The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for
availability and additional information.
© 2001
MOS INTEGRATED CIRCUIT
µ
µµ
µ
PD161602A/B
360/396-OUTPUT TFT-LCD SOURCE DRIVER
(COMPATIBLE WITH 64-GRAY SCALES)
DATA SHEET
Document No. S15381EJ1V0DS00 (1st edition)
Date Published May 2002 NS CP (K)
Printed in Japan
The mark shows major revised points.
DESCRIPTION
The
µ
PD161602A/B is a source driver for TFT-LCDs supporting 64 gray-scale display and can operate with a
supply voltage of 2.5 V for the logic block and 5.0 V for the driver block. Data input as 6-bit x 3-dot digital data is
output as 64
γ
-corrected values using an internal D/A converter and 5 external power modules, thus achieving a
260,000-color (full-color) display. In addition, the difference with A articles and B articles is only a difference in
γ
compensation resistance.
FEATURES
CMOS level input
360/396 outputs
Input of 6 bits (gray-scale data) by 3 dots
Capable of outputting 64 values by means of 5 external power modules and a D/A converter
Output dynamic range: VSS2 to VDD2
High-speed data transfer: fCLK = 15 MHz MAX. (internal data transfer speed when operating at VDD1 = 2.5 V)
Level inversion
γ
-correction power supply is possible
Logic power supply voltage (VDD1): 2.2 to 3.6 V
Driver power supply voltage (VDD2): 4.5 to 5.5 V
ORDERING INFORMATION
Part Number Package
µ
PD161602AP Chip
µ
PD161602BP Chip
Remark Purchasing the above chip entail the exchange of documents such as a separate memorandum or product
quality, so please contact one of our sales representatives.
Data Sheet S15381EJ1V0DS
2
µ
µµ
µ
PD161602A/B
1. BLOCK DIAGRAM
STHL
V
DD1
V
SS1
V
DD2
V
SS2
S
2
S
1
V
0
to
V
4
D
00
to
D
05
C
1
C
2
C
131
C
132
STB
CLK
132-bit bidirectional shift register
Data register
Latch
Level shifter
D/A converter
Output buffer
R,/L
STHR
D
10
to
D
15
D
20
to
D
25
S
3
S
396
POL
BA
O
sel
INBUF
Mode
control
γ
control
BIAS
control
INV
CM
AP
VCOM
BUF
VC
sel
VCOM
GAM
TEST
O2
TEST
O1
TEST
IN
V
DD1
Remark /xxx indicates active low signal.
Data Sheet S15381EJ1V0DS 3
µ
µµ
µ
PD161602A/B
2. PIN CONFIGURATION (Pad Layout)
Chip size: 16980 x 1620
µ
m2
Bump size (Input/VCOM/test/dummy): 86 x 80
µ
m2
Bump size (Output): 33 x 120
µ
m2
Alignment Mark (
µ
m)
X: –8284.4 Y: 600
X: 8284.4 Y: 600
510
509
500
499
397
398
407
408
X(+
Y(-
60 µm
60 µm
72 µm
72 µm72 µm
72 µm
40 µm plover
Driver output pad
33 µm
120 µm
35.5 µm
Bump size
3960 µm2
Input/VCOM/test/dummy
pad
86 µm
Bump size
6880 µm2
80 µm
1
Data Sheet S15381EJ1V0DS
4
µ
µµ
µ
PD161602A/B
Table 2–1. Pad Layout (1/3)
No. Pad Name X [
µ
m] Y [
µ
m] No. Pad Name X [
µ
m] Y [
µ
m] No. Pad Name X [
µ
m] Y [
µ
m]
1 S1 7900.0 667.7 59 S59 5580.0 667.7 117 S117 3260.0 667.7
2 S2 7860.0 512.2 60 S60 5540.0 512.2 118 S118 3220.0 512.2
3 S3 7820.0 667.7 61 S61 5500.0 667.7 119 S119 3180.0 667.7
4 S4 7780.0 512.2 62 S62 5460.0 512.2 120 S120 3140.0 512.2
5 S5 7740.0 667.7 63 S63 5420.0 667.7 121 S121 3100.0 667.7
6 S6 7700.0 512.2 64 S64 5380.0 512.2 122 S122 3060.0 512.2
7 S7 7660.0 667.7 65 S65 5340.0 667.7 123 S123 3020.0 667.7
8 S8 7620.0 512.2 66 S66 5300.0 512.2 124 S124 2980.0 512.2
9 S9 7580.0 667.7 67 S67 5260.0 667.7 125 S125 2940.0 667.7
10 S10 7540.0 512.2 68 S68 5220.0 512.2 126 S126 2900.0 512.2
11 S11 7500.0 667.7 69 S69 5180.0 667.7 127 S127 2860.0 667.7
12 S12 7460.0 512.2 70 S70 5140.0 512.2 128 S128 2820.0 512.2
13 S13 7420.0 667.7 71 S71 5100.0 667.7 129 S129 2780.0 667.7
14 S14 7380.0 512.2 72 S72 5060.0 512.2 130 S130 2740.0 512.2
15 S15 7340.0 667.7 73 S73 5020.0 667.7 131 S131 2700.0 667.7
16 S16 7300.0 512.2 74 S74 4980.0 512.2 132 S132 2660.0 512.2
17 S17 7260.0 667.7 75 S75 4940.0 667.7 133 S133 2620.0 667.7
18 S18 7220.0 512.2 76 S76 4900.0 512.2 134 S134 2580.0 512.2
19 S19 7180.0 667.7 77 S77 4860.0 667.7 135 S135 2540.0 667.7
20 S20 7140.0 512.2 78 S78 4820.0 512.2 136 S136 2500.0 512.2
21 S21 7100.0 667.7 79 S79 4780.0 667.7 137 S137 2460.0 667.7
22 S22 7060.0 512.2 80 S80 4740.0 512.2 138 S138 2420.0 512.2
23 S23 7020.0 667.7 81 S81 4700.0 667.7 139 S139 2380.0 667.7
24 S24 6980.0 512.2 82 S82 4660.0 512.2 140 S140 2340.0 512.2
25 S25 6940.0 667.7 83 S83 4620.0 667.7 141 S141 2300.0 667.7
26 S26 6900.0 512.2 84 S84 4580.0 512.2 142 S142 2260.0 512.2
27 S27 6860.0 667.7 85 S85 4540.0 667.7 143 S143 2220.0 667.7
28 S28 6820.0 512.2 86 S86 4500.0 512.2 144 S144 2180.0 512.2
29 S29 6780.0 667.7 87 S87 4460.0 667.7 145 S145 2140.0 667.7
30 S30 6740.0 512.2 88 S88 4420.0 512.2 146 S146 2100.0 512.2
31 S31 6700.0 667.7 89 S89 4380.0 667.7 147 S147 2060.0 667.7
32 S32 6660.0 512.2 90 S90 4340.0 512.2 148 S148 2020.0 512.2
33 S33 6620.0 667.7 91 S91 4300.0 667.7 149 S149 1980.0 667.7
34 S34 6580.0 512.2 92 S92 4260.0 512.2 150 S150 1940.0 512.2
35 S35 6540.0 667.7 93 S93 4220.0 667.7 151 S151 1900.0 667.7
36 S36 6500.0 512.2 94 S94 4180.0 512.2 152 S152 1860.0 512.2
37 S37 6460.0 667.7 95 S95 4140.0 667.7 153 S153 1820.0 667.7
38 S38 6420.0 512.2 96 S96 4100.0 512.2 154 S154 1780.0 512.2
39 S39 6380.0 667.7 97 S97 4060.0 667.7 155 S155 1740.0 667.7
40 S40 6340.0 512.2 98 S98 4020.0 512.2 156 S156 1700.0 512.2
41 S41 6300.0 667.7 99 S99 3980.0 667.7 157 S157 1660.0 667.7
42 S42 6260.0 512.2 100 S100 3940.0 512.2 158 S158 1620.0 512.2
43 S43 6220.0 667.7 101 S101 3900.0 667.7 159 S159 1580.0 667.7
44 S44 6180.0 512.2 102 S102 3860.0 512.2 160 S160 1540.0 512.2
45 S45 6140.0 667.7 103 S103 3820.0 667.7 161 S161 1500.0 667.7
46 S46 6100.0 512.2 104 S104 3780.0 512.2 162 S162 1460.0 512.2
47 S47 6060.0 667.7 105 S105 3740.0 667.7 163 S163 1420.0 667.7
48 S48 6020.0 512.2 106 S106 3700.0 512.2 164 S164 1380.0 512.2
49 S49 5980.0 667.7 107 S107 3660.0 667.7 165 S165 1340.0 667.7
50 S50 5940.0 512.2 108 S108 3620.0 512.2 166 S166 1300.0 512.2
51 S51 5900.0 667.7 109 S109 3580.0 667.7 167 S167 1260.0 667.7
52 S52 5860.0 512.2 110 S110 3540.0 512.2 168 S168 1220.0 512.2
53 S53 5820.0 667.7 111 S111 3500.0 667.7 169 S169 1180.0 667.7
54 S54 5780.0 512.2 112 S112 3460.0 512.2 170 S170 1140.0 512.2
55 S55 5740.0 667.7 113 S113 3420.0 667.7 171 S171 1100.0 667.7
56 S56 5700.0 512.2 114 S114 3380.0 512.2 172 S172 1060.0 512.2
57 S57 5660.0 667.7 115 S115 3340.0 667.7 173 S173 1020.0 667.7
58 S58 5620.0 512.2 116 S116 3300.0 512.2 174 S174 980.0 512.2
Data Sheet S15381EJ1V0DS 5
µ
µµ
µ
PD161602A/B
Table 2–1. Pad Layout (2/3)
No. Pad Name X [
µ
m] Y [
µ
m] No. Pad Name X [
µ
m] Y [
µ
m] No. Pad Name X [
µ
m] Y [
µ
m]
175 S175 940.0 667.7 233 S233 -1380.0 667.7 291 S291 -3700.0 667.7
176 S176 900.0 512.2 234 S234 -1420.0 512.2 292 S292 -3740.0 512.2
177 S177 860.0 667.7 235 S235 -1460.0 667.7 293 S293 -3780.0 667.7
178 S178 820.0 512.2 236 S236 -1500.0 512.2 294 S294 -3820.0 512.2
179 S179 780.0 667.7 237 S237 -1540.0 667.7 295 S295 -3860.0 667.7
180 S180 740.0 512.2 238 S238 -1580.0 512.2 296 S296 -3900.0 512.2
181 S181 700.0 667.7 239 S239 -1620.0 667.7 297 S297 -3940.0 667.7
182 S182 660.0 512.2 240 S240 -1660.0 512.2 298 S298 -3980.0 512.2
183 S183 620.0 667.7 241 S241 -1700.0 667.7 299 S299 -4020.0 667.7
184 S184 580.0 512.2 242 S242 -1740.0 512.2 300 S300 -4060.0 512.2
185 S185 540.0 667.7 243 S243 -1780.0 667.7 301 S301 -4100.0 667.7
186 S186 500.0 512.2 244 S244 -1820.0 512.2 302 S302 -4140.0 512.2
187 S187 460.0 667.7 245 S245 -1860.0 667.7 303 S303 -4180.0 667.7
188 S188 420.0 512.2 246 S246 -1900.0 512.2 304 S304 -4220.0 512.2
189 S189 380.0 667.7 247 S247 -1940.0 667.7 305 S305 -4260.0 667.7
190 S190 340.0 512.2 248 S248 -1980.0 512.2 306 S306 -4300.0 512.2
191 S191 300.0 667.7 249 S249 -2020.0 667.7 307 S307 -4340.0 667.7
192 S192 260.0 512.2 250 S250 -2060.0 512.2 308 S308 -4380.0 512.2
193 S193 220.0 667.7 251 S251 -2100.0 667.7 309 S309 -4420.0 667.7
194 S194 180.0 512.2 252 S252 -2140.0 512.2 310 S310 -4460.0 512.2
195 S195 140.0 667.7 253 S253 -2180.0 667.7 311 S311 -4500.0 667.7
196 S196 100.0 512.2 254 S254 -2220.0 512.2 312 S312 -4540.0 512.2
197 S197 60.0 667.7 255 S255 -2260.0 667.7 313 S313 -4580.0 667.7
198 S198 20.0 512.2 256 S256 -2300.0 512.2 314 S314 -4620.0 512.2
199 S199 -20.0 667.7 257 S257 -2340.0 667.7 315 S315 -4660.0 667.7
200 S200 -60.0 512.2 258 S258 -2380.0 512.2 316 S316 -4700.0 512.2
201 S201 -100.0 667.7 259 S259 -2420.0 667.7 317 S317 -4740.0 667.7
202 S202 -140.0 512.2 260 S260 -2460.0 512.2 318 S318 -4780.0 512.2
203 S203 -180.0 667.7 261 S261 -2500.0 667.7 319 S319 -4820.0 667.7
204 S204 -220.0 512.2 262 S262 -2540.0 512.2 320 S320 -4860.0 512.2
205 S205 -260.0 667.7 263 S263 -2580.0 667.7 321 S321 -4900.0 667.7
206 S206 -300.0 512.2 264 S264 -2620.0 512.2 322 S322 -4940.0 512.2
207 S207 -340.0 667.7 265 S265 -2660.0 667.7 323 S323 -4980.0 667.7
208 S208 -380.0 512.2 266 S266 -2700.0 512.2 324 S324 -5020.0 512.2
209 S209 -420.0 667.7 267 S267 -2740.0 667.7 325 S325 -5060.0 667.7
210 S210 -460.0 512.2 268 S268 -2780.0 512.2 326 S326 -5100.0 512.2
211 S211 -500.0 667.7 269 S269 -2820.0 667.7 327 S327 -5140.0 667.7
212 S212 -540.0 512.2 270 S270 -2860.0 512.2 328 S328 -5180.0 512.2
213 S213 -580.0 667.7 271 S271 -2900.0 667.7 329 S329 -5220.0 667.7
214 S214 -620.0 512.2 272 S272 -2940.0 512.2 330 S330 -5260.0 512.2
215 S215 -660.0 667.7 273 S273 -2980.0 667.7 331 S331 -5300.0 667.7
216 S216 -700.0 512.2 274 S274 -3020.0 512.2 332 S332 -5340.0 512.2
217 S217 -740.0 667.7 275 S275 -3060.0 667.7 333 S333 -5380.0 667.7
218 S218 -780.0 512.2 276 S276 -3100.0 512.2 334 S334 -5420.0 512.2
219 S219 -820.0 667.7 277 S277 -3140.0 667.7 335 S335 -5460.0 667.7
220 S220 -860.0 512.2 278 S278 -3180.0 512.2 336 S336 -5500.0 512.2
221 S221 -900.0 667.7 279 S279 -3220.0 667.7 337 S337 -5540.0 667.7
222 S222 -940.0 512.2 280 S280 -3260.0 512.2 338 S338 -5580.0 512.2
223 S223 -980.0 667.7 281 S281 -3300.0 667.7 339 S339 -5620.0 667.7
224 S224 -1020.0 512.2 282 S282 -3340.0 512.2 340 S340 -5660.0 512.2
225 S225 -1060.0 667.7 283 S283 -3380.0 667.7 341 S341 -5700.0 667.7
226 S226 -1100.0 512.2 284 S284 -3420.0 512.2 342 S342 -5740.0 512.2
227 S227 -1140.0 667.7 285 S285 -3460.0 667.7 343 S343 -5780.0 667.7
228 S228 -1180.0 512.2 286 S286 -3500.0 512.2 344 S344 -5820.0 512.2
229 S229 -1220.0 667.7 287 S287 -3540.0 667.7 345 S345 -5860.0 667.7
230 S230 -1260.0 512.2 288 S288 -3580.0 512.2 346 S346 -5900.0 512.2
231 S231 -1300.0 667.7 289 S289 -3620.0 667.7 347 S347 -5940.0 667.7
232 S232 -1340.0 512.2 290 S290 -3660.0 512.2 348 S348 -5980.0 512.2
Data Sheet S15381EJ1V0DS
6
µ
µµ
µ
PD161602A/B
Table 2–1. Pad Layout (3/3)
No. Pad Name X [
µ
m] Y [
µ
m] No. Pad Name X [
µ
m] Y [
µ
m] No. Pad Name X [
µ
m] Y [
µ
m]
349 S349 -6020.0 667.7 407 Dummy11 -8367.0 -553.2 465 INV 1675.1 -687.0
350 S350 -6060.0 512.2 408 Dummy12 -8254.8 -687.0 466 D15 1925.1 -687.0
351 S351 -6100.0 667.7 409 VCOM -8079.8 -687.0 467 D14 2175.1 -687.0
352 S352 -6140.0 512.2 410 STHL -7829.8 -687.0 468 D13 2425.1 -687.0
353 S353 -6180.0 667.7 411 Dummy13 -7654.8 -687.0 469 D12 2675.2 -687.0
354 S354 -6220.0 512.2 412 VDD2 -7393.4 -687.0 470 D11 2925.2 -687.0
355 S355 -6260.0 667.7 413 VDD2 -7293.4 -687.0 471 D10 3175.2 -687.0
356 S356 -6300.0 512.2 414 VDD2 -7193.4 -687.0 472 D05 3425.2 -687.0
357 S357 -6340.0 667.7 415 Dummy14 -6932.0 -687.0 473 D04 3675.2 -687.0
358 S358 -6380.0 512.2 416 VDD1 -6831.9 -687.0 474 D03 3925.3 -687.0
359 S359 -6420.0 667.7 417 VDD1 -6732.0 -687.0 475 D02 4175.3 -687.0
360 S360 -6460.0 512.2 418 VDD1 -6632.0 -687.0 476 D01 4425.3 -687.0
361 S361 -6500.0 667.7 419 Dummy15 -6456.9 -687.0 477 D00 4675.3 -687.0
362 S362 -6540.0 512.2 420 VSS1 -6278.6 -687.0 478 TESTO1 4925.3 -687.0
363 S363 -6580.0 667.7 421 VSS1 -6178.7 -687.0 479 TESTO2 5175.4 -687.0
364 S364 -6620.0 512.2 422 VSS1 -6078.7 -687.0 480 TESTIN 5425.4 -687.0
365 S365 -6660.0 667.7 423 Dummy16 -5903.7 -686.9 481 Dummy24 5600.4 -687.0
366 S366 -6700.0 512.2 424 VSS2 -5728.7 -687.0 482 VDD1 5775.5 -687.0
367 S367 -6740.0 667.7 425 VSS2 -5628.7 -687.0 483 VDD1 5875.5 -687.0
368 S368 -6780.0 512.2 426 VSS2 -5528.7 -687.0 484 VDD1 5975.4 -687.0
369 S369 -6820.0 667.7 427 Dummy17 -5350.4 -687.0 485 Dummy25 6075.5 -687.0
370 S370 -6860.0 512.2 428 VCSEL -5175.4 -687.0 486 VSS1 6253.8 -687.0
371 S371 -6900.0 667.7 429 R,/L -4925.3 -687.0 487 VSS1 6353.8 -687.0
372 S372 -6940.0 512.2 430 OSEL -4675.3 -687.0 488 VSS1 6453.8 -687.0
373 S373 -6980.0 667.7 431 BA -4425.3 -687.0 489 Dummy26 6628.8 -687.0
374 S374 -7020.0 512.2 432 GAM -4175.3 -687.0 490 VSS2 6803.8 -687.0
375 S375 -7060.0 667.7 433 CM -3925.3 -687.0 491 VSS2 6903.8 -687.0
376 S376 -7100.0 512.2 434 POL -3675.2 -687.0 492 VSS2 7003.7 -687.0
377 S377 -7140.0 667.7 435 AP -3425.2 -687.0 493 Dummy27 7182.0 -687.0
378 S378 -7180.0 512.2 436 STB -3175.2 -687.0 494 VDD2 7443.5 -687.0
379 S379 -7220.0 667.7 437 D25 -2925.2 -687.0 495 VDD2 7543.4 -687.0
380 S380 -7260.0 512.2 438 D24 -2675.2 -687.0 496 VDD2 7643.4 -687.0
381 S381 -7300.0 667.7 439 D23 -2425.1 -687.0 497 Dummy28 7904.8 -687.0
382 S382 -7340.0 512.2 440 D22 -2175.1 -687.0 498 STHR 8079.8 -687.0
383 S383 -7380.0 667.7 441 D21 -1925.1 -687.0 499 Dummy29 8254.8 -687.0
384 S384 -7420.0 512.2 442 D20 -1675.1 -687.0 500 Dummy30 8367.0 -553.2
385 S385 -7460.0 667.7 443 CLK -1425.1 -687.0 501 Dummy31 8367.0 -453.2
386 S386 -7500.0 512.2 444 Dummy18 -1250.0 -687.0 502 Dummy32 8367.0 -353.1
387 S387 -7540.0 667.7 445 V4 -1075.0 -687.0 503 Dummy33 8367.0 -253.1
388 S388 -7580.0 512.2 446 V4 -975.0 -687.0 504 Dummy34 8367.0 -153.1
389 S389 -7620.0 667.7 447 V4 -875.1 -687.0 505 Dummy35 8367.0 -53.1
390 S390 -7660.0 512.2 448 Dummy19 -700.0 -687.0 506 Dummy36 8367.0 47.0
391 S391 -7700.0 667.7 449 V3 -525.0 -687.0 507 Dummy37 8367.0 147.0
392 S392 -7740.0 512.2 450 V3 -425.0 -687.0 508 Dummy38 8367.0 247.0
393 S393 -7780.0 667.7 451 V3 -325.1 -687.0 509 Dummy39 8367.0 347.0
394 S394 -7820.0 512.2 452 Dummy20 -150.0 -687.0 510 Dummy40 8031.4 687.0
395 S395 -7860.0 667.7 453 V2 25.1 -687.0
396 S396 -7900.0 512.2 454 V2 125.0 -687.0
397 Dummy1 -8031.4 687.0 455 V2 225.0 -687.0
398 Dummy2 -8367.0 347.0 456 Dummy21 400.0 -687.0
399 Dummy3 -8367.0 247.0 457 V1 575.1 -687.0
400 Dummy4 -8367.0 147.0 458 V1 675.0 -687.0
401 Dummy5 -8367.0 47.0 459 V1 775.0 -687.0
402 Dummy6 -8367.0 -53.1 460 Dummy22 950.0 -687.0
403 Dummy7 -8367.0 -153.1 461 V0 1125.1 -687.0
404 Dummy8 -8367.0 -253.1 462 V0 1225.1 -687.0
405 Dummy9 -8367.0 -353.1 463 V0 1325.0 -687.0
406 Dummy10 -8367.0 -453.2 464 Dummy23 1500.1 -687.0
Data Sheet S15381EJ1V0DS 7
µ
µµ
µ
PD161602A/B
3. PIN FUNCTIONS
(1/2)
Pin Symbol Pin Name Pad No. I/O Description
S1 to S396 Driver output 1 to 396 Output The D/A converted 64-gray-scale analog voltage is output.
Osel = L: S1 to S396
Osel = H: S19 to S378
D00 to D05 477 to 472
D10 to D15 471 to 466
D20 to D25
Display data input
442 to 437
Input The display data is input with a width of 18 bits, viz., the gray scale data (6 bits) by 3
dots (1 pixels).
DX0: LSB, DX5: MSB
R,/L Shift direction
control input
429 Input These refer to the shift direction control input.
The shift directions of the shift registers are as follows.
<When in Osel = L>
R,/L = L (left shift): STHL (input), S396 S1 STHR (output)
R,/L = H (right shift) : STHR (input), S1 S396 STHL (output)
<When in Osel = H>
R,/L = L (left shift): STHL (input), S378 S19 STHR (output)
R,/L = H (right shift) : STHR (input), S19 S378 STHL (output)
STHR Right shift start
pulse input/output
498 I/O
STHL Left shift start
pulse input/output
410 I/O
These refer to the start pulse I/O pins when driver ICs are connected in cascade.
Fetching of display data starts when H is read at the rising edge of CLK.
R,/L = H (right shift): STHR input, STHL output
R,/L = L (left shift): STHL input, STHR output
CLK Shift clock input 443 Input This pin is the shift clock input of the shift register.
Display data is captured into the data register at the rising edge.
Osel = L: The start pulse output enters high level at the rising edge of the 132 th clock
following the start pulse input, and becomes the start pulse of the next level
driver. The 133th clock of the first driver becomes the start pulse input of the
next driver
Osel = H: The start pulse output enters high level at the rising edge of the 120th clock
following the start pulse input, and becomes the start pulse of the next driver.
The 121th clock of the first driver becomes the start pulse input of the next
driver.
STB Latch input 436 Input A timing signal that latches the contents of the data register. When an H level is read
at the rising edge of CLK, the contents of the data register are latched and transferred
to the D/A converter, and analog voltage corresponding to the display data is output.
Also, because the internal operation via CLK continues even after the STB latch, do
not stop CLK. The contents of the shift register are cleared at the rising edge of STB.
Following a 1-pulse input at startup, this IC will operate normally. Note that the output
switch is turned off at the rising edge of STB.
For the STB input timing, refer to Switching Characteristics Waveform.
POL Polarity inversion
signal
434 Input This pin inverts the output polarity. The polarity inversion signal data is captured at the
rising edge of STB. The
γ
-resistor is switched in accordance with the positive/negative
polarity.
POL = L: Negative polarity
POL = H: Positive polarity
INV Data inversion 465 Input This pin inverts the input data. Input data in synchronization with the shift clock.
INV = L: Normal input
INV = H: Data inversion input
VCOM COM amplitude
output
409 Output This pin inverts the signal input from the POL pin and outputs it following conversion to
the VDD2 potential at the rising edge of STB. When the VCOM output is not used, VCsel
must be fixed to L.
Data Sheet S15381EJ1V0DS
8
µ
µµ
µ
PD161602A/B
(2/2)
Pin Symbol Pin Name Pad No. I/O Description
VCsel COM amplitude
output fixing signal
428 Input The VCOM output is fixed to L. When the VCOM output is not used, VCsel needs
to be fixed to L.
VCsel = L: VCOM output fixed to L
VCsel = H: VCOM signal output in correspondence with POL signal
CM 8-color display
mode switching
433 Input The operating mode is switched to 8-color mode. In this mode, turn off the
γ
-
resistor, amplifier, and BIAS circuit. However, when the
γ
-correction power supply
is input externally, the
γ
-circuit current will flow continuously.
CM = L: Normal display mode
CM = H: 8-color display mode
AP Output SW
ON/OFF
435 Input This pin turns ON/OFF the BIAS circuit and turns on the output SW and amplifier.
When AP is H, the amplifier is set and the LCD is driving.
The amplifier output and output SW are turned on at the rising edge of AP,
starting the LCD drive. Note that the output SW is turned off at the rising edge of
STB and the output becomes Hi-Z.
For the AP input timing, refer to Switching Characteristics Waveform.
GAM External
γ
usage
selection
432 Input When the
γ
-correction power supply is input externally, switch GAM to H. If two or
more chips are used, be sure to input the
γ
-correction power supply externally.
Figure 4–1 shows an input example of the
γ
-correction power supply.
GAM = L: External
γ
-correction power supply not input (open)
GAM = H: External
γ
-correction power supply input
Osel Driver output
count switching
430 Input The output count can be selected. When Osel = H, the unused pins S1 to S18 and
S379 to S396 always become Hi-Z.
Osel = L: 396 outputs
Osel = H: 360 outputs
V0 to V4
γ
-corrected power
supplies
461 to 463,
457 to 459, 453
to 455, 449 to
451, 445 to 447
These pins input the
γ
-corrected power supplies from outside, the relationship
below must be observed. Also, be sure to stabilize the gray-scale-level power
supply during gray-scale voltage output.
VSS2 V4 V3 V2 V1 V0 VDD2
BA BIAS current
adjustment
function
431 Input This pin adjusts the BIAS current. Select either the high power mode or low power
mode.
BA = L: Low power mode
BA = H: high power mode
TESTIN TEST input pin 480 Input Set to H or leave open
TESTO1,
TESTO2
TEST output pin 478,
479
Output Leave open.
VDD1 Logic power
supply
416 to 418, 482
to 484
2.2 to 3.6 V
VDD2 Driver power
supply
412 to 414, 494
to 496
4.5 to 5.5 V
VSS1 Logic ground 420 to 422, 486
to 488
Ground
VSS2 Driver ground 424 to 426, 490
to 492
Ground
Dummy1 to
dummy40
Dummy 397 to 408, 411,
415, 419, 423, 427,
444, 448, 452, 456,
460, 464, 481, 485,
489, 493, 487, 499
to 510
This pin is dummy.
Caution To avoid latchup failure, the sequence when turning on the power must be VDD1
logic input
VDD2
gray-scale power supply (V0 to V4), and the reverse sequence when turning off the power.
Follow this sequence during shift periods as well.
Data Sheet S15381EJ1V0DS 9
µ
µµ
µ
PD161602A/B
4. EXAMPLES OF EACH SINGAL INPUT OR OUTPUT
Examples of the input/output timing of each signal during white and black display are shown below.
Figure 4–1. Timing Chart
STB
AP
POL
DATA DATA = 000000 DATA = 111111
VCOM
260,000-color display mode (CM = L)
Undefined
OUT
Hi-Z Hi-Z Hi-Z Hi-Z
Black level Black level White level White level
8-color display mode
OUT
White level White level
Black level Black level
LSB MSB
MSB used in 8-color
display mode
Data Sheet S15381EJ1V0DS
10
µ
µµ
µ
PD161602A/B
4.1
γ
γγ
γ
-Correction Power Supply Connection Example
The
µ
PD161602A/B enables customization of the
γ
-correction power supply on both the positive and negative
polarity sides (refer to 6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE).
Consequently, a
γ
-correction power supply does not have to be input externally when a single source-driver chip is
being used in the panel.
Multiple chips can also be used without having to input a
γ
-correction power supply externally because the error
between the chips can be absorbed by shorting the
γ
-correction power supply pins, as shown in Figure 4–2.
Figure 4–2.
γ
γγ
γ
-Correction Power-Supply Connection Example
m
PD161602
VDD2 VSS2 V0V1V2V3V4VSS2 VDD2
External power supply input
Open
<Example 1 (GAM = L)>
·Single chip
m
PD161602
VDD2 VSS2 V0V1V2V3V4VSS2 VDD2
<Example 2 (GAM = H)>
m
PD161602
VDD2 VSS2 V0V1V2V3V4VSS2 VDD2
<Example 1 (GAM = L)>
·Multiple chips
m
PD161602
VDD2 VSS2 V0V1V2V3V4VSS2 VDD2
Vn
-
Vn short
m
PD161602
VDD2 VSS2 V0V1V2V3V4VSS2 VDD2
<Example 2 (GAM = H)>
m
PD161602
VDD2 VSS2 V0V1V2V3V4VSS2 VDD2
External power supply input
External power supply input
External power supply input
External power supply input
External power supply input
Data Sheet S15381EJ1V0DS 11
µ
µµ
µ
PD161602A/B
4.2 AP Signal Timing
The driver power consumption is dependent on the high period of the AP signal because the operational amplifier in
the IC is operation and current is constantly flowing in this period. A chart indication the recommended timing of
inputting the AP signal vis-a-vis the STB signal is shown below.
Hi-Z
MIN. 10 µs
Amp driving
10 to 15 µs
SW driving
STB
AP
Note that the ideal AP signal high period differs depending on the load of the liquid crystal. The AP period must
therefore be able to be adjusted using a controller.
The AP signal can also be used as shown below. However, in these cases, be sure to perform sufficient evaluation
before use.
<When SW drive in not used>
Only the amp is driven (SW drive is not used) if one horizontal period is short (40
µ
s or less) or the liquid crystal
load is large (50 pF or more).
STB
AP
<When the AP signal high period is 10
µ
µµ
µ
s or less>
The amp drive period is shortened and the SW drive period lengthened when one horizontal period is long (100
µ
s
or more) and the liquid crystal load is small (20 pF).
STB
AP
Data Sheet S15381EJ1V0DS
12
µ
µµ
µ
PD161602A/B
4.3 CLK Signal Input
Input at least 4 clocks of the CLK signal after the rising of the STB signal.
STB
CLK
STH
Internal latch
signal1
Internal latch
signal2
Internal latch
signal3
/1 23456
123478
Note
Invalid D
0
to D
3
D
4
to D
6
D
7
to D
9
D
10
to D
12
D
13
to D
15
D
16
to D
18
D
19
to D
21
Note
Note
Note Internal latch signal : It is the signal that do latch the display data put in data register in output latch circuit.
5. MODE EXPLANATION
Normal Mode/ 8-clor Display Mode
CM POL Data Driver Output Status Driver Output (in normally white)
MSB = H White level displayH
MSB = L Black level display
MSB = H White level display
H
L
MSB = L
8-color mode
Black level display
All bit = H White level displayH
All bit = L Black level display
All bit = H White level display
L
L
All bit = L
260,000-color mode
Black level display
Data Sheet S15381EJ1V0DS 13
µ
µµ
µ
PD161602A/B
6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE
The relation between input data and output voltage are shown in Table 62, 63.
Any 3 major points V1 to V3 from the LCD panel
γ
-characteristics curve can be used as the external power supplies.
The relationship V0 to V4 external power supplies and
γ
-correction resistance is shown in Table 61, Figure 61.
Table 6–1. Relationship between External Power Supply Pins and
γ
γγ
γ
-correction Resistance
Pin Name Voltage (V) Resistance ()
V05.0 0
V13.5 7,500
V22.5 12,500
V31.5 17,500
V40 25,000
Figure 6–1. Relationship between External Power Supply Pins and
γ
γγ
γ
-correction Resistance
V
0
V
1
V
2
V
3
V
4
V
DD2
V
SS2
7500
5000
5000
7500
This external power supply pins (V0 to V4) can customize the
γ
-correction voltage by selecting the desired voltage
from one of 250 divisions of the string resistor between VSS2 and VDD2, which generated
γ
-correction voltage. Note
that the voltage can be selected individually for both positive and negative polarity.
Data Sheet S15381EJ1V0DS
14
µ
µµ
µ
PD161602A/B
Table 6
2. Relation of Input Data and Output Voltage in
µ
µµ
µ
PD161602A
Input
Data
Gray
Scale
Positive
Polarity
Side (V)
Negative
Polarity
Side (V)
Positive
Polarity
Side ()
Negative
Polarity
Side ()
Input
Data
Gray
Scale
Positive
Polarity
Side (V)
Negative
Polarity
Side (V)
Positive
Polarity
Side ()
Negative
Polarity
Side ()
00H 0 5.000 0.000 0 25000 20H 32 2.480 2.720 12600 11400
01H 1 4.920 0.080 400 24600 21H 33 2.460 2.760 12700 11200
02H 2 4.760 0.260 1200 23700 22H 34 2.420 2.800 12900 11000
03H 3 4.540 0.480 2300 22600 23H 35 2.400 2.820 13000 10900
04H 4 4.280 0.760 3600 21200 24H 36 2.360 2.860 13200 10700
05H 5 3.960 1.080 5200 19600 25H 37 2.340 2.900 13300 10500
06H 6 3.840 1.200 5800 19000 26H 38 2.300 2.940 13500 10300
07H 7 3.740 1.300 6300 18500 27H 39 2.280 2.960 13600 10200
08H 8 3.640 1.400 6800 18000 28H 40 2.240 3.000 13800 10000
09H 9 3.540 1.520 7300 17400 29H 41 2.220 3.040 13900 9800
0AH 10 3.480 1.580 7600 17100 2AH 42 2.180 3.080 14100 9600
0BH 11 3.400 1.660 8000 16700 2BH 43 2.160 3.100 14200 9500
0CH 12 3.320 1.740 8400 16300 2CH 44 2.140 3.140 14300 9300
0DH 13 3.240 1.840 8800 15800 2DH 45 2.120 3.180 14400 9100
0EH 14 3.160 1.920 9200 15400 2EH 46 2.080 3.200 14600 9000
0FH 15 3.100 2.000 9500 15000 2FH 47 2.060 3.240 14700 8800
10H 16 3.060 2.060 9700 14700 30H 48 2.040 3.260 14800 8700
11H 17 3.000 2.100 10000 14500 31H 49 2.020 3.300 14900 8500
12H 18 2.960 2.160 10200 14200 32H 50 1.980 3.340 15100 8300
13H 19 2.900 2.220 10500 13900 33H 51 1.960 3.360 15200 8200
14H 20 2.860 2.280 10700 13600 34H 52 1.920 3.400 15400 8000
15H 21 2.820 2.320 10900 13400 35H 53 1.900 3.440 15500 7800
16H 22 2.780 2.360 11100 13200 36H 54 1.860 3.480 15700 7600
17H 23 2.740 2.400 11300 13000 37H 55 1.840 3.520 15800 7400
18H 24 2.700 2.440 11500 12800 38H 56 1.780 3.580 16100 7100
19H 25 2.680 2.480 11600 12600 39H 57 1.740 3.620 16300 6900
1AH 26 2.640 2.520 11800 12400 3AH 58 1.680 3.680 16600 6600
1BH 27 2.620 2.560 11900 12200 3BH 59 1.620 3.760 16900 6200
1CH 28 2.600 2.580 12000 12100 3CH 60 1.520 3.860 17400 5700
1DH 29 2.560 2.620 12200 11900 3DH 61 1.360 4.040 18200 4800
1EH 30 2.540 2.660 12300 11700 3EH 62 1.180 4.220 19100 3900
1FH 31 2.500 2.700 12500 11500 3FH 63 0.400 5.000 23000 0
0.000
0.500
1.000
1.500
2.000
2.500
3.000
3.500
4.000
4.500
5.000
01020 30
gray-scale
40 50 60
γ
- curve
Data Sheet S15381EJ1V0DS 15
µ
µµ
µ
PD161602A/B
Table 6
3. Relation of Input Data and Output Voltage in
µ
µµ
µ
PD161602B
Input
Data
Gray
Scale
Positive
Polarity
Side (V)
Negative
Polarity
Side (V)
Positive
Polarity
Side ()
Negative
Polarity
Side ()
Input
Data
Gray
Scale
Positive
Polarity
Side (V)
Negative
Polarity
Side (V)
Positive
Polarity
Side ()
Negative
Polarity
Side ()
00H 0 5.000 0.000 0 25000 20H 32 2.780 2.400 11100 13000
01H 1 4.980 0.020 100 24900 21H 33 2.760 2.440 11200 12800
02H 2 4.960 0.060 200 24700 22H 34 2.720 2.480 11400 12600
03H 3 4.920 0.100 400 24500 23H 35 2.680 2.520 11600 12400
04H 4 4.880 0.140 600 24300 24H 36 2.660 2.540 11700 12300
05H 5 4.800 0.220 1000 23900 25H 37 2.620 2.580 11900 12100
06H 6 4.720 0.300 1400 23500 26H 38 2.600 2.620 12000 11900
07H 7 4.600 0.440 2000 22800 27H 39 2.560 2.660 12200 11700
08H 8 4.460 0.580 2700 22100 28H 40 2.520 2.700 12400 11500
09H 9 4.320 0.740 3400 21300 29H 41 2.480 2.740 12600 11300
0AH 10 4.160 0.920 4200 20400 2AH 42 2.460 2.780 12700 11100
0BH 11 4.000 1.080 5000 19600 2BH 43 2.400 2.820 13000 10900
0CH 12 3.860 1.240 5700 18800 2CH 44 2.360 2.860 13200 10700
0DH 13 3.780 1.320 6100 18400 2DH 45 2.340 2.900 13300 10500
0EH 14 3.700 1.420 6500 17900 2EH 46 2.300 2.940 13500 10300
0FH 15 3.620 1.500 6900 17500 2FH 47 2.260 2.980 13700 10100
10H 16 3.540 1.600 7300 17000 30H 48 2.220 3.020 13900 9900
11H 17 3.460 1.680 7700 16600 31H 49 2.180 3.060 14100 9700
12H 18 3.380 1.760 8100 16200 32H 50 2.140 3.100 14300 9500
13H 19 3.320 1.820 8400 15900 33H 51 2.100 3.160 14500 9200
14H 20 3.280 1.880 8600 15600 34H 52 2.040 3.220 14800 8900
15H 21 3.220 1.940 8900 15300 35H 53 2.000 3.260 15000 8700
16H 22 3.160 2.000 9200 15000 36H 54 1.960 3.320 15200 8400
17H 23 3.120 2.040 9400 14800 37H 55 1.900 3.380 15500 8100
18H 24 3.060 2.100 9700 14500 38H 56 1.840 3.420 15800 7900
19H 25 3.040 2.140 9800 14300 39H 57 1.780 3.520 16100 7400
1AH 26 3.000 2.180 10000 14100 3AH 58 1.700 3.600 16500 7000
1BH 27 2.960 2.220 10200 13900 3BH 59 1.580 3.720 17100 6400
1CH 28 2.940 2.240 10300 13800 3CH 60 1.460 3.840 17700 5800
1DH 29 2.900 2.280 10500 13600 3DH 61 1.260 4.060 18700 4700
1EH 30 2.860 2.320 10700 13400 3EH 62 1.080 4.280 19600 3600
1FH 31 2.820 2.360 10900 13200 3FH 63 0.400 5.000 23000 0
0.000
0.500
1.000
1.500
2.000
2.500
3.000
3.500
4.000
4.500
5.000
01020 30
gray-scale
40 50 60
γ
- curve
Data Sheet S15381EJ1V0DS
16
µ
µµ
µ
PD161602A/B
6.1 Connection between
γ
γγ
γ
-correction Resistance, Power Supply, and GND Pin
Connection of
γ
- compensation resistance power supply (V0-V4) and a power supply pin (VDD2 and VSS2) is indicated
below to be
γ
- compensation resistance of
µ
PD161602 A/B.
By setup of a GAM pin, as for
γ
-compensation resistance, connection changes the highest minimum potential
between VDD2-VSS2 or among V0-V4.
Figure 6
2. GAM Pin Function
Positive
polarity
γ
-selectionSW
V
0
V
4
V
1
V
2
V
3
GAM
GAM
SW1
SW2
SW1
SW2
SW1
SW2
GAM = L
GAM = H
V
DD2
V
SS2
Negative
polarity
Data Sheet S15381EJ1V0DS 17
µ
µµ
µ
PD161602A/B
7. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN
Data format: 6 bits x RGBs (3 dots)
Input width: 18 bits (1-pixel data)
R,/L = H (Right shift), Osel = L (396 outputs)
Output S1S2S3S4... S395 S396
Data D00 to D05 D10 to D15 D20 to D25 D00 to D05 ... D10 to D15 D20 to D25
R,/L = L (Left shift), Osel = L (396 outputs)
Output S1S2S3S4... S395 S396
Data D00 to D05 D10 to D15 D20 to D25 D00 to D05 ... D10 to D15 D20 to D25
Data Sheet S15381EJ1V0DS
18
µ
µµ
µ
PD161602A/B
8. ELECTRICAL SPECIFICATIONS
Absolute Maximum Ratings (TA = 25°
°°
°C, VSS1 = VSS2 = 0 V)
Parameter Symbol Rating Unit
Logic Part Supply Voltage VDD1 –0.3 to +4.5 V
Driver Part Supply Voltage VDD2 –0.3 to +6.0 V
Input Voltage VI–0.3 to VDD1,2 + 0.3 V
Output Voltage VO–0.3 to VDD1,2 + 0.3 V
Operating Ambient Temperature TA–20 to +75 °C
Storage Temperature Tstg –55 to +125 °C
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any
parameter. That is, the absolute maximum ratings are rated values at which the product is on the
verge of suffering physical damage, and therefore the product must be used under conditions that
ensure that the absolute maximum ratings are not exceeded.
Recommended Operating Range (TA = –20 to +75°C, VSS1 = VSS2 = 0 V)
Parameter Symbol Condition MIN. TYP. MAX. Unit
Logic Part Supply Voltage VDD1 2.2 3.6 V
Driver Part Supply Voltage VDD2 4.5 5.0 5.5 V
High-Level Input Voltage VIH 0.7 VDD1 VDD1 V
Low-Level Input Voltage VIL 00.3 V
DD1 V
γ
-Corrected Voltage V0 to V4VSS2 VDD2 V
Clock Frequency fCLK 15 MHz
Data Sheet S15381EJ1V0DS 19
µ
µµ
µ
PD161602A/B
Electrical Characteristics (TA = –20 to +75°C, VDD1 = 2.2 to 3.6 V, VDD2 = 5.0 V ±
±±
± 0.5 V, VSS1 = VSS2 = 0 V)
Parameter Symbol Condition MIN. TYP. MAX. Unit
Input Leak Current IIL D00-D05, D10-D15, D20-D25, R,/L, STB, CLK,
STHR(L), INV, CM, AP, Osel, BA, POL,
GAM, VCsel
±1.0
µ
A
Input Current IIL2 TESTIN 10 40 200
µ
A
High-Level Output Voltage VOH STHR (STHL), IOH = –1.0 mA VDD1 – 0.5 V
Low-Level Output Voltage VOL STHR (STHL), IOL = +1.0 mA 0.5 V
VOH2 VDD2 = 5.0 V, IO = –1.0 mA VDD2 – 0.5 VVCOM Output Voltage
VOL2 VDD2 = 5.0 V, IO = +1.0 mA 0.5 V
γ
-Correction Power-supply
Static Current Consumption
I
γ
V0 = 5.0 V, V4 = 0 V
(when in
γ
-correction power mode)
100 200 400
µ
A
IVOH1 VDD2 = 5.0 V, VOUT = VX – 1.0 V Note1
Input data: 1FH
–0.5 –0.15 mA
Driver Output Current
(AMP drive)
IVOL1 VDD2 = 5.0 V, VOUT = VX + 1.0 V Note1
Input data: 20H
0.15 0.50 mA
IVOH2 VDD2 = 5.0 V, VOUT = VX – 1.0 V Note1
Input data: 1FH
–50 –15
µ
ADriver Output Current
(Switch drive)
IVOL2 VDD2 = 5.0 V, VOUT = VX + 1.0 V Note1
Input data: 20H
15 40
µ
A
VOH3 VDD2 = 5.0 V, IO = –50 uA VDD2 – 0.5 VDriver Output Current
(8-color display mode) VOL3 VDD2 = 5.0 V, IO = +50 uA 0.5 V
Output Voltage Deviation VOVDD1 = 2.5 V, VDD2 = 5.0 V,
VOUT = 2.5 V Note1
±10 ±20 mV
Output Voltage Range VOInput data: 00H to 3FH VSS2 + 0.05 VDD2 – 0.05 V
Logic Part Dynamic Current
Consumption
IDD1 With no load Note2 0.4 0.8 mA
Driver Part Dynamic
Current Consumption
IDD2 VDD = 5.0 V, with no load Note2 0.9 1.5 mA
Notes 1. VX refers to the output voltage of analog output pins S1 to S396.
VOUT refers to the voltage applied to analog output pins S1 to S396.
2. fCLK = 15 MHz, STB cycle = 60
µ
s, AP pulse width = 15
µ
s, BA = L (low power mode)
Data Sheet S15381EJ1V0DS
20
µ
µµ
µ
PD161602A/B
Switching Characteristics (TA = –20 to +75°C, VDD1 = 2.2 to 3.6 V, VDD2 = 5.0 V ±
±±
± 0.5 V, VSS1 = VSS2 = 0 V)
Parameter Symbol Condition MIN. TYP. MAX. Unit
tPLH1 25 nsStart Pulse Delay Time
tPHL1
CL = 15 pF
25 ns
tPLH2H 12
µ
sDriver Output Delay Time
(High power mode) tPHL2H
CL = 30 pF
AP VOUT – 100 mV or VOUT + 100 mV 12
µ
s
tPLH2L 15
µ
sDriver Output Delay Time
(Low power mode) tPHL2L
CL = 30 pF
AP VOUT – 100 mV or VOUT + 100 mV 15
µ
s
CI1 V0 to V4, TA = 25°C 5 15 pFInput Capacitance
CI2 Excluded V0 to V4, TA = 25°C 10 15 pF
Timing Requirements (TA = –20 to +75°
°°
°C, VDD1 = 2.2 to 3.6 V, VSS1 = 0 V, tr = tf = 10 ns)
Parameter Symbol Condition MIN. TYP. MAX. Unit
Clock Pulse Width PWCLK 65 ns
Clock Pulse High Period PWCLK(H) 20 ns
Clock Pulse Low Period PWCLK(L) 20 ns
Data Setup Time tSETUP1 20 ns
Data Hold Time tHOLD1 20 ns
Start Pulse Setup Time tSETUP2 20 ns
Start Pulse Hold Time tHOLD2 20 ns
Start Pulse Low Period tSPL 3CLK
Last Data Timing tLDT 2CLK
CLK-STB Time tCLK-STB CLK STB20 ns
STB Pulse Width PWSTB 40 ns
Start Pulse Rising Time tSTB-STH STB STH3CLK
INV Set-up Time tSETUP3 20 ns
INV Hold Time tHOLD3 20 ns
STB Set-up Time tSETUP4 20 ns
STB Hold Time tHOLD4 20 ns
POL-STB Time tPOL-STB 0ns
STB-POL Time tSTB-POL 40 ns
CM-STB Time tCM-STB 0ns
STB-CM Time tSTB-CM 40 ns
STB-AP Time tSTB-AP STB AP20
µ
s
AP Pulse Width (High power mode) PWAPH 12
µ
s
AP Pulse Width (Low power mode) PWAPL STB cycle 40
µ
s, CL = 30 pF 15
µ
s
Data Sheet S15381EJ1V0DS 21
µ
µµ
µ
PD161602A/B
Switching Characteristic Waveform (R,/L= H, OSEL=L)
Unless otherwise specified, the input level is defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1.
PW
CLK(L)
CLK
POL
V
OUT
STB
DATA
STHR
STHL
PW
CLK(H)
t
r
t
SETUP2
INVALID
D
1
to D
3
t
HOLD2
123
132 133
t
f
PW
CLK
t
PLH1
t
STB-AP
t
SETUP1
90%
10%
t
HOLD1
t
STB-STH
PW
STB
t
HOLD3
t
HOLD4
t
SETUP4
t
SPL
PW
AB
D
4
to
D
6
t
POL-STB
t
STB-POL
(1st Dr.)
(1st Dr.)
INV
CM
AP
t
PHL1
t
SETUP3
t
CM-STB
t
STB-CM
t
CLK-STB
t
PLH2
t
PHL2
Hi-Z Hi-Z
t
LDT
Last Data
INVALID
Data Sheet S15381EJ1V0DS
22
µ
µµ
µ
PD161602A/B
[MEMO]
Data Sheet S15381EJ1V0DS 23
µ
µµ
µ
PD161602A/B
NOTES FOR CMOS DEVICES
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS
Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need
to be taken for PW boards with semiconductor devices on it.
2 HANDLING OF UNUSED INPUT PINS FOR CMOS
Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to V
DD
or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES
Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.
µ
µµ
µ
PD161602A/B
Reference Documents
NEC Semiconductor Device Reliability/Quality Control System (C10983E)
Quality Grades On NEC Semiconductor Devices (C11531E)
M8E 00. 4
The information in this document is current as of May, 2002. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for
NEC (as defined above).