1235 Bordeaux Drive, Sunnyvale, CA 94089 Tel: 408-222-8888 www.supertex.com
HV256
Features
32 independent high voltage amplifiers
300V operating voltage
295V output voltage
2.2V/µs typical output slew rate
Adjustable output current source limit
Adjustable output current sink limit
Internal closed loop gain of 72V/V
12MΩ feedback impedance
Layout ideal for die applications
Applications
MEMS (microelectromechanical systems) driver
Piezoelectric transducer driver
Optical crosspoint switches (using MEMS
technology)
General Description
The Supertex HV256 is a 32-channel, high voltage, amplifier
array integrated circuit. It operates on a single high voltage
supply, up to 300V, and two low voltage supplies, VDD and VNN.
The input voltage range is from 0 to 4.096V. The internal closed
loop gain is 72V/V, giving an output voltage of 295V when
4.096V is applied. Input voltages of up to 5.0V can be applied,
but will cause the output to saturate. The maximum output
voltage swing is 5.0V below the VPP high voltage supply. The
outputs can drive capacitive loads of up to 3000pF.
The maximum output source and sink current can be adjusted
by using two external resistors. An external RSOURCE resistor
controls the maximum sourcing current and an external RSINK
resistor controls the maximum sinking current. The current
limit is approximately 12.5V divided by the external resistor
value. The setting is common for all 32 outputs. A low voltage
silicon junction diode is made available to help monitor the die
temperature.
Typical Application Circuit
32-Channel High Voltage
Amplifier Array
VIN0
HVOUT0
HV256
AGND
HVOUT1
MEMS
Array
y
y
xx
HVOUT2
HVOUT3
HVOUT30
HVOUT31
VNN
VDD VPP
VIN1
VIN2
VIN3
VIN31
VIN30
Micro
Processor
DAC
DAC
DAC
DAC
DAC
DAC
High Voltage
Op-Amp
Array
RSOURCE
RSINK
2
HV256
1235 Bordeaux Drive, Sunnyvale, CA 94089 Tel: 408-222-8888 www.supertex.com
Sym Parameter Min Typ Max Units Conditions
Operating Conditions
Absolute Maximum Ratings
Absolute Maximum Ratings are those values beyond which damage to the
device may occur. Functional operation under these conditions is not implied.
Continuous operation of the device at the absolute rating level may affect
device reliability. All voltages are referenced to device ground.
Parameter Value
VPP
, High voltage supply 310V
AVDD, Analog low voltage positive supply 8.0V
DVDD, Digital low voltage positive supply 8.0V
AVNN, Analog low voltage negative supply -7.0V
DVNN, Digital low voltage negative supply -7.0V
Logic input voltage -0.5V to DVDD
VSIG, Analog input signal 0V to 6.0V
Storage temperature range -65°C to 150°C
Maximum junction temperature 150°C
VPP High voltage positive supply 125 - 300 V ---
VDD Low voltage positive supply 6.0 - 7.5 V ---
VNN Low voltage negative supply -4.5 - -6.5 V ---
IPP VPP supply current - - 0.8 mA VPP = 300V, All HVOUT = 0V No load
IDD VDD supply current - - 5.0 mA VDD = 6.0V to 7.5V
INN VNN supply current -6.0 - - mA VNN = -4.5V to -6.5V
TJOperating temperature range -10 - 85 °C ---
Product Marking
100-Lead MQFP (FG)
YY = Year Sealed
WW = Week Sealed
L = Lot Number
C = Country of Origin
A = Assembler ID
= “Green” Packaging
Top Marking
HV256FG
LLLLLLLLLL
YYWW
CCCCCCCC AAA
Device
100-Lead MQFP
20.00x14.00mm body
3.15mm height (max)
0.65mm pitch
3.20mm footprint
HV256 HV256FG-G
-G indicates package is RoHS compliant (‘Green’)
Pin Configuration
100-Lead MQFP
(top view)
1
100
30
31
50
80 51
81
Ordering Information
100-Lead MQFP (FG)
(top view)
3
HV256
1235 Bordeaux Drive, Sunnyvale, CA 94089 Tel: 408-222-8888 www.supertex.com
Sym Parameter Min Typ Max Units Conditions
Temperature Diode
PIV Peak inverse voltage - - 5.0 V cathode to anode
VFForward diode drop - 0.6 - V IF = 100µA, anode to
cathode at TA = 25°C
IFForward diode current - - 100 µA anode to cathode
TCVF temperature coefficient - -2.2 - mV/°C anode to cathode
Sym Parameter Min Typ Max Units Conditions
HVOUT HVOUT voltage swing 0 - VPP -5.0 V ---
VIN Input voltage range 0 - 5.0 V ---
VINOS Input voltage offset - - ±50 mV Input referred
SR HVOUT slew rate rise - 2.2 - V/µs No load
HVOUT slew rate fall - 2.0 - V/µs No load
BW HVOUT -3dB channel bandwidth - 4.0 - KHz VPP = 300V
AOOpen loop gain 70 100 - dB ---
AVClosed loop gain 68.4 72 75.6 V/V ---
RFB Feedback resistance from HVOUT to ground 9.6 12 - MΩ ---
CLOAD HVOUT capacitive load 0 - 3000 pF ---
ISOURCE HVOUT sourcing current limiting range 385 550 715 µA RSOURCE = 25KΩ
ISINK HVOUT sinking current limiting range 385 550 715 µA RSINK = 25KΩ
RSOURCE
External resistance range for setting
maximum current source 25 - 250 KΩ ---
RSINK
External resistance range for setting
maximum current sink 25 - 250 KΩ ---
CTDC DC channel to channel crosstalk -80 - - dB ---
PSRR Power supply rejection ratio for VPP
, VDD, VNN -40 - - dB ---
Electrical Characteristics (over operating conditions, unless otherwise specified
4
HV256
1235 Bordeaux Drive, Sunnyvale, CA 94089 Tel: 408-222-8888 www.supertex.com
HV256 Block Diagram
HVOUT 0
HVOUT31
HVOUT 1
GND
VPP
VNN
-
+
R
71R
VDD
VPP
-
+
VIN0
VPP
-
+
Output Current Source
Limiting for all HVOUT
RSOURCE
R
R
RSINK Output Current Sink
Limiting for all HVOUT
71R
71R
Anode
Cathode
To internal VPP bus
BYP-VPP
BYP-VDD
BYP-VNN To internal VNN bus
To internal VDD bus
VIN1
VIN31
VDD
VDD
VNN
VNN
5
HV256
1235 Bordeaux Drive, Sunnyvale, CA 94089 Tel: 408-222-8888 www.supertex.com
Power Up/Down Issues
External Diode Protection
The device can be damaged due to improper power up / down
sequence. To prevent damage, please follow the acceptable power
up / down sequences, and add two external diodes as shown in
the diagram on the right. The first diode is a high voltage diode
across VPP and VDD, where the anode of the diode is connected
to VDD and the cathode of the diode is connected to VPP. Any low
current, high voltage diode, such as a 1N4004, will be adequate.
The second diode is a Schottky diode across VNN and DGND,
where the anode of the Schottky diode is connected to VNN, and
the cathode is connected to DGND. Any low current Schottky diode
such as a 1N5817 will be adequate.
Acceptable Power Up Sequences
The HV256 can be powered up with any of the following sequences
listed below.
1) VPP 2) VNN 3) VDD 4) Inputs and Anode
1) VNN 2) VDD 3) VPP 4) Inputs and Anode
1) VDD & VNN 2) Inputs 3) VPP 4) Anode
Acceptable Power Down Sequences
The HV256 can be powered down with any of the following
sequences listed below.
1) Inputs and Anode 2) VDD 3) VNN 4) VPP
1) Inputs and Anode 2) VPP 3) VDD 4) VNN
1) Anode 2) VPP 3) Inputs 4) VNN & VDD
External Diode Protection Connection
Suggested Power Up/Down Sequence
The HV256 needs all power supplies to be fully up and all channels
refreshed with VSIG = 0V to force all high voltage outputs to 0V.
Before that time, the high voltage outputs may have temporary
voltage excursions above or below GND level depending on
selected power up sequence. To minimize the excursions:
1. The VDD and VNN power supplies should be applied at the
same time (or within a few nanoseconds).
Suggested VPP ramp up speed should be 10msec or longer and
ramp down to be 1msec or longer.
VDD VPP
1N4004 or similar
VNN DGND
1N5817 or similar
Recommended Power Up/Down Timing
0V
VNN
6.5V
-5.5V
0V
300V
0V
HVOUT
0V
VIN
Gnd +/- V offset X 72
0V
0V
6.5V
-5.5V
0V
VDD
VPP
300V
0V
0V
Gnd +/- V offset X 72
0V
HVOUT Level at Power Up
Power Up Sequence
VNN Before VDD
0V
VNN
6.5V
-5.5V
-5.5V
0V
VDD
VPP 0V
HVOUT 0V
0V
VNN
6.5V
6.5V
-5.5V
0V
VDD
VPP 0V
HVOUT
0V
VDD Before VNN
6
HV256
1235 Bordeaux Drive, Sunnyvale, CA 94089 Tel: 408-222-8888 www.supertex.com
RSINK / RSOURCE
The VDD_BYP, VDD_BYP, and VNN_BYP pins are internal, high
impedance current, mirror gate nodes, brought out to mantain stable
opamp biasing currents in noisy power supply environments. 0.1uF/
25V bypass capacitors, added from the VPP_BYP pin to VPP, from
VDD_BYP pin to VDD, and from VNN_BYP to VNN, will force the
high impedance gate nodes to follow the fluctuation of power lines.
The expected voltages at the VDD_BYP, and VNN_BYP pins are
typically 1.5 volts from their respectful power supply. The expected
voltage at VPP_BYP is typically 3.0V below VPP
.
BYP_ VPP
HVOpamp
VDD
VPP
BYP_ VNN
VNN
Set by RSOURCE
Set by RSINK
HVOUT0
BYP _ VPP Cap
BYP _ VNN Cap
Current limit
Current limit
BYP_VDD
BYP_ VDD Cap
To internal biasing
0.1uF / 25V
0.1uF / 25V
0.1uF / 25V
HVOpamp
HVOUT31
Typical Characteristics
ISINK vs RSINK
(VPP = 300V, VDD = 6.5V, VNN = 5.5V, TA = 25OC)
RSINK (KΩ)
ISINK (µA)
0
100
200
300
400
500
600
25k 150k 250k
min
max
min
max
ISOURCE vs RSOURCE
(VPP = 300V, VDD = 6.5V, VNN = 5.5V, TA = 25OC)
RSOURCE (KΩ)
ISOURCE (µA)
0
100
200
300
400
500
600
25k 150k 250k
7
HV256
1235 Bordeaux Drive, Sunnyvale, CA 94089 Tel: 408-222-8888 www.supertex.com
Typical Characteristics (cont.)
Frequency (Hz)
0
-10
-20
-30
-40
-50
10 100 1k 10k 100k 1M
VPP PSRR (dB)
VPP PSRR vs Frequency
(VPP = 300V, VDD = 6.5V, VNN = 5.5V, TA = 25OC)
Frequency (Hz)
0
-10
-20
-30
-40
-50
10 100 1k 10 100 1M
VDD PSRR (dB)
VDD PSRR vs Frequency
(VPP = 300V, VDD = 6.5V, VNN = 5.5V, TA = 25OC)
Frequency
0
-10
-20
-30
-40
-50
10 100 1k 10k 100k 1M
VNN PSRR (dB)
VNN PSRR vs Frequency
(VPP = 300V, VDD = 6.5V, VNN = 5.5V, TA = 25OC)
-4.5
-4.0
-3.5
-3.0
-2.5
-2.0
1.5
2.0
2.5
3.0
3.5
123
VIN (Volts)
Input Offset (mV)
Offset at -10OC
Offset at 25OC
Offset at 85OC
Input Offset vs VIN and Temperature
(VPP = 300V, VDD = 6.5V, VNN = 5.5V )
300
400
500
600
700
1μA 20μA 40μA 60μA 80μA 100μA
Diode Biasing Current (µA)
Vf (mV)
Temperature Diode vs Temperature
(VPP = 300V, VDD = 6.5V, VNN = 5.5V)
-10OC
85OC
25OC
min
max
min
max
min
max
8
HV256
1235 Bordeaux Drive, Sunnyvale, CA 94089 Tel: 408-222-8888 www.supertex.com
Pad Configuration (not drawn to scale)
HVOUT 0
HVOUT 1
HVOUT 2
HVOUT 3
HVOUT 4
HVOUT 5
HVOUT 6
HVOUT 7
HVOUT 8
HVOUT 9
HVOUT10
HVOUT11
HVOUT12
HVOUT13
HVOUT14
HVOUT15
HVOUT16
HVOUT17
HVOUT18
HVOUT19
HVOUT20
HVOUT21
HVOUT22
HVOUT23
HVOUT24
HVOUT25
HVOUT26
HVOUT27
HVOUT28
HVOUT29
HVOUT30
HVOUT31
VPP
VPP
BYP-VPP
RSOURCE
RSINK
VDD
VNN
GND
GND
VDD
VNN
VDD
VNN
G
ND
VDD
VNN
GND
BYP-VNN
BYP-VDD
Do Not Bond.
For testing only.
Do Not Bond.
Leave Floating.
VIN0
VIN1
VIN2
VIN3
VIN4
VIN5
VIN6
VIN7
VIN8
VIN9
VIN10
VIN11
VIN12
VIN13
VIN14
VIN15
VIN16
VIN17
VIN18
VIN19
VIN20
VIN21
VIN22
VIN23
VIN24
VIN25
VIN26
VIN27
VIN28
VIN29
VIN30
VIN31
Do Not Bond.
Leave Floating.
Cathode
Anode
9
HV256
1235 Bordeaux Drive, Sunnyvale, CA 94089 Tel: 408-222-8888 www.supertex.com
Pad Coordinates
Chip size: 17160μm x 5830μm
Center of die is (0,0)
Pad Name X (μm) Y (μm)
VPP -8338.5 2708.5
HVOUT0 -7895.0 2305.5
HVOUT1 7448.5 2305.5
HVOUT2 -7001.5 2305.5
HVOUT3 -6554.5 2305.5
HVOUT4 -6107.5 2305.5
HVOUT5 -5660.5 2305.5
HVOUT6 -5213.5 2305.5
HVOUT7 -4776.5 2305.5
HVOUT8 -4319.5 2305.5
HVOUT9 -3872.5 2305.5
HVOUT10 -3425.5 2305.5
HVOUT11 -2978.5 2305.5
HVOUT12 -2513.5 2305.5
HVOUT13 -2084.5 2305.5
HVOUT14 -1637.5 2305.5
HVOUT15 -1190.5 2305.5
HVOUT16 -743.5 2305.5
HVOUT17 -296.5 2305.5
HVOUT18 150.0 2305.5
HVOUT19 597.5 2305.5
HVOUT20 1044.5 2305.5
HVOUT21 1491.5 2305.5
HVOUT22 1938.5 2305.5
HVOUT23 2385.5 2305.5
HVOUT24 2832.5 2305.5
HVOUT25 3279.5 2305.5
HVOUT26 3726.5 2305.5
HVOUT27 4173.5 2305.5
HVOUT28 4620.5 2305.5
Pad Name X (μm) Y (μm)
HVOUT29 5067.5 2305.5
HVOUT30 5514.5 2305.5
HVOUT31 5961.5 2305.5
VPP 6659.0 2709.0
BYP-VPP 7045.0 2709.0
RSOURCE 7489.0 2709.0
RSINK 7969.0 2709.0
CATHODE 8366.0 2709.0
ANODE 8366.0 2709.0
VNN 8047.0 425.0
BYP-VDD 8047.0 125.5
BYP-VNN 8047.0 -135.5
VDD 8047.0 -704.5
GND 8047.0 -1424.0
VNN 8066.5 -1590.0
VDD 8066.5 -1958.5
GND 7867.0 -2192.0
VIN31 5043.5 -2686.0
VIN30 4638.5 -2686.0
VIN29 4233.5 -2686.0
VIN28 3828.5 -2686.0
VIN27 3423.5 -2686.0
VIN26 3018.5 -2686.0
VIN25 2613.5 -2686.0
VIN24 2208.5 -2686.0
VIN23 1803.5 -2686.0
VIN22 1398.5 -2686.0
VIN21 993.5 -2686.0
VIN20 588.5 -2686.0
VIN19 183.5 -2686.0
Pad Name X (μm) Y (μm)
VIN18 -221.5 -2686.0
VIN17 -626.5 -2686.0
VIN16 -1031.5 -2686.0
VIN15 -1436.5 -2686.0
VIN14 -2412.5 -2686.0
VIN13 -2817.0 -2686.0
VIN12 -3222.0 -2686.0
VIN11 -3627.0 -2686.0
VIN10 -4032.0 -2686.0
VIN9 -4437.0 -2686.0
VIN8 -4842.0 -2686.0
VIN7 -5247.0 -2686.0
VIN6 -5652.0 -2686.0
VIN5 -6052.0 -2686.0
VIN4 -6462.0 -2686.0
VIN3 -6867.0 -2686.0
VIN2 -7272.0 -2686.0
VIN1 -7677.0 -2686.0
VIN0 -8082.0 -2686.0
VDD -8373.0 -2250.5
VNN -8373.0 -1949.0
GND -8367.0 -1561.0
VDD -8387.0 -1143.0
VNN -8338.5 577.5
GND -8341.0 916.5
10
HV256
1235 Bordeaux Drive, Sunnyvale, CA 94089 Tel: 408-222-8888 www.supertex.com
Pin Description
Pin # Function Description
1 HVOUT31
Amplifier outputs.
2 HVOUT30
3 HVOUT29
4 HVOUT28
5 HVOUT27
6 HVOUT26
7 HVOUT25
8 HVOUT24
9 HVOUT23
10 HVOUT22
11 HVOUT21
12 HVOUT20
13 HVOUT19
14 HVOUT18
15 HVOUT17
16 HVOUT16
17 HVOUT15
18 HVOUT14
19 HVOUT13
20 HVOUT12
21 HVOUT11
22 HVOUT10
23 HVOUT9
24 HVOUT8
25 HVOUT7
26 HVOUT6
27 HVOUT5
28 HVOUT4
29 HVOUT3
30 HVOUT2
31 HVOUT1
32 HVOUT0
33 VPP High voltage positive supply. There are two pads.
34-38 NC No connect.
39 GND Digital ground. There are four pads.
11
HV256
1235 Bordeaux Drive, Sunnyvale, CA 94089 Tel: 408-222-8888 www.supertex.com
Pin Description (cont.)
Pin # Function Description
40 VNN Analog low voltage negative supply. There are four pads.
41 NC No connect.
42 VDD Analog low voltage positive supply. There are four pads.
43 GND Digital ground. There are four pads.
44 VNN Analog low voltage negative supply. There are four pads.
45 VDD Analog low voltage positive supply. There are four pads.
46-47 NC No connect.
48 VIN0
Amplifier inputs.
49 VIN1
50 VIN2
51 VIN3
52 VIN4
53 VIN5
54 VIN6
55 VIN7
56 VIN8
57 VIN9
58 VIN10
59 VIN11
60 VIN12
61 VIN13
62 VIN14
63 VIN15
64 VIN16
65 VIN17
66 VIN18
67 VIN19
68 VIN20
12
HV256
1235 Bordeaux Drive, Sunnyvale, CA 94089 Tel: 408-222-8888 www.supertex.com
Pin # Function Description
69 VIN21
Amplifier inputs.
70 VIN22
71 VIN23
72 VIN24
73 VIN25
74 VIN26
75 VIN27
76 VIN28
77 VIN29
78 VIN30
79 VIN31
80-85 NC No connect.
86 GND Digital ground. There are four pads.
87 VDD Analog low voltage positive supply. There are four pads.
88 VNN Analog low voltage negative supply. There are four pads.
89 GND Digital ground. There are four pads.
90 NC No connect.
91 VDD Analog low voltage positive supply. There are four pads.
92 BYP-VNN A low voltage 1.0 to 10nF decoupling decoupling capacitor across VNN and BYP-VNN is
required.
93 BYP-VDD A low voltage 1.0 to 10nF decoupling decoupling capacitor across VDD and BYP-VDD is
required.
94 VNN Analog low voltage negative supply. There are four pads.
95 ANODE Anode side of of a low voltage silicon diode that can be used to monitor die temperature.
96 CATHODE Cathode side of of a low voltage silicon diode that can be used to monitor die temperature.
97 RSINK External resistor from RSINK to VNN sets output current sinking limit. Current limit is
approximately 12.5V divided by RSINK resistor value.
98 RSOURCE External resistor from RSOURCE to VNN sets output current sourcing limit. Current limit is
approximately 12.5V divided by RSOURCE resistor value.
99 BYP-VPP A low voltage 1.0 to 10nF decoupling decoupling capacitor across VPP and BYP-VPP is
required.
100 VPP High voltage positive supply. There are two pads.
Pin Description (cont.)
Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an
adequate “product liability indemnification insurance agreement.” Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the
replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications
are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http//www.supertex.com.
©2008 All rights reserved. Unauthorized use or reproduction is prohibited.
1235 Bordeaux Drive, Sunnyvale, CA 94089
Tel: 408-222-8888
www.supertex.com
13
HV256
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline
information go to http://www.supertex.com/packaging.html.)
Doc.# DSFP-HV256
D102208
100-Lead MQFP Package Outline (FG)
20.00x14.00mm body, 3.15mm height (max), 0.65mm pitch, 3.20mm footprint
Symbol A A1 A2 b D D1 E E1 e L L1 L2 θ θ1
Dimension
(mm)
MIN 2.50* 0.00 2.50 0.22 22.95* 19.80* 16.95* 13.80* 0.65
BSC
0.73 1.60
REF
0.25
BSC
0O5O
NOM - - 2.70 - 23.20 20.00 17.20 14.00 0.88 - -
MAX 3.15 0.25 2.90 0.40 23.45* 20.20* 17.45* 14.20* 1.03 7O16O
JEDEC Registration MS-022, Variation GC-2, Issue B, Dec. 1996.
* This dimension is not specified in the original JEDEC drawing. The value listed is for reference only.
Drawings are not to scale.
Supertex Doc. #: DSPD-100MQFPFG, Version E101708.
1
100
Top View
Seating
Plane
Gauge
Plane
θ
L
L1
L2
View B
View B
θ1
b
e
Side View
A2
A
A1
E
E1
DD1
Seating
Plane
Note 1
(Index Area
E1/4 x D1/4)
Note:
A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or
a printed indicator.
1.