July 2010 Doc ID 14619 Rev 7 1/113
1
SPC560B40x, SPC560B44x, SPC560B50x
SPC560C40x, SPC560C44x, SPC560C50x
32-bit MCU family built on the Power Architecture® embedded
category for automotive body electronics applications
Features
High-performance 64 MHz e200z0h CPU
32-bit Power Architecture® technology
Up to 60 DMIPs operation
Variable length encoding (VLE)
Memory
Up to 512 Kbytes Code Flash, with ECC
64 Kbytes Data Flash, with ECC
Up to 48 Kbytes SRAM, with ECC
8-entry memory protection unit (MPU)
Interrupts
16 priority levels
Non-maskable interrupt (NMI)
Up to 34 ext. int. including 18 wakeup lines
GPIO: QFP64/45, QFP100/75, QFP144/123
Timer units
6-channel 32-bit periodic interrupt timers
4-channel 32-bit system timer module
System watchdog timer
Real-time clock timer
16-bit counter time-triggered I/Os
Up to 56 channels with PWM/MC/IC/OC
ADC diagnostic via CTU
Communications interface
Up to 6 FlexCAN interfaces (2.0B active)
with 64-message objects each
Up to 4 LINFlex/UART
3 DSPI / I2C
10-bit A/D converter with up to 36 channels
Up to 64 channels via external multiplexing
Individual conversion registers
Cross triggering unit
Dedicated diagnostic module for lighting
Advanced PWM generation
Time-triggered diagnostic
PWM-synchronized ADC measurements
Clock generation
4 to 16 MHz fast external crystal oscillator
32 KHz slow external crystal oscillator
16 MHz fast internal RC oscillator
128 kHz slow internal RC oscillator
Software-controlled FMPLL
Clock monitoring unit
Exhaustive debugging capability
Nexus1 on all devices
Nexus2+ available on emulation package
Low power capabilities
Ultra-low power standby with RTC, SRAM
and CAN monitoring
Fast wakeup schemes
Operating temp. range up to -40 to 125 °C
Single 5 V or 3.3 V supply
LQFP64 (10 x 10 x 1.4 mm)
LQFP144 (20 x 20 x 1.4 mm)
LQFP100 (14 x 14 x 1.4 mm)
Table 1. Device summary
Package 256 Kbyte code Flash 384 Kbyte code Flash 512 Kbyte code Flash
LQFP144 SPC560B40L5 SPC560B44L5 SPC560B50L5
LQFP100 SPC560B40L3 SPC560C40L3 SPC560B44L3 SPC560C44L3 SPC560B50L3 SPC560C50L3
LQFP64 SPC560B40L1 SPC560C40L1 SPC560B50L1 SPC560C50L1
LBGA208(1) SPC560B50B2
1. LBGA208 available only as development package for Nexus2+
www.st.com
Contents SPC560Bx, SPC560Cx
2/113 Doc ID 14619 Rev 7
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.1 NVUSRO[PAD3V5V] field description . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 NVUSRO[OSCILLATOR_MARGIN] field description . . . . . . . . . . . . . . . 41
4.4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6.1 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6.2 Power considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.7 I/O pad electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.7.1 I/O pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.7.2 I/O input DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.7.3 I/O output DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.7.4 Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.7.5 I/O pad current specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.8 RESET electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.9 Power management electrical characteristics . . . . . . . . . . . . . . . . . . . . . 59
4.9.1 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 59
4.9.2 Voltage monitor electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 62
4.10 Low voltage domain power consumption . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.11 Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 64
SPC560Bx, SPC560Cx Contents
Doc ID 14619 Rev 7 3/113
4.11.1 Program/Erase characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.11.2 Flash power supply DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.11.3 Start-up/Switch-off timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.12 Electromagnetic compatibility (EMC) characteristics . . . . . . . . . . . . . . . . 67
4.12.1 Designing hardened software to avoid noise problems . . . . . . . . . . . . . 67
4.12.2 Electromagnetic interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.12.3 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 68
4.13 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics . . 69
4.14 Slow external crystal oscillator (32 kHz) electrical characteristics . . . . . . 72
4.15 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.16 Fast internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . 76
4.17 Slow internal RC oscillator (128 kHz) electrical characteristics . . . . . . . . 76
4.18 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.18.2 Input impedance and ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.18.3 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.19 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.19.1 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.19.2 DSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.19.3 Nexus characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.19.4 JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.1 LQFP64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.2 LQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2.3 LQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.4 LBGA208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Appendix A Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
List of tables SPC560Bx, SPC560Cx
4/113 Doc ID 14619 Rev 7
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. SPC560Bx and SPC560Cx device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 3. SPC560Bx and SPC560Cx series block summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 4. Functional port pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 5. Parameter classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 6. PAD3V5V field description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 7. OSCILLATOR_MARGIN field description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 8. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 9. Recommended operating conditions (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 10. Recommended operating conditions (5.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 11. LQFP thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 12. I/O input DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 13. I/O pull-up/pull-down DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 14. SLOW configuration output buffer electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 15. MEDIUM configuration output buffer electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 49
Table 16. FAST configuration output buffer electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 17. Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 18. I/O supply segment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 19. I/O consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 20. I/O weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 21. Reset electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 22. Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 23. Low voltage monitor electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 24. Low voltage power domain electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 25. Program and erase specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 26. Flash module life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 27. Flash read access timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 28. Code Flash power supply DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 29. Start-up time/Switch-off time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 30. EMI radiated emission measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 31. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 32. Latch-up results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 33. Crystal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 34. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics. . . . . . . . . . . . . . . . 71
Table 35. Crystal motional characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 36. Slow external crystal oscillator (32 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . 75
Table 37. FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 38. Fast internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 76
Table 39. Slow internal RC oscillator (128 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . 77
Table 40. ADC input leakage current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 41. ADC conversion characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 42. On-chip peripherals current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 43. DSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 44. Nexus characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 45. JTAG characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 46. LQFP64 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 47. LQFP100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 48. LQFP144 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
SPC560Bx, SPC560Cx List of tables
Doc ID 14619 Rev 7 5/113
Table 49. LBGA208 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 50. Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 51. Order Codes for Engineering Samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 52. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
List of figures SPC560Bx, SPC560Cx
6/113 Doc ID 14619 Rev 7
List of figures
Figure 1. SPC560Bx and SPC560Cx series block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2. LQFP 64-pin configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3. LQFP 100-pin configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 4. LQFP 144-pin configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 5. LBGA208 configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 6. I/O input DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 7. Start-up reset requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 8. Noise filtering on reset signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 9. Voltage regulator capacitance connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 10. Low voltage monitor vs reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 11. Crystal oscillator and resonator connection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 12. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics. . . . . . . . . . . . . . . . 71
Figure 13. Crystal oscillator and resonator connection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 14. Equivalent circuit of a quartz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 15. Slow external crystal oscillator (32 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . 74
Figure 16. ADC characteristic and error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 17. Input equivalent circuit (precise channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 18. Input equivalent circuit (extended channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 19. Transient behavior during sampling phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 20. Spectral representation of input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 21. DSPI classic SPI timing – master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 22. DSPI classic SPI timing – master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 23. DSPI classic SPI timing – slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 24. DSPI classic SPI timing – slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 25. DSPI modified transfer format timing – master, CPHA = 0. . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 26. DSPI modified transfer format timing – master, CPHA = 1. . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 27. DSPI modified transfer format timing – slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 28. DSPI modified transfer format timing – slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 29. Nexus TDI, TMS, TDO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 30. Timing diagram – JTAG boundary scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 31. LQFP64 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 32. LQFP100 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 33. LQFP144 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 34. LBGA208 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 35. Commercial product code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
SPC560Bx, SPC560Cx Introduction
Doc ID 14619 Rev 7 7/113
1 Introduction
1.1 Document overview
This document describes the features of the family and options available within the family
members, and highlights important electrical and physical characteristics of the device. To
ensure a complete understanding of the device functionality, refer also to the device
reference manual and errata sheet.
1.2 Description
This family of 32-bit system-on-chip (SoC) microcontrollers is the latest achievement in
integrated automotive application controllers. It belongs to an expanding family of
automotive-focused products designed to address the next wave of body electronics
applications within the vehicle. The advanced and cost-efficient host processor core of this
automotive controller family complies with the Power Architecture embedded category and
only implements the VLE (variable-length encoding) APU, providing improved code density.
It operates at speeds of up to 64 MHz and offers high performance processing optimized for
low power consumption. It capitalizes on the available development infrastructure of current
Power Architecture devices and is supported with software drivers, operating systems and
configuration code to assist with users implementations.
Introduction SPC560Bx, SPC560Cx
8/113 Doc ID 14619 Rev 7
Table 2. SPC560Bx and SPC560Cx device comparison(1)
Feature
Device
SPC560
B40L1
SPC560
B40L3
SPC560
B40L5
SPC560
C40L1
SPC560
C40L3
SPC560
B44L3
SPC560
B44L5
SPC560
C44L3
SPC560
B50L1
SPC560
B50L3
SPC560
B50L5
SPC560
C50L1
SPC560
C50L3
SPC560
B50B2
CPU e200z0h
Execution
speed(2) Static – up to 64 MHz
Code Flash 256 KB 384 KB 512 KB
Data Flash 64 KB (4 × 16 KB)
RAM 24KB 32KB 28KB 40KB 32KB 48 KB
MPU 8-entry
ADC 12 ch,
10-bit
28 ch,
10-bit
36 ch,
10-bit
8ch,
10-bit
28 ch,
10-bit
28 ch,
10-bit
36 ch,
10-bit
28 ch,
10-bit
12 ch,
10-bit
28 ch,
10-bit
36 ch,
10-bit
8ch,
10-bit
28 ch,
10-bit
36 ch,
10-bit
CTU Ye s
Total timer
I/O(3)
eMIOS
12 ch,
16-bit
28 ch,
16-bit
56 ch,
16-bit
12 ch,
16-bit
28 ch,
16-bit
28 ch,
16-bit
56ch,
16-bit
28 ch,
16-bit
12 ch,
16-bit
28 ch,
16-bit
56 ch,
16-bit
12 ch,
16-bit
28 ch,
16-bit
56 ch,
16-bit
PWM + MC +
IC/OC(4) 2 ch 5 ch 10 ch 2 ch 5 ch 5 ch 10 ch 5 ch 2 ch 5 ch 10 ch 2 ch 5 ch 10 ch
PWM +
IC/OC(4) 10 ch 20 ch 40 ch 10 ch 20 ch 20 ch 40 ch 20 ch 10 ch 20 ch 40 ch 10 ch 20 ch 40 ch
–IC/OC
(4) 0ch 3ch 6ch 0ch 3ch 3ch 6ch 3ch 0ch 3ch 6ch 0ch 3ch 6ch
SCI (LINFlex) 3(5) 4
SPI (DSPI)232333232 3
CAN
(FlexCAN) 2(6) 56 3
(7) 63
(7) 56
I2C 1
32 kHz
oscillator Ye s
SPC560Bx, SPC560Cx Introduction
Doc ID 14619 Rev 7 9/113
GPIO(8) 45 79 123 45 79 79 123 79 45 79 123 45 79 123
Debug JTAG Nexus2+
Package LQFP
64(9)
LQFP
100
LQFP
144
LQFP
64(9)
LQFP
100
LQFP
100
LQFP
144
LQFP
100
LQFP
64(9)
LQFP
100
LQFP
144
LQFP
64(9)
LQFP
100
LBGA
208(10)
1. Feature set dependent on selected peripheral multiplexing—table shows example implementation
2. Based on 105 °C ambient operating temperature
3. Refer to eMIOS section of device reference manual for information on the channel configuration and functions
4. IC - Input Capture; OC - Output Compare; PWM - Pulse Width Modulation; MC - Modulus counter
5. SCI0, SCI1 and SCI2 are available. SCI3 is not available.
6. CAN0, CAN1 are available. CAN2, CAN3, CAN4 and CAN5 are not available.
7. CAN0, CAN1 and CAN2 are available. CAN3, CAN4 and CAN5 are not available.
8. I/O count based on multiplexing with peripherals
9. All LQFP64 information is indicative and must be confirmed during silicon validation.
10. LBGA208 available only as development package for Nexus2+
Table 2. SPC560Bx and SPC560Cx device comparison(1) (continued)
Feature
Device
SPC560
B40L1
SPC560
B40L3
SPC560
B40L5
SPC560
C40L1
SPC560
C40L3
SPC560
B44L3
SPC560
B44L5
SPC560
C44L3
SPC560
B50L1
SPC560
B50L3
SPC560
B50L5
SPC560
C50L1
SPC560
C50L3
SPC560
B50B2
Block diagram SPC560Bx, SPC560Cx
10/113 Doc ID 14619 Rev 7
2 Block diagram
Figure 1 shows a top-level block diagram of the SPC560Bx and SPC560Cx device series.
Figure 1. SPC560Bx and SPC560Cx series block diagram
3 x
DSPI
FMPLL
Nexus 2+
Nexus
SRAM
SIUL
Reset control
48 KB
External
IMUX
GPIO and
JTAG
pad control
JTAG port
Nexus port e200z0h
Interrupt requests
64-bit 2 x 3 Crossbar Switch
6 x
FlexCAN
Peripheral bridge
interrupt
request
Interrupt
request
I/O
Clocks
Instructions
Data
Voltage
regulator
NMI
SWT PIT
STM
NMI
SIUL
. . . . . . . . .
. . .
INTC
I2C
. . .
4 x
LINFlex
2 x
eMIOS
36 Ch.
ADC
MPU
CMU
SRAM Flash
Code Flash
512 KB
Data Flash
64 KB
MC_PCUMC_MEMC_CGMMC_RGM BAM
CTU
RTC SSCM
(Master)
(Master)
(Slave)
(Slave)
(Slave)
controller
controller
Legend:
ADC Analog-to-Digital Converter
BAM Boot Assist Module
FlexCAN Controller Area Network
CMU Clock Monitor Unit
CTU Cross Triggering Unit
DSPI Deserial Serial Peripheral Interface
eDMA Enhanced Direct Memory Access
eMIOS Enhanced Modular Input Output System
FMPLL Frequency-Modulated Phase-Locked Loop
I2C Inter-integrated Circuit Bus
IMUX Internal Multiplexer
INTC Interrupt Controller
JTAG JTAG controller
LINFlex Serial Communication Interface (LIN support)
ECSM Error Correction Status Module
MC_CGM Clock Generation Module
MC_ME Mode Entry Module
MC_PCU Power Control Unit
MC_RGM Reset Generation Module
MPU Memory Protection Unit
Nexus Nexus Development Interface (NDI) Level
NMI Non-Maskable Interrupt
PIT Periodic Interrupt Timer
RTC Real-Time Clock
SIUL System Integration Unit Lite
SRAM Static Random-Access Memory
SSCM System Status Configuration Module
STM System Timer Module
SWT Software Watchdog Timer
WKPU Wakeup Unit
MPU
ECSM
from peripheral
registers
blocks
WKPU
Interrupt
request with
wakeup
functionality
(Master)
eDMA
SPC560Bx, SPC560Cx Block diagram
Doc ID 14619 Rev 7 11/113
Ta bl e 3 summarizes the functions of all blocks present in the SPC560Bx and SPC560Cx
series of microcontrollers. Please note that the presence and number of blocks varies by
device and package.
Table 3. SPC560Bx and SPC560Cx series block summary
Block Function
Analog-to-digital converter (ADC) Multi-channel, 10-bit analog-to digital-converter
Boot assist module (BAM) A block of read-only memory containing VLE code which is executed according
to the boot mode of the device
Clock monitor unit (CMU) Monitors clock source (internal and external) integrity
Cross triggering unit (CTU) Enables synchronization of ADC conversions with a timer event from the eMIOS
or from the PIT
Deserial serial peripheral
interface (DSPI)
Provides a synchronous serial interface for communication with external
devices
Error Correction Status Module
(ECSM)
Provides a myriad of miscellaneous control functions for the device including
program-visible information about configuration and revision levels, a reset
status register, wakeup control for exiting sleep modes, and optional features
such as information on memory errors reported by error-correcting codes
Enhanced Direct Memory Access
(eDMA)
Performs complex data transfers with minimal intervention from a host
processor via “n” programmable channels.
Enhanced modular input output
system (eMIOS) Provides the functionality to generate or measure events
Flash memory Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area
network) Supports the standard CAN communications protocol
FMPLL (frequency-modulated
phase-locked loop)
Generates high-speed system clocks and supports programmable frequency
modulation
Internal multiplexer (IMUX) SIU
subblock Allows flexible mapping of peripheral interface on the different pins of the device
Inter-integrated circuit (I2C™) bus A two wire bidirectional serial bus that provides a simple and efficient method of
data exchange between devices
Interrupt controller (INTC) Provides priority-based preemptive scheduling of interrupt requests
JTAG controller Provides the means to test chip functionality and connectivity while remaining
transparent to system logic when not in test mode
LINflex controller Manages a high number of LIN (Local Interconnect Network protocol)
messages efficiently with a minimum of CPU load
Clock generation module
(MC_CGM)
Provides logic and control required for the generation of system and peripheral
clocks
Mode entry module (MC_ME)
Provides a mechanism for controlling the device operational mode and mode
transition sequences in all functional states; also manages the power control
unit, reset generation module and clock generation module, and holds the
configuration, control and status registers accessible for applications
Power control unit (MC_PCU)
Reduces the overall power consumption by disconnecting parts of the device
from the power supply via a power switching device; device components are
grouped into sections called “power domains” which are controlled by the PCU
Block diagram SPC560Bx, SPC560Cx
12/113 Doc ID 14619 Rev 7
Reset generation module
(MC_RGM)
Centralizes reset sources and manages the device reset sequence of the
device
Memory protection unit (MPU) Provides hardware access control for all memory references generated in a
device
Nexus development interface
(NDI)
Provides real-time development support capabilities in compliance with the
IEEE-ISTO 5001-2003 standard
Periodic interrupt timer (PIT) Produces periodic interrupts and triggers
Real-time counter (RTC)
A free running counter used for time keeping applications, the RTC can be
configured to generate an interrupt at a predefined interval independent of the
mode of operation (run mode or low-power mode)
System integration unit (SIU)
Provides control over all the electrical pad controls and up 32 ports with 16 bits
of bidirectional, general-purpose input and output signals and supports up to 32
external interrupts with trigger event configuration
Static random-access memory
(SRAM) Provides storage for program code, constants, and variables
System status configuration
module (SSCM)
Provides system configuration and status data (such as memory size and
status, device mode and security status), device identification data, debug
status port enable and selection, and bus and peripheral abort enable/disable
System timer module (STM) Provides a set of output compare events to support AUTOSAR and operating
system tasks
System watchdog timer (SWT) Provides protection from runaway code
Wakeup unit (WKPU)
The wakeup unit supports up to 18 external sources that can generate
interrupts or wakeup events, of which 1 can cause non-maskable interrupt
requests or wakeup events.
Crossbar (XBAR) switch
Supports simultaneous connections between two master ports and three slave
ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus
width
Table 3. SPC560Bx and SPC560Cx series block summary (continued)
Block Function
SPC560Bx, SPC560Cx Package pinouts and signal descriptions
Doc ID 14619 Rev 7 13/113
3 Package pinouts and signal descriptions
3.1 Package pinouts
The available LQFP pinouts and the LBGA208 ballmap are provided in the following figures.
For pin signal descriptions, please refer to the device reference manual (RM0017).
Figure 2. LQFP 64-pin configuration (top view)(a)
a. All LQFP64 information is indicative and must be confirmed during silicon validation.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
PB[3]
PC[9]
PA [ 2 ]
PA [ 1 ]
PA [ 0 ]
VPP_TEST
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PC[10]
PB[0]
PB[1]
PC[6]
PA[11]
PA[10]
PA [ 9 ]
PA [ 8 ]
PA [ 7 ]
PA [ 3 ]
PB[15]
PB[14]
PB[13]
PB[12]
PB[11]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC
VSS_HV_ADC
PC[7]
PA[15]
PA[14]
PA[ 4 ]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PB[4]
PB[2]
PC[8]
PC[4]
PC[5]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA [ 6 ]
PA [ 5 ]
PC[2]
PC[3]
LQFP64
Package pinouts and signal descriptions SPC560Bx, SPC560Cx
14/113 Doc ID 14619 Rev 7
Figure 3. LQFP 100-pin configuration (top view)
Figure 4. LQFP 144-pin configuration (top view)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
PB[3]
PC[9]
PC[14]
PC[15]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]
PE[10]
PA[0]
PE[11]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PC[11]
PC[10]
PB[0]
PB[1]
PC[6]
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
VDD_HV
VSS_HV
PA[3]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
PD[12]
PB[11]
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC
VSS_HV_ADC
PC[7]
PA[15]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PD[0]
PD[1]
PD[2]
PD[3]
PD[4]
PD[5]
PD[6]
PD[7]
PD[8]
PB[4]
PB[2]
PC[8]
PC[13]
PC[12]
PE[7]
PE[6]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA [ 6 ]
PA [ 5 ]
PC[2]
PC[3]
PE[12]
LQFP100
Note:
Availability of port pin alternate functions depends on product selection.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
PB[3]
PC[9]
PC[14]
PC[15]
PG[5]
PG[4]
PG[3]
PG[2]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]
PE[10]
PA[0]
PE[11]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PG[9]
PG[8]
PC[11]
PC[10]
PG[7]
PG[6]
PB[0]
PB[1]
PF[9]
PF[8]
PF[12]
PC[6]
PA [ 1 1 ]
PA [ 1 0 ]
PA [ 9 ]
PA [ 8 ]
PA [ 7 ]
PE[13]
PF[14]
PF[15]
VDD_HV
VSS_HV
PG[0]
PG[1]
PH[3]
PH[2]
PH[1]
PH[0]
PG[12]
PG[13]
PA [ 3 ]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
PD[12]
PB[11]
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC
VSS_HV_ADC
PC[7]
PF[10]
PF[11]
PA[15]
PF[13]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PF[0]
PF[1]
PF[2]
PF[3]
PF[4]
PF[5]
PF[6]
PF[7]
PD[0]
PD[1]
PD[2]
PD[3]
PD[4]
PD[5]
PD[6]
PD[7]
PD[8]
PB[4]
PB[2]
PC[8]
PC[13]
PC[12]
PE[7]
PE[6]
PH[8]
PH[7]
PH[6]
PH[5]
PH[4]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA [ 6 ]
PA [ 5 ]
PC[2]
PC[3]
PG[11]
PG[10]
PE[15]
PE[14]
PG[15]
PG[14]
PE[12]
LQFP144
Note:
Availability of port pin alternate functions depends on product selection.
SPC560Bx, SPC560Cx Package pinouts and signal descriptions
Doc ID 14619 Rev 7 15/113
Figure 5. LBGA208 configuration
12345678910111213141516
APC[8] PC[13] NC NC PH[8] PH[4] PC[5] PC[0] NC NC PC[2] NC PE[15] NC NC NC A
BPC[9] PB[2] NC PC[12] PE[6] PH[5] PC[4] PH[9] PH[10] NC PC[3] PG[11] PG[15] PG[14] PA[11] PA[10] B
CPC[14] VDD_HV PB[3] PE[7] PH[7] PE[5] PE[3] VSS_LV PC[1] NC PA[5] NC PE[14] PE[12] PA[9] PA[8] C
DNC NC PC[15] NC PH[6] PE[4] PE[2] VDD_LV VDD_HV NC PA[6] NC PG[10] PF[14] PE[13] PA[7] D
EPG[4] PG[5] PG[3] PG[2] PG[1] PG[0] PF[15] VDD_HV E
FPE[0] PA[2] PA[1] PE[1] PH[0] PH[1] PH[3] PH[2] F
GPE[9] PE[8] PE[10] PA[0] VSS_HV VSS_HV VSS_HV VSS_HV VDD_HV NC NC MSEO G
HVSS_HV PE[11] VDD_HV NC VSS_HV VSS_HV VSS_HV VSS_HV MDO3 MDO2 MDO0 MDO1 H
JRESET VSS_LV NC NC VSS_HV VSS_HV VSS_HV VSS_HV NC NC NC NC J
KEVTI NC VDD_BV VDD_LV VSS_HV VSS_HV VSS_HV VSS_HV NC PG[12] PA[3] PG[13] K
LPG[9] PG[8] NC EVTO PB[15] PD[15] PD[14] PB[14] L
MPG[7] PG[6] PC[10] PC[11] PB[13] PD[13] PD[12] PB[12] M
NPB[1] PF[9] PB[0] NC NC PA[4] VSS_LV EXTAL VDD_HV PF[0] PF[4] NC PB[11] PD[10] PD[9] PD[11] N
PPF[8] NC PC[7] NC NC PA[14] VDD_LV XTAL PB[10] PF[1] PF[5] PD[0] PD[3] VDD_HV
_ADC PB[6] PB[7] P
RPF[12] PC[6] PF[10] PF[11] VDD_HV PA[15] PA[13] NC OSC32K
_XTAL PF[3] PF[7] PD[2] PD[4] PD[7] VSS_HV
_ADC PB[5] R
TNC NC NC MCKO NC PF[13] PA[12] NC OSC32K
_EXTAL PF[2] PF[6] PD[1] PD[5] PD[6] PD[8] PB[4] T
12345678910111213141516
Note: LBGA208 available only as development package for Nexus 2+. NC = Not connected
Package pinouts and signal descriptions SPC560Bx, SPC560Cx
16/113 Doc ID 14619 Rev 7
3.2 Pin muxing
Ta b l e 4 defines the pin list and muxing for this device.
Each entry of Ta b l e 4 shows all the possible configurations for each pin, via the alternate functions. The default function assigned
to each pin after reset is indicated by AF0.
Table 4. Functional port pin descriptions
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
PA [ 0 ] P C R [ 0 ]
AF0
AF1
AF2
AF3
GPIO[0]
E0UC[0]
CLKOUT
WKUP[19](4)
SIUL
eMIOS0
CGL
WKPU
I/O
I/O
O
I
M Tristate 5 12 16 G4
PA [ 1 ] P C R [ 1 ]
AF0
AF1
AF2
AF3
GPIO[1]
E0UC[1]
NMI(5)
WKUP[2](4)
SIUL
eMIOS0
WKPU
WKPU
I/O
I/O
I
I
STristate 4 7 11 F3
PA [ 2 ] P C R [ 2 ]
AF0
AF1
AF2
AF3
GPIO[2]
E0UC[2]
WKUP[3](4)
SIUL
eMIOS0
WKPU
I/O
I/O
I
STristate359F2
PA [ 3 ] P C R [ 3 ]
AF0
AF1
AF2
AF3
GPIO[3]
E0UC[3]
EIRQ[0]
SIUL
eMIOS0
SIUL
I/O
I/O
I
STristate 43 68 90 K15
SPC560Bx, SPC560Cx Package pinouts and signal descriptions
Doc ID 14619 Rev 7 17/113
PA [ 4 ] P C R [ 4 ]
AF0
AF1
AF2
AF3
GPIO[4]
E0UC[4]
WKUP[9](4)
SIUL
eMIOS0
WKPU
I/O
I/O
I
STristate 20 29 43 N6
PA [ 5 ] P C R [ 5 ]
AF0
AF1
AF2
AF3
GPIO[5]
E0UC[5]
SIUL
eMIOS0
I/O
I/O
M Tristate 51 79 118 C11
PA [ 6 ] P C R [ 6 ]
AF0
AF1
AF2
AF3
GPIO[6]
E0UC[6]
EIRQ[1]
SIUL
eMIOS0
SIUL
I/O
I/O
I
S Tristate 52 80 119 D11
PA [ 7 ] P C R [ 7 ]
AF0
AF1
AF2
AF3
GPIO[7]
E0UC[7]
LIN3TX
EIRQ[2]
SIUL
eMIOS0
LINFlex_3
SIUL
I/O
I/O
O
I
S Tristate 44 71 104 D16
PA [ 8 ] P C R [ 8 ]
AF0
AF1
AF2
AF3
N/A(6)
GPIO[8]
E0UC[8]
EIRQ[3]
ABS[0]
LIN3RX
SIUL
eMIOS0
SIUL
BAM
LINFlex_3
I/O
I/O
I
I
I
S
Input,
weak
pull-up
45 72 105 C16
Table 4. Functional port pin descriptions (continued)
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
Package pinouts and signal descriptions SPC560Bx, SPC560Cx
18/113 Doc ID 14619 Rev 7
PA [ 9 ] P C R [ 9 ]
AF0
AF1
AF2
AF3
N/A(6)
GPIO[9]
E0UC[9]
FAB
SIUL
eMIOS_0
BAM
I/O
I/O
I
SPull-
down 46 73 106 C15
PA[10] PCR[10]
AF0
AF1
AF2
AF3
GPIO[10]
E0UC[10]
SDA
SIUL
eMIOS_0
I2C_0
I/O
I/O
I/O
S Tristate 47 74 107 B16
PA[11] PCR[11]
AF0
AF1
AF2
AF3
GPIO[11]
E0UC[11]
SCL
SIUL
eMIOS0
I2C_0
I/O
I/O
I/O
S Tristate 48 75 108 B15
PA[12] PCR[12]
AF0
AF1
AF2
AF3
GPIO[12]
SIN_0
SIUL
DSPI0
I/O
I
STristate 22 31 45 T7
PA[13] PCR[13]
AF0
AF1
AF2
AF3
GPIO[13]
SOUT_0
SIUL
DSPI_0
I/O
O
MTristate 21 30 44 R7
PA[14] PCR[14]
AF0
AF1
AF2
AF3
GPIO[14]
SCK_0
CS0_0
EIRQ[4]
SIUL
DSPI_0
DSPI_0
SIUL
I/O
I/O
I/O
I
MTristate 19 28 42 P6
Table 4. Functional port pin descriptions (continued)
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
SPC560Bx, SPC560Cx Package pinouts and signal descriptions
Doc ID 14619 Rev 7 19/113
PA[15] PCR[15]
AF0
AF1
AF2
AF3
GPIO[15]
CS0_0
SCK_0
WKUP[10](4)
SIUL
DSPI_0
DSPI_0
WKPU
I/O
I/O
I/O
I
MTristate 18 27 40 R6
PB[0] PCR[16]
AF0
AF1
AF2
AF3
GPIO[16]
CAN0TX
SIUL
FlexCAN_0
I/O
O
MTristate 14 23 31 N3
PB[1] PCR[17]
AF0
AF1
AF2
AF3
GPIO[17]
WKUP[4](4)
CAN0RX
SIUL
WKPU
FlexCAN_0
I/O
I
I
STristate 15 24 32 N1
PB[2] PCR[18]
AF0
AF1
AF2
AF3
GPIO[18]
LIN0TX
SDA
SIUL
LINFlex_0
I2C_0
I/O
O
I/O
M Tristate 64 100 144 B2
PB[3] PCR[19]
AF0
AF1
AF2
AF3
GPIO[19]
SCL
WKUP[11](4)
LIN0RX
SIUL
I2C_0
WKPU
LINFlex_0
I/O
I/O
I
I
STristate111C3
Table 4. Functional port pin descriptions (continued)
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
Package pinouts and signal descriptions SPC560Bx, SPC560Cx
20/113 Doc ID 14619 Rev 7
PB[4] PCR[20]
AF0
AF1
AF2
AF3
GPIO[20]
ANP[0]
SIUL
ADC
I
I
I Tristate 32 50 72 T16
PB[5] PCR[21]
AF0
AF1
AF2
AF3
GPIO[21]
ANP[1]
SIUL
ADC
I
I
ITristate 35 53 75 R16
PB[6] PCR[22]
AF0
AF1
AF2
AF3
GPIO[22]
ANP[2]
SIUL
ADC
I
I
ITristate 36 54 76 P15
PB[7] PCR[23]
AF0
AF1
AF2
AF3
GPIO[23]
ANP[3]
SIUL
ADC
I
I
ITristate 37 55 77 P16
PB[8] PCR[24]
AF0
AF1
AF2
AF3
GPIO[24]
ANS[0]
OSC32K_XTAL(7)
SIUL
ADC
SXOSC
I
I
I/O
ITristate 30 39 53 R9
Table 4. Functional port pin descriptions (continued)
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
SPC560Bx, SPC560Cx Package pinouts and signal descriptions
Doc ID 14619 Rev 7 21/113
PB[9] PCR[25]
AF0
AF1
AF2
AF3
GPIO[25]
ANS[1]
OSC32K_EXTAL(7)
SIUL
ADC
SXOSC
I
I
I/O
ITristate 29 38 52 T9
PB[10] PCR[26]
AF0
AF1
AF2
AF3
GPIO[26]
ANS[2]
WKUP[8](4)
SIUL
ADC
WKPU
I/O
I
I
JTristate 31 40 54 P9
PB[11](8) PCR[27]
AF0
AF1
AF2
AF3
GPIO[27]
E0UC[3]
CS0_0
ANS[3]
SIUL
eMIOS_0
DSPI_0
ADC
I/O
I/O
I/O
I
JTristate 38 59 81 N13
PB[12] PCR[28]
AF0
AF1
AF2
AF3
GPIO[28]
E0UC[4]
CS1_0
ANX[0]
SIUL
eMIOS
DSPI_0
ADC
I/O
I/O
O
I
J Tristate 39 61 83 M16
PB[13] PCR[29]
AF0
AF1
AF2
AF3
GPIO[29]
E0UC[5]
CS2_0
ANX[1]
SIUL
eMIOS_0
DSPI_0
ADC
I/O
I/O
O
I
J Tristate 40 63 85 M13
Table 4. Functional port pin descriptions (continued)
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
Package pinouts and signal descriptions SPC560Bx, SPC560Cx
22/113 Doc ID 14619 Rev 7
PB[14] PCR[30]
AF0
AF1
AF2
AF3
GPIO[30]
E0UC[6]
CS3_0
ANX[2]
SIUL
eMIOS0
DSPI_0
ADC
I/O
I/O
O
I
J Tristate 41 65 87 L16
PB[15] PCR[31]
AF0
AF1
AF2
AF3
GPIO[31]
E0UC[7]
CS4_0
ANX[3]
SIUL
eMIOS_0
DSPI_0
ADC
I/O
I/O
O
I
J Tristate 42 67 89 L13
PC[0](9) PCR[32]
AF0
AF1
AF2
AF3
GPIO[32]
TDI
SIUL
JTAGC
I/O
I
M
Input,
weak
pull-up
59 87 126 A8
PC[1](9) PCR[33]
AF0
AF1
AF2
AF3
GPIO[33]
TDO(10)
SIUL
JTAGC
I/O
O
M Tristate 54 82 121 C9
PC[2] PCR[34]
AF0
AF1
AF2
AF3
GPIO[34]
SCK_1
CAN4TX(11)
EIRQ[5]
SIUL
DSPI_1
LINFlex_4
SIUL
I/O
I/O
O
I
M Tristate 50 78 117 A11
Table 4. Functional port pin descriptions (continued)
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
SPC560Bx, SPC560Cx Package pinouts and signal descriptions
Doc ID 14619 Rev 7 23/113
PC[3] PCR[35]
AF0
AF1
AF2
AF3
GPIO[35]
CS0_1
MA[0]
CAN1RX
CAN4RX(11)
EIRQ[6]
SIUL
DSPI_1
ADC
FlexCAN_1
FlexCAN_4
SIUL
I/O
I/O
O
I
I
I
S Tristate 49 77 116 B11
PC[4] PCR[36]
AF0
AF1
AF2
AF3
GPIO[36]
SIN_1
CAN3RX(11)
SIUL
DSPI_1
FlexCAN_3
I/O
I
I
M Tristate 62 92 131 B7
PC[5] PCR[37]
AF0
AF1
AF2
AF3
GPIO[37]
SOUT_1
CAN3TX(11)
EIRQ[7]
SIUL
DSPI1
FlexCAN_3
SIUL
I/O
O
O
I
M Tristate 61 91 130 A7
PC[6] PCR[38]
AF0
AF1
AF2
AF3
GPIO[38]
LIN1TX
SIUL
LINFlex_1
I/O
O
STristate 16 25 36 R2
PC[7] PCR[39]
AF0
AF1
AF2
AF3
GPIO[39]
LIN1RX
WKUP[12](4)
SIUL
LINFlex_1
WKPU
I/O
I
I
STristate 17 26 37 P3
Table 4. Functional port pin descriptions (continued)
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
Package pinouts and signal descriptions SPC560Bx, SPC560Cx
24/113 Doc ID 14619 Rev 7
PC[8] PCR[40]
AF0
AF1
AF2
AF3
GPIO[40]
LIN2TX
SIUL
LINFlex_2
I/O
O
S Tristate 63 99 143 A1
PC[9] PCR[41]
AF0
AF1
AF2
AF3
GPIO[41]
LIN2RX
WKUP[13](4)
SIUL
LINFlex_2
WKPU
I/O
I
I
STristate222B1
PC[10] PCR[42]
AF0
AF1
AF2
AF3
GPIO[42]
CAN1TX
CAN4TX(11)
MA[1]
SIUL
FlexCAN_1
FlexCAN_4
ADC
I/O
O
O
O
MTristate 13 22 28 M3
PC[11] PCR[43]
AF0
AF1
AF2
AF3
GPIO[43]
CAN1RX
CAN4RX(11)
WKUP[5](4)
SIUL
FlexCAN_1
FlexCAN_4
WKPU
I/O
I
I
I
S Tristate 21 27 M4
PC[12] PCR[44]
AF0
AF1
AF2
AF3
GPIO[44]
E0UC[12]
SIN_2
SIUL
eMIOS_0
DSPI_2
I/O
I/O
I
M Tristate 97 141 B4
Table 4. Functional port pin descriptions (continued)
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
SPC560Bx, SPC560Cx Package pinouts and signal descriptions
Doc ID 14619 Rev 7 25/113
PC[13] PCR[45]
AF0
AF1
AF2
AF3
GPIO[45]
E0UC[13]
SOUT_2
SIUL
eMIOS_0
DSPI_2
I/O
I/O
O
S Tristate 98 142 A2
PC[14] PCR[46]
AF0
AF1
AF2
AF3
GPIO[46]
E0UC[14]
SCK_2
EIRQ[8]
SIUL
eMIOS_0
DSPI_2
SIUL
I/O
I/O
I/O
I
STristate 3 3 C1
PC[15] PCR[47]
AF0
AF1
AF2
AF3
GPIO[47]
E0UC[15]
CS0_2
SIUL
eMIOS_0
DSPI_2
I/O
I/O
I/O
MTristate 4 4 D3
PD[0] PCR[48]
AF0
AF1
AF2
AF3
GPIO[48]
ANP[4]
SIUL
ADC
I
I
I Tristate 41 63 P12
PD[1] PCR[49]
AF0
AF1
AF2
AF3
GPIO[49]
ANP[5]
SIUL
ADC
I
I
I Tristate 42 64 T12
PD[2] PCR[50]
AF0
AF1
AF2
AF3
GPIO[50]
ANP[6]
SIUL
ADC
I
I
I Tristate 43 65 R12
Table 4. Functional port pin descriptions (continued)
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
Package pinouts and signal descriptions SPC560Bx, SPC560Cx
26/113 Doc ID 14619 Rev 7
PD[3] PCR[51]
AF0
AF1
AF2
AF3
GPIO[51]
ANP[7]
SIUL
ADC
I
I
I Tristate 44 66 P13
PD[4] PCR[52]
AF0
AF1
AF2
AF3
GPIO[52]
ANP[8]
SIUL
ADC
I
I
I Tristate 45 67 R13
PD[5] PCR[53]
AF0
AF1
AF2
AF3
GPIO[53]
ANP[9]
SIUL
ADC
I
I
I Tristate 46 68 T13
PD[6] PCR[54]
AF0
AF1
AF2
AF3
GPIO[54]
ANP[10]
SIUL
ADC
I
I
I Tristate 47 69 T14
PD[7] PCR[55]
AF0
AF1
AF2
AF3
GPIO[55]
ANP[11]
SIUL
ADC
I
I
I Tristate 48 70 R14
Table 4. Functional port pin descriptions (continued)
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
SPC560Bx, SPC560Cx Package pinouts and signal descriptions
Doc ID 14619 Rev 7 27/113
PD[8] PCR[56]
AF0
AF1
AF2
AF3
GPIO[56]
ANP[12]
SIUL
ADC
I
I
I Tristate 49 71 T15
PD[9] PCR[57]
AF0
AF1
AF2
AF3
GPIO[57]
ANP[13]
SIUL
ADC
I
I
I Tristate 56 78 N15
PD[10] PCR[58]
AF0
AF1
AF2
AF3
GPIO[58]
ANP[14]
SIUL
ADC
I
I
I Tristate 57 79 N14
PD[11] PCR[59]
AF0
AF1
AF2
AF3
GPIO[59]
ANP[15]
SIUL
ADC
I
I
I Tristate 58 80 N16
PD[12](8) PCR[60]
AF0
AF1
AF2
AF3
GPIO[60]
CS5_0
E0UC[24]
ANS[4]
SIUL
DSPI_0
eMIOS_0
ADC
I/O
O
I/O
I
J Tristate 60 82 M15
Table 4. Functional port pin descriptions (continued)
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
Package pinouts and signal descriptions SPC560Bx, SPC560Cx
28/113 Doc ID 14619 Rev 7
PD[13] PCR[61]
AF0
AF1
AF2
AF3
GPIO[61]
CS0_1
E0UC[25]
ANS[5]
SIUL
DSPI_1
eMIOS_0
ADC
I/O
I/O
I/O
I
J Tristate 62 84 M14
PD[14] PCR[62]
AF0
AF1
AF2
AF3
GPIO[62]
CS1_1
E0UC[26]
ANS[6]
SIUL
DSPI_1
eMIOS_0
ADC
I/O
O
I/O
I
J Tristate 64 86 L15
PD[15] PCR[63]
AF0
AF1
AF2
AF3
GPIO[63]
CS2_1
E0UC[27]
ANS[7]
SIUL
DSPI_1
eMIOS_0
ADC
I/O
O
I/O
I
J Tristate 66 88 L14
PE[0] PCR[64]
AF0
AF1
AF2
AF3
GPIO[64]
E0UC[16]
CAN5RX(11)
WKUP[6](4)
SIUL
eMIOS_0
FlexCAN_5
WKPU
I/O
I/O
I
I
STristate 6 10 F1
PE[1] PCR[65]
AF0
AF1
AF2
AF3
GPIO[65]
E0UC[17]
CAN5TX(11)
SIUL
eMIOS_0
FlexCAN_5
I/O
I/O
O
MTristate 8 12 F4
Table 4. Functional port pin descriptions (continued)
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
SPC560Bx, SPC560Cx Package pinouts and signal descriptions
Doc ID 14619 Rev 7 29/113
PE[2] PCR[66]
AF0
AF1
AF2
AF3
GPIO[66]
E0UC[18]
SIN_1
SIUL
eMIOS0
DSPI_1
I/O
I/O
I
M Tristate 89 128 D7
PE[3] PCR[67]
AF0
AF1
AF2
AF3
GPIO[67]
E0UC[19]
SOUT_1
SIUL
eMIOS0
DSPI_1
I/O
I/O
O
M Tristate 90 129 C7
PE[4] PCR[68]
AF0
AF1
AF2
AF3
GPIO[68]
E0UC[20]
SCK_1
EIRQ[9]
SIUL
eMIOS0
DSPI_1
SIUL
I/O
I/O
I/O
I
M Tristate 93 132 D6
PE[5] PCR[69]
AF0
AF1
AF2
AF3
GPIO[69]
E0UC[21]
CS0_1
MA[2]
SIUL
eMIOS_0
DSPI_1
ADC
I/O
I/O
I/O
O
M Tristate 94 133 C6
PE[6] PCR[70]
AF0
AF1
AF2
AF3
GPIO[70]
E0UC[22]
CS3_0
MA[1]
SIUL
eMIOS_0
DSPI_0
ADC
I/O
I/O
O
O
M Tristate 95 139 B5
PE[7] PCR[71]
AF0
AF1
AF2
AF3
GPIO[71]
E0UC[23]
CS2_0
MA[0]
SIUL
eMIOS_0
DSPI_0
ADC
I/O
I/O
O
O
M Tristate 96 140 C4
Table 4. Functional port pin descriptions (continued)
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
Package pinouts and signal descriptions SPC560Bx, SPC560Cx
30/113 Doc ID 14619 Rev 7
PE[8] PCR[72]
AF0
AF1
AF2
AF3
GPIO[72]
CAN2TX(12)
E0UC[22]
CAN3TX(11)
SIUL
FlexCAN_2
I/O
FlexCAN_3
I/O
O
eMIOS0
O
MTristate 9 13 G2
PE[9] PCR[73]
AF0
AF1
AF2
AF3
GPIO[73]
E0UC[23]
WKUP[7](4)
CAN2RX(12)
CAN3RX(11)
SIUL
eMIOS_0
WKPU
FlexCAN_2
FlexCAN_3
I/O
I/O
I
I
I
S Tristate 10 14 G1
PE[10] PCR[74]
AF0
AF1
AF2
AF3
GPIO[74]
LIN3TX
CS3_1
EIRQ[10]
SIUL
LINFlex_3
DSPI_1
SIUL
I/O
O
O
I
S Tristate 11 15 G3
PE[11] PCR[75]
AF0
AF1
AF2
AF3
GPIO[75]
CS4_1
LIN3RX
WKUP[14](4)
SIUL
DSPI_1
LINFlex_3
WKPU
I/O
O
I
I
S Tristate 13 17 H2
PE[12] PCR[76]
AF0
AF1
AF2
AF3
GPIO[76]
E1UC[19](13)
SIN_2
EIRQ[11]
SIUL
eMIOS_1
DSPI_2
SIUL
I/O
I/O
I
I
S Tristate 76 109 C14
Table 4. Functional port pin descriptions (continued)
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
SPC560Bx, SPC560Cx Package pinouts and signal descriptions
Doc ID 14619 Rev 7 31/113
PE[13] PCR[77]
AF0
AF1
AF2
AF3
GPIO[77]
SOUT2
E1UC[20]
SIUL
DSPI_2
eMIOS_1
I/O
O
I/O
S Tristate 103 D15
PE[14] PCR[78]
AF0
AF1
AF2
AF3
GPIO[78]
SCK_2
E1UC[21]
EIRQ[12]
SIUL
DSPI_2
eMIOS_1
SIUL
I/O
I/O
I/O
I
S Tristate 112 C13
PE[15] PCR[79]
AF0
AF1
AF2
AF3
GPIO[79]
CS0_2
E1UC[22]
SIUL
DSPI_2
eMIOS_1
I/O
I/O
I/O
M Tristate 113 A13
PF[0] PCR[80]
AF0
AF1
AF2
AF3
GPIO[80]
E0UC[10]
CS3_1
ANS[8]
SIUL
eMIOS_0
DSPI_1
ADC
I/O
I/O
O
I
JTristate 55 N10
PF[1] PCR[81]
AF0
AF1
AF2
AF3
GPIO[81]
E0UC[11]
CS4_1
ANS[9]
SIUL
eMIOS_0
DSPI_1
I
I/O
I/O
O
I
JTristate 56 P10
PF[2] PCR[82]
AF0
AF1
AF2
AF3
GPIO[82]
E0UC[12]
CS0_2
ANS[10]
SIUL
eMIOS_0
DSPI_2
ADC
I/O
I/O
I/O
I
J Tristate 57 T10
Table 4. Functional port pin descriptions (continued)
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
Package pinouts and signal descriptions SPC560Bx, SPC560Cx
32/113 Doc ID 14619 Rev 7
PF[3] PCR[83]
AF0
AF1
AF2
AF3
GPIO[83]
E0UC[13]
CS1_2
ANS[11]
SIUL
eMIOS_0
DSPI_2
ADC
I/O
I/O
O
I
JTristate 58 R10
PF[4] PCR[84]
AF0
AF1
AF2
AF3
GPIO[84]
E0UC[14]
CS2_2
ANS[12]
SIUL
eMIOS_0
DSPI_2
ADC
I/O
I/O
O
I
JTristate 59 N11
PF[5] PCR[85]
AF0
AF1
AF2
AF3
GPIO[85]
E0UC[22]
CS3_2
ANS[13]
SIUL
eMIOS_0
DSPI_2
ADC
I/O
I/O
O
I
JTristate 60 P11
PF[6] PCR[86]
AF0
AF1
AF2
AF3
GPIO[86]
E0UC[23]
ANS[14]
SIUL
eMIOS_0
ADC
I/O
I/O
I
J Tristate 61 T11
PF[7] PCR[87]
AF0
AF1
AF2
AF3
GPIO[87]
ANS[15]
SIUL
ADC
I/O
I
JTristate 62 R11
Table 4. Functional port pin descriptions (continued)
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
SPC560Bx, SPC560Cx Package pinouts and signal descriptions
Doc ID 14619 Rev 7 33/113
PF[8] PCR[88]
AF0
AF1
AF2
AF3
GPIO[88]
CAN3TX(14)
CS4_0
CAN2TX(15)
SIUL
FlexCAN_3
DSPI_0
FlexCAN_2
I/O
O
O
O
MTristate 34 P1
PF[9] PCR[89]
AF0
AF1
AF2
AF3
GPIO[89]
CS5_0
CAN2RX(15)
CAN3RX(14)
SIUL
DSPI_0
FlexCAN_2
FlexCAN_3
I/O
O
I
I
STristate 33 N2
PF[10] PCR[90]
AF0
AF1
AF2
AF3
GPIO[90]
SIUL
I/O
MTristate 38 R3
PF[11] PCR[91]
AF0
AF1
AF2
AF3
GPIO[91]
WKUP[15](4)
SIUL
WKPU
I/O
I
STristate 39 R4
PF[12] PCR[92]
AF0
AF1
AF2
AF3
GPIO[92]
E1UC[25]
SIUL
eMIOS_1
I/O
I/O
MTristate 35 R1
PF[13] PCR[93]
AF0
AF1
AF2
AF3
GPIO[93]
E1UC[26]
WKUP[16](4)
SIUL
eMIOS_1
WKPU
I/O
I/O
I
STristate 41 T6
Table 4. Functional port pin descriptions (continued)
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
Package pinouts and signal descriptions SPC560Bx, SPC560Cx
34/113 Doc ID 14619 Rev 7
PF[14] PCR[94]
AF0
AF1
AF2
AF3
GPIO[94]
CAN4TX(11)
E1UC[27]
CAN1TX
SIUL
FlexCAN_4
eMIOS_1
FlexCAN_4
I/O
O
I/O
O
M Tristate 102 D14
PF[15] PCR[95]
AF0
AF1
AF2
AF3
GPIO[95]
CAN1RX
CAN4RX(11)
EIRQ[13]
SIUL
FlexCAN_1
FlexCAN_4
SIUL
I/O
I
I
I
S Tristate 101 E15
PG[0] PCR[96]
AF0
AF1
AF2
AF3
GPIO[96]
CAN5TX(11)
E1UC[23]
SIUL
FlexCAN_5
eMIOS_1
I/O
O
I/O
MTristate 98 E14
PG[1] PCR[97]
AF0
AF1
AF2
AF3
GPIO[97]
E1UC[24]
CAN5RX(11)
EIRQ[14]
SIUL
eMIOS_1
FlexCAN_5
SIUL
I/O
I/O
I
I
STristate 97 E13
PG[2] PCR[98]
AF0
AF1
AF2
AF3
GPIO[98]
E1UC[11]
SIUL
eMIOS_1
I/O
I/O
MTristate 8 E4
Table 4. Functional port pin descriptions (continued)
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
SPC560Bx, SPC560Cx Package pinouts and signal descriptions
Doc ID 14619 Rev 7 35/113
PG[3] PCR[99]
AF0
AF1
AF2
AF3
GPIO[99]
E1UC[12]
WKUP[17](4)
SIUL
eMIOS_1
WKPU
I/O
I/O
I
STristate 7 E3
PG[4] PCR[100]
AF0
AF1
AF2
AF3
GPIO[100]
E1UC[13]
SIUL
eMIOS_1
I/O
I/O
MTristate 6 E1
PG[5] PCR[101]
AF0
AF1
AF2
AF3
GPIO[101]
E1UC[14]
WKUP[18](4)
SIUL
eMIOS_1
WKPU
I/O
I/O
I
STristate 5 E2
PG[6] PCR[102]
AF0
AF1
AF2
AF3
GPIO[102]
E1UC[15]
SIUL
eMIOS_1
I/O
I/O
MTristate 30 M2
PG[7] PCR[103]
AF0
AF1
AF2
AF3
GPIO[103]
E1UC[16]
SIUL
eMIOS_1
I/O
I/O
MTristate 29 M1
PG[8] PCR[104]
AF0
AF1
AF2
AF3
GPIO[104]
E1UC[17]
CS0_2
EIRQ[15]
SIUL
eMIOS_1
DSPI_2
SIUL
I/O
I/O
I/O
I
STristate 26 L2
Table 4. Functional port pin descriptions (continued)
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
Package pinouts and signal descriptions SPC560Bx, SPC560Cx
36/113 Doc ID 14619 Rev 7
PG[9] PCR[105]
AF0
AF1
AF2
AF3
GPIO[105]
E1UC[18]
SCK_2
SIUL
eMIOS1
DSPI_2
I/O
I/O
I/O
STristate 25 L1
PG[10] PCR[106]
AF0
AF1
AF2
AF3
GPIO[106]
E0UC[24]
SIUL
eMIOS_0
I/O
I/O
S Tristate 114 D13
PG[11] PCR[107]
AF0
AF1
AF2
AF3
GPIO[107]
E0UC[25]
SIUL
eMIOS_0
I/O
I/O
M Tristate 115 B12
PG[12] PCR[108]
AF0
AF1
AF2
AF3
GPIO[108]
E0UC[26]
SIUL
eMIOS_0
I/O
I/O
MTristate 92 K14
PG[13] PCR[109]
AF0
AF1
AF2
AF3
GPIO[109]
E0UC[27]
SIUL
eMIOS_0
I/O
I/O
MTristate 91 K16
PG[14] PCR[110]
AF0
AF1
AF2
AF3
GPIO[110]
E1UC[0]
SIUL
eMIOS_1
I/O
I/O
S Tristate 110 B14
PG[15] PCR[111]
AF0
AF1
AF2
AF3
GPIO[111]
E1UC[1]
SIUL
eMIOS_1
I/O
I/O
M Tristate 111 B13
Table 4. Functional port pin descriptions (continued)
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
SPC560Bx, SPC560Cx Package pinouts and signal descriptions
Doc ID 14619 Rev 7 37/113
PH[0] PCR[112]
AF0
AF1
AF2
AF3
GPIO[112]
E1UC[2]
SIN1
SIUL
eMIOS_1
DSPI_1
I/O
I/O
I
M Tristate 93 F13
PH[1] PCR[113]
AF0
AF1
AF2
AF3
GPIO[113]
E1UC[3]
SOUT1
SIUL
eMIOS_1
DSPI_1
I/O
I/O
O
M Tristate 94 F14
PH[2] PCR[114]
AF0
AF1
AF2
AF3
GPIO[114]
E1UC[4]
SCK_1
SIUL
eMIOS_1
DSPI_1
I/O
I/O
I/O
M Tristate 95 F16
PH[3] PCR[115]
AF0
AF1
AF2
AF3
GPIO[115]
E1UC[5]
CS0_1
SIUL
eMIOS_1
DSPI_1
I/O
I/O
I/O
M Tristate 96 F15
PH[4] PCR[116]
AF0
AF1
AF2
AF3
GPIO[116]
E1UC[6]
SIUL
eMIOS_1
I/O
I/O
M Tristate 134 A6
PH[5] PCR[117]
AF0
AF1
AF2
AF3
GPIO[117]
E1UC[7]
SIUL
eMIOS_1
I/O
I/O
S Tristate 135 B6
Table 4. Functional port pin descriptions (continued)
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
Package pinouts and signal descriptions SPC560Bx, SPC560Cx
38/113 Doc ID 14619 Rev 7
PH[6] PCR[118]
AF0
AF1
AF2
AF3
GPIO[118]
E1UC[8]
MA[2]
SIUL
eMIOS_1
ADC
I/O
I/O
O
M Tristate 136 D5
PH[7] PCR[119]
AF0
AF1
AF2
AF3
GPIO[119]
E1UC[9]
CS3_2
MA[1]
SIUL
eMIOS_1
DSPI_2
ADC
I/O
I/O
O
O
M Tristate 137 C5
PH[8] PCR[120]
AF0
AF1
AF2
AF3
GPIO[120]
E1UC[10]
CS2_2
MA[0]
SIUL
eMIOS_1
DSPI_2
ADC
I/O
I/O
O
O
M Tristate 138 A5
PH[9](9) PCR[121]
AF0
AF1
AF2
AF3
GPIO[121]
TCK
SIUL
JTAGC
I/O
I
S
Input,
weak
pull-up
88 127 B8
PH[10](9) PCR[122]
AF0
AF1
AF2
AF3
GPIO[122]
TMS
SIUL
JTAGC
I/O
I
S
Input,
weak
pull-up
81 120 B9
1. Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 -> AF0; PCR.PA = 01->AF1; PCR.PA=10->AF2;
PCR.PA = 11 -> AF3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values
selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as “—”.
2. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside
the SIUL module.
3. LBGA208 available only as development package for Nexus2+
4. All WKUP pins also support external interrupt capability. See wakeup unit chapter for further details.
5. NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.
6. “Not applicable” because these functions are available only while the device is booting. Refer to BAM chapter of the reference manual for details.
Table 4. Functional port pin descriptions (continued)
Port
pin
PCR
register
Alternate
function(1) Function Peripheral I/O
direction(2)
Pad
type
RESET
config.
Pin No.
LQFP
64
LQFP
100
LQFP
144
LBGA
208(3)
SPC560Bx, SPC560Cx Package pinouts and signal descriptions
Doc ID 14619 Rev 7 39/113
7. Value of PCR.IBE bit must be 0
8. This pad is used on SPC560B64L3 and SPC560B64L5 to provide supply for the second ADC. Therefore it is recommended not using it to keep the compatibility with the
family devices.
9. Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
PC[0:1] are available as JTAG pins (TDI and TDO respectively).
PH[9:10] are available as JTAG pins (TCK and TMS respectively).
It is up to the user to configure these pins as GPIO when needed, in this case SPC560Bx and SPC560Cx get incompliance with IEEE 1149.1-2001.
10. The TDO pad has been moved into the STANDBY domain in order to allow low-power debug handshaking in STANDBY mode. However, no pull-resistor is active on the
TDO pad while in STANDBY mode. At this time the pad is configured as an input. When no debugger is connected the TDO pad is floating causing additional current
consumption. To avoid the extra consumption TDO must be connected. An external pull-up resistor in the range of 47–100 kOhms should be added between the TDO pin
and VDD. Only in case the TDO pin is used as application pin and a pull-up cannot be used then a pull-down resistor with the same value should be used between TDO pin
and GND instead.
11. Available only on SPC560Cx versions and SPC560B50B2 devices
12. Not available on SPC560B40L3 and SPC560B40L5 devices
13. Not available in LQFP100 package
14. Available only on SPC560B50B2 devices
15. Not available on SPC560B44L3 devices
Electrical characteristics SPC560Bx, SPC560Cx
40/113 Doc ID 14619 Rev 7
4 Electrical characteristics
4.1 Introduction
This section contains electrical characteristics of the device as well as temperature and
power considerations.
This product contains devices to protect the inputs against damage due to high static
voltages. However, it is advisable to take precautions to avoid application of any voltage
higher than the specified maximum rated voltages.
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (VDD
or VSS). This could be done by the internal pull-up and pull-down, which is provided by the
product for most general purpose pins.
The parameters listed in the following tables represent the characteristics of the device and
its demands on the system.
In the tables where the device logic provides signals with their respective timing
characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol
column.
In the tables where the external system must provide signals with their respective timing
characteristics to the device, the symbol “SR” for System Requirement is included in the
Symbol column.
Caution: All LQFP64 information is indicative and must be confirmed during silicon validation.
4.2 Parameter classification
The electrical parameters shown in this supplement are guaranteed by various methods. To
give the customer a better understanding, the classifications listed in Ta bl e 5 are used and
the parameters are tagged accordingly in the tables where appropriate.
Note: The classification is shown in the column labeled “C” in the parameter tables where
appropriate.
Table 5. Parameter classifications
Classification tag Tag description
P Those parameters are guaranteed during production testing on each individual device.
CThose parameters are achieved by the design characterization by measuring a statistically
relevant sample size across process variations.
T
Those parameters are achieved by design characterization on a small sample size from typical
devices under typical conditions unless otherwise noted. All values shown in the typical
column are within this category.
D Those parameters are derived mainly from simulations.
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 41/113
4.3 NVUSRO register
Portions of the device configuration, such as high voltage supply, oscillator margin, and
watchdog enable/disable after reset are controlled via bit values in the Non-Volatile User
Options Register (NVUSRO) register.
4.3.1 NVUSRO[PAD3V5V] field description
Ta bl e 6 shows how NVUSRO[PAD3V5V] controls the device configuration.
The DC electrical characteristics are dependent on the PAD3V5V bit value.
4.3.2 NVUSRO[OSCILLATOR_MARGIN] field description
Ta bl e 7 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.
The fast external crystal oscillator consumption is dependent on the
OSCILLATOR_MARGIN bit value.
For a detailed description of the NVUSRO register, please refer to the SPC560Bx and
SPC560Cx Reference Manual.
4.4 Absolute maximum ratings
Table 6. PAD3V5V field description(1)
1. See the device reference manual for more information on the NVUSRO register.
Value(2)
2. '1' is delivery value. It is part of shadow Flash, thus programmable by customer.
Description
0 High voltage supply is 5.0 V
1 High voltage supply is 3.3 V
Table 7. OSCILLATOR_MARGIN field description(1)
1. See the device reference manual for more information on the NVUSRO register.
Value(2)
2. '1' is delivery value. It is part of shadow Flash, thus programmable by customer.
Description
0 Low consumption configuration (4 MHz/8 MHz)
1 High margin configuration (4 MHz/16 MHz)
Table 8. Absolute maximum ratings
Symbol Parameter Conditions
Value
Unit
Min Max
VSS SR Digital ground on VSS_HV pins 0 0 V
VDD SR Voltage on VDD_HV pins with respect to ground
(VSS)0.3 6.0 V
Electrical characteristics SPC560Bx, SPC560Cx
42/113 Doc ID 14619 Rev 7
Note: Stresses exceeding the recommended absolute maximum ratings may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at
these or any other conditions above those indicated in the operational sections of this
specification are not implied. Exposure to absolute maximum rating conditions for extended
periods may affect device reliability. During overload conditions (VIN >V
DD or VIN <V
SS),
the voltage on pins with respect to ground (VSS) must not exceed the recommended values.
4.5 Recommended operating conditions
VSS_LV SR Voltage on VSS_LV (low voltage digital supply)
pins with respect to ground (VSS)—V
SS0.1 VSS+0.1 V
VDD_BV SR Voltage on VDD_BV pin (regulator supply) with
respect to ground (VSS)
0.3 6.0 V
Relative to VDD 0.3 VDD+0.3
VSS_ADC SR Voltage on VSS_HV_ADC (ADC reference) pin
with respect to ground (VSS)—V
SS0.1 VSS+0.1 V
VDD_ADC SR Voltage on VDD_HV_ADC pin (ADC reference)
with respect to ground (VSS)
0.3 6.0 V
Relative to VDD VDD 0.3 VDD+0.3
VIN SR Voltage on any GPIO pin with respect to ground
(VSS)
0.3 6.0 V
Relative to VDD —V
DD+0.3
IINJPAD SR Injected input current on any pin during overload
condition 10 10
mA
IINJSUM SR Absolute sum of all injected input currents during
overload condition 50 50
IAVGSEG SR Sum of all the static I/O current within a supply
segment
VDD = 5.0 V ± 10%,
PAD3V5V = 0 —70
mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 —64
ICORELV SR Low voltage static current sink through VDD_BV 150 mA
TSTORAGE SR Storage temperature 55 150 °C
Table 9. Recommended operating conditions (3.3 V)
Symbol Parameter Conditions
Value
Unit
Min Max
VSS SR Digital ground on VSS_HV pins 0 0 V
VDD(1) SR Voltage on VDD_HV pins with respect to ground
(VSS)—3.03.6V
VSS_LV(2) SR Voltage on VSS_LV (low voltage digital supply)
pins with respect to ground (VSS)—V
SS0.1 VSS+0.1 V
Table 8. Absolute maximum ratings (continued)
Symbol Parameter Conditions
Value
Unit
Min Max
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 43/113
VDD_BV(3) SR Voltage on VDD_BV pin (regulator supply) with
respect to ground (VSS)
—3.03.6
V
Relative to VDD VDD0.1 VDD+0.1
VSS_ADC SR Voltage on VSS_HV_ADC (ADC reference) pin
with respect to ground (VSS)—V
SS0.1 VSS+0.1 V
VDD_ADC(4) SR Voltage on VDD_HV_ADC pin (ADC reference)
with respect to ground (VSS)
—3.0
(5) 3.6 V
Relative to VDD VDD0.1 VDD+0.1
VIN SR Voltage on any GPIO pin with respect to ground
(VSS)
—V
SS0.1 V
Relative to VDD —V
DD+0.1
IINJPAD SR Injected input current on any pin during overload
condition 55
mA
IINJSUM SR Absolute sum of all injected input currents during
overload condition 50 50
TVDD SR VDD slope to ensure correct power up(6) 0.25 V/µs
1. 100 nF capacitance needs to be provided between each VDD/VSS pair
2. 330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.
3. 400 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed
depending on external regulator characteristics).
4. 100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.
5. Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical
characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL, device is
reset.
6. Guaranteed by device validation
Table 10. Recommended operating conditions (5.0 V)
Symbol Parameter Conditions
Value
Unit
Min Max
VSS SR Digital ground on VSS_HV pins 0 0 V
VDD(1) SR Voltage on VDD_HV pins with respect to ground
(VSS)
—4.55.5
V
Voltage drop(2) 3.0 5.5
VSS_LV(3) SR Voltage on VSS_LV (low voltage digital supply) pins
with respect to ground (VSS)—V
SS0.1 VSS+0.1 V
VDD_BV(4) SR Voltage on VDD_BV pin (regulator supply) with
respect to ground (VSS)
—4.55.5
VVoltage drop(2) 3.0 5.5
Relative to VDD VDD0.1 VDD+0.1
VSS_ADC SR Voltage on VSS_HV_ADC (ADC reference) pin with
respect to ground (VSS
—V
SS0.1 VSS+0.1 V
Table 9. Recommended operating conditions (3.3 V) (continued)
Symbol Parameter Conditions
Value
Unit
Min Max
Electrical characteristics SPC560Bx, SPC560Cx
44/113 Doc ID 14619 Rev 7
Note: RAM data retention is guaranteed with VDD_LV not below 1.08 V.
4.6 Thermal characteristics
4.6.1 Package thermal characteristics
VDD_ADC(5) SR Voltage on VDD_HV_ADC pin (ADC reference) with
respect to ground (VSS)
—4.55.5
VVoltage drop(2) 3.0 5.5
Relative to VDD VDD0.1 VDD+0.1
VIN SR Voltage on any GPIO pin with respect to ground
(VSS)
—V
SS0.1 V
Relative to VDD —V
DD+0.1
IINJPAD SR Injected input current on any pin during overload
condition 55
mA
IINJSUM SR Absolute sum of all injected input currents during
overload condition 50 50
TVDD SR VDD slope to ensure correct power up(6) 0.25 V/µs
1. 100 nF capacitance needs to be provided between each VDD/VSS pair.
2. Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.0 V. However, certain analog
electrical characteristics will not be guaranteed to stay within the stated limits.
3. 330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.
4. 100 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed
depending on external regulator characteristics).
5. 100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.
6. Guaranteed by device validation
Table 11. LQFP thermal characteristics(1)
Symbol C Parameter Conditions(2) Pin count Value Unit
RJA CC D Thermal resistance, junction-to-
ambient natural convection(3)
Single-layer board - 1s
64 TBD
°C/W
100 64
144 64
Four-layer board - 2s2p
64 TBD
100 51
144 49
Table 10. Recommended operating conditions (5.0 V) (continued)
Symbol Parameter Conditions
Value
Unit
Min Max
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 45/113
4.6.2 Power considerations
The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using
Equation 1:
Equation 1 TJ = TA + (PD x RJA)
RJB CC D Thermal resistance, junction-to-
board(4)
Single-layer board - 1s
64 TBD
°C/W
100 36
144 37
Four-layer board - 2s2p
64 TBD
100 34
144 35
RJC CC D Thermal resistance, junction-to-
case(5)
Single-layer board - 1s
64 TBD
°C/W
100 22
144 22
Four-layer board - 2s2p
64 TBD
100 22
144 22
JB CC D
Junction-to-board thermal
characterization parameter, natural
convection
Single-layer board - 1s
64 TBD
°C/W
100 33
144 34
Four-layer board - 2s2p
64 TBD
100 34
144 35
JC CC D
Junction-to-case thermal
characterization parameter, natural
convection
Single-layer board - 1s
64 TBD
°C/W
100 9
144 10
Four-layer board - 2s2p
64 TBD
100 9
144 10
1. Thermal characteristics are based on simulation.
2. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = -40 to 125 °C
3. Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets
JEDEC specification for this package. When Greek letters are not available, the symbols are typed as RthJA and RthJMA.
4. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for
the specified package. When Greek letters are not available, the symbols are typed as RthJB.
5. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is
used for the case temperature. Reported value includes the thermal resistance of the interface layer. When Greek letters
are not available, the symbols are typed as RthJC.
Table 11. LQFP thermal characteristics(1) (continued)
Symbol C Parameter Conditions(2) Pin count Value Unit
Electrical characteristics SPC560Bx, SPC560Cx
46/113 Doc ID 14619 Rev 7
Where:
TA is the ambient temperature in °C.
RJA is the package junction-to-ambient thermal resistance, in °C/W.
PD is the sum of PINT and PI/O (PD = PINT + PI/O).
PINT is the product of IDD and VDD, expressed in watts. This is the chip internal
power.
PI/O represents the power dissipation on input and output pins; user determined.
Most of the time for the applications, PI/O< PINT and may be neglected. On the other hand,
PI/O may be significant, if the device is configured to continuously drive external modules
and/or memories.
An approximate relationship between PD and TJ (if PI/O is neglected) is given by:
Equation 2 PD = K / (TJ + 273 °C)
Therefore, solving equations 1 and 2:
Equation 3 K = PD x (TA + 273 °C) + RJA x PD2
Where:
K is a constant for the particular part, which may be determined from Equation 3
by measuring PD (at equilibrium) for a known TA. Using this value of K, the values
of PD and TJ may be obtained by solving equations 1 and 2 iteratively for any value
of TA.
4.7 I/O pad electrical characteristics
4.7.1 I/O pad types
The device provides four main I/O pad types depending on the associated alternate
functions:
Slow pads—These pads are the most common pads, providing a good compromise
between transition time and low electromagnetic emission.
Medium pads—These pads provide transition fast enough for the serial communication
channels with controlled current to reduce electromagnetic emission.
Fast pads—These pads provide maximum speed. There are used for improved Nexus
debugging capability.
Input only pads—These pads are associated to ADC channels and the external 32 kHz
crystal oscillator (SXOSC) providing low input leakage.
Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at
the cost of reducing AC performance.
4.7.2 I/O input DC characteristics
Ta bl e 1 2 provides input DC electrical characteristics as described in Figure 6.
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 47/113
Figure 6. I/O input DC electrical characteristics definition
Table 12. I/O input DC electrical characteristics
Symbol C Parameter Conditions(1)
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value
Unit
Min Typ Max
VIH SR P Input high level CMOS (Schmitt
Trigger) —0.65V
DD —V
DD+0.4
VVIL SR P Input low level CMOS (Schmitt
Trigger) 0.4 0.35VDD
VHYS CC C Input hysteresis CMOS (Schmitt
Trigger) —0.1V
DD ——
ILKG CC
P
Digital input leakage No injection on
adjacent pin
TA=40 °C 2
nA
PT
A= 25 °C 2
DT
A=105 °C 12 500
PT
A= 125 °C 70 1000
WFI(2)
2. In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and voltage.
SR P Wakeup input filtered pulse 40 ns
WNFI(
2) SR P Wakeup input not filtered pulse 1000 ns
VIL
VIN
VIH
PDIx = ‘1’
VDD
VHYS
(GPDI register of SIUL)
PDIx = ‘0’
Electrical characteristics SPC560Bx, SPC560Cx
48/113 Doc ID 14619 Rev 7
4.7.3 I/O output DC characteristics
The following tables provide DC characteristics for bidirectional pads:
Ta b le 1 3 provides weak pull figures. Both pull-up and pull-down resistances are
supported.
Ta b le 1 4 provides output driver characteristics for I/O pads when in SLOW
configuration.
Ta b le 1 5 provides output driver characteristics for I/O pads when in MEDIUM
configuration.
Ta b le 1 6 provides output driver characteristics for I/O pads when in FAST configuration.
Table 13. I/O pull-up/pull-down DC electrical characteristics
Symbol C Parameter Conditions(1)
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
Value
Unit
Min Typ Max
|IWPU|CC
P
Weak pull-up current
absolute value
VIN = VIL, VDD = 5.0 V ± 10% PA D 3 V 5 V = 0 1 0 1 5 0
µAC PAD3V5V = 1(2)
2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
10 250
PV
IN = VIL, VDD = 3.3 V ± 10% PAD3V5V = 1 10 150
|IWPD|CC
P
Weak pull-down current
absolute value
VIN = VIH, VDD = 5.0 V ± 10% PAD 3 V5 V = 0 1 0 1 5 0
µAC PAD3V5V = 1 10 250
PV
IN = VIH, VDD = 3.3 V ± 10% PAD3V5V = 1 10 150
Table 14. SLOW configuration output buffer electrical characteristics
Symbol C Parameter Conditions(1)
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value
Unit
Min Typ Max
VOH CC
P
Output high level
SLOW configuration Push Pull
IOH = 2mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.8VDD ——
VC IOH = 2mA,
VDD = 5.0 V ± 10%, PAD3V5V = 1(2) 0.8VDD ——
C
IOH = 1mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
VDD0.8
VOL CC
P
Output low level
SLOW configuration Push Pull
IOL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.1VDD
VC IOL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 1(2) 0.1VDD
C
IOL = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
——0.5
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 49/113
2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
Table 15. MEDIUM configuration output buffer electrical characteristics
Symbol C Parameter Conditions(1)
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value
Unit
Min Typ Max
VOH CC
C
Output high level
MEDIUM
configuration
Push
Pull
IOH = 3.8 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD ——
V
P
IOH = 2mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.8VDD ——
CIOH = 1mA,
VDD = 5.0 V ± 10%, PAD3V5V = 1(2)
2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
0.8VDD ——
C
IOH = 1mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
VDD0.8
CIOH = 100 µA,
VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD ——
VOL CC
C
Output low level
MEDIUM
configuration
Push
Pull
IOL = 3.8 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0 0.2VDD
V
P
IOL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.1VDD
CIOL = 1 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 1(2) 0.1VDD
C
IOL = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
——0.5
CIOH = 100 µA,
VDD = 5.0 V ± 10%, PAD3V5V = 0 0.1VDD
Electrical characteristics SPC560Bx, SPC560Cx
50/113 Doc ID 14619 Rev 7
4.7.4 Output pin transition times
Table 16. FAST configuration output buffer electrical characteristics
Symbol C Parameter Conditions(1)
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value
Unit
Min Typ Max
VOH CC
P
Output high level
FAST configuration
Push
Pull
IOH = 14mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.8VDD ——
VC IOH = 7mA,
VDD = 5.0 V ± 10%, PAD3V5V = 1(2)
2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
0.8VDD ——
C
IOH = 11mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
VDD
0.8 ——
VOL CC
P
Output low level
FAST configuration
Push
Pull
IOL = 14mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.1VDD
VC IOL = 7mA,
VDD = 5.0 V ± 10%, PAD3V5V = 1(2) 0.1VDD
C
IOL = 11mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
——0.5
Table 17. Output pin transition times
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
Ttr CC
D
Output transition time
output pin(2)
SLOW configuration
CL = 25 pF
VDD = 5.0 V ± 10%,
PAD3V5V = 0
——50
ns
TC
L = 50 pF 100
DC
L = 100 pF 125
DC
L = 25 pF
VDD = 3.3 V ± 10%, PAD3V5V = 1
——50
TC
L = 50 pF 100
DC
L = 100 pF 125
Ttr CC
D
Output transition time
output pin(2)
MEDIUM configuration
CL = 25 pF
VDD = 5.0 V ± 10%, PAD3V5V = 0
SIUL.PCRx.SRC = 1
——10
ns
TC
L = 50 pF 20
DC
L = 100 pF 40
DC
L = 25 pF
VDD = 3.3 V ± 10%, PAD3V5V = 1
SIUL.PCRx.SRC = 1
——12
TC
L = 50 pF 25
DC
L = 100 pF 40
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 51/113
4.7.5 I/O pad current specification
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is
associated to a VDD/VSS supply pair as described in Ta b le 1 8 .
Ta bl e 1 9 provides I/O consumption figures.
In order to ensure device reliability, the average current of the I/O on a single segment
should remain below the IAVGSEG maximum value.
In order to ensure device functionality, the sum of the dynamic and static current of the I/O
on a single segment should remain below the IDYNSEG maximum value.
Ttr CC D
Output transition time
output pin(2)
FAST configuration
CL = 25 pF
VDD = 5.0 V ± 10%, PAD3V5V = 0
—— 4
ns
CL = 50 pF 6
CL = 100 pF 12
CL = 25 pF
VDD = 3.3 V ± 10%, PAD3V5V = 1
—— 4
CL = 50 pF 7
CL = 100 pF 12
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2. CL includes device and package capacitances (CPKG < 5 pF).
Table 17. Output pin transition times (continued)
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
Table 18. I/O supply segment
Package
Supply segment
123456
LBGA208(1) Equivalent to LQFP144 segment pad distribution MCKO MDOn/MSEO
LQFP144 pin20–pin49 pin51–pin99 pin100–pin122 pin 123–pin19
LQFP100 pin16–pin35 pin37–pin69 pin70–pin83 pin 84–pin15
LQFP64(2) pin8–pin26 pin28–pin55 pin56–pin7
1. LBGA208 available only as development package for Nexus2+
2. All LQFP64 information is indicative and must be confirmed during silicon validation.
Table 19. I/O consumption
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
ISWTSLW(2) CCDDynamic I/O current for
SLOW configuration CL = 25 pF
VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——20
mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——16
Electrical characteristics SPC560Bx, SPC560Cx
52/113 Doc ID 14619 Rev 7
Ta bl e 2 0 provides the weight of concurrent switching I/Os.
In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on
a single segment should remain below the 100%.
ISWTMED(2
)CCDDynamic I/O current for
MEDIUM configuration CL = 25 pF
VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——29
mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——17
ISWTFST(2) CCDDynamic I/O current for
FAST configuration CL = 25 pF
VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——110
mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——50
IRMSSLW CC D
Root medium square I/O
current for SLOW
configuration
CL = 25 pF, 2 MHz
VDD = 5.0 V ± 10%,
PAD3V5V = 0
——2.3
mA
CL = 25 pF, 4 MHz 3.2
CL = 100 pF, 2 MHz 6.6
CL = 25 pF, 2 MHz VDD = 3.3 V ± 10%,
PAD3V5V = 1
——1.6
CL = 25 pF, 4 MHz 2.3
CL = 100 pF, 2 MHz 4.7
IRMSMED CC D
Root medium square I/O
current for MEDIUM
configuration
CL = 25 pF, 13 MHz VDD = 5.0 V ± 10%,
PAD3V5V = 0
——6.6
mA
CL = 25 pF, 40 MHz 13.4
CL = 100 pF, 13 MHz 18.3
CL = 25 pF, 13 MHz
VDD = 3.3 V ± 10%,
PAD3V5V = 1
—— 5
CL = 25 pF, 40 MHz 8.5
CL = 100 pF, 13 MHz 11
IRMSFST CC D
Root medium square I/O
current for FAST
configuration
CL = 25 pF, 40 MHz
VDD = 5.0 V ± 10%,
PAD3V5V = 0
——22
mA
CL = 25 pF, 64 MHz 33
CL = 100 pF, 40 MHz 56
CL = 25 pF, 40 MHz VDD = 3.3 V ± 10%,
PAD3V5V = 1
——14
CL = 25 pF, 64 MHz 20
CL = 100 pF, 40 MHz 35
IAVGSEG SR D
Sum of all the static I/O
current within a supply
segment
VDD = 5.0 V ± 10%, PAD3V5V = 0 70
mA
VDD = 3.3 V ± 10%, PAD3V5V = 1 65
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to125 °C, unless otherwise specified
2. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.
Table 19. I/O consumption (continued)
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 53/113
Table 20. I/O weight(1)
PAD
LQFP144/LQFP100 LQFP64(2)
Weight
5V
SRE=0
Weight
5V
SRE=1
Weight
3.3V
SRE=0
Weight
3.3V
SRE=1
Weight
5V
SRE=0
Weight
5V
SRE=1
Weight
3.3V
SRE=0
Weight
3.3V
SRE=1
PB[3] 10% 12% 10% 12%
PC[9] 10% 12% 10% 12%
PC[14] 9% 11% 9% 11%
PC[15] 9% 13% 11% 12% 9% 13% 11% 12%
PG[5] 9% 11% 9% 11%
PG[4] 9% 12% 10% 11% 9% 12% 10% 11%
PG[3] 9% 10% 9% 10%
PG[2] 8% 12% 10% 10% 8% 12% 10% 10%
PA[2] 8% 9% 8% 9%
PE[0] 8% 9% 8% 9%
PA[1] 7% 9% 7% 9%
PE[1] 7% 10% 8% 9% 7% 10% 8% 9%
PE[8] 7% 9% 8% 8% 7% 9% 8% 8%
PE[9] 6% 7% 6% 7%
PE[10] 6% 7% 6% 7%
PA[0]5%8%6%7%5%8%6%7%
PE[11] 5% 6% 5% 6%
PG[9] 9% 10% 9% 10%
PG[8] 9% 11% 9% 11%
PC[11] 9% 11% 9% 11%
PC[10] 9% 13% 11% 12% 9% 13% 11% 12%
PG[7] 10% 14% 11% 12% 10% 14% 11% 12%
PG[6] 10% 14% 12% 12% 10% 14% 12% 12%
PB[0] 10% 14% 12% 12% 10% 14% 12% 12%
PB[1] 10% 12% 10% 12%
PF[9] 10% 12% 10% 12%
PF[8] 10% 15% 12% 13% 10% 15% 12% 13%
PF[12] 10% 15% 12% 13% 10% 15% 12% 13%
PC[6] 10% 12% 10% 12%
PC[7] 10% 12% 10% 12%
PF[10] 10% 14% 12% 12% 10% 14% 12% 12%
PF[11] 10% 11% 10% 11%
Electrical characteristics SPC560Bx, SPC560Cx
54/113 Doc ID 14619 Rev 7
PA[15] 9% 12% 10% 11% 9% 12% 10% 11%
PF[13] 8% 10% 8% 10%
PA[14] 8% 11% 9% 10% 8% 11% 9% 10%
PA[4] 8% 9% 8% 9%
PA[13] 7% 10% 9% 9% 7% 10% 9% 9%
PA[12] 7% 8% 7% 8%
PB[9] 1% 1% 1% 1%
PB[8] 1% 1% 1% 1%
PB[10] 6% 7% 6% 7%
PF[0] 6% 7% 6% 7%
PF[1] 7% 8% 7% 8%
PF[2] 7% 8% 7% 8%
PF[3] 7% 9% 8% 9%
PF[4] 8% 9% 8% 9%
PF[5] 8% 10% 8% 10%
PF[6] 8% 10% 9% 10%
PF[7] 9% 10% 9% 11%
PD[0] 1% 1% 1% 1%
PD[1] 1% 1% 1% 1%
PD[2] 1% 1% 1% 1%
PD[3] 1% 1% 1% 1%
PD[4] 1% 1% 1% 1%
PD[5] 1% 1% 1% 1%
PD[6] 1% 1% 1% 1%
PD[7] 1% 1% 1% 1%
PD[8] 1% 1% 1% 1%
PB[4] 1% 1% 1% 1%
PB[5] 1% 1% 1% 2%
PB[6] 1% 1% 1% 2%
PB[7] 1% 1% 1% 2%
PD[9] 1% 1% 1% 2%
PD[10] 1% 1% 1% 2%
Table 20. I/O weight(1)
PAD
LQFP144/LQFP100 LQFP64(2)
Weight
5V
SRE=0
Weight
5V
SRE=1
Weight
3.3V
SRE=0
Weight
3.3V
SRE=1
Weight
5V
SRE=0
Weight
5V
SRE=1
Weight
3.3V
SRE=0
Weight
3.3V
SRE=1
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 55/113
PD[11] 1% 1% 1% 2%
PB[11] 11% 13% 17% 21%
PD[12] 11% 13% 18% 21%
PB[12] 11% 13% 18% 21%
PD[13] 10% 12% 18% 21%
PB[13] 10% 12% 18% 21%
PD[14] 10% 12% 18% 21%
PB[14] 10% 12% 18% 21%
PD[15] 10% 11% 18% 21%
PB[15] 9% 11% 18% 21%
PA[3] 9% 11% 18% 21%
PG[13] 9% 13% 10% 11% 18% 26% 21% 23%
PG[12] 9% 12% 10% 11% 18% 26% 21% 23%
PH[0] 5% 8% 6% 7% 18% 26% 21% 23%
PH[1] 5% 7% 6% 6% 18% 26% 21% 23%
PH[2] 5% 6% 5% 6% 18% 25% 21% 22%
PH[3] 4% 6% 5% 5% 18% 25% 21% 22%
PG[1] 4% 4% 18% 21%
PG[0] 3% 4% 4% 4% 17% 25% 21% 22%
PF[15] 3% 4% 17% 20%
PF[14] 4% 5% 5% 5% 16% 23% 20% 21%
PE[13] 4% 5% 16% 19%
PA[7] 5% 6% 16% 19%
PA[8] 5% 6% 16% 19%
PA[9] 5% 6% 15% 18%
PA[10] 6% 7% 15% 18%
PA[11] 6% 8% 14% 17%
PE[12] 7% 8% 11% 14%
PG[14] 7% 8% 10% 12%
PG[15] 7% 10% 8% 9% 10% 14% 12% 12%
PE[14] 7% 8% 9% 11%
PE[15] 7% 9% 8% 8% 9% 12% 10% 11%
Table 20. I/O weight(1)
PAD
LQFP144/LQFP100 LQFP64(2)
Weight
5V
SRE=0
Weight
5V
SRE=1
Weight
3.3V
SRE=0
Weight
3.3V
SRE=1
Weight
5V
SRE=0
Weight
5V
SRE=1
Weight
3.3V
SRE=0
Weight
3.3V
SRE=1
Electrical characteristics SPC560Bx, SPC560Cx
56/113 Doc ID 14619 Rev 7
4.8 RESET electrical characteristics
The device implements a dedicated bidirectional RESET pin.
PG[10] 6% 8% 8% 10%
PG[11] 6% 9% 7% 8% 8% 11% 9% 10%
PC[3] 6% 7% 7% 9%
PC[2]6%8%7%7%6%9%8%8%
PA[5]5%7%6%6%6%8%7%7%
PA[6] 5% 6% 5% 6%
PC[1] 5% 5% 5% 5%
PC[0]6%9%7%8%6%9%7%8%
PE[2] 7% 10% 9% 9% 7% 10% 9% 9%
PE[3] 8% 11% 9% 9% 8% 11% 9% 9%
PC[5] 8% 11% 9% 10% 8% 11% 9% 10%
PC[4] 8% 12% 10% 10% 8% 12% 10% 10%
PE[4] 8% 12% 10% 11% 8% 12% 10% 11%
PE[5] 9% 12% 10% 11% 9% 12% 10% 11%
PH[4] 9% 13% 11% 11% 9% 13% 11% 11%
PH[5] 9% 11% 9% 11%
PH[6] 9% 13% 11% 12% 9% 13% 11% 12%
PH[7] 9% 13% 11% 12% 9% 13% 11% 12%
PH[8] 10% 14% 11% 12% 10% 14% 11% 12%
PE[6] 10% 14% 12% 12% 10% 14% 12% 12%
PE[7] 10% 14% 12% 12% 10% 14% 12% 12%
PC[12] 10% 14% 12% 13% 10% 14% 12% 13%
PC[13] 10% 12% 10% 12%
PC[8] 10% 12% 10% 12%
PB[2] 10% 15% 12% 13% 10% 15% 12% 13%
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to125 °C, unless otherwise specified
2. All LQFP64 information is indicative and must be confirmed during silicon validation.
Table 20. I/O weight(1)
PAD
LQFP144/LQFP100 LQFP64(2)
Weight
5V
SRE=0
Weight
5V
SRE=1
Weight
3.3V
SRE=0
Weight
3.3V
SRE=1
Weight
5V
SRE=0
Weight
5V
SRE=1
Weight
3.3V
SRE=0
Weight
3.3V
SRE=1
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 57/113
Figure 7. Start-up reset requirements
Figure 8. Noise filtering on reset signal
Table 21. Reset electrical characteristics
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
VIH SR P Input High Level CMOS
(Schmitt Trigger) 0.65VDD —V
DD+0.4 V
VIL SR P Input low Level CMOS
(Schmitt Trigger) 0.4 0.35VDD V
VIL
VDD
device reset forced by RESET
VDDMIN
RESET
VIH
device start-up phase
VRESET
VIL
VIH
VDD
filtered by
hysteresis
filtered by
lowpass filter
WFRST
WNFRST
hw_rst
‘1’
‘0’
filtered by
lowpass filter
WFRST
unknown reset
state device under hardware reset
Electrical characteristics SPC560Bx, SPC560Cx
58/113 Doc ID 14619 Rev 7
VHYS CC C Input hysteresis CMOS
(Schmitt Trigger) —0.1V
DD ——V
VOL CC P Output low level
Push Pull, IOL = 2mA,
VDD = 5.0 V ± 10%,
PA D 3 V 5 V = 0
(recommended)
0.1VDD
V
Push Pull, IOL = 1mA,
VDD = 5.0 V ± 10%,
PA D 3 V 5 V = 1 (2)
0.1VDD
Push Pull, IOL = 1mA,
VDD = 3.3 V ± 10%,
PA D 3 V 5 V = 1
(recommended)
——0.5
Ttr CC D Output transition time
output pin(3)
CL = 25pF,
VDD = 5.0 V ± 10%,
PA D 3 V 5 V = 0
——10
ns
CL = 50pF,
VDD = 5.0 V ± 10%,
PA D 3 V 5 V = 0
——20
CL = 100pF,
VDD = 5.0 V ± 10%,
PA D 3 V 5 V = 0
——40
CL = 25pF,
VDD = 3.3 V ± 10%,
PA D 3 V 5 V = 1
——12
CL = 50pF,
VDD = 3.3 V ± 10%,
PA D 3 V 5 V = 1
——25
CL = 100pF,
VDD = 3.3 V ± 10%,
PA D 3 V 5 V = 1
——40
WFRST SR P RESET input filtered pulse 40 ns
WNFRST SR P RESET input not filtered
pulse 1000 ns
|IWPU|CCP
Weak pull-up current
absolute value
VDD = 3.3 V ± 10%,
PA D 3 V 5 V = 1 10 150
µA
VDD = 5.0 V ± 10%,
PA D 3 V 5 V = 0 10 150
VDD = 5.0 V ± 10%,
PA D 3 V 5 V = 1 (2) 10 250
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2. This transient configuration does not occurs when device is used in the VDD = 3.3 V ± 10% range.
3. CL includes device and package capacitance (CPKG <5pF).
Table 21. Reset electrical characteristics (continued)
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 59/113
4.9 Power management electrical characteristics
4.9.1 Voltage regulator electrical characteristics
The device implements an internal voltage regulator to generate the low voltage core supply
VDD_LV from the high voltage ballast supply VDD_BV
. The regulator itself is supplied by the
common I/O supply VDD. The following supplies are involved:
HV—High voltage external power supply for voltage regulator module. This must be
provided externally through VDD power pin.
BV—High voltage external power supply for internal ballast module. This must be
provided externally through VDD_BV power pin. Voltage values should be aligned with
VDD.
LV—Low voltage internal power supply for core, FMPLL and flash digital logic. This is
generated by the internal voltage regulator but provided outside to connect stability
capacitor. It is further split into four main domains to ensure noise isolation between
critical LV modules within the device:
LV_COR—Low voltage supply for the core. It is also used to provide supply for
FMPLL through double bonding.
LV_CFLA—Low voltage supply for code flash module. It is supplied with dedicated
ballast and shorted to LV_COR through double bonding.
LV_DFLA—Low voltage supply for data flash module. It is supplied with dedicated
ballast and shorted to LV_COR through double bonding.
LV_PLL—Low voltage supply for FMPLL. It is shorted to LV_COR through double
bonding.
Electrical characteristics SPC560Bx, SPC560Cx
60/113 Doc ID 14619 Rev 7
Figure 9. Voltage regulator capacitance connection
The internal voltage regulator requires external capacitance (CREGn) to be connected to the
device in order to provide a stable low voltage digital supply to the device. Capacitances
should be placed on the board as near as possible to the associated pins. Care should also
be taken to limit the serial inductance of the board to less than 5 nH.
Each decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply
pairs to ensure stable voltage (see Section 4.5 Recommended operating conditions).
CREG1 (LV_COR/LV_DFLA)
DEVICE
VSS_LV
VDD_BV
VDD_LV
CDEC1 (Ballast decoupling)
VSS_LV VDD_LV VDD
VSS_LV VDD_LV
CREG2 (LV_COR/LV_CFLA)
CREG3 (LV_COR/LV_PLL) CDEC2 (supply/IO decoupling)
DEVICE
VDD_BV
I
VDD_LVn
VREF
VDD
Voltage Regulator
VSS
VSS_LVn
GND
GND GND
GND
Table 22. Voltage regulator electrical characteristics
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
CREGn SR Internal voltage regulator external
capacitance 200 500 nF
RREG SR Stability capacitor equivalent
serial resistance ——0.2W
CDEC1 SR Decoupling capacitance(2) ballast
VDD_BV/VSS_LV pair: VDD_BV
= 4.5 V to 5.5 V 100(3)
470(4)
nF
VDD_BV/VSS_LV pair: VDD_BV
= 3V to 3.6V 400
CDEC2 SR Decoupling capacitance regulator
supply VDD/VSS pair 10 100 nF
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 61/113
VMREG CC TMain regulator output voltage Before exting from reset 1.32 V
P After trimming 1.15 1.28 1.32
IMREG SR Main regulator current provided to
VDD_LV domain ——150mA
IMREGINT CC D Main regulator module current
consumption
IMREG = 200 mA 2 mA
IMREG = 0 mA 1
VLPREG CC P Low power regulator output
voltage After trimming 1.15 1.23 1.32 V
ILPREG SR Low power regulator current
provided to VDD_LV domain ——15mA
ILPREGINT CC
DLow power regulator module
current consumption
ILPREG = 15 mA;
TA = 55 °C ——600
µA
ILPREG = 0 mA;
TA = 55 °C —5—
VULPREG CC P Ultra low power regulator output
voltage After trimming 1.15 1.23 1.32 V
IULPREG SR Ultra low power regulator current
provided to VDD_LV domain ——5mA
IULPREGINT CC D Ultra low power regulator module
current consumption
IULPREG = 5 mA;
TA = 55 °C ——100
µA
IULPREG = 0 mA;
TA = 55 °C —2—
IDD_BV CC D In-rush current on VDD_BV during
power-up(5) ——400
(6) mA
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2. This capacitance value is driven by the constraints of the external voltage regulator supplying the VDD_BV voltage. A typical
value is in the range of 470 nF.
3. This value is acceptable to guarantee operation from 4.5 V to 5.5 V
4. External regulator and capacitance circuitry must be capable of providing IDD_BV while maintaining supply VDD_BV in
operating range.
5. In-rush current is seen only for short time during power-up and on standby exit (max 20 µs, depending on external LV
capacitances to be load)
6. The duration of the in-rush current depends on the capacitance placed on LV pins. BV decaps must be sized accordingly.
Refer to IMREG value for minimum amount of current to be provided in cc.
Table 22. Voltage regulator electrical characteristics (continued)
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
Electrical characteristics SPC560Bx, SPC560Cx
62/113 Doc ID 14619 Rev 7
4.9.2 Voltage monitor electrical characteristics
The device implements a Power-on Reset (POR) module to ensure correct power-up
initialization, as well as four low voltage detectors (LVDs) to monitor the VDD and the VDD_LV
voltage while device is supplied:
POR monitors VDD during the power-up phase to ensure device is maintained in a safe
reset state
LVDHV3 monitors VDD to ensure device reset below minimum functional supply
LVDHV5 monitors VDD when application uses device in the 5.0 V ± 10% range
LVDLVCOR monitors power domain No. 1
LVDLVBKP monitors power domain No. 0
Note: When enabled, power domain No. 2 is monitored through LVD_DIGBKP.
Figure 10. Low voltage monitor vs reset
VDD
VLVDHVxH
RESET
VLVDHVxL
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 63/113
4.10 Low voltage domain power consumption
Ta bl e 2 4 provides DC electrical characteristics for significant application modes. These
values are indicative values; actual consumption depends on the application.
Table 23. Low voltage monitor electrical characteristics
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
VPORUP SR P Supply for functional POR module 1.0 5.5
V
VPORH CC PPower-on reset threshold
TA = 25 °C,
after trimming 1.5 2.6
T 1.5 2.6
VLVDH V3H CC T LVDHV3 low voltage detector high threshold
2.95
VLVDH V3L CC P LVDHV3 low voltage detector low threshold 2.6 2.9
VLVDH V5H CC T LVDHV5 low voltage detector high threshold 4.5
VLVDH V5L CC P LVDHV5 low voltage detector low threshold 3.8 4.4
VLVDLV COR L CC P LVDLVCOR low voltage detector low threshold 1.08 1.5
VLVDLVBKPL CC P LVDLVBKP low voltage detector low threshold 1.08 1.14
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Table 24. Low voltage power domain electrical characteristics
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
IDDMAX(2) CC D RUN mode maximum
average current 115 140(3) mA
IDDRUN(4) CC
T
RUN mode typical
average current(5)
fCPU = 8 MHz 7
mA
Tf
CPU = 16 MHz 18
Tf
CPU = 32 MHz 29
Pf
CPU = 48 MHz 40
Pf
CPU = 64 MHz 51
IDDHALT CC
C
HALT mode current(6)
Slow internal RC
oscillator (128 kHz)
running
TA=2C 8 15
mA
PT
A= 125 °C 14 25
IDDSTOP CC
P
STOP mode current(7)
Slow internal RC
oscillator (128 kHz)
running
TA= 25 °C 180 700(8)
µA
DT
A= 55 °C 500
DT
A=8C 1
mADT
A= 105 °C 2
PT
A=12C 4.5 12
(8)
Electrical characteristics SPC560Bx, SPC560Cx
64/113 Doc ID 14619 Rev 7
4.11 Flash memory electrical characteristics
4.11.1 Program/Erase characteristics
Ta bl e 2 5 shows the program and erase characteristics.
IDDSTDBY2 CC
P
STANDBY2 mode
current(9)
Slow internal RC
oscillator (128 kHz)
running
TA= 25 °C 30 100
µA
DT
A=5C 75
DT
A= 85 °C 180
DT
A= 105 °C 315
PT
A= 125 °C 560 1700
IDDSTDBY1 CC
T
STANDBY1 mode
current(10)
Slow internal RC
oscillator (128 kHz)
running
TA=2C 20 60
µA
DT
A=5C 45
DT
A= 85 °C 100
DT
A= 105 °C 165
DT
A= 125 °C 280 900
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2. Running consumption is given on voltage regulator supply (VDDREG). IDDMAX is composed of three components: IDDMAX =
IDD(vdd_bv) + IDD(vdd_hv) + IDD(Vdd_hv_adc). It does not include a fourth component linked to I/Os toggling which is
highly dependent on the application. The given value is thought to be a worst case value with all peripherals running, and
code fetched from code flash while modify operation on-going on data flash. It is to be noticed that this value can be
significantly reduced by application: switch-off not used peripherals (default), reduce peripheral frequency through internal
prescaler, fetch from RAM most used functions, use low power mode when possible.
3. Higher current may be sinked by device during power-up and standby exit. please refer to in rush current on Table 22.
4. RUN current measured with typical application with accesses on both flash and RAM.
5. Only for the “P” classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and LIN in
loop back mode, DSPi as Master, PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at
max frequency, periodic SW/WDG timer reset enabled.
6. Data Flash Power Down. Code Flash in Low Power. RC-osc128kHz & RC-OSC 16MHz on. 10MHz XTAL clock. FlexCAN:
instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clock gated. LINFlex: instances: 0, 1, 2
ON (clocked but not reception or transmission), instance: 3 clock gated. eMIOS: instance: 0 ON (16 channels on PA[0]-
PA[11] and PC[12]-PC[15]) with PWM 20kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication).
RTC/API ON.PIT ON. STM ON. ADC ON but not conversion except 2 analogue watchdog
7. Only for the “P” classification: No clock, RC 16MHz off, RC128kHz on, PLL off, HPvreg off, ULPVreg/LPVreg on. All
possible peripherals off and clock gated. Flash in power down mode.
8. When going from RUN to STOP mode and the core consumption is > 6 mA , it is normal operation for the main regulator
module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction temperatures
exceeding 125 °C and under these circumstances , it is possible for the current to initially exceed the maximum STOP
specification by up to 2 mA. After entering stop, the application junction temperature will reduce to the ambient level and
the main regulator will be automatically switched off when the load current is below 6 mA.
9. Only for the “P” classification: ULPreg on, HP/LPVreg off, 32kB RAM on, device configured for minimum consumption, all
possible modules switched-off.
10. ULPreg on, HP/LPVreg off, 8kB RAM on, device configured for minimum consumption, all possible modules switched-off.
Table 24. Low voltage power domain electrical characteristics (continued)
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 65/113
Table 25. Program and erase specifications
Symbol C Parameter
Value
Unit
Min Typ(1)
1. Typical program and erase times assume nominal supply values and operation at 25 °C.
Initial max(2)
2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
Max(3)
3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values
are characterized but not guaranteed.
Tdwprogram
CC C
Double word (64 bits) program time(4)
4. Actual hardware programming times. This does not include software overhead.
—22 50 500µs
T16Kpperase 16 KB block pre-program and erase time 300 500 5000 ms
T32Kpperase 32 KB block pre-program and erase time 400 600 5000 ms
T128Kpperase 128 KB block pre-program and erase time 800 1300 7500 ms
Teslat CC D Erase Suspend Latency 30 30 µs
Table 26. Flash module life
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
P/E CC C
Number of program/erase cycles per
block for 16 Kbyte blocks over the
operating temperature range (TJ)
100000 cycles
P/E CC C
Number of program/erase cycles per
block for 32 Kbyte blocks over the
operating temperature range (TJ)
10000 100000 cycles
P/E CC C
Number of program/erase cycles per
block for 128 Kbyte blocks over the
operating temperature range (TJ)
1000 100000 cycles
Retention CC C Minimum data retention at 85 °C
average ambient temperature(1)
1. Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature
range.
ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability
results. Some units will experience single bit corrections throughout the life of the product with no impact
to product reliability.
Blocks with 0–1000
P/E cycles 20 years
Blocks with 1001–
10000 P/E cycles 10 years
Blocks with 10001–
100000 P/E cycles 5—years
Electrical characteristics SPC560Bx, SPC560Cx
66/113 Doc ID 14619 Rev 7
4.11.2 Flash power supply DC characteristics
Ta bl e 2 8 shows the power supply DC characteristics on external supply.
Table 27. Flash read access timing
Symbol C Parameter Conditions(1)
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Max Unit
fREAD CC
P
Maximum frequency for Flash reading
2 wait states 64
MHzC 1 wait state 40
C 0 wait states 20
Table 28. Code Flash power supply DC electrical characteristics
Symbol C Parameter Conditions(1)
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value
Unit
Min Typ Max
IFREAD(2)
2. This value is only relative to the actual duration of the read cycle
CC D
Sum of the current
consumption on VDDHV and
VDDBV on read access
Code Flash module read
fCPU =64 MHz
(3)
3. fCPU 64 MHz can be achieved only at up to 105 °C
—1533
mA
Data Flash module read
fCPU =64 MHz
(3) —1533
IFMOD(2) CC D
Sum of the current
consumption on VDDHV and
VDDBV on matrix modification
(program/erase)
Program/Erase on-going while reading
Code Flash registers fCPU = 64 MHz(3) —1533
mA
Program/Erase on-going while reading
Data Flash registers fCPU =64 MHz
(3) —1533
IFLPW CC D
Sum of the current
consumption on VDDHV and
VDDBV
during Code Flash low-power mode 900
µA
during Data Flash low-power mode 900
IFPWD CC D
Sum of the current
consumption on VDDHV and
VDDBV
during Code Flash powe-down mode 150
µA
during Data Flash powe-down mode 150
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 67/113
4.11.3 Start-up/Switch-off timings
4.12 Electromagnetic compatibility (EMC) characteristics
Susceptibility tests are performed on a sample basis during product characterization.
4.12.1 Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user apply EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations:The software flowchart must include the management of
runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical data corruption (control registers...)
Prequalification trials:Most of the common failures (unexpected reset and program
counter corruption) can be reproduced by manually forcing a low state on the reset pin
or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device. When
unexpected behavior is detected, the software can be hardened to prevent
unrecoverable errors occurring (see application note Software Techniques For
Improving Microcontroller EMC Performance (AN1015)).
Table 29. Start-up time/Switch-off time
Symbol C Parameter Conditions(1)
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value
Unit
Min Typ Max
TFLARSTEXIT CC TDelay for Flash module to exit reset mode Code Flash 125
µs
T Data Flash 125
TFLALPEXIT CC TDelay for Flash module to exit low-power
mode
Code Flash 0.5
T Data Flash 0.5
TFLAPDEXIT CC TDelay for Flash module to exit power-down
mode
Code Flash 30
T Data Flash 30
TFLALPENTRY CC TDelay for Flash module to enter low-power
mode
Code Flash 0.5
T Data Flash 0.5
TFLAPDENTRY CC TDelay for Flash module to enter power-
down mode
Code Flash 1.5
T Data Flash 1.5
Electrical characteristics SPC560Bx, SPC560Cx
68/113 Doc ID 14619 Rev 7
4.12.2 Electromagnetic interference (EMI)
The product is monitored in terms of emission based on a typical application. This emission
test conforms to the IEC 61967-1 standard, which specifies the general conditions for EMI
measurements.
4.12.3 Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the
product is stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test
conforms to the AEC-Q100-002/-003/-011 standard. For more details, refer to the
application note Electrostatic Discharge Sensitivity Measurement (AN1181).
Table 30. EMI radiated emission measurement(1)(2)
1. EMI testing and I/O port waveforms per IEC 61967-1, -2, -4
2. For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local
marketing representative.
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
SR Scan range 0.150 1000 MHz
fCPU SR Operating frequency 64 MHz
VDD_LV SR LV operating voltages 1.28 V
SEMI CC T Peak level
VDD = 5V, T
A=2C,
LQFP144 package
Test conforming to IEC
61967-2,
fOSC = 8 MHz/fCPU = 64
MHz
No PLL frequency
modulation 18 dBµV
± 2% PLL frequency
modulation 14 dBµV
Table 31. ESD absolute maximum ratings(1) (2)
Symbol C Ratings Conditions Class Max value Unit
VESD(HBM) CC T Electrostatic discharge voltage
(Human Body Model)
TA = 25 °C
conforming to AEC-Q100-002 H1C 2000
V
VESD(MM) CC T Electrostatic discharge voltage
(Machine Model)
TA = 25 °C
conforming to AEC-Q100-003 M2 200
VESD(CDM) CC T Electrostatic discharge voltage
(Charged Device Model)
TA = 25 °C
conforming to AEC-Q100-011 C3A 500
750 (corners)
1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.
2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification
requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at
room temperature followed by hot temperature, unless specified otherwise in the device specification.
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 69/113
Static latch-up (LU)
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin.
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with the EIA/JESD 78 IC latch-up standard.
4.13 Fast external crystal oscillator (4 to 16 MHz) electrical
characteristics
The device provides an oscillator/resonator driver. Figure 11 describes a simple model of
the internal oscillator driver and provides an example of a connection for an oscillator or a
resonator.
Ta bl e 3 3 provides the parameter description of 4 MHz to 16 MHz crystals used for the
design simulations.
Table 32. Latch-up results
Symbol C Parameter Conditions Class
LU CC T Static latch-up class TA = 125 °C
conforming to JESD 78 II level A
Electrical characteristics SPC560Bx, SPC560Cx
70/113 Doc ID 14619 Rev 7
Figure 11. Crystal oscillator and resonator connection scheme
Table 33. Crystal description
Nominal
frequency
(MHz)
NDK crystal
reference
Crystal
equivalent
series
resistance
ESR
Crystal
motional
capacitance
(Cm) fF
Crystal
motional
inductance
(Lm) mH
Load on
xtalin/xtalout
C1 = C2
(pF)(1)
1. The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all
the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.
Shunt
capacitance
between
xtalout
and xtalin
C0(2) (pF)
2. The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package,
etc.).
4 NX8045GB 300 2.68 591.0 21 2.93
8
NX5032GA
300 2.46 160.7 17 3.01
10 150 2.93 86.6 15 2.91
12 120 3.11 56.5 15 2.93
16 120 3.90 25.3 10 3.00
C2
C1
Crystal
XTAL
EXTAL
Resonator
XTAL
EXTAL
DEVICE
DEVICE
DEVICE
XTAL
EXTAL
I
R
VDD
Note: XTAL/EXTAL must not be directly used to drive external circuits.
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 71/113
Figure 12. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics
VFXOSCOP
TFXOSCSU
VXTAL
VFXOSC
valid internal clock
90%
10%
1/fFXOSC
S_MTRANS bit (ME_GS register)
‘1’
‘0’
Table 34. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
fFXOSC SR Fast external crystal oscillator
frequency —4.016.0MHz
gmFXOSC
CC C
Fast external crystal oscillator
transconductance
VDD = 3.3 V ± 10%,
PAD3V5V = 1
OSCILLATOR_MARGIN = 0
2.2 8.2
mA/V
CC P
VDD = 5.0 V ± 10%,
PAD3V5V = 0
OSCILLATOR_MARGIN = 0
2.0 7.4
CC C
VDD = 3.3 V ± 10%,
PAD3V5V = 1
OSCILLATOR_MARGIN = 1
2.7 9.7
CC C
VDD = 5.0 V ± 10%,
PAD3V5V = 0
OSCILLATOR_MARGIN = 1
2.5 9.2
VFXOSC CC T Oscillation amplitude at
EXTAL
fOSC = 4 MHz,
OSCILLATOR_MARGIN = 0 1.3
V
fOSC = 16 MHz,
OSCILLATOR_MARGIN = 1 1.3
VFXOSCOP CC P Oscillation operating point 0.95 V
IFXOSC(2) CC T Fast external crystal oscillator
consumption ——23mA
TFXOSCSU CC T Fast external crystal oscillator
start-up time
fOSC = 4 MHz,
OSCILLATOR_MARGIN = 0 —— 6
ms
fOSC = 16 MHz,
OSCILLATOR_MARGIN = 1 ——1.8
Electrical characteristics SPC560Bx, SPC560Cx
72/113 Doc ID 14619 Rev 7
4.14 Slow external crystal oscillator (32 kHz) electrical
characteristics
The device provides a low power oscillator/resonator driver.
Figure 13. Crystal oscillator and resonator connection scheme
VIH SR P Input high level CMOS
(Schmitt Trigger) Oscillator bypass mode 0.65VDD —V
DD+0.4 V
VIL SR P Input low level CMOS
(Schmitt Trigger) Oscillator bypass mode 0.4 0.35VDD V
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2. Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled
peripherals)
Table 34. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics (continued)
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
OSC32K_XTAL
OSC32K_EXTAL
DEVICE
C2
C1
Crystal
OSC32K_XTAL
OSC32K_EXTAL
Resonator
DEVICE
Note: OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits.
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 73/113
Figure 14. Equivalent circuit of a quartz crystal
C0
C2C1
C2
Rm
C1
Lm
Cm
Crystal
Electrical characteristics SPC560Bx, SPC560Cx
74/113 Doc ID 14619 Rev 7
Figure 15. Slow external crystal oscillator (32 kHz) electrical characteristics
Table 35. Crystal motional characteristics(1)
1. The crystal used is Epson Toyocom MC306.
Symbol Parameter Conditions
Value
Unit
Min Typ Max
LmMotional inductance 11.796 KH
CmMotional capacitance 2 fF
C1/C2
Load capacitance at OSC32K_XTAL
and OSC32K_EXTAL with respect to
ground(2)
2. This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground. It
includes all the parasitics due to board traces, crystal and package.
18 28 pF
Rm(3)
3. Maximum ESR (Rm) of the crystal is 50 k
Motional resistance
AC coupled @ C0 = 2.85 pF(4)
4. C0 Includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins
——65
kW
AC coupled @ C0 = 4.9 pF(4) ——50
AC coupled @ C0 = 7.0 pF(4) ——35
AC coupled @ C0 = 9.0 pF(4) ——30
OSCON bit (OSC_CTL register)
TSXOSCSU
1
VOSC32K_XTAL
VSXOSC
valid internal clock
90%
10%
1/fSXOSC
0
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 75/113
4.15 FMPLL electrical characteristics
The device provides a frequency-modulated phase-locked loop (FMPLL) module to
generate a fast system clock from the main oscillator driver.
Table 36. Slow external crystal oscillator (32 kHz) electrical characteristics
Symbol C Parameter Conditions(1)
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value
Unit
Min Typ Max
fSXOSC SR Slow external crystal oscillator
frequency 32 32.768 40 kHz
VSXOSC CC T Oscillation amplitude 2.1 V
ISXOSCBIAS CC T Oscillation bias current 2.5 µA
ISXOSC CC T Slow external crystal oscillator
consumption ——8µA
TSXOSCSU CC T Slow external crystal oscillator
start-up time ——2
(2)
2. Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal
s
Table 37. FMPLL electrical characteristics
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
fPLLIN SR FMPLL reference clock(2) —464MHz
PLLIN SR FMPLL reference clock duty
cycle(2) —4060%
fPLLOUT CC D FMPLL output clock
frequency —1664MHz
fVCO(3) CC
PVCO frequency without
frequency modulation —256512
MHz
PVCO frequency with
frequency modulation —245533
fCPU SR System clock frequency 64 MHz
fFREE CC P Free-running frequency 20 150 MHz
tLOCK CC P FMPLL lock time Stable oscillator (fPLLIN = 16 MHz) 40 100 µs
tLTJIT CC FMPLL long term jitter fPLLIN = 16 MHz (resonator),
fPLLCLK @ 64 MHz, 4000 cycles 10 ns
IPLL CC C FMPLL consumption TA = 25 °C 4 mA
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional
mode. When bypass mode is used, oscillator input clock should verify fPLLIN and PLLIN.
3. Frequency modulation is considered ± 4%
Electrical characteristics SPC560Bx, SPC560Cx
76/113 Doc ID 14619 Rev 7
4.16 Fast internal RC oscillator (16 MHz) electrical characteristics
The device provides a 16 MHz fast internal RC oscillator. This is used as the default clock at
the power-up of the device.
4.17 Slow internal RC oscillator (128 kHz) electrical
characteristics
The device provides a 128 kHz slow internal RC oscillator. This can be used as the
reference clock for the RTC module.
Table 38. Fast internal RC oscillator (16 MHz) electrical characteristics
Symbol C Parameter Conditions(1)
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
Value
Unit
Min Typ Max
fFIRC
CC P Fast internal RC oscillator high
frequency
TA = 25 °C, trimmed 16 MHz
SR 12 20
IFIRCRUN(2)
2. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.
CC T
Fast internal RC oscillator high
frequency current in running
mode
TA = 25 °C, trimmed 200 µA
IFIRCPWD CC D
Fast internal RC oscillator high
frequency current in power
down mode
TA = 125 °C 10 µA
IFIRCSTOP CC T
Fast internal RC oscillator high
frequency and system clock
current in stop mode
TA = 25 °C
sysclk = off 500
µA
sysclk = 2 MHz 600
sysclk = 4 MHz 700
sysclk = 8 MHz 900
sysclk = 16 MHz 1250
TFIRCSU CC C Fast internal RC oscillator start-
up time VDD = 5.0 V ± 10% 1.1 2.0 µs
FIRCPRE CC T
Fast internal RC oscillator
precision after software
trimming of fFIRC
TA = 25 °C 1—+1%
FIRCTRIM CC T Fast internal RC oscillator
trimming step TA = 25 °C 1.6 %
FIRCVAR CC P
Fast internal RC oscillator
variation in overtemperature
and supply with respect to fFIRC
at TA= 25 °C in high-frequency
configuration
5—+5%
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 77/113
4.18 ADC electrical characteristics
4.18.1 Introduction
The device provides a 10-bit Successive Approximation Register (SAR) analog-to-digital
converter.
Table 39. Slow internal RC oscillator (128 kHz) electrical characteristics
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
fSIRC
CC P Slow internal RC oscillator low
frequency
TA = 25 °C, trimmed 128 kHz
SR 100 150
ISIRC(2) CC C Slow internal RC oscillator low
frequency current TA = 25 °C, trimmed 5 µA
TSIRCSU CC P Slow internal RC oscillator start-up
time TA = 25 °C, VDD = 5.0 V ± 10% 8 12 µs
SIRCPRE CC C
Slow internal RC oscillator
precision after software trimming of
fSIRC
TA = 25 °C 2—+2
%
SIRCTRIM CC C Slow internal RC oscillator trimming
step ——2.7
SIRCVAR CC C
Slow internal RC oscillator variation
in temperature and supply with
respect to fSIRC at TA= 55 °C in
high frequency configuration
High frequency configuration 10 +10 %
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.
Electrical characteristics SPC560Bx, SPC560Cx
78/113 Doc ID 14619 Rev 7
Figure 16. ADC characteristic and error definitions
4.18.2 Input impedance and ADC accuracy
In the following analysis, the input circuit corresponding to the precise channels is
considered.
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have
low AC impedance. Placing a capacitor with good high frequency characteristics at the input
pin of the device can be effective: the capacitor should be as large as possible, ideally
infinite. This capacitor contributes to attenuating the noise present on the input pin;
furthermore, it sources charge during the sampling phase, when the analog signal source is
a high-impedance source.
A real filter can typically be obtained by using a series resistance with a capacitor on the
input pin (simple RC filter). The RC filtering may be limited according to the value of source
(2)
(1)
(3)
(4)
(5)
Offset Error OSE
Offset Error OSE
Gain Error GE
1 LSB (ideal)
Vin(A) (LSBideal)
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) Differential non-linearity error (DNL)
(4) Integral non-linearity error (INL)
(5) Center of a step of the actual transfer curve
code out
1023
1022
1021
1020
1019
1018
5
4
3
2
1
0
7
6
1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023
1 LSB ideal = VDD_ADC / 1024
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 79/113
impedance of the transducer or circuit supplying the analog signal to be measured. The filter
at the input pins must be designed taking into account the dynamic characteristics of the
input signal (bandwidth) and the equivalent input impedance of the ADC itself.
In fact a current sink contributor is represented by the charge sharing effects with the
sampling capacitance: CS being substantially a switched capacitance, with a frequency
equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For
instance, assuming a conversion rate of 1 MHz, with CS equal to 3 pF, a resistance of
330 k is obtained (REQ = 1 / (fc*CS), where fc represents the conversion rate at the
considered channel). To minimize the error induced by the voltage partitioning between this
resistance (sampled voltage on CS) and the sum of RS + RF + RL + RSW + RAD, the external
circuit must be designed to respect the Equation 4:
Equation 4
Equation 4 generates a constraint for external network design, in particular on a resistive
path. Internal switch resistances (RSW and RAD) can be neglected with respect to external
resistances.
Figure 17. Input equivalent circuit (precise channels)
VA
RSRFRLRSW RAD
+++ +
REQ
---------------------------------------------------------------------------
1
2
---LSB
R
F
C
F
R
S
R
L
R
SW1
C
P2
C
S
V
DD
Sampling
Source Filter Current Limiter
EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME
C
P1
R
AD
Channel
Selection
V
A
RS Source Impedance
RF Filter Resistance
CF Filter Capacitance
RL Current Limiter Resistance
RSW1 Channel Selection Switch Impedance
RAD Sampling Switch Impedance
CP Pin Capacitance (two contributions, CP1 and CP2)
CS Sampling Capacitance
Electrical characteristics SPC560Bx, SPC560Cx
80/113 Doc ID 14619 Rev 7
Figure 18. Input equivalent circuit (extended channels)
A second aspect involving the capacitance network shall be considered. Assuming the three
capacitances CF
, CP1 and CP2 are initially charged at the source voltage VA (refer to the
equivalent circuit in Figure 17): A charge sharing phenomenon is installed when the
sampling phase is started (A/D switch close).
Figure 19. Transient behavior during sampling phase
In particular two different transient periods can be distinguished:
1. A first and quick charge transfer from the internal capacitance CP1 and CP2 to the
sampling capacitance CS occurs (CS is supposed initially completely discharged):
considering a worst case (since the time constant in reality would be faster) in which
R
F
C
F
R
S
R
L
R
SW1
C
P3
C
S
V
DD
Sampling
Source Filter Current Limiter
EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME
C
P1
R
AD
Channel
Selection
V
A
C
P2
Extended
R
SW2
Switch
RS Source Impedance
RF Filter Resistance
CF Filter Capacitance
RL Current Limiter Resistance
RSW Channel Selection Switch Impedance (two contributions RSW1 and RSW2)
RAD Sampling Switch Impedance
CP Pin Capacitance (three contributions, CP1, CP2 and CP3)
CS Sampling Capacitance
VA
VA1
VA2
t
TS
VCS Voltage transient on CS
V <0.5 LSB
12
1 < (RSW + RAD) CS << TS
2
= R
L
(C
S
+ C
P1
+ C
P2
)
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 81/113
CP2 is reported in parallel to CP1 (call CP = CP1 + CP2), the two capacitances CP and
CS are in series, and the time constant is
Equation 5
Equation 5 can again be simplified considering only CS as an additional worst
condition. In reality, the transient is faster, but the A/D converter circuitry has been
designed to be robust also in the very worst case: the sampling time TS is always much
longer than the internal time constant:
Equation 6
The charge of CP1 and CP2 is redistributed also on CS, determining a new value of the
voltage VA1 on the capacitance according to Equation 7:
Equation 7
2. A second charge transfer involves also CF (that is typically bigger than the on-chip
capacitance) through the resistance RL: again considering the worst case in which CP2
and CS were in parallel to CP1 (since the time constant in reality would be faster), the
time constant is:
Equation 8
In this case, the time constant depends on the external circuit: in particular imposing
that the transient is completed well before the end of sampling time TS, a constraints on
RL sizing is obtained:
Equation 9
Of course, RL shall be sized also according to the current limitation constraints, in
combination with RS (source impedance) and RF (filter resistance). Being CF
definitively bigger than CP1, CP2 and CS, then the final voltage VA2 (at the end of the
charge transfer transient) will be much higher than VA1. Equation 10 must be respected
(charge balance assuming now CS already charged at VA1):
Equation 10
The two transients above are not influenced by the voltage source that, due to the presence
of the RFCF filter, is not able to provide the extra charge to compensate the voltage drop on
CS with respect to the ideal source VA; the time constant RFCF of the filter is very high with
respect to the sampling time (TS). The filter is typically designed to act as anti-aliasing.
1RSW RAD
+=
CPCS
CPCS
+
----------------------
Electrical characteristics SPC560Bx, SPC560Cx
82/113 Doc ID 14619 Rev 7
Figure 20. Spectral representation of input signal
Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of
the anti-aliasing filter, fF), according to the Nyquist theorem the conversion rate fC must be at
least 2f0; it means that the constant time of the filter is greater than or at least equal to twice
the conversion period (TC). Again the conversion period TC is longer than the sampling time
TS, which is just a portion of it, even when fixed channel continuous conversion mode is
selected (fastest conversion rate at a specific channel): in conclusion it is evident that the
time constant of the filter RFCF is definitively much higher than the sampling time TS, so the
charge level on CS cannot be modified by the analog signal source during the time in which
the sampling switch is closed.
The considerations above lead to impose new constraints on the external circuit, to reduce
the accuracy error due to the voltage drop on CS; from the two charge balance equations
above, it is simple to derive Equation 11 between the ideal and real sampled voltage on CS:
Equation 11
From this formula, in the worst case (when VA is maximum, that is for instance 5 V),
assuming to accept a maximum error of half a count, a constraint is evident on CF value:
Equation 12
f0f
Analog source bandwidth (VA)
f0f
Sampled signal spectrum (fC = conversion rate)
fC
f
Anti-aliasing filter (fF = RC filter pole)
fF
2 f0<fC (Nyquist)
fF = f0 (anti-aliasing filtering condition)
TC<2 RFCF (conversion rate vs. filter pole)
Noise
VA
VA2
------------
CP1 CP2
+C
F
+
CP1 CP2
+C
FCS
++
--------------------------------------------------------=
CF2048 CS
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 83/113
4.18.3 ADC electrical characteristics
Table 40. ADC input leakage current
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
ILKG CC
C
Input leakage current
TA=40 °C
No current injection on adjacent pin
—1—
nA
CT
A= 25 °C 1
CT
A= 105 °C 8 200
PT
A= 125 °C 45 400
Table 41. ADC conversion characteristics
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
VSS_ADC SR
Voltage on VSS_HV_ADC (ADC
reference) pin with respect to ground
(VSS)(2)
0.1 0.1 V
VDD_ADC SR
Voltage on VDD_HV_ADC pin (ADC
reference) with respect to ground
(VSS)
—V
DD0.1 VDD+0.1 V
VAINx SR Analog input voltage(3) —V
SS_ADC0.1 VDD_ADC+0.1 V
fADC SR ADC analog frequency 6—32 + 4% MHz
ADC_SYS SR ADC digital clock duty cycle (ipg_clk) ADCLKSEL = 1(4) 45 55 %
IADCPWD SR ADC0 consumption in power down
mode ——
50 µs
IADCRUN SR ADC0 consumption in running mode 4ms
tADC_PU SR ADC power up delay ——1.5 µs
Electrical characteristics SPC560Bx, SPC560Cx
84/113 Doc ID 14619 Rev 7
tADC_S CC T Sample time(5)
fADC = 32 MHz,
INPSAMP = 17 0.5
µs
fADC = 6 MHz,
INPSAMP = 255 ——42
tADC_C CC P Conversion time(6) fADC = 32 MHz,
INPCMP = 2 0.625 µs
CSCC DADC input sampling capacitance 3pF
CP1 CC DADC input pin capacitance 1 3pF
CP2 CC DADC input pin capacitance 2 ——1pF
CP3 CC DADC input pin capacitance 3 1pF
RSW1 CC DInternal resistance of analog source 3 k
RSW2 CC DInternal resistance of analog source 2 k
RAD CC DInternal resistance of analog source 2 k
IINJ SR Input current Injection
Current
injection on
one ADC
input,
different from
the
converted
one
VDD =
3.3 V ± 10% 5— 5
mA
VDD =
5.0 V ± 10% 5 5
| INL | CC TAbsolute value for integral non-
linearity No overload 0.5 1.5 LSB
| DNL | CC TAbsolute differential non-linearity No overload 0.5 1.0 LSB
| OFS | CC TAbsolute offset error 0.5 LSB
| GNE | CC TAbsolute gain error ——0.6 LSB
Table 41. ADC conversion characteristics (continued)
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 85/113
TUEp CC PTotal unadjusted error(7) for precise
channels, input only pins
Without current injection 20.6 2LSB
TWith current injection 3 3
TUEx CC TTotal unadjusted error(7) for extended
channel
Without current injection 3 1 3 LSB
TWith current injection 4 4
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. Analog and digital VSS must be common (to be tied together externally).
3. VAINx may exceed VSS_ADC and VDD_ADC limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to
0x000 or 0x3FF.
4. Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2.
5. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal resistance of the analog source must
allow the capacitance to reach its final voltage level within tADC_S. After the end of the sample time tADC_S, changes of the analog input voltage have no
effect on the conversion result. Values for the sample clock tADC_S depend on programming.
6. This parameter does not include the sample time tADC_S, but only the time for determining the digital result and the time to load the result’s register with the
conversion result.
7. Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral
Linearity errors.
Table 41. ADC conversion characteristics (continued)
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
Electrical characteristics SPC560Bx, SPC560Cx
86/113 Doc ID 14619 Rev 7
4.19 On-chip peripherals
4.19.1 Current consumption
Table 42. On-chip peripherals current consumption(1)
Symbol C Parameter Conditions
Value
Unit
Typ
IDD_BV(CAN) CC T CAN (FlexCAN) supply current on
VDD_BV
500
Kbps
Total (static + dynamic)
consumption:
FlexCAN in loop-back mode
XTAL@ 8MHz used as CAN
engine clock source
Message sending period is 580
µs
8 * fperiph + 85
µA
125
Kbps 8 * fperiph + 27
IDD_BV(eMIOS) CC T eMIOS supply current on VDD_BV
Static consumption:
eMIOS channel OFF
Global prescaler enabled
29 * fperiph
Dynamic consumption:
It does not change varying the frequency
(0.003 mA)
3
IDD_BV(SCI) CC T SCI (LINFlex) supply current on
VDD_BV
Total (static + dynamic) consumption:
LIN mode
Baudrate: 20 Kbps
5 * fperiph + 31
IDD_BV(SPI) CC T SPI (DSPI) supply current on
VDD_BV
Ballast static consumption (only clocked) 1
Ballast dynamic consumption (continuus
communication):
Baudrate: 2 Mbit
Trasmission every 8 µs
Frame: 16 bits
16 * fperiph
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 87/113
4.19.2 DSPI characteristics
IDD_BV(ADC) CC T ADC supply current on VDD_BV
VDD =
5.5 V
Ballast static consumption (no
conversion) 41 * fperiph
µA
VDD =
5.5 V
Ballast dynamic consumption
(continuus conversion) 5 * fperiph
IDD_HV_ADC(ADC) CC T ADC supply current on
VDD_HV_ADC
VDD =
5.5 V
Analog static consumption (no
conversion) 2 * fperiph
VDD =
5.5 V
Analog dynamic consumption
(continuus conversion) 75 * fperiph + 32
IDD_HV(FLASH) CC T CFlash + DFlash supply current
on VDD_HV_ADC
VDD =
5.5 V —8.21mA
IDD_HV(PLL) CC T PLL supply current on VDD_HV
VDD =
5.5 V —3 * f
periph µA
1. Operating conditions: TA = 25 °C, fperiph = 8 MHz to 64 MHz
Table 42. On-chip peripherals current consumption(1) (continued)
Symbol C Parameter Conditions
Value
Unit
Typ
Table 43. DSPI characteristics(1)
No. Symbol C Parameter
DSPI0/DSPI1 DSPI2
Unit
Min Typ Max Min Typ Max
1t
SCK SR
D
SCK cycle time
Master mode
(MTFE = 0) 125 333
ns
DSlave mode
(MTFE = 0) 125 333
DMaster mode
(MTFE = 1) 83——125——
DSlave mode
(MTFE = 1) 83——125——
Electrical characteristics SPC560Bx, SPC560Cx
88/113 Doc ID 14619 Rev 7
—f
DSPI SR D DSPI digital controller frequency fCPU ——f
CPU MHz
tCSC CC D
Internal delay between pad associated
to SCK and pad associated to CSn in
master mode for CSn1->0
Master mode 130(2) ——15
(3) ns
tASC CC D
Internal delay between pad associated
to SCK and pad associated to CSn in
master mode for CSn1->1
Master mode 130(3) ——130
(3) ns
2t
CSCext(4) SR D CS to SCK delay Slave mode 32 32 ns
3t
ASCext(5) SR D After SCK delay Slave mode 1/fDSPI +
5——
1/fDSPI +
5——ns
4t
SDC
CC D SCK duty cycle Master mode tSCK/2 tSCK/2 ns
SR D Slave mode tSCK/2 tSCK/2
5t
ASR D Slave access time Slave mode 1/fDSPI +
70 ——
1/fDSPI +
130 ns
6t
DI SR D Slave SOUT disable time Slave mode 7 7 ns
9t
SUI SR D Data setup time for inputs Master mode 43 145 ns
Slave mode 5 5
10 tHI SR D Data hold time for inputs Master mode 0 0 ns
Slave mode 2(6) ——2
(6) ——
11 tSUO(7) CC D Data valid after SCK edge Master mode 32 50 ns
Slave mode 52 160
12 tHO(7) CC D Data hold time for outputs Master mode 0 0 ns
Slave mode 8 13
1. Operating conditions: Cout = 10 to 50 pF, SlewIN = 3.5 to 15 ns.
2. Maximum value is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM. A positive value means that SCK starts before CSn is
asserted. DSPI2 has only SLOW SCK available.
Table 43. DSPI characteristics(1) (continued)
No. Symbol C Parameter
DSPI0/DSPI1 DSPI2
Unit
Min Typ Max Min Typ Max
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 89/113
3. Maximum value is reached when CSn pad is configured as MEDIUM pad while SCK pad is configured as SLOW. A positive value means that CSn is deasserted before
SCK. DSPI0 and DSPI1 have only MEDIUM SCK available.
4. The tCSC delay value is configurable through a register. When configuring tCSC (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay between internal CS
and internal SCK must be higher than tCSC to ensure positive tCSCext.
5. The tASC delay value is configurable through a register. When configuring tASC (using PASC and ASC fields in DSPI_CTARx registers), delay between internal CS and
internal SCK must be higher than tASC to ensure positive tASCext.
6. This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of DSPI_MCR register.
7. SCK and SOUT configured as MEDIUM pad
Electrical characteristics SPC560Bx, SPC560Cx
90/113 Doc ID 14619 Rev 7
Figure 21. DSPI classic SPI timing – master, CPHA = 0
Data Last Data
First Data
First Data Data Last Data
SIN
SOUT
PCSx
SCK Output
4
9
12
1
11
10
4
SCK Output
(CPOL = 0)
(CPOL = 1)
3
2
Note: Numbers shown reference Ta b le 4 3 .
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 91/113
Figure 22. DSPI classic SPI timing – master, CPHA = 1
Figure 23. DSPI classic SPI timing – slave, CPHA = 0
Data Last Data
First Data
SIN
SOUT
12 11
10
Last Data
Data
First Data
SCK Output
SCK Output
PCSx
9
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Ta bl e 4 3 .
Last Data
First Data
3
4
1
Data
Data
SIN
SOUT
SS
4
5 6
9
11
10
12
SCK Input
First Data Last Data
SCK Input
2
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Ta bl e 4 3 .
Electrical characteristics SPC560Bx, SPC560Cx
92/113 Doc ID 14619 Rev 7
Figure 24. DSPI classic SPI timing – slave, CPHA = 1
Figure 25. DSPI modified transfer format timing – master, CPHA = 0
5 6
9
12
11
10
Last Data
Last Data
SIN
SOUT
SS
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Ta b l e 4 3 .
PCSx
3
1
4
10
4
9
12 11
SCK Output
SCK Output
SIN
SOUT
First Data Data Last Data
First Data Data Last Data
2
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Ta b l e 4 3 .
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 93/113
Figure 26. DSPI modified transfer format timing – master, CPHA = 1
Figure 27. DSPI modified transfer format timing – slave, CPHA = 0
PCSx
10
9
12 11
SCK Output
SCK Output
SIN
SOUT
First Data Data Last Data
First Data Data Last Data
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Ta b l e 4 3 .
Last Data
First Data
3
4
1
Data
Data
SIN
SOUT
SS
4
5 6
9
11
10
SCK Input
First Data Last Data
SCK Input
2
(CPOL = 0)
(CPOL = 1)
12
Note: Numbers shown reference Table 43 .
Electrical characteristics SPC560Bx, SPC560Cx
94/113 Doc ID 14619 Rev 7
Figure 28. DSPI modified transfer format timing – slave, CPHA = 1
4.19.3 Nexus characteristics
5 6
9
12
11
10
Last Data
Last Data
SIN
SOUT
SS
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Ta bl e 4 3 .
Table 44. Nexus characteristics
No. Symbol C Parameter
Value
Unit
Min Typ Max
1t
TCYC CC D TCK cycle time 64 ns
2t
MCYC CC D MCKO cycle time 32 ns
3t
MDOV CC D MCKO low to MDO data valid 8 ns
4t
MSEOV CC D MCKO low to MSEO_b data valid 8 ns
5t
EVTOV CC D MCKO low to EVTO data valid 8 ns
10 tNTDIS CC D TDI data setup time 15 ns
tNTMSS CC D TMS data setup time 15 ns
11 tNTDIH CC D TDI data hold time 5 ns
tNTMSH CC D TMS data hold time 5 ns
12 tTDOV CC D TCK low to TDO data valid 35 ns
13 tTDOI CC D TCK low to TDO data invalid 6 ns
SPC560Bx, SPC560Cx Electrical characteristics
Doc ID 14619 Rev 7 95/113
Figure 29. Nexus TDI, TMS, TDO timing
4.19.4 JTAG characteristics
10
TCK
TMS, TDI
TDO
11
12
Note: Numbers shown reference Ta b l e 4 4 .
Table 45. JTAG characteristics
No. Symbol C Parameter
Value
Unit
Min Typ Max
1t
JCYC CC D TCK cycle time 64 ns
2t
TDIS CC D TDI setup time 15 ns
3t
TDIH CC D TDI hold time 5 ns
4t
TMSS CC D TMS setup time 15 ns
5t
TMSH CC D TMS hold time 5 ns
6t
TDOV CC D TCK low to TDO valid 33 ns
7t
TDOI CC D TCK low to TDO invalid 6 ns
Electrical characteristics SPC560Bx, SPC560Cx
96/113 Doc ID 14619 Rev 7
Figure 30. Timing diagram – JTAG boundary scan
INPUT DATA VALID
OUTPUT DATA VALID
DATA INPUTS
DATA OUTPUTS
DATA OUTPUTS
TCK
Note: Numbers shown reference Ta bl e 4 5 .
3/5
2/4
7
6
SPC560Bx, SPC560Cx Package characteristics
Doc ID 14619 Rev 7 97/113
5 Package characteristics
5.1 ECOPACK®
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
5.2 Package mechanical data
5.2.1 LQFP64
Figure 31. LQFP64 package mechanical drawing
5W_ME
L
A1 K
L1
c
A
A2
ccc C
D
D1
D3
E3 E1 E
32
33
48
49
b
64
1
Pin 1
identification 16
17
Table 46. LQFP64 mechanical data
Symbol
mm inches(1)
Min Typ Max Min Typ Max
A 1.6 0.063
A1 0.05 0.15 0.002 0.0059
A2 1.35 1.4 1.45 0.0531 0.0551 0.0571
b 0.17 0.22 0.27 0.0067 0.0087 0.0106
c 0.09 0.2 0.0035 0.0079
Package characteristics SPC560Bx, SPC560Cx
98/113 Doc ID 14619 Rev 7
D 11.8 12 12.2 0.4646 0.4724 0.4803
D1 9.8 10 10.2 0.3858 0.3937 0.4016
D3 7.5 0.2953
E 11.8 12 12.2 0.4646 0.4724 0.4803
E1 9.8 10 10.2 0.3858 0.3937 0.4016
E3 7.5 0.2953
e 0.5 0.0197
L 0.45 0.6 0.75 0.0177 0.0236 0.0295
L1 1 0.0394
k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0°
ccc 0.08 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 46. LQFP64 mechanical data (continued)
Symbol
mm inches(1)
Min Typ Max Min Typ Max
SPC560Bx, SPC560Cx Package characteristics
Doc ID 14619 Rev 7 99/113
5.2.2 LQFP100
Figure 32. LQFP100 package mechanical drawing
Table 47. LQFP100 mechanical data
Symbol
mm inches(1)
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 12.000 0.4724
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
Package characteristics SPC560Bx, SPC560Cx
100/113 Doc ID 14619 Rev 7
5.2.3 LQFP144
Figure 33. LQFP144 package mechanical drawing
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 12.000 0.4724
e 0.500 0.0197
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
k 0.0 ° 3.5 ° 7.0 ° 0.0 ° 3.5 ° 7.0 °
Tolerance mm inches
ccc 0.080 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 47. LQFP100 mechanical data (continued)
Symbol
mm inches(1)
Min Typ Max Min Typ Max
SPC560Bx, SPC560Cx Package characteristics
Doc ID 14619 Rev 7 101/113
Table 48. LQFP144 mechanical data
Symbol
mm inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 0.0079
D 21.800 22.000 22.200 0.8583 0.8661 0.8740
D1 19.800 20.000 20.200 0.7795 0.7874 0.7953
D3 17.500 0.6890
E 21.800 22.000 22.200 0.8583 0.8661 0.8740
E1 19.800 20.000 20.200 0.7795 0.7874 0.7953
E3 17.500 0.6890
e 0.500 0.0197
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
k 0.0 ° 3.5 ° 7.0° 3.5 ° 0.0 ° 7.0 °
Tolerance mm inches
ccc 0.080 0.0031
Package characteristics SPC560Bx, SPC560Cx
102/113 Doc ID 14619 Rev 7
5.2.4 LBGA208
Figure 34. LBGA208 package mechanical drawing
1. The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metallized
markings, or other feature of package body or integral heatslug.
A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1
corner. Exact shape of each corner is optional.
Table 49. LBGA208 mechanical data
Symbol
mm inches(1)
Notes
Min Typ Max Min Typ Max
A 1.70 0.0669 (2)
A1 0.30 0.0118
A2 1.085 0.0427
A3 0.30 0.0118
A4 0.80 0.0315
b 0.50 0.60 0.70 0.0197 0.0236 0.0276 (3)
1 3 5 7 9 111315
2 4 6 8 10 12 14 16
R
L
K
T
J
N
M
P
A
B
H
G
F
D
C
E
A1 corner index area
(See note 1)
Bottom view
b (208 balls)
M
M
eee
fff
CAB
C
Seating
plane
A
D
D1
F
E
E1
Fe
A
A1
A2
A3
A4
D
ddd
e
B
A
C
SPC560Bx, SPC560Cx Package characteristics
Doc ID 14619 Rev 7 103/113
D 16.80 17.00 17.20 0.6614 0.6693 0.6772
D1 15.00 0.5906
E 16.80 17.00 17.20 0.6614 0.6693 0.6772
E1 15.00 0.5906
e 1.00 0.0394
F 1.00 0.0394
ddd 0.20 0.0079
eee 0.25 0.0098 (4)
fff 0.10 0.0039 (5)
1. Values in inches are converted from mm and rounded to four decimal digits.
2. LBGA stands for Low profile Ball Grid Array.
— Low profile: The total profile height (Dim A) is measured from the seating plane to the top of the
component
— The maximum total package height is calculated by the following methodology:
A2 Typ+A1 Typ + (A12+A32+A42 tolerance values)
— Low profile: 1.20 mm < A < 1.70 mm
3. The typical ball diameter before mounting is 0.60 mm.
4. The tolerance of position that controls the location of the pattern of balls with respect to datums A and B.
For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true
position with respect to datums A and B as defined by e. The axis perpendicular to datum C of each ball
must lie within this tolerance zone.
5. The tolerance of position that controls the location of the balls within the matrix with respect to each other.
For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position
as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone.
Each tolerance zone in the array is contained entirely in the respective zone eee above.
The axis of each ball must lie simultaneously in both tolerance zones.
Table 49. LBGA208 mechanical data (continued)
Symbol
mm inches(1)
Notes
Min Typ Max Min Typ Max
Ordering information SPC560Bx, SPC560Cx
104/113 Doc ID 14619 Rev 7
6 Ordering information
Table 50. Order codes
Order code CPU
Code Flash /
SRAM
(Kbytes)
Package Operating
temp. (°C)
Max
speed
(MHz)
Data
Flash Voltage Packing
SPC560B40L1C4E0X e200z0h 256 / 24 LQFP64 -40 to +125 48 4 x 16KB 3.3/5V Tape&Reel
SPC560B40L3B4E0X e200z0h 256 / 24 LQFP100 -40 to +105 48 4 x 16KB 3.3/5V Tape&Reel
SPC560B40L3C4E0X e200z0h -40 to +125
SPC560B40L3B6E0X e200z0h 256 / 24 LQFP100 -40 to +105 64 4 x 16KB 3.3/5V Tape&Reel
SPC560B40L3C6E0X e200z0h -40 to +125
SPC560B40L5B6E0X e200z0h 256 / 24 LQFP144 -40 to +105 64 4 x 16KB 3.3/5V Tape&Reel
SPC560B40L5C6E0X e200z0h -40 to +125
SPC560B44L3B4E0X e200z0h 384 / 28 LQFP100 -40 to +105 48 4 x 16KB 3.3/5V Tape&Reel
SPC560B44L3C4E0X e200z0h -40 to +125
SPC560B44L3B6E0X e200z0h 384 / 28 LQFP100 -40 to +105 64 4 x 16KB 3.3/5V Tape&Reel
SPC560B44L3C6E0X e200z0h -40 to +125
SPC560B44L5B6E0X e200z0h 384 / 28 LQFP144 -40 to +105 64 4 x 16KB 3.3/5V Tape&Reel
SPC560B44L5C6E0X e200z0h -40 to +125
SPC560B50L1C6E0X e200z0h 512 / 32 LQFP64 -40 to +125 64 4 x 16KB 3.3/5V Tape&Reel
SPC560B50L1C6E0Y e200z0h 512 / 32 LQFP64 -40 to +125 64 4 x 16KB 3.3/5V Tray
SPC560B50L3B4E0X e200z0h 512 / 32 LQFP100 -40 to +105 48 4 x 16KB 3.3/5V Tape&Reel
SPC560B50L3C4E0X e200z0h -40 to +125
SPC560B50L3B6E0X e200z0h 512 / 32 LQFP100 -40 to +105 64 4 x 16KB 3.3/5V Tape&Reel
SPC560B50L3C6E0X e200z0h -40 to +125 Tape&Reel
SPC560B50L3C6E0Y e200z0h 512 / 32 LQFP100 -40 to +125 64 4 x 16KB 3.3/5V Tray
SPC560B50L5B6E0X e200z0h 512 / 32 LQFP144 -40 to +105 64 4 x 16KB 3.3/5V Tape&Reel
SPC560B50L5C6E0X e200z0h -40 to +125
SPC560B50L5C6E0Y e200z0h 512 / 32 LQFP144 -40 to +125 64 4 x 16KB 3.3/5V Tray
SPC560C40L1C6E0X e200z0h 256 / 32 LQFP64 -40 to +125 64 4 x 16KB 3.3/5V Tape&Reel
SPC560C40L3C6E0X e200z0h 256 / 32 LQFP100 -40 to +125 64 4 x 16KB 3.3/5V Tape&Reel
SPC560C44L3C6E0X e200z0h 384 / 40 LQFP100 -40 to +125 64 4 x 16KB 3.3/5V Tape&Reel
SPC560C50L1C6E0X e200z0h 512 / 48 LQFP64 -40 to +125 64 4 x 16KB 3.3/5V Tape&Reel
SPC560C50L3C6E0X e200z0h 512 / 48 LQFP100 -40 to +125 64 4 x 16KB 3.3/5V Tape&Reel
SPC560Bx, SPC560Cx Ordering information
Doc ID 14619 Rev 7 105/113
Figure 35. Commercial product code structure
Table 51. Order Codes for Engineering Samples(1)
Order code CPU
Code Flash /
SRAM
(Kbytes)
Package Operating
temp. (°C)
Max
speed
(MHz)
Data
Flash Voltage Packing
SPC560B50L1-ENG e200z0h 512 / 48 LQFP64 -40 to +125 64 4 x 16KB 3.3/5V Tray
SPC560B50L3-ENG e200z0h 512 / 48 LQFP100 -40 to +125 64 4 x 16KB 3.3/5V Tray
SPC560B50L5-ENG e200z0h 512 / 48 LQFP144 -40 to +125 64 4 x 16KB 3.3/5V Tray
SPC560B50B2C6E0Y e200z0h 512 / 48 BGA208(2) -40 to +125 64 4 x 16KB 3.3/5V Tray
1. Engineering samples are suitable only for evaluation and developement purpose but NOT for qualification and production.
Their silicon version and maturity may vary until the product has reached qualification.
2. LBGA208 available only as development package for Nexus2+
Memory ConditioningCore Family
Y = Tray
X = Tape and Reel 90°
4E0 = 48 MHz EEPROM 5V/3V
6E0 = 64 MHz EEPROM 5V/3V
B = -40 to 105°C
C = -40 to 125°C
L1 = LQFP64
L3 = LQFP100
L5 = LQFP144
B2 = LBGA208
50 = 512 KB
44 = 384 KB
40 = 256 KB
B=Body
C = Gateway
0 = e200z0
SPC56 = Power Architecture in
90nm
TemperaturePackage Custom vers.
SPC56 50 Y0B CL3 5E0
Example code:
Product identifier
Abbreviations SPC560Bx, SPC560Cx
106/113 Doc ID 14619 Rev 7
Appendix A Abbreviations
Ta bl e 5 2 lists abbreviations used but not defined elsewhere in this document.
Table 52. Abbreviations
Abbreviation Meaning
CMOS Complementary metal–oxide–semiconductor
CPHA Clock phase
CPOL Clock polarity
CS Peripheral chip select
EVTO Event out
MCKO Message clock out
MDO Message data out
MSEO Message start/end out
MTFE Modified timing format enable
SCK Serial communications clock
SOUT Serial data out
TBD To be defined
TCK Test clock input
TDI Test data input
TDO Test data output
TMS Test mode select
SPC560Bx, SPC560Cx Revision history
Doc ID 14619 Rev 7 107/113
Revision history
Table 53. Document revision history
Date Revision Changes
04-Apr-2008 1 Initial release.
06-Mar-2009 2
Made minor editing and formatting changes to improve readability
Harmonized oscillator naming throughout document
Modified document title
Updated “Feature” on cover page
Replaced LFBGA208 with LBGA208
Updated “Description” Section
Updated “SPC560Bx and SPC560Cx device comparison” table
Added “Block diagram” section
Section 3 “Package pinouts and signal descriptions”:
Removed signal descriptions (these are found in the device reference manual)
Updated “LQFP 144-pin configuration (top view)” figure:
Replaced VPP with VSS_HV on pin 18
Added MA[1] as AF3 for PC[10] (pin 28)
Added MA[0] as AF2 for PC[3] (pin 116)
Changed description for pin 120 to PH[10] / GPIO[122] / TMS
Changed description for pin 127 to PH[9] / GPIO[121] / TCK
Replaced NMI[0] with NMI on pin 11
Updated “LQFP 100-pin configuration (top view)” figure:
Replaced VPP with VSS_HV on pin 14
Added MA[1] as AF3 for PC[10] (pin 22)
Added MA[0] as AF2 for PC[3] (pin 77)
Changed description for pin 81 to PH[10] / GPIO[122] / TMS
Changed description for pin 88 to PH[9] / GPIO[121] / TCK
Removed E1UC[19] from pin 76
Replaced [11] with WKUP[11] for PB[3] (pin 1)
Replaced NMI[0] with NMI on pin 7
Updated “LBGA208 configuration” figure:
Changed description for ball B8 from TCK to PH[9]
Changed description for ball B9 from TMS to PH[10]
Updated descriptions for balls R9 and T9
Added “Parameter classification” section and tagged parameters in tables where
appropriate
Added “NVUSRO register” section
Updated “Absolute maximum ratings” table
“Recommended operating conditions” section :
Added note on RAM data retention to end of section
Updated “Recommended operating conditions (3.3 V)” and “Recommended operating
conditions (5.0 V)”
Added “Package thermal characteristics” section
Updated “Power considerations” section
Updated I/O input DC electrical characteristics definition” figure
Revision history SPC560Bx, SPC560Cx
108/113 Doc ID 14619 Rev 7
06-Mar-2009 2
(continued)
Updated tables:
“I/O input DC electrical characteristics”
“I/O pull-up/pull-down DC electrical characteristics”
“SLOW configuration output buffer electrical characteristics”
“MEDIUM configuration output buffer electrical characteristics”
“FAST configuration output buffer electrical characteristics”
Added “Output pin transition times” section
Updated “I/O consumption” table
Updated “Start-up reset requirements” figure
Updated “Reset electrical characteristics” table
“Voltage regulator electrical characteristics” section:
Amended description of LV_PLL
“Voltage regulator capacitance connection” figure:
Exchanged position of symbols CDEC1 and CDEC2
Updated tables”
“Voltage regulator electrical characteristics”
“Low voltage monitor electrical characteristics”
“Low voltage power domain electrical characteristics”
Added “Low voltage monitor vs reset” figure
Updated “Flash memory electrical characteristics” section
Added “Electromagnetic compatibility (EMC) characteristics” section
Updated “Fast external crystal oscillator (4 to 16 MHz) electrical characteristics”
section
Updated “Slow external crystal oscillator (32 kHz) electrical characteristics” section
Updated tables:
“FMPLL electrical characteristics”
“Fast internal RC oscillator (16 MHz) electrical characteristics”
“Slow internal RC oscillator (128 kHz) electrical characteristics”
Added “On-chip peripherals” section
Added “ADC input leakage current” table
Updated “ADC conversion characteristics” table
Updated “ECOPACK®” section
Corrected inverted column headings for typical and minimum dimensions in “LQFP64
mechanical data” and “LQFP100 mechanical data” tables
Added “Abbrevation” appendix
03-Jun-2009 3 Corrected “Commercial product code structure” figure
Table 53. Document revision history (continued)
Date Revision Changes
SPC560Bx, SPC560Cx Revision history
Doc ID 14619 Rev 7 109/113
06-Aug-2009 4
Updated “LBGA208 configuration” figure
Absolute maximum ratings” table:
–V
DD_ADC, VIN: changed min value for “relative to VDD” condition
–I
CORELV: added new row
“Recommended operating conditions (5.0 V)” table:
–T
A C-Grade Part, TJ C-Grade Part, TA V-Grade Part, TJ V-Grade Part, TA M-Grade Part,
TJ M-Grade Part: added new rows
Changed capacitance value in footnote
“Output pin transition times” table:
MEDIUM configuration: added condition for PAD3V5V = 0
Updated “Voltage regulator capacitance connection”
“Voltage regulator electrical characteristics” table:
–C
DEC1: changed min value
–I
MREG: changed max value
–I
DD_BV: added max value footnote
“Low voltage monitor electrical characteristics” table:
–V
LVDH V3H , VLVDHV5H: changed max value
–V
LVDH V3L , VLVD HV 5L : added max value
Updated “Low voltage power domain electrical characteristics” table
“Flash module life” table:
Retention: deleted min value footnote for “Blocks with 100000 P/E cycles“
“Fast external crystal oscillator (4 to 16 MHz) electrical characteristics” table:
–I
FXOSC: added typ value
“Slow external crystal oscillator (32 kHz) electrical characteristics” table
–V
SXOSC: changed typ value
–T
SXOSCSU: added max value footnote
“FMPLL electrical characteristics” table
tLTJIT: added max value
Updated “LQFP100 package mechanical drawing”
Table 53. Document revision history (continued)
Date Revision Changes
Revision history SPC560Bx, SPC560Cx
110/113 Doc ID 14619 Rev 7
20-Jan-2010 5
Table: “Absolute maximum ratings”
–V
DD_BV
, VDD_ADC, VIN: changed max value
Table: ”Recommended operating conditions (3.3 V)”
–TV
DD: deleted min value
Table: “Reset electrical characteristics“
Changed footnotes 2 and 5
Table: “Voltage regulator electrical characteristics“
–C
REGn: changed max value
–C
DEC1: split into 2 rows
Updated voltage values in footnote 3
Table: “Low voltage monitor electrical characteristics“
Updated column Conditions
–V
LVDLV C OR L, VLVDLVBKPL: changed min/max value
Table: “Program and erase specifications“
–T
dwprogram: added initial max value
Table: “Flash module life“
Retention: changed min value for blocks with 100K P/E cycles
Table: “Flash power supply DC electrical characteristics“
–I
FREAD, IFMOD: added typ value
Added a footnote
Added Section: “ NVUSRO[WATCHDOG_EN] field description“
Section 4.18: “ADC electrical characteristics“ has been moved up in hierarchy (it was
Section 4.18.5).
Table: “ ADC conversion characteristics“
–R
AD: changed initial max value
Table: “On-chip peripherals current consumption“
Removed min/max from the heading
Changed unit of measurement and consequently rounded the values
15-Mar-2010 6 Internal release.
Table 53. Document revision history (continued)
Date Revision Changes
SPC560Bx, SPC560Cx Revision history
Doc ID 14619 Rev 7 111/113
22-Jul-2010 7
Changes between revisions 5 and 7
Added LQFP64 package information
Updated the “Features“ section.
Section “Introduction”
Relocated a note
Table: “SPC560Bx and SPC560Cx device comparison“
Added footnote regarding SCI and CAN
Added eDMA block in the “SPC560Bx and SPC560Cx series block diagram” figure
Removed alternate function information from “LQFP 100-pin configuration” and “LQFP
100-pin configuration” figures.
Added “Functional port pin descriptions” table
Deleted the “NVUSRO[WATCHDOG_EN] field description“ section
Table: “Absolute maximum ratings“
Removed the min value of VIN relative tio VDD
Table ”Recommended operating conditions (3.3 V)”
–TV
DD: made single row
”Recommended operating conditions (5.0 V)”
deleted TA C-Grade Part, TJ C-Grade Part, TA V-Grade Part, TJ V-Grade Part, TA M-Grade Part, TJ
M-Grade Part rows
Table: “LQFP thermal characteristics”
Added more rows
Rounded the values
Removed table “LBGA208 thermal characteristics”
Table “I/O input DC electrical characteristics”
–W
FI: insered a footnote
–W
NFI: insered a footnote
Table “I/O consuption“
–Removed I
DYNSEG row
Added “I/O weight “ table
Replaced “nRSTIN” with “RESET” in the “RESET electrical characteristics” section.
Table “Voltage regulator electrical characteristics“
Updated the values
–Removed I
VREGREF and IVREDLVD12
Added a note about IDD_BC
Table: “Low voltage monitor electrical characteristics“
changed min valueVLVDH V3 L, from 2.7 to 2.6
Inserted max value of VLV DLVC ORL
Updated VPORH values
Updated VLVDLV COR L value
Table “Low voltage power domain electrical characteristics“
Entirely updated
Table “Program and erase specifications“
Inserted Teslat row
Table “Flash power supply DC electrical characteristics“
Entirely updated
Table 53. Document revision history (continued)
Date Revision Changes
Revision history SPC560Bx, SPC560Cx
112/113 Doc ID 14619 Rev 7
22-Jul-2010 7
(continued)
Table “Start-up time/Switch-off time“
Entirely updated
Figures “Crystal oscillator and resonator connection scheme“
Relocated a note
Table ”Slow external crystal oscillator (32 kHz) electrical characteristics”
–Removed g
mSXOSC row
Inserted values of ISXOSCBIAS
Table ”FMPLL electrical characteristics”
Rounded the values of fVCO
Table “Fast internal RC oscillator (16 MHz) electrical characteristics“
Entirely updated.
Table “ADC conversion characteristics”
Updated the description of the conditions of tADC_PU and tADC_S.
Added “IADCPWD” and “IADCRUN” rows
Table “DSPI characteristics“
Entirely updated.
Updated “Order codes” table.
Figure “Commercial product code structure”
Replaced PowerPC with “Power Architecture™“ in the product identifier
Removed the note about the condition from “Flash read access timing“ table
Removed the notes that assert the values need to be confirmed before validation
Exchanged the order of “LQFP 100-pin configuration” and “LQFP 144-pin
configuration”
Exchanged the order of “LQFP 100-pin package mechanical drawing” and “LQFP
144-pin package mechanical drawing”
Table 53. Document revision history (continued)
Date Revision Changes
SPC560Bx, SPC560Cx
Doc ID 14619 Rev 7 113/113
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com