MC14028B BCD-To-Decimal Decoder Binary-To-Octal Decoder The MC14028B decoder is constructed so that an 8421 BCD code on the four inputs provides a decimal (one-of-ten) decoded output, while a 3-bit binary input provides a decoded octal (one-of-eight) code output with D forced to a logic "0". Expanded decoding such as binary-to-hexadecimal (one-of-sixteen), etc., can be achieved by using other MC14028B devices. The part is useful for code conversion, address decoding, memory selection control, demultiplexing, or readout decoding. http://onsemi.com MARKING DIAGRAMS Features * Diode Protection on All Inputs * Supply Voltage Range = 3.0 Vdc to 18 Vdc * Capable of Driving Two Low-power TTL Loads or One Low-Power * * * * Schottky TTL Load Over the Rated Temperature Range Positive Logic Design Low Outputs on All Illegal Input Combinations Similar to CD4028B These Devices are Pb-Free and are RoHS Compliant PDIP-16 P SUFFIX CASE 648 MC14028BCP AWLYYWWG 1 1 1 SOIC-16 D SUFFIX CASE 751B SOEIAJ-16 F SUFFIX CASE 966 MAXIMUM RATINGS (Voltages Referenced to VSS) Parameter 16 16 14028BG AWLYWW 1 16 MC14028B ALYWG Symbol Value Unit VDD -0.5 to +18.0 V Vin, Vout -0.5 to VDD + 0.5 V Input or Output Current (DC or Transient) per Pin Iin, Iout 10 mA Power Dissipation per Package (Note 1) PD 500 mW Ambient Temperature Range TA -55 to +125 C Storage Temperature Range Tstg -65 to +150 C ORDERING INFORMATION Lead Temperature (8-Second Soldering) TL 260 C See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. DC Supply Voltage Range Input or Output Voltage Range (DC or Transient) Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Temperature Derating: Plastic "P and D/DW" Packages: - 7.0 mW/_C From 65_C To 125_C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range VSS v (Vin or Vout) v VDD. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open. (c) Semiconductor Components Industries, LLC, 2011 June, 2011 - Rev. 7 1 1 A WL, L YY, Y WW, W G 1 = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package Publication Order Number: MC14028B/D MC14028B PIN ASSIGNMENT Q4 1 16 VDD Q2 2 15 Q3 Q0 3 14 Q1 Q7 4 13 B Q9 5 12 C Q5 6 11 D Q6 7 10 A VSS 8 9 Q8 BLOCK DIAGRAM 8421 BCD INPUTS 3-BIT BINARY INPUTS 10 A 13 B 12 C 11 D Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 3 14 2 15 1 6 7 4 9 5 OCTAL DECODED OUTPUTS DECIMAL DECODED OUTPUTS VDD = PIN 16 VSS = PIN 8 TRUTH TABLE D C B A Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ORDERING INFORMATION Package Shipping MC14028BCPG PDIP-16 (Pb-Free) 25 Units / Rail MC14028BDG SOIC-16 (Pb-Free) 48 Units / Rail MC14028BDR2G SOIC-16 (Pb-Free) 2500 / Tape & Reel MC14028BFELG SOEIAJ-16 (Pb-Free) 2000 / Tape & Reel Device For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 2 MC14028B IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIII IIIII IIIIIIIII IIIII IIIIIII IIIIIIIIII IIIIII IIIIIIIIII IIII III III III IIII III IIII III III III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII IIII III III III IIII III IIII III III III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII IIII III III III IIII III IIII III III III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII IIII III IIIIIIIIIIIIIIIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS) - 55_C 25_C VDD 125_C Symbol Vdc Min Max Min Typ (Note 2) Max Min Max Unit VOL 5.0 10 15 - - - 0.05 0.05 0.05 - - - 0 0 0 0.05 0.05 0.05 - - - 0.05 0.05 0.05 Vdc VOH 5.0 10 15 4.95 9.95 14.95 - - - 4.95 9.95 14.95 5.0 10 15 - - - 4.95 9.95 14.95 - - - Vdc VIL 5.0 10 15 - - - 1.5 3.0 4.0 - - - 2.25 4.50 6.75 1.5 3.0 4.0 - - - 1.5 3.0 4.0 VIH 5.0 10 15 3.5 7.0 11 - - - 3.5 7.0 11 2.75 5.50 8.25 - - - 3.5 7.0 11 - - - IOH 5.0 5.0 10 15 - 3.0 - 0.64 - 1.6 - 4.2 - - - - - 2.4 - 0.51 - 1.3 - 3.4 - 4.2 - 0.88 - 2.25 - 8.8 - - - - 1.7 - 0.36 - 0.9 - 2.4 - - - - IOL 5.0 10 15 0.64 1.6 4.2 - - - 0.51 1.3 3.4 0.88 2.25 8.8 - - - 0.36 0.9 2.4 - - - mAdc Input Current Iin 15 - 0.1 - 0.00001 0.1 - 1.0 mAdc Input Capacitance (Vin = 0) Cin - - - - 5.0 7.5 - - pF Quiescent Current (Per Package) IDD 5.0 10 15 - - - 5.0 10 20 - - - 0.005 0.010 0.015 5.0 10 20 - - - 150 300 600 mAdc Total Supply Current (Note 3, 4) (Dynamic plus Quiescent, Per Package) (CL = 50 pF on all outputs, all buffers switching) IT 5.0 10 15 Characteristic Output Voltage Vin = VDD or 0 Vin = 0 or VDD "0" Level "1" Level Input Voltage "0" Level (VO = 4.5 or 0.5 Vdc) (VO = 9.0 or 1.0 Vdc) (VO = 13.5 or 1.5 Vdc) "1" Level (VO = 0.5 or 4.5 Vdc) (VO = 1.0 or 9.0 Vdc) (VO = 1.5 or 13.5 Vdc) Output Drive Current (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc) (VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc) Source Sink IT = (0.3 mA/kHz) f + IDD IT = (0.6 mA/kHz) f + IDD IT = (0.9 mA/kHz) f + IDD Vdc Vdc mAdc mAdc 2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. 3. The formulas given are for the typical characteristics only at 25_C. 4. To calculate total supply current at loads other than 50 pF: IT(CL) = IT(50 pF) + (CL - 50) Vfk where: IT is in mA (per package), CL in pF, V = (VDD - VSS) in volts, f in kHz is input frequency, and k = 0.001. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIII IIIIII III IIII III III III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII SWITCHING CHARACTERISTICS (Note 5) (CL = 50 pF, TA = 25_C) Characteristic Symbol Output Rise and Fall Time tTLH, tTHL = (1.5 ns/pF) CL + 25 ns tTLH, tTHL = (0.75 ns/pF) CL + 12.5 ns tTLH, tTHL = (0.55 ns/pF) CL + 9.5 ns tTLH, tTHL Propagation Delay Time tPLH, tPHL = (1.7 ns/pF) CL + 215 ns tPLH, tPHL = (0.66 ns/pF) CL + 97 ns tPLH, tPHL = (0.5 ns/pF) CL + 65 ns tPLH, tPHL VDD Min Typ (Note 6) Max 5.0 10 15 - - - 100 50 40 200 100 80 5.0 10 15 - - - 300 130 90 600 260 180 5. The formulas given are for the typical characteristics only at 25_C. 6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. http://onsemi.com 3 Unit ns ns MC14028B 20 ns Inputs B, C, and D switching in respect to a BCD code. 20 ns VDD 90% INPUT A All outputs connected to respective CL loads. f in respect to a system clock. 50% 10% VSS 1/f 20 ns 20 ns VDD 90% INPUT C 50% 10% Inputs A, B, and D low. VSS tPLH tPHL VOH 90% Q4 50% 10% VOL tTLH tTHL Figure 1. Dynamic Signal Waveforms Q0 Q1 A Q2 Q3 B Q4 Q5 C Q6 Q7 D Q8 Q9 LOGIC DIAGRAM APPLICATIONS INFORMATION INPUTS D Expanded decoding can be performed by using the MC14028B and other CMOS Integrated Circuits. The circuit in Figure 2 converts any 4-bit code to a decimal or hexadecimal code. The accompanying table shows the input binary combinations, the associated "output numbers" that go "high" when selected, and the "redefined output numbers" needed for the proper code. For example: For the combination DCBA = 0111 the output number 7 is redefined for the 4-bit binary, 4-bit gray, excess-3, or excess-3 gray codes as 7, 5, 4, or 2, respectively. Figure 3 shows a 6-bit binary 1-of-64 decoder using nine MC14028B circuits and two MC14069UB inverters. The MC14028B can be used in decimal digit displays, such as, neon readouts or incandescent projection indicators as shown in Figure 4. D C B A D MC14028B Q9 B A C B A MC14028B Q0 15 C -8 Q9 Q0 15 -0 OUTPUT NUMBERS Figure 2. Code Conversion Circuit and Truth Table http://onsemi.com 4 MC14028B Code and Redefined Output Numbers B A 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 2 3 0 1 3 2 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 5 6 7 7 6 4 5 1 2 3 4 1 1 1 1 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 9 10 11 15 14 12 13 5 6 7 8 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 13 14 15 8 9 11 10 9 4221 C 0 0 0 0 Aiken D Decimal Excess-3 Gray Output Numbers Excess-3 Inputs 4-Bit Binary 4-Bit Gray Hexadecimal 0 3 0 1 2 3 0 1 2 4 4 3 4 1 2 5 6 9 5 5 6 8 7 6 7 8 9 INPUTS A B C D E F INHIBIT A B C MC14028B -D Q0 (NO SELECTION) Q9 A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D MC14028B MC14028B MC14028B MC14028B MC14028B MC14028B MC14028B MC14028B Q0 Q9 Q0 Q9 Q0 Q9 Q0 Q9 Q0 Q9 Q0 Q9 Q0 Q9 Q0 Q9 0 7 8 *1/6 MC14069UB 15 16 23 24 31 32 39 40 47 48 55 56 63 64 OUTPUTS (SELECTED OUTPUT IS HIGH) Figure 3. Six-Bit Binary 1-of-64 Decoder A B MC14028B C D Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 APPROPRIATE VOLTAGE INCANDESCENT DISPLAY APPROPRIATE VOLTAGE NEON DISPLAY OR 0 9 9 Figure 4. Decimal Digit Display Application http://onsemi.com 5 2 1 0 7 8 9 MC14028B PACKAGE DIMENSIONS PDIP-16 P SUFFIX CASE 648-08 ISSUE T NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. -A- 16 9 1 8 B F C L DIM A B C D F G H J K L M S S -T- SEATING PLANE K H G D M J 16 PL 0.25 (0.010) M T A M INCHES MIN MAX 0.740 0.770 0.250 0.270 0.145 0.175 0.015 0.021 0.040 0.70 0.100 BSC 0.050 BSC 0.008 0.015 0.110 0.130 0.295 0.305 0_ 10 _ 0.020 0.040 MILLIMETERS MIN MAX 18.80 19.55 6.35 6.85 3.69 4.44 0.39 0.53 1.02 1.77 2.54 BSC 1.27 BSC 0.21 0.38 2.80 3.30 7.50 7.74 0_ 10 _ 0.51 1.01 SOEIAJ-16 F SUFFIX CASE 966-01 ISSUE A 16 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 ( 0.018). LE 9 Q1 E HE 1 M_ L 8 Z DETAIL P D e VIEW P A A1 b 0.13 (0.005) c M 0.10 (0.004) http://onsemi.com 6 DIM A A1 b c D E e HE L LE M Q1 Z MILLIMETERS MIN MAX --2.05 0.05 0.20 0.35 0.50 0.10 0.20 9.90 10.50 5.10 5.45 1.27 BSC 7.40 8.20 0.50 0.85 1.10 1.50 10 _ 0_ 0.70 0.90 --0.78 INCHES MIN MAX --0.081 0.002 0.008 0.014 0.020 0.007 0.011 0.390 0.413 0.201 0.215 0.050 BSC 0.291 0.323 0.020 0.033 0.043 0.059 10 _ 0_ 0.028 0.035 --0.031 MC14028B PACKAGE DIMENSIONS SOIC-16 D SUFFIX CASE 751B-05 ISSUE K -A- 16 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 9 -B- 1 P 8 PL 0.25 (0.010) 8 M B S G R K F X 45 _ C -T- SEATING PLANE J M D DIM A B C D F G J K M P R MILLIMETERS MIN MAX 9.80 10.00 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.386 0.393 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.229 0.244 0.010 0.019 16 PL 0.25 (0.010) M T B S A S SOLDERING FOOTPRINT 8X 6.40 16X 1 1.12 16 16X 0.58 1.27 PITCH 8 9 DIMENSIONS: MILLIMETERS ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 http://onsemi.com 7 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC14028B/D