IKA03N120H2 HighSpeed 2-Technology with soft, fast recovery anti-parallel EmCon HE diode C * Designed for: - TV - Horizontal Line Deflection * 2 generation HighSpeed-Technology for 1200V applications offers: - loss reduction in resonant circuits - temperature stable behavior - parallel switching capability - tight parameter distribution - Integrated anti-parallel diode - Eoff optimized for IC =3A * * * G nd PG-TO220-3-31 (FullPAK) E PG-TO220-3-34 (FullPAK) 2 Qualified according to JEDEC for target applications Pb-free lead plating; RoHS compliant Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type VCE IC Eoff Tj Marking Package IKA03N120H2 1200V 3A 0.15mJ 150C K03H1202 PG-TO-220-3-31 IKA03N120H2 1200V 3A 0.15mJ 150C K03H1202 PG-TO-220-3-34 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage VCE 1200 V Triangular collector peak current (VGE = 15V) IC A 8.2 TC = 100C, f = 32kHz Pulsed collector current, tp limited by Tjmax ICpul s 9 Turn off safe operating area - 9 VCE 1200V, Tj 150C IF Diode forward current TC = 25C 9.6 TC = 100C 3.9 Gate-emitter voltage VGE 20 V Power dissipation Ptot 29 W -40...+150 C TC = 25C Operating junction and storage temperature Tj , Tstg Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260 Isolation Voltage Visol 2500 2 Vrms J-STD-020 and JESD-022 Power Semiconductors 1 http://store.iiic.cc/ Rev. 2.2 July 06 IKA03N120H2 Thermal Resistance Parameter Symbol Conditions Max. Value Unit K/W Characteristic IGBT thermal resistance, junction - case RthJC 4.3 Diode thermal resistance, junction - case RthJCD 5.8 Thermal resistance, junction - ambient RthJA 62 Electrical Characteristic, at Tj = 25 C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 1200 - - T j =2 5 C - 2.2 2.8 T j =1 5 0 C - 2.5 - V G E = 10 V , I C = 3 A, T j =2 5 C - 2.4 - T j =2 5 C - 1.55 - T j =1 5 0 C - 1.6 - 2.1 3 3.9 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V , I C = 3 00 A Collector-emitter saturation voltage VCE(sat) Diode forward voltage V V G E = 15 V , I C = 3 A V G E = 0, I F = 3 A VF Gate-emitter threshold voltage VGE(th) I C = 90 A , V C E = V G E Zero gate voltage collector current ICES V C E = 12 0 0V , V G E = 0V A T j =2 5 C - - 20 T j =1 5 0 C - - 80 Gate-emitter leakage current IGES V C E = 0V , V G E =2 0 V - - 100 nA Transconductance gfs V C E = 20 V , I C = 3 A - 2 - S Input capacitance Ciss V C E = 25 V , - 205 - pF Output capacitance Coss V G E = 0V , - 24 - Reverse transfer capacitance Crss f= 1 MH z - 7 - Gate charge QGate V C C = 96 0 V, I C =3 A - 8.6 - nC - 7 - nH Dynamic Characteristic V G E = 15 V Internal emitter inductance LE measured 5mm (0.197 in.) from case Power Semiconductors 2 http://store.iiic.cc/ Rev. 2.2 July 06 IKA03N120H2 Switching Characteristic, Inductive Load, at Tj=25 C Parameter Symbol Conditions Value min. typ. max. - 9.2 - - 5.2 - - 281 - - 29 - Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j =2 5 C , V C C = 80 0 V, I C = 3 A, V G E = 0V / 15 V , R G = 82 , 2) L =1 8 0n H, 2) C = 4 0p F Energy losses include 3) "tail" and diode reverse recovery. - 0.14 - - 0.15 - - 0.29 - ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time trr T j =2 5 C , - 52 - ns Diode reverse recovery charge Qrr V R = 8 00 V , I F = 3 A, - 0.23 - C Diode peak reverse recovery current Irrm R G = 82 - 9.3 - A Diode current slope diF/dt - 723 - A/s Switching Characteristic, Inductive Load, at Tj=150 C Parameter Symbol Conditions Value min. typ. max. - 9.4 - - 6.7 - - 340 - - 63 - Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j =1 5 0 C V C C = 80 0 V, I C =3 A , V G E = 0V / 15 V , R G = 82 , 2) L =1 8 0n H, 2) C = 4 0p F Energy losses include 3) "tail" and diode reverse recovery. - 0.22 - - 0.26 - - 0.48 - ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time trr T j =1 5 0 C - 112 - ns Diode reverse recovery charge Qrr V R = 8 00 V , I F = 3 A, - 0.52 - C Diode peak reverse recovery current Irrm R G = 82 - 11 - A Diode current slope diF/dt - 661 - A/s 2) 3) Leakage inductance L and stray capacity C due to dynamic test circuit in figure E Commutation diode from device IKP03N120H2 Power Semiconductors 3 http://store.iiic.cc/ Rev. 2.2 July 06 IKA03N120H2 Switching Energy ZVT, Inductive Load Parameter Symbol Conditions Value min. typ. max. Unit IGBT Characteristic Turn-off energy Eoff V C C = 80 0 V, I C =3 A , mJ V G E = 0V / 15 V , 2) R G = 82 , C r = 4 nF Power Semiconductors T j =2 5 C - 0.05 - T j =1 5 0 C - 0.09 - 4 http://store.iiic.cc/ Rev. 2.2 July 06 IKA03N120H2 12A Ic t p =10 s 10A 10A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 20 s 8A T C =25C 6A T C =100C 4A 2A 0A 10Hz Ic 100Hz 50 s 1A 1m s 0,1A 1kHz 10kHz 0,01A 100kHz 1V 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25C, Tj 150C) 30W 8A IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 100m s DC f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj 150C, D = 0.5, VCE = 800V, VGE = +15V/0V, RG = 82) 20W 10W 0W 2 5C 100 s 50C 7 5C 100C 12 5C 150C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj 150C) Power Semiconductors 6A 4A 2A 0A 25 C 50C 75C 100C 12 5C 150C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE 15V, Tj 150C) 5 http://store.iiic.cc/ Rev. 2.2 July 06 10A 10A 8A 8A V GE= 1 5 V 6A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT IKA03N120H2 12V 10V 8V 6V 4A 2A 0A 0V 1V 2V 3V 4V IC, COLLECTOR CURRENT 8A 6A Tj=+150C Tj=+25C 4A 2A 0A 3V 5V 7V 9V VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 20V) Power Semiconductors 12V 10V 8V 6V 4A 2A 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150C) VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25C) 10A 6A 0A 0V 5V 12A V G E =15V 3V IC=6A IC=3A 2V IC=1.5A 1V 0V -50C 0C 50C 100C 150C Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 6 http://store.iiic.cc/ Rev. 2.2 July 06 IKA03N120H2 1000ns 1000ns td(off) 100ns t, SWITCHING TIMES t, SWITCHING TIMES td(off) tf td(on) 10ns 100ns tf td(on) 10ns tr tr 1ns 0A 2A 1ns 4A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150C, VCE = 800V, VGE = +15V/0V, RG = 82, dynamic test circuit in Fig.E) 100ns tf td(on) tr 50C 75C 100C 125C 150C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 800V, VGE = +15V/0V, IC = 3A, RG = 82, dynamic test circuit in Fig.E) Power Semiconductors VGE(th), GATE-EMITTER THRESHOLD VOLTAGE t, SWITCHING TIMES 100 150 5V td(off) 1ns 25C 50 RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150C, VCE = 800V, VGE = +15V/0V, IC = 3A, dynamic test circuit in Fig.E) 1000ns 10ns 0 4V max. 3V typ. 2V min. 1V 0V -50C 0C 50C 100C 150C Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.09mA) 7 http://store.iiic.cc/ Rev. 2.2 July 06 IKA03N120H2 1.0mJ 1 1 Ets 0.7mJ 1 E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES ) Eon and Ets include losses due to diode recovery. Eoff 0.5mJ 1 Eon 0.4mJ 0.3mJ 1 E, SWITCHING ENERGY LOSSES ) Eon and Ets include losses due to diode recovery. Ets 1 0.4mJ 0.3mJ Eoff 1 Eon 0.2mJ 0.1mJ 25C 80C 125C 150C Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 800V, VGE = +15V/0V, IC = 3A, RG = 82, dynamic test circuit in Fig.E ) Power Semiconductors 1 Eon 50 100 150 200 250 RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150C, VCE = 800V, VGE = +15V/0V, IC = 3A, dynamic test circuit in Fig.E ) Eoff, TURN OFF SWITCHING ENERGY LOSS 0.5mJ Eoff 0 4A IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150C, VCE = 800V, VGE = +15V/0V, RG = 82, dynamic test circuit in Fig.E ) 1 0.5mJ 0.0mJ 2A Ets 0.6mJ 0.2mJ 0A ) Eon and Ets include losses due to diode recovery. IC=3A, TJ=150C 0.16mJ 0.12mJ IC=3A, TJ=25C 0.08mJ IC=1A, TJ=150C 0.04mJ IC=1A, TJ=25C 0.00mJ 0V/us 1000V/us 2000V/us 3000V/us dv/dt, VOLTAGE SLOPE Figure 16. Typical turn off switching energy loss for soft switching (dynamic test circuit in Fig. E) 8 http://store.iiic.cc/ Rev. 2.2 July 06 IKA03N120H2 1nF 20V VGE, GATE-EMITTER VOLTAGE C, CAPACITANCE C iss 100pF C oss C rss 10pF 0V 10V 20V 15V UCE=240V 10V UCE=960V 5V 0V 0nC 30V VCE, COLLECTOR-EMITTER VOLTAGE Figure 17. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 10nC 20nC 30nC QGE, GATE CHARGE Figure 18. Typical gate charge (IC = 3A) 1 10 K/W 0.1 D=0.5 0.2 0 10 K/W -1 10 K/W R,(K/W) 1,4285 1,8838 0,4057 0.05 0,4234 0,3241 0.02 0,1021 0.01 0,1340 , (s) 5,2404 1,7688 0,07592 0,005018 0,000595 0,000126 0,000018 R1 R2 -2 10 K/W single pulse 0.2 0.1 -1 10 K/W 0.05 0.02 R,(K/W) 0.9734 1.452 0.6213 0.7174 0.7037 0.1445 , (s) 4.279 1.094 4.899*10-2 3.081*10-3 4.341*10-4 0.833*10-5 R1 R2 0.01 single pulse C1=1/R 1 C2= 2/R 2 -2 10s 10s tP, PULSE WIDTH Figure 19. Typical IGBT transient thermal impedance as a function of pulse width (D=tP/T) Power Semiconductors 0 10 K/W 10 K/W 10s 100s 1m s 10m s100m s 1s C 1 = 1 /R 1 C 2 = 2 / R 2 1s 10s 100s 1ms 10ms100ms 1s ZthJC, TRANSIENT THERMAL RESISTANCE ZthJC, TRANSIENT THERMAL RESISTANCE D=0.5 tP, PULSE WIDTH Figure 22. Typical Diode transient thermal impedance as a function of pulse width (D=tP/T) 9 http://store.iiic.cc/ Rev. 2.2 July 06 IKA03N120H2 0.6uC 180ns Qrr, REVERSE RECOVERY CHARGE trr, REVERSE RECOVERY TIME 160ns TJ=150C 140ns 120ns 100ns 80ns 60ns TJ=25C 40ns 0Ohm 100Ohm 200Ohm TJ=150C 0.5uC 0.4uC 0.3uC TJ=25C 0.2uC 0Ohm 300Ohm RG, GATE RESISTANCE Figure 23. Typical reverse recovery time as a function of diode current slope VR=800V, IF=3A, Dynamic test circuit in Figure E) 100Ohm 200Ohm 300Ohm RG, GATE RESISTANCE Figure 24. Typical reverse recovery charge as a function of diode current slope (VR=800V, IF=3A, Dynamic test circuit in Figure E) 16A dirr/dt, DIODE PEAK RATE OF FALL OF REVERSE RECOVERY CURRENT Irr, REVERSE RECOVERY CURRENT -600A/us 14A 12A T J =150C 10A T J =25C 8A 0O hm 100O hm 200O hm 300O hm RG, GATE RESISTANCE Figure 25. Typical reverse recovery current as a function of diode current slope (VR=800V, IF=3A, Dynamic test circuit in Figure E) Power Semiconductors TJ=150C -800A/us -1000A/us -1200A/us TJ=25C -1400A/us -1600A/us -1800A/us 0Ohm 100Ohm 200Ohm 300Ohm RG, GATE RESISTANCE Figure 26. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR=800V, IF=3A, Dynamic test circuit in Figure E) 10 http://store.iiic.cc/ Rev. 2.2 July 06 IKA03N120H2 3.0V IF=4A T J =150C 2.5V VF, FORWARD VOLTAGE IF, FORWARD CURRENT 4A 2A T J =25C 0A 0V IF=2A IF=1A 2.0V 1.5V 1.0V 1V 2V VF, FORWARD VOLTAGE Figure 27. Typical diode forward current as a function of forward voltage Power Semiconductors -50C 3V 0C 50C 100C 150C TJ, JUNCTION TEMPERATURE Figure 28. Typical diode forward voltage as a function of junction temperature 11 http://store.iiic.cc/ Rev. 2.2 July 06 IKA03N120H2 PG-TO-220-3-31 (FullPAK) dimensions symbol [mm] [inch] min max min max A 10.37 10.63 0.4084 0.4184 B 15.86 16.12 0.6245 0.6345 C 0.65 0.78 0.0256 0.0306 D 2.95 typ. 0.1160 typ. E 3.15 3.25 0.124 0.128 F 6.05 6.56 0.2384 0.2584 G 13.47 13.73 0.5304 0.5404 H 3.18 3.43 0.125 0.135 K 0.45 0.63 0.0177 0.0247 L 1.23 1.36 0.0484 0.0534 M 2.54 typ. 0.100 typ. N 4.57 4.83 0.1800 0.1900 P 2.57 2.83 0.1013 0.1113 T 2.51 2.62 0.0990 0.1030 PG-TO-220-3-34 (FullPAK) dimensions symbol [mm] [inch] min max min max A 10.37 10.63 0.4084 0.4184 B 15.86 16.12 0.6245 0.6345 C 0.65 0.78 0.0256 0.0306 D 2.95 typ. 0.1160 typ. E 3.15 3.25 0.124 0.128 F 6.05 6.56 0.2384 0.2584 G 8.28 8.79 0.326 0.346 H 3.18 3.43 0.125 0.135 K 0.45 0.63 0.0177 0.0247 L 1.23 1.36 0.0484 0.0534 M 2.54 typ. 0.100 typ. N 4.57 4.83 0.1800 0.1900 P 2.57 2.83 0.1013 0.1113 T 2.51 2.62 0.0990 0.1030 U 5.00 typ. 0.197 typ. 1: Gate 2: Collector 3: Emitter Power Semiconductors 12 http://store.iiic.cc/ Rev. 2.2 July 06 IKA03N120H2 i,v tr r =tS +tF diF /dt Qr r =QS +QF IF tS QS Ir r m tr r tF 10% Ir r m QF dir r /dt 90% Ir r m t VR Figure C. Definition of diodes switching characteristics 1 2 r1 n r2 rn Tj (t) p(t) r2 r1 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit 1/2 L oo DUT (Diode) L C Cr VDC RG DUT (IGBT) 1/2 L Figure E. Dynamic test circuit Leakage inductance L = 180nH, Stray capacitor C = 40pF, Relief capacitor Cr = 4nF (only for ZVT switching) Figure B. Definition of switching losses Power Semiconductors 13 http://store.iiic.cc/ Rev. 2.2 July 06 IKA03N120H2 Edition 2006-01 Published by Infineon Technologies AG 81726 Munchen, Germany (c) Infineon Technologies AG 12/19/06. All Rights Reserved. Attention please! The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Power Semiconductors 14 http://store.iiic.cc/ Rev. 2.2 July 06