high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL Z low. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH Y high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL Y low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH X high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL X low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
Table 42. INT1_THS register
0 THS6 THS5 THS4 THS3 THS2 THS1 THS0
Register description AIS328DQ
34/43 Doc ID 18160 Rev 3
7.16 INT1_DURATION (33h)
The D6 - D0 bits set the minimum duration of the interrupt 2 event to be recognized.
Duration steps and maximum values depend on the ODR chosen.
7.17 INT2_CFG (34h)
Table 43. INT1_THS description
THS6 - THS0 Interrupt 1 threshold. Default value: 000 0000
Table 44. INT1_DURATION register
0 D6D5D4D3D2D1D0
Table 45. INT2_DURATION description
D6 - D0 Duration value. Default value: 000 0000
Table 46. INT2_CFG register
AOI 6D ZHIE ZLIE YHIE YLIE XHIE XLIE
Table 47. INT2_CFG description
AOI AND/OR combination of interrupt events. Default value: 0.
(see Ta bl e 4 8 )
6D 6-direction detection function enable. Default value: 0.
(see Ta bl e 4 8 )
ZHIE
Enable interrupt generation on Z high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
ZLIE
Enable interrupt generation on Z low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
YHIE
Enable interrupt generation on Y high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
YLIE
Enable interrupt generation on Y low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
XHIE
Enable interrupt generation on X high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
XLIE
Enable interrupt generation on X low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
AIS328DQ Register description
Doc ID 18160 Rev 3 35/43
Configuration register for interrupt 2 source.
7.18 INT2_SRC (35h)
Interrupt 2 source register. Read only register.
Reading at this address clears the INT2_SRC IA bit (and the interrupt signal on the INT 2
pin) and allows the refreshing of data in the INT2_SRC register if the latched option was
chosen.
7.19 INT2_THS (36h)
Table 48. Interrupt mode configuration
AOI 6D Interrupt mode
0 0 OR combination of interrupt events
0 1 6-direction movement recognition
1 0 AND combination of interrupt events
1 1 6-direction position recognition
Table 49. INT2_SRC register
0 IA ZHZLYHYLXHXL
Table 50. INT2_SRC description
IA Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH Z high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL Z low. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH Y high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL Y low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH X high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL X Low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
Table 51. INT2_THS register
0 THS6 THS5 THS4 THS3 THS2 THS1 THS0
Register description AIS328DQ
36/43 Doc ID 18160 Rev 3
7.20 INT2_DURATION (37h)
The D6 - D0 bits set the minimum duration of the interrupt 2 event to be recognized.
Duration time steps and maximum values depend on the ODR chosen.
Table 52. INT2_THS description
THS6 - THS0 Interrupt 1 threshold. Default value: 000 0000
Table 53. INT2_DURATION register
0 D6D5D4D3D2D1D0
Table 54. INT2_DURATION description
D6 - D0 Duration value. Default value: 000 0000
AIS328DQ Package information
Doc ID 18160 Rev 3 37/43
8 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
Package information AIS328DQ
38/43 Doc ID 18160 Rev 3
Figure 12. QFPN 4x4x1.8mm3, 24L: mechanical data and package dimensions
Dim. mm
Min. Typ. Max.
A 1.75 1.801.85
A1 0.00 0.05
A3 0.203 ref
b0.20 0.25 0.30
D 4.00 bsc
D2 2.20 2.30 2.40
E 4.00 bsc
E2 2.20 2.30 2.40
e 0.50 bsc
L0.35 0.40 0.45
aaa 0.10
eee 0.08
QFPN-24 (4x4x1.8 mm
3
)
Quad Flat Package No lead
8212912_C
AIS328DQ Soldering information
Doc ID 18160 Rev 3 39/43
9 Soldering information
The QFPN-24 package is compliant with the ECOPACK®, RoHS and “Green” standard.
It is qualified for soldering heat resistance according to JEDEC J-STD-020C, in MSL3 condi-
tions.
For complete land pattern and soldering recommendations, please refer to the TN0019
technical note TN0019 available on www.st.com.
9.1 General guidelines about soldering surface-mounted
accelerometers
As common PCB design and industrial practice when considering accelerometer soldering,
there are always 3 elements to take into consideration:
1. PCB with its own conductive layers (i.e. copper) and other organic materials used for
board protection and dielectric isolation.
2. ACCELEROMETER to be mounted on the board. The accelerometer senses accelera-
tion, but it senses also the mechanical stress coming from the board. This stress is mini-
mized with simple PCB design rules.
3. SOLDERING PASTE like SnAgCu. This soldering paste can be dispensed on the board
with a screen printing method through a stencil. The pattern of the soldering paste on the
PCB is given by the stencil mask itself.
9.2 PCB design guidelines
PCB land and solder masking general recommendations are shown in Figure 13. Refer to
Figure 12 for specific device size, land count and pitch.
It is recommended to open solder mask external to PCB land
It is mandatory, for correct device functionality, to ensure that some clearance is
present between the accelerometer thermal pad and PCB. In order to obtain this
clearance it is recommended to open the PCB thermal pad solder mask
The area below the sensor (on the same side of the board) must be defined as keepout
area. It is strongly recommended not to place any structure in the top metal layer
underneath the sensor
Traces connected to pads should be as symmetrical as possible. Symmetry and
balance for pad connection helps component self alignment and leads to a better
control of solder paste reduction after reflow
For better performances over temperature it is strongly recommended not to place
large insertion components like buttons or shielding boxes at distances less than 2 mm
from the sensor
Central die pad and “Pin 1 Indicator” are physically connected to GND. Leave “Pin 1
Indicator” unconnected during soldering.
Soldering information AIS328DQ
40/43 Doc ID 18160 Rev 3
9.2.1 PCB design rules
Figure 13. Recommended land and solder mask design for QFPN packages
A = Clearance from PCB land edge to solder mask opening 0.1 mm to ensure that some
solder mask remains between PCB pads
B = PCB land length = QFPN solder pad length + 0.1 mm
C = PCB land width = QFPN solder pad width + 0.1 mm
D = PCB thermal pad solder mask opening = QFPN thermal pad side + 0.2 mm
9.3 Stencil design and solder paste application
The thickness and the pattern of the soldering paste are important for proper accelerometer
mounting process.
PACKAGE FOOTPRINT
PCB LAND
SOLDER MASK OPENING
PCB THERMAL PAD NOT TO
BE DESIGNED ON PCB
PCB THERMAL PAD SOLDER
MASK OPENING SUGGESTED
TO INCREASE DEVICE
THERMAL PAD TO PCB
CLEARANCE
AB
C
D
AM10242V1
AIS328DQ Soldering information
Doc ID 18160 Rev 3 41/43
Stainless steel stencils are recommended for solder paste applications
A stencil thickness of 125 - 150 µm (5 - 6 mils) is recommended for screen printing
The final thickness of soldering paste should allow proper cleaning of flux residuals and
clearance between sensor package and PCB
Stencil aperture should have a rectangular shape with a dimension up to 25 µm (1mil)
smaller than PCB land
The openings of the stencil for the signal pads should be between 50% and 80% of the
PCB pad area
Optionally, for better solder paste release, the aperture walls should be trapezoidal and
the corners rounded
The fine pitch of the IC leads requires accurate alignment of the stencil to the printed
circuit board. The stencil and printed circuit assembly should be aligned to within 25 µm
(1 mil) prior to application of the solder paste.
9.4 Process considerations
In the case of using no self-cleaning solder paste, it is mandatory to properly wash the
board after soldering to eliminate any possible source of leakage between adjacent
pads due to flux residues
The PCB soldering profile depends on the number, size and placement of components
in the application board. It is not functional to define a specific soldering profile for the
accelerometer only. The user should use a time and temperature reflow profile that is
derived from the PCB design and manufacturing experience.
Revision history AIS328DQ
42/43 Doc ID 18160 Rev 3
10 Revision history
Table 55. Document revision history
Date Revision Changes
26-Oct-2010 1 Initial release.
26-Jan-2012 2
Updated Figure 2: Detectable accelerations and pin indicator and
Figure 12: QFPN 4x4x1.8mm3, 24L: mechanical data and package
dimensions.
Updated Table 2: Pin description, Table 3: Mechanical
characteristics, Table 4: Electrical characteristics and Ta bl e 6 : I ² C
slave timing values.
Added new Section 9: Soldering information.
Document promoted from preliminary data to datasheet.
13-Apr-2012 3 Minor text changes in Section 4: Application hints.
AIS328DQ
Doc ID 18160 Rev 3 43/43
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
STMicroelectronics:
AIS328DQ AIS328DQTR