DS-CPC7583-R2.0 9/16/2002 www.clare.com 1
Features
Small 28-pin SOIC or micro-leadframe (MLP) package
MLP ver sion provides 65% PCB area reduction over
4th generation EMRs , and 60% smaller footprint than
SOIC ve rsion
Monolithic IC reliability
Low, matched, RON
Eliminates the need for zero-cross switching
Fle xible switch timing for transition from ringing
mode to talk mode .
Clean, bounce-free switching
Tertiary protection consisting of integrate d current
limiting and thermal shutdown for SLIC protection
5 V operation with power consumption < 10.5 mW
Intelligent battery monitor
Latched logic-level inputs, no external drive circuitry
required
SOIC ve rsion pin-compatible with Agere 7583 family
Applications
Central office (CO)
Digital Loop Carrier (DLC)
PBX Systems
Digitally Added Main Line (DAML)
Hybrid Fiber Coax (HFC)
Fiber in the Loop (FITL)
P air Gain System
Channel Banks
Description
The CPC7583 is a monolithic 10-pole line card access
s witch in a 28-pin SOIC or MLP package. It provides
the necessary functions to replace three 2-F orm-C
electromechanical relays on analog line cards and
combined v oice and data line cards found in central
office, access, and PBX equipment. The device con-
tains solid state switches for tip and ring line break,
ringing injection/ringing return, and test access . The
CPC7583 requires only a +5 V supply an d offers
break-bef or e-make or make-before-break switch oper-
ation using simple logic-level input control.
Ordering Information
Specify CPC7583Bx for SOIC package in tubes ,
CPC7583Mx f or MLP package in tubes. Add -TR
to the part number f or tape and reel pac kaging.
Part Number Description
CPC7583xA With protection SCR
CPC7583xB Without protection SCR
CPC7583xC With extra logic state and protection SCR
CPC7583xD With extra logic state but without protection
SCR
CPC7583
TLINE
RLINE
TBAT
VDD
RBAT
DGND
VBAT
FGND
VREF INTESTIN
INRINGING
INTESTOUT
TSD
LATCH
7
10 85
22
6
12
1314281
24
20
19
23
17
16
15
18
L
A
T
C
H
Switch
Control
Logic
SCR
and
Trip
Circuit
Secondary
Protection
+5 Vdc
Tip
Ring SLIC
X
X
X
X
X
X
X
XX
XSW5 SW7
SW6
SW2
SW4
SW10
SW8
TTESTIN
(T )
CHANTEST
TTESTOUT
(T )
DROPTEST
VBAT
RINGING
300
(min.)
RTESTOUT
(R )
DROPTEST
R
TESTIN
TRING
SW3 SW9
SW1
CPC7583
Line Card Access Switch
CPC7583
2 www.clare.com R2.0 9/16/2002
1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Package Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Pinout Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Absolute Maximum Ratings (at 25° C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Electrical Characteristics, TA = -40° C to +85° C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.1 Power Supply Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.2 Break Switches, SW1 and SW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.3 Ringing Return Switch, SW3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.4 Ringing Switch, SW4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.5 TESTOUT Switches, SW5 and SW6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.6 Ringing Test Return Switch, SW7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.7 Ringing Test Switch, SW8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.8 Test In Switches, SW9 and SW10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Additional Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Protection Circuitry Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Truth Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7.1 Truth Table for CPC7583xA and CPC7583xB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7.2 Truth Table for CPC7583xC and CPC7583xD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Switch Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Make-Before-Break Operation (Ringing to Idle/Talk Transition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Break-Before-Make Operation (Ringing to Idle/Talk Transition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Alternate Break-Before-Make Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Data Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 TSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Ringing Switch Zero-Cross Current Turn Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Battery Voltage Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9.1 Diode Bridge/SCR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9.2 Current Limiting function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.10 Temperature Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.11 External Protection Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Manufacturing Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.1 Moisture Reflow Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Washing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Mechanical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 MLP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.3 SOIC Tape Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
CPC7583
Rev. 2.0 9/16/2002 www.clare.com 3
1. Specifications
1.1 Package Pinout 1.2 Pinout Description
CPC7583
TBAT
FGND
DGND
TTESTin
INTESTin
R
TTESTout
INTESTout
RTESTout
TLINE
TRINGING
VDD
T
NC
NC
NC
NC
NC
NC
NC
NC
NC
SD
VBAT
RBAT
TESTin
RLINE
RRINGING
LATCH
INRINGING
27
26
25
24
23
22
21
20
19
18
17
16
15
28
1
3
4
5
6
7
8
2
9
10
11
12
13
14
Pin Name Description
1FGND Fault ground
2 NC No connection
3 NC No connection
4 NC No connection
5TTESTin Connect to TESTIN bus tip lead
6TBAT Connect to tip on SLIC side
7TLINE Connect to tip on line side
8TRINGING Connect to ringing generator return
9 NC Not connected
10 TTESTout Connect to TESTOUT bus tip lead
11 NC No connection
12 VDD +5 V supply
13 TSD
Temperature shutdown pin. Bi-directional
I/O with internal pullup to VDD. Output func-
tion indicates status of thermal shutdown
circuitry. Input function can be used to set
the ‘all off’ mode using an open-drain type
output.
14 DGND Digital ground
15 INTESTout Logic-level switch control input
16 INRINGING Logic-level switch control input
17 INTESTin Logic-level switch control input
18 LATCH Data latch control, active high, transparent
low
19 RTESTout Connect to TESTOUT bus ring lead
20 RRINGING
Connect to ringing generator current limit-
ing resistor
21 NC No connection
22 RLINE Connect to ring on the line side
23 RBAT Connect to ring on the SLIC side
24 RTESTin Connect to TESTIN bus ring lead
25 NC No connection
26 NC No connection
27 NC No connection
28 VBAT
Battery voltage supply. Must be capable of
sourcing the trigger current for proper
operation of the SCR.
CPC7583
4 www.clare.com Rev. 2.0 9/16/2002
1.3 Absolute Maximum Ratings (at 25° C)
1.4 Electrical Characteristics, T A = -40° C to +85° C
Unless otherwise specified, minimum and maxim um
v alu es ar e production testing r equir ements. Typical
v alu es ar e char acteristic of the device and are the
result of engineering e valuations. Typical values are
provided for inf ormation purposes only and are not
part of the testing requirements.
Absolute maximum ratings are stress ratings. Stresses in
excess o f these ratings can cause per m anent damage to
the device. Functional operation of the device at these or
any other conditions beyond those indicated in the opera-
tional sections of this data sheet is not implied. Exposure of
the device to the absolute maximum ratings for an
extended period may degrade the device and affect its reli-
ability.
1.4.1 Power Supply Specifications
1.4.2 Break Switches, SW1 and SW2
Parameter Minimum Maximum Unit
Operating temperature -40 +110 °C
Storage temperature -40 +150 °C
Operating relative humidity 5 95 %
Pin soldering temperature
(10 seconds max) - +260 °C
+5 V power supply - 7 V
Battery Supply - -85 V
Logic input voltage - 7 V
Logic input to switch output
isolation -330V
Switch open contact isola-
tion (SW1, SW2, SW3,
SW5, SW6, SW7, SW9,
SW10)
-330V
Switch open contact isola-
tion (SW4)* -480V
Switch open contact isola-
tion (SW8)* -235V
*Ringing supply side of switch limited to ±210 V with respect to ground
Supply Minimum Typical Maximum Unit
VDD +4.5 +5.0 +5.5 V
VBAT
1-19 - -72 V
1VBAT is used only for internal protection circuitry. If VBAT rises above
-10 V, the device will e nter the all-off stat e and will remain in the all-off state
until the battery drops below -15 V.
ESD Rating (Human Body Model)
1000 V
Parameter Test Conditions Symbol Minimum Typical Maximum Unit
Off-state leakage current
+25° C
VSW (differential) = -320 V to gnd
VSW (differential) = +260 V to -60 V
ISW -
0.1
1µA+85° C VSW (differential) = -330 V to gnd
VSW (differential) = +270 V to -60 V 0.3
-40° C VSW (differential) = -310 V to gnd
VSW (differential) = +250 V to -60 V 0.1
RON
+25° C TLINE and RLINE = ±10 mA, ±40 mA,
RBAT and TBAT = -2 V RON
-
14.5 -
+85° C 20.5 28
-40° C 10.5 -
RON match Per on-resistance test condition of
SW1, SW2
Magnitude
RON SW1-
RON SW2
0.15 0.8
CPC7583
Rev. 2.0 9/16/2002 www.clare.com 5
1.4.3 Ringing Return Switch, SW3
DC current limit
+25° C
VSW (on) = ±10 V
ISW
- 225 -mA+85° C 80 150
-40° C - 400 425
Dynamic current limit
(t = <0.5 µs)
Break switches in on state, ringing
switches off, apply ±1 kV at
10/1000 µs pulse, with appropriate sec-
ondary protection in place.
-2.5- A
Logic input to switch output isolation
+25° C VSW (TLINE, RLINE) = ±320 V, logic
inputs = gnd
ISW
-0.1
1µA+85° C VSW (TLINE, RLINE) = ±330 V, logic
inputs = gnd -0.3
-40° C VSW (TLINE, RLINE) = ±310 V, logic
inputs = gnd -0.1
dv/dt sensitivity - - - 200 - V/µs
Parameter Test Conditions Symbol Minimum Typical Maximum Unit
Off-state leakage current
+25° C VSW (differential) = -320 V to gnd
VSW (differential) = +260 V to -60 V
ISW -
0.1
1µA+85° C VSW (differential) = -330 V to gnd
VSW (differential) = +270 V to -60 V 0.3
-40° C VSW (differential) = -310 V to gnd
VSW (differential) = +250 V to -60 V 0.1
RON
+25° C
TLINE = ±0 mA, ±10 mA RON -
60 -
+85° C 85 100
-40° C 45 -
DC current limit
+25° C
VSW (on) = ± 10 V
ISW
- 120
-
mA+85° C 70 85
-40° C
-
210
Dynamic current limit
(t = <0.5 µs)
Break switches in on state, ringing
switches off, apply ±1 kV at
10/1000 µs pulse, with appropriate sec-
ondary protection in place.
2.5 A
Logic input to switch output isolation
+25° C VSW (TRING, TLINE) = ±320 V, logic
inputs = gnd
ISW -
0.1
1µA+85° C VSW (TRING, TLINE) = ±330 V, logic
inputs = gnd 0.3
-40° C VSW (TRING, TLINE) = ±310 V, logic
inputs = gnd 0.1
Parameter Test Conditions Symbol Minimum Typical Maximum Unit
CPC7583
6 www.clare.com Rev. 2.0 9/16/2002
1.4.4 Ringing Switch, SW4
1.4.5 TESTOUT Switches, SW5 and SW6
dv/dt sensitivity - - - 200 - V/µs
Parameter Test Conditions Symbol Minimum Typical Maximum Unit
Off-state leakage current
+25° C
VSW (differential) = -255 V to +210 V
VSW (differential) = +255 V to -210 V
ISW
-
0.05 1
µA+85° C
VSW (differential) = -270 V to +210 V
VSW (differential) = +270 V to -210 V 0.1 1
-40° C VSW (differential) = -245 V to +210 V
VSW (differential) = +245 V to -210 V 0.05 1
On Voltage ISW (on) = ± 1 mA -1.53V
Ringing generator cur-
rent to ground during
ringing
VCC = 5 V, inputs set for ringing mode IRINGING 0.1 0.25 mA
On steady-state current* Inputs set for ringing mode ISW - 150 mA
Surge current* - - - 2 A
Release current - - 450 - µA
RON ISW (on) = ±70 mA, ±80 mA RON 10 15
Logic input to switch output isolation
+25° C VSW (RRING, RLINE) = ±320 V, logic
inputs = gnd
ISW -
0.1
1µA+85° C VSW (RRING, RLINE) = ±330 V, logic
inputs = gnd 0.3
-40° C VSW (RRING, RLINE) = ±310 V, logic
inputs = gnd 0.1
dv/dt sensitivity - - 200 - V/µs
*Secondary protection and ringing source current limiting must prevent exceeding this par ameter.
Parameter Test Conditions Symbol Minimum Typical Maximum Unit
Off-state leakage current
+25° C
VSW (differential) = -320 V to gnd
VSW (differential) = +260 V to -60 V
ISW -
0.1
1µA+85° C
VSW (differential) = -330 V to gnd
VSW (differential) = +260 V to -60 V 0.3
-40° C
VSW (differential) = -310 V to gnd
VSW (differential) = +250 V to -60 V 0.1
RON
+25° C
RLINE and TLINE = ±10 mA, ±40 mA RON -
35 -
+85° C 50 70
-40° C 26 -
DC current limit
Parameter Test Conditions Symbol Minimum Typical Maximum Unit
CPC7583
Rev. 2.0 9/16/2002 www.clare.com 7
1.4.6 Ringing Test Return Switch, SW7
+25° C
VSW (on) = ±10 V
ISW
- 140 -
mA+85° C 80 100 -
-40° C - 210 250
Dynamic current limit
(t = <0.5 µs)
Break switches in on state, ringing
switches off, apply ±1 kV at
10/1000 µs pulse, with appropriate sec-
ondary protection in place.
-2.5- A
Logic input to switch output isolation
+25° C VSW (TTESTout, TLINE, RTESTout, RLINE)
= ±320 V, logic inputs = gnd ISW -0.11µA
+85° C VSW (TTESTout, TLINE, RTESTout, RLINE)
= ±330 V, logic inputs = gnd
ISW -0.31µA
-40° C VSW (TTESTout, TLINE, RTESTout, RLINE)
= ±310 V, logic inputs = gnd
ISW -0.11µA
dv/dt sensitivity - - 200 - V/µs
Parameter Test Conditions Symbol Minimum Typical Maximum Unit
Off-state leakage current
+25° C VSW (differential) = -320 V to gnd
VSW (differential) = +260 to -60 V
ISW -
0.1
1µA+85° C VSW (differential) = -330 V to gnd
VSW (differential) = +270 V to -60 V 0.3
-40° C VSW (differential) = -310 V to gnd
VSW (differential) = +250 V to -60 V 0.1
RON
+25° C
TRINGING = ±10 mA, ±40 mA RON -
60 -
+85° C 85 100
-40° C 45 -
DC current limit
+25° C
VSW (on) = ±10 V ISW 70
120
-mA+85° C 80
-40° C 210
Logic input to switch output isolation
+25° C VSW (TRING, TTESTin) = ±320 V, logic
inputs = gnd
ISW -
0.1
1µA+85° C VSW (TRING, TTESTin) = ±330 V, logic
inputs = gnd 0.3
-40° C VSW (TRING, TTESTin) = ±310 V, logic
inputs = gnd 0.1
dv/dt sensitivity - - 200 - V/µs
Parameter Test Conditions Symbol Minimum Typical Maximum Unit
CPC7583
8 www.clare.com Rev. 2.0 9/16/2002
1.4.7 Ringing Test Switch, SW8
1.4.8 Test In Switches, SW9 and SW10
Parameter Test Conditions Symbol Minimum Typical Maximum Unit
Off-state leakage current
+25° C
VSW (differential) = -60 V to +175 V ISW
-
0.05
1µA+85° C 0.1
-40° C 0.05
On Voltage ISW(ON) = ±1 mA - 0.75 1.5 V
RON ISW(ON) = ±70 mA, ±80 mA RON 35 -
Release Current - - 450 - µA
Logic input to switch output isolation
+25° C VSW (RRING, RTESTin) = ±320 V, logic
inputs = gnd
ISW -
0.1
1µA+85° C VSW (RRING, RTESTin) = ±330 V, logic
inputs = gnd 0.3
-40° C VSW (RRING, RTESTin) = ±310 V, logic
inputs = gnd 0.1
dv/dt sensitivity - - 200 - V/µs
Parameter Test Conditions Symbol Minimum Typical Maximum Unit
Off-state leakage current
+25° C VSW (differential) = -320 V to gnd
VSW (differential) = -60 V to +260 V
ISW -
0.1
1µA+85° C
VSW (differential) = -330 V to gnd
VSW (differential) = -60 V to +270 V 0.3
-40° C
VSW (differential) = -310 V to gnd
VSW (differential) = -60 V to +250 V 0.1
RON
+25° C
RTESTOUT and TTESTOUT = ±10 mA,
±40 mA RON -
35 -
+85° C 50 70
-40° C 26 -
DC current limit
+25° C
VSW (on) = ±10 V ISW
- 160 -
mA+85° C 80 110 -
-40° C - 210 250
Logic input to switch output isolation
+25° C VSW (TTESTin, RTESTin) = ±320 V, logic
inputs = gnd
ISW -
0.1
1µA+85° C VSW (TTESTin, RTESTin) = ±330 V, logic
inputs = gnd 0.3
-40° C VSW (TTESTin, RTESTin) = ±310 V, logic
inputs = gnd 0.1
dv/dt sensitivity - - 200 - V/µs
CPC7583
Rev. 2.0 9/16/2002 www.clare.com 9
1.5 Additional Electrical Characteristics
Parameter Test Conditions Symbol Minimum Typical Maximum Unit
Digital input characteristics
Input low voltage - VIL --1.5
V
Input high voltage - VIH 3.5 - -
Input leakage current
(high) VDD = 5.5 V, VBAT = -75 V, VIH = 5 V IIH -0.11µA
Input leakage current
(low) VDD = 5.5 V, VBAT = -75 V, VIL = 0 V IIL -0.11
Power requirements
Power consumption in
idle/talk and all-off
states
VDD = 5 V, VBAT = -48 V, measure IDD
and IBAT
P- 4.7 10.5
mW
Power consumption in
ringing and access
states
VDD = 5 V, VBAT = -48 V, measure IDD
and IBAT
P5.2 10.5
VDD current in idle/talk
and all off states VDD = 5 V, VBAT = -48 V
IDD -0.92.0
mA
VDD current in ringing
and access states IDD -1.02.0
VBAT current in idle/talk
and all off states VDD = 5V, VBAT = -48 V
IBAT -410
µA
VBAT current in ringing
and access states
IBAT -410
Temperature Shutdown Requirements (temperature shutdown flag is active low)
Shutdown activation
temperature - - 110 125 150 °C
Shutdown circuit hyster-
esis --10-25°C
CPC7583
10 www.clare.com Rev. 2.0 9/16/2002
1.6 Protection Circuitry Electrical Specifications
1.7 Truth Tables
1.7.1 Truth Table for CPC7583xA and CPC7583xB
Parameter Conditions Symbol Minimum Typical Maximum Unit
Parameters Related to the Diodes in the Diode Bridge
Voltage drop at continu-
ous current (50/60 Hz)
Apply ± dc current limit of break
switches
Forward
Vol tage -2.83.5
V
Voltage drop at surge
current
Apply ± dynamic current limit of break
switches
Forward
Vol tage -5-
Parameters Related to the Protection SCR (when equipped)
Surge current
-
-
-
-*A
Trigger current (+25° C) ITRIG 60 -
mA
Trigger current (+85° C) ITRIG 35 -
Hold current (+25° C) IHOLD 110 -
Hold current (+85° C) IHOLD 60 70 -
Gate trigger voltage IGATE = ITRIGGER
§-V
BAT -4 -VBAT -2 V
Reverse leakage current VBAT = -48 V -
-
-1.0µA
On-state voltage
0.5 A, t = 0.5 µsVON -3 - V
2.0 A, t = 0.5 µsVON -5 - V
*Passes GR1089 and ITU-T K.20 with appropriate secondary protection in place.
§VBAT must be capable of sourcing ITRIGGER for the internal SCR to activate.
State INRINGING INTESTIN INTESTOUT Latch TSD
1TESTIN
Switches
Break
Switches
Ringing
Test
Switches
Ringing
Switches
TESTOUT
Switches
Idle/Talk 0 0 0
0
1 or
Floating
Off On Off Off Off
TESTout 0 0 1 Off Off Off Off On
TESTin010 On Off Off Off Off
Simul-
taneous
TESTin
and
TESTout
011 On Off Off Off On
Ringing 1 0 0 Off Off Off On Off
Ringing
Generator
Te s t
110 OffOff
On Off Off
Latched X X X 1 Unchanged Unchanged Unchanged Unchanged Unchanged
All Off
1 0 1 0 Off Off Off Off Off
1 1 1 0 Off Off Off Off Off
XXXX
02Off Off Off Off Off
1If TSD is tied high, thermal shutdown is disabled. If TSD is left floating, the thermal shutdown mechanism functions normally.
2Forcing TSD to ground overrides the logic input pins and forces an all off state.
CPC7583
Rev. 2.0 9/16/2002 www.clare.com 11
1.7.2 Truth Table for CPC7583xC and CPC7583xD
State INRINGING INTESTIN INTESTOUT Latch TSD
1TESTIN
Switches
Break
Switches
Ringing
Test
Switches
Ringing
Switches
TESTOUT
Switches
Idle/Talk 0 0 0
0
1 or
Floating
Off On Off Off Off
TESTout 0 0 1 Off Off Off Off On
TESTin010 On Off Off Off Off
Simul-
taneous
TESTin
and
TESTout
011 On Off Off Off On
Ringing 1 0 0 Off Off Off On Off
Simulta-
neous
TESTout
and Ring-
ing Gener-
ator Test
110 OffOff
On Off On
Latched X X X 1 Unchanged Unchanged Unchanged Unchanged Unchanged
All Off
1 0 1 0 Off Off Off Off Off
XXXX
02Off Off Off Off Off
1If TSD is tied high, thermal shutdown is disabled. If TSD is left floating, the thermal shutdown mechanism functions normally.
2Forcing TSD to ground overrides the logic input pins and forces an all off state.
CPC7583
12 www.clare.com Rev. 2.0 9/16/2002
2. Functional Description
2.1 Introduction
The CPC7583 has the following states:
Idle/talk. Loop break s witches SW1, and SW2
closed, all other switches open.
Ringing. Ringing switches SW3, SW4 closed, all
other switches open.
TESTout. Testout s witches SW5, SW6 closed, all
other switches open.
Ringing generator test. SW7, SW8 closed, all
other switches open.
TESTin. Testin s w itches SW9 and SW10 closed.
Simulta neous TESTin and TESTout. SW9, SW10,
SW5, and SW6 closed, all other switches open.
Simultaneous test out and ringing generator
test. SW5, SW6, SW7, and SW8 closed, all other
switches open (only on the xC and xD v ersions).
All Off . All switches open.
See “Truth Tables” on page 10 for more information.
The CPC7583 offers break-before-make and make-
before-break switching with simple logic-lev el input
control. Solid-state s witch construction means no
impulse noise is generated when s witching during ring
cadence or ring trip, eliminat ing the need for external
zero-cross switching circuitry. State-control is via
logic-le vel input so no additional driver circuit ry is
required. The line break switches SW1 and SW2 are
linear switches that hav e exceptionally low RON and
e xcellent matching characteristics . The ringing access
switch SW4 has an open contact breakdown voltage
rating of g reat er t han 480 V. This is sufficiently high,
with proper protection, to preve nt br eakdown in the
presence of a transient fault condition (i.e . , p assing
the transient on to t he ring generato r).
Integr ated int o the CPC7583 is a diode bridge/SCR
clamping circuit, current limiting , and a th ermal shut-
down mechanism t o provide protection to the SLIC
de vice during a fault condition. Positive and negative
surges are reduced by the current limiting circuitry and
hazardous potentials are div erted to ground via diodes
and the integrat ed SCR. Power-cross tr ansients are
also reduced b y the curr ent limit ing and t hermal shut-
down circuits .
To protect the CPC7583 from an overvoltage fault
condition, the use of a secondary protector is required.
The secondary protector must limit the v oltage seen at
the TLINE and RLINE terminals to a le vel below the
maximum breakdown voltage of the switches. To min-
imize the stre ss on the solid-state contacts, use of a
f oldback or crowbar type secondary protector is rec-
ommended. With proper selection of the secondary
protector, a line card using the CPC7583 will meet all
rele vant ITU, LSSGR, FCC and UL protection require-
ments.
The CPC7583 operates from a +5 V supply only. This
gives the device e xtremely low idle and active power
dissipation and allows use with virtually any range of
battery voltag e . A battery voltage is also used by the
CPC7583 as a ref erence for the integrated protect ion
circuit. In the event of a loss of battery vo lt age , the
CPC7583 enters the all-off st ate.
2.2 Switch Logic
The CPC7583 provides , when switching from the ring-
ing state to the idle/talk state, the ability to control the
release timing of the ringing switches SW3 and SW4
relativ e to the state of the loop break s wit ches SW1
and SW2 using simple logic-level input. This is
ref erred to a make-bef ore-break or break-before-mak e
operation. When the line br eak switch contacts (SW1
and SW2) are closed (or made) before the ringing
access s wit ch contacts (SW3 a nd SW4) are opened
(or broken), this is referred to make-before-break
operation. Break-before-make operation occurs when
the ringing access contacts (SW3 and SW4) are
opened (brok en) before the line break s witch contacts
(SW1 and SW2) are closed (made). With t he
CPC7583, the make-before-break and break-before-
make operations can easily be selected by applying
the proper sequence of logic inputs to INTESTout,
INRINGING, and INTESTin.
The logic sequences for either mode of operation are
given in “Make-Before-Break Operation (Ringing to Idle/
Talk Transition)” on page 13 and “Break-Before-Make Oper-
ation (Ringing to Idle/Talk Transition)” on page 13. Logic
states and explanations are given in “Truth Tables” on
page 10.
Break-before-make operation can also be achieve d
using pin 13 (TSD) as an input. In “Break-Before-Make
Operation (Ringing to Idle/Talk Transition)” on page 13,
lines 2 and 3, it is possible to induce the s wit ches to
the all-off state by grounding pin 13 (TSD) instead of
applying logic input to the pins. This has the effect of
ov erriding the logic inputs and f orcing the de vice to the
all-off state. Hold th is input state f or 25 ms. During this
hold period, toggle the inputs from the ringing state to
the idle/talk state . After the 25 ms, release pin 13
CPC7583
Rev. 2.0 9/16/2002 www.clare.com 13
(TSD) to return switch control to the input pins INTEST-
out, INRINGING, and INTESTin and t he latch cont rol pin.
2.2.1 Make-Before-Break Operation (Ringing to Idle/Talk Transition)
2.2.2 Break-Before-Make Operation (Ringing to Idle/Talk Transition)
2.3 Alternate Brea k-Before-Make Operation
Note that break-before-make oper a tion can also be
achie v ed using TSD as an input. In lines 2 and 3 of the
table “Break-Before-Make Operation (Ringing to Idle/Talk
Transition)” on page 13, instead of using the logic input
pins to f orce the all-off state, f orce TSD to gr ound. This
overrides the logic inputs and also forces the all off
state. Hold th is st ate for one-half of the ringing cycle.
During this 25 ms all-off state, change t he inputs from
the power ringing state (INRING = 1, I N TESTIN = 0,
INTESTOUT = 0) to th e idle/ talk stat e (I NRING = 0,
INTESTIN = 0, INTESTOUT = 0). After the hold period,
release TSD to return switch control to the input pins
which will set the idle talk state.
When using the CPC7583 in this mode , forcing TSD
low overrides the input pins and f orces an all of f state .
Setting TSD high allows switch control via the logic
input pins and returns the thermal protection circuit to
normal operation. F orcing TSD high disab l es the ther-
mal shutdown mechanism and is not recommended.
Therefore, to allow switch control via the logic input
pins, allo w TSD to float.
When using TSD as an input, the two recommended
states are 0 (o verrides logic input pins and f orces all
off state) and float (allo ws s witch control via logic input
pins and the thermal shutdown mechanism is active).
This requires the use of an open- collector typ e buffer.
2.4 Data Latch
The CPC7583 has an integr at ed data latch. The lat ch
operation is controlled by logic-level input pin 18
(LATCH). The data input of the latch are t he input
pins, while the ou tput of t he data latch is an in ternal
node used for state control. When the LATCH control
pin is at logic 0, the data latch is t r ansparent and d ata
State INRINGING INTESTIN INTESTOUT Latch TSD Timing
Break
Switches
1 and 2
Ring
Return
Switch 3
Ring
Access
Switch 4
All Other
Test
Switches
Ringing 1 0 0
0
Floating - Off On On Off
Make-
before-
break
0 0 0 Floating
SW4 waiting for next zero-
current crossing to turn off.
Maximum time is one-half of
ringing. In this transition
state, current that is limited to
the dc break switch current
limit value will be sourced
from the ring node of the
SLIC.
On Off On Off
Idle/Talk 0 0 0 Floating Zero-cross current has
occurred On Off Off Off
State INRINGING INTESTIN INTESTOUT Latch TSD Timing
Break
Switches
1 and 2
Ring
Return
Switch 3
Ring
Access
Switch 4
All Other
Test
Switches
Ringing 1 0 0
0
Floating - Off On On Off
All off 1 0 1 Floating
Hold this state for one-half of
ringing cycle. SW4 waiting for
zero current to turn off.
Off Off On Off
All off 1 0 1 Floating Zero current has occurred.
SW4 has opened Off Off Off Off
Idle/Talk 0 0 0 Floating Release break switches On Off Off Off
CPC7583
14 www.clare.com Rev. 2.0 9/16/2002
control signals flow directly through to state cont rol. A
change in input will be reflected in a change is switch
state. When LATCH control pin is at logic 1, the data
latch is active and a change in input control will not
aff ect switch state. The switches will remain in the
position they were in when the LATCH changed from
logic 0 to logic 1 and will not respond to changes in
input as long as the latch is at logic 1. The TSD input is
not tied to the data latch. Therefore, TSD is no t
affected by the LATCH input and the TSD input will
override state control via the inputs.
2.5 TSD
Setting TSD to +5 V allows switch contr ol using t he
logic inputs. This setting, howe ver, also disables the
thermal shutdown circuit and is therefore not recom-
mended. When using logic cont rols via the input pins,
pin 13 (TSD) should be allo wed to float. As a result, th e
two recommended states when using pin 13 (T SD) as
a control are 0, which for ces the device to the all-off
state, or f loat, which allows logic inputs to remain
active. This requires the use of an open-collector type
buffer.
2.6 Ringing Switc h Zer o-Cr oss Current Turn Off
After the application of a logic input t o turn SW4 off,
the ringing switch is designed to delay the change in
state until the next zero-crossing. Once on, the switch
requires a zero-current cross to tu rn off, and therefore
should not be used to switch a pure DC signal. The
switch will remain in the on state no matter the logic
input until the next zero crossing. These switching
characteristics will reduce and possibl y eliminate o ver-
all system impulse noise normally associated with
ringing swit ches . See Clare applicat ion note AN-144,
Impulse Noise Benefits of Line Card Access Switches for
more inf ormation. The attributes of ringing s witch SW4
ma y make it possible to eliminate the need for a zero-
cross s wit ching scheme. A minimum impedance of
300 in series with the ringing generator is recom-
mended.
2.7 Power Supp lies
Both a +5 V supply and battery v oltage are connected
to the CPC7583. CPC7583 switch state control is
pow ered exclusiv ely by the +5 V supply. As a result,
the CPC7583 e xhibits e xtremely low power dissipation
during both active and idle stat es.
The battery voltage is not used for s witch con trol but
rather as a supply for the integrated secondary protec-
tion circuitry. The integr at ed SCR is designed to trig-
ger when pin 6 (TBAT) or pin 23 (RBAT) drops 2 to 4 V
below the voltage on pin 28 (VBAT). This trigger pre-
v ents a fault induced ov ervolt age ev ent a t the T BAT or
RBAT nodes .
2.8 Battery Voltage Monit o r
The CPC7583 also uses the VBAT voltage to monitor
battery v oltage. If battery voltage is lost, the CPC7583
immediately enters the all-off st ate. It remains in this
state until the battery voltage is rest ored. The device
also enters the all-off state if t he bat tery volt age rises
above –10 V and remains in the all-off state unt il the
battery v oltag e drops below –15 V. This battery moni-
tor f eature dra ws a small current from the battery (less
than 1 µA typical) and will add slightly to t he device’s
overall power dissipation.
2.9 Protection
2.9.1 Diode Bridge/SCR
The CPC7583 uses a combination of current limited
break s witches, a diode bridge/SCR clamping circuit,
and a thermal shutdown mechanism to protect the
SLIC device or other associated circuitry from damage
during line transient e v ents such as lightning. During a
positive transient condition, the fault current is con-
ducted through the diode bridge to ground via F GND.
Voltage is clamped to a diode drop above ground.
During a negative transient of 2 to 4 V more negative
than the voltage at VBAT, the SCR conducts and faults
are shunted to FGND via the SCR and diode bridge.
In order f or the SCR to crowbar or f oldback, the on
v olt age (see “Protection Circuitry Electrical Specifica-
tions” on page 10) of the SCR must be less negative
than the VBAT voltage. I f t he VBAT voltage is less neg-
ativ e the TLINE and RLINE voltage, or if the V BAT sup-
ply is unab le to source the trigger current, the SCR will
not crowbar, however it will conduct fault currents to
ground.
F or po w er induction or po w er-cross fault conditions,
the positiv e cycle of the transient is clamped to a diode
drop above ground and the fault current directed to
ground. The negative cycle of the transie nt will ca use
the SCR to conduct when the voltage exceeds the
battery ref erence voltage by two to four volts , steering
the current to g round.
2.9.2 Current Limiting function
If a lightning strike transient occurs when the device in
the talk/idle state, the curre nt is passed along the line
to the integrat ed protection circuitry and restricted by
CPC7583
Rev. 2.0 9/16/2002 www.clare.com 15
the dynamic current limit response of br eak switches
SW1 and SW2. When a 1000V 10/1000 µS pulse
(GR-1089-CORE lightning) is applied to the line
though a properly clamped external protector, the cur-
rent seen at pin 6 (TBAT) or pin 23 (RBAT) will be a
pulse with a typical magnitude of 2.5 A and a duration
of less than 0.5 µs.
If a pow er-cross f ault occurs with the de vice in the t alk/
idle state, the current is passed though break s witches
SW1 and SW2 on to the integ rated protection circuit
and is limited by the dynamic DC current limit
response of the tw o break switches. The DC current
limit, specified over temperature, is betw een 80 mA
and 425 mA, and the circuitry has a negativ e tempera-
ture coefficient. As a res ult, if the device is subjected
to e xtended heating due to po wer cross f ault, the mea-
sured current at pin 6 (TBAT) or pin 23 (RBAT) will
decrease as the device temperature increases . If the
de vice te mper ature rises sufficiently, the temperature
shutdown mechanism will activate and the device will
default to the all-off state.
2.10 Temperature Shutdown
The thermal shutdown mechanism will activate when
the de vice temperature reaches a minimum of 110° C ,
placing the device in the all-off state regardless of
logic input. During thermal shutdown mode, pin 13
(TSD) will read 0 V. Normal output of TSD is +5 V.
If presented with a sh ort duration transient such as a
lightning e vent, the thermal shutdown feature will typi-
cally not activ ate . But in an e xt ended po wer-cross
transient, the de vice temper ature will rise and the ther-
mal shutdown will activate forcing th e switches to the
all-off state . At this point t he current measured at pin 6
(TBAT) and pin 23 (RBAT) will drop to zero. Once the
de vice enter s t hermal shutdown it will remain in the
all-off state until t he t emper ature of t he device drops
below the act ivation level of the thermal shutdown cir-
cuit. This will permit the de vice to re turn to normal
operation. If the transient has not passed, current will
flow up to the value allowed by the dynamic DC cur-
rent limiting of the switches and heating will begin
again, reactivating the thermal shutdown mechanism.
This cycle of entering and exiting the thermal shut-
down mode will contin ue as long as the fault condition
persists. If the magnitude of the f ault condit ion is great
enough, the e xternal secondary protector could acti-
v ate and shunt all current t o ground.
The thermal shutdown mechanism of the CPC7583
can be disab l ed by applying a logic 1 to pin 13 (TSD).
2.11 External Protection Elements
The CPC7583 requires only o vervolt age secondary
protection on the loop side of t he device. The inte-
grated protection featur e described abov e negates the
need f or protection on the line side. The secondary
protector limits voltage transients to lev els t hat do not
e xceed t he breakdo wn voltage or input-output isola-
tion barrier of the CPC7583. A f oldback or crowbar
type protector is recommended to minimize stresses
on the device.
Consult Clare’s application note, AN-100, Designing
Surge and Power Fault Protection Circuits for Solid
State Subscriber Line Interf aces” for equations related
to the specifications of external secondary protectors,
fused resistors and PTCs.
3. Manufacturing Information
3.1 Soldering
3.1.1 Moisture Reflow Sensitivity
Clare has characterized the moist ure reflow sensitivity
of LCAS products using IPC/JEDEC standar d J-STD-
020A. Moisture uptake from atmospheric humidity
occurs by diff usion. During the solder reflo w process ,
in which the component is attached to th e PCB, the
whole body of the component is exposed to high pro-
cess temperatures. The combination of moisture
uptake and high r eflo w soldering temperat ures may
lead to moisture induced delamination and cr acking of
the component. To prevent this, t his component must
be handled in accordance with IPC/JEDEC standard
J-STD-020A per the labelled mo isture sensitivit y level
(MSL), level 1 for the SOIC package, and level 3 f or
the MLP package .
3.1.2 Reflow Profile
The maximum ramp rates, dwell times, and tempera-
tures of the assemb ly reflo w profile should not exceed
those specified in IPC standard IPC-9502, table 2.
Soldering processes are limited to 220 °C component
body temperature .
CPC7583
16 www.clare.com Rev. 2.0 9/16/2002
3.2 Wa sh i ng
Clare does not recommend ultrasonic cleaning of
LCAS parts.
3.3 Mechanical D ime ns io n s
3.3.1 MLP Package
NOTE: For optim um solder joint size, MLP package
printed-circuit board pads should extend no more than
.05 mm past the chip post on t he sh ort sides, and no
more than .025 mm past the chip posts on the long
sides.
As the metallic pad on the bottom of the MLP package
is connected to the substr ate of t he die , Clare reco m-
mends that no printed circuit board to traces cross this
area to maintain minimum creepage and clearance
values.
3.3.2 SOIC Package
0.18 BSC
(0.0071)
0.18 BSC
(0.0071)
0.61 BSC
(0.0240)
0.37 BSC
(0.0146)
Pin 1
Bottom side
metallic pad
TOP VIEW
BOTTOM VIEW
SIDE VIEW
Seating Plane
Dimensions in mm (inches)
Dimensions and tolerances conform to ANSIY14.5M-1994
11.0 BSC
(0.4334).
7.0 BSC
(0.2758)
0.9 ± 0.1
(0.0355 ±0.0039)
0.02 ±0.03
(0.0008 ±0.0012)
0.2 BSC
(0.0079)
0.75 BSC
(0.0295)
0.60 BSC
(0.0236)
0.70 BSC
(0.0276)
0.33 -0.05 +0.07
(0.0130 -0.0020 +0.0028)
5.0
± 0.05
(0.1970
±0.0020)
0.55 ± 0.05 7.5 ± 0.05
(0.2955 ± 0.0020)
1.27 typ.
(0.050 typ.)
2.54 ±0.127
(0.100+/-0.005)
7.468 ±0.127
(0.294+/-0.005)
10.312 ±0.051
(0.406 ±0.003)
0.250 typ.
(0.010 typ.)
0.813 ±0.102
(0.032 ±0.004)
3 - 7
oo
18.034 ±0.127
(0.710 ±0.005)
.330 x 45 max.
(.013 x 45 max.)
o
o
Dimensions in mm
(inches)
0.366 min. / 0.467 max. typ.
(0.014 min. / 0.018 max. typ.)
CPC7583
Rev. 2.0 9/16/2002 www.clare.com 17
3.3.3 MLP Tape Dimensions
B0
16.00
R = .50
1.4
K0
K1
7.40
A0
4.00
2.00
1.50
12.00
6.4
1.4
A0 =
B0 =
K0 =
K1 =
NOTES:1.ALL DIMENSIONS ARE IN MILLIMETERS AND CARRYTOLERANCES OF EIA
STANDARD 481-2. 2.THE TAPE COMPLIES WITH ALL "NOTES" FOR CONSTANT DIMENSIONS
LISTED ON PAGE 5 OF EIA-481-2.
6.4 mm
7.4 mm
1.4 mm
1.4 mm
For additional information please visit www.clare.com
Clare, Inc. makes no representations or warrantie s with respect to the accura cy or completeness of the contents of this publication and reserves the right to make
changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses or indemnity are expressed or implied. Except as set
forth in Clare’s Standard Terms and Conditions of Sale, Clare, Inc. assumes no liability whatsoever, and disclaims any express or implied warranty relating to its
products, including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.
The products described in this document are not designed, intended, authorized, or warranted for use as components in systems intend ed for surgical implant into
the body, or in other applications intended to support or sustain life, or where malfunction of Clare’s product may result in direct physical harm, injury, or death to a
person or severe property or environment al damage. Clare, Inc. reserves the right to discontinue or make changes to its products at any time without notice.
Specification: DS-CPC7583-R 2.0
© Copyright 2001 , Clare, Inc.
All rights reserved. Printed in USA.
9/16/2002