Integrated
Circuit
Systems, Inc.
ICS950811
0482E—08/09/07
Block Diagram
Recommended Application:
CK-408 clock for Brookdale-Mobile chipsets.
Programmable for group to group skew.
Output Features:
3 Differential CPU Clock Pairs (differential current
mode)
7 PCI (3.3V) @ 33.3MHz
3 PCI_F (3.3V) @ 33.3MHz
1 USB (3.3V) @ 48MHz
1 DOT (3.3V) @ 48MHz
1 REF (3.3V) @ 14.318MHz
5 3V66 (3.3V) @ 66.6MHz
1 VCH/3V66 (3.3V) @ 48MHz or 66.6MHz
Features:
Supports spread spectrum modulation,
down spread 0 to -0.5%.
Efficient power management scheme through PD#,
CPU_STOP# and PCI_STOP#.
Key Specifications:
CPU Output Jitter <150ps
3V66 Output Jitter <250ps
66MHz Output Jitter (Buffered Mode Only) <100ps
CPU Output Skew <100ps
Pin Configuration
56 pin SSOP/TSSOP
Frequency Generator with 200MHz Differential CPU Clocks
Functionality
* These inputs have 150K internal pull-up resistor to VDD.
2SF1SF0SF UPC
)zHM(
)0:1(66V3
)zHM(
)0:2(tuOzHM66
)2:4(66V3
)zHM(
F_ICP
ICP
)zHM(
nIzHM66
)5(66V3
)zHM(
00 0 66.6666.6666.663
3.3366.66
00 1 00.00166.6666.6633.3366.66
010 00.00266.6666.6633.3366.66
011 33.33166.6666.6633.3366.66
10 0 66.6666.66
edoMdereffuB
detrop
puStoN
508059SCIeeS
10 1 00.00166.66
110 00.00266.66
11 1 33.33166.66
diM00 etatsirTetatsirTetatsirTetatsirTetatsirT
diM01 2/KLCT4/KLCT4/K
LCT8/KLCT4/KLCT
diM10 -vreseR
de devreseRdevreseRdevreseRdevreseR
diM11 -vreseR
de devreseRdevreseRdevreseRdevreseR
2
ICS950811
0482E—08/09/07
Pin Configuration
REBMUNNIPEMANNIPEPYTNOITPIRCSED
,62,91,41,8,1
05,64,73,23 DDVRWPylppusrewopV3.3
21XlatsyrC2X
tupnI tupnilatsyrCzHM813.41
32XlatsyrC1X
tuptuO tupt
uolatsyrCzHM813.41
5,6,7
)0:2(F_KLCICPTUO rof#POTS_ICPybdetceffatonkcolcICPgninnureerF
.tnemeganamrewop
,72,02,51,9,4
74,14,63,13 DNGRWPylppusV3.3rofsnipdnuorG
,31,61,71,81
01,11,21 )0:6(KLCICPTUOstuptuokcolcICP
12,
22,32,42)2:5(66V3TUOOCVlanretnimorf,skcolcecnereferzHM66
52#DPNI.woLevitcA.edomnwod-rewopsekovnI
82#DGRWP_ttV
NI
92ATADS
O/IIrofnipataD
2
tnarelotV5yrtiucricC
03KLCS
NIIfonipkcolC
2
tnarelotV5yrtiucricC
330_66V3TUOOCVlanretnimorf,skcolcecnereferzHM66
43#POTS_ICPNItpecxewoltupninehw,level0cigoltaskcolcKLCICPstlaH
gninnureerferahcihwF_KLCICP
53KLC_HCV/1_66V3TUO hguorhtelbatcelestuptuoV3.3
I
2
C
lanretnimorfzHM66ebot
)CSS-non(zHM84roOCV
83TOD_zHM84TUOTODrofkcolctuptuozHM84
93BSU_zHM84TUOBSUrofkcolctuptuo
zHM84
042SFNInoitcelesedoMroftupniV3.3laicepS
24FERITUO
KLCUPCehtroftnerrucecnereferehtsehsilbatsenipsihT
dnuo
rgotdeitrotsisernoisicerpdexifaseriuqernipsihT.sriap
.tnerrucetairporppaehthsilbatseotredroni
340LESTLUMN
IUPCrofreilpitlumtnerrucehtgnitcelesroftupniLTTVLV3.3
stuptuo
15,84,44)0:2(CKLCUPCTUO
esehT.stuptuoUPCriap
laitnereffidfoskcolc"yrotnemelpmoC"
rofderiuqererasrotsiserlanretxednastuptuotnerrucera
.saibegatlov
25,
94,54)0:2(TKLCUPCTUO tnerruceraesehT.stuptuoUPCriaplaitnereffidfoskcolc"eurT"
.saibegatlovrofderiuqereras
rotsiserlanretxednastuptuo
35#POTS_UPCNIwoltupninehw,level0cigoltaskcolcKLCUPCstlaH
45,55)0:1(SFNIsniptcelesy
cneuqerF
65FERTUO.kcolcecnereferzHM813.41
Power Groups
(Analog)
VDDA = PLL1
VDD48 = 48MHz, PLL
VDDREF = VDD for Xtal, POR
(Digital)
VDDPCI
VDD3V66
VDDCPU
3
ICS950811
0482E—08/09/07
Host Swing Select Functions
Truth Table
Maximum Allowed Current
noitidnoC
noitpmusnocylppusV3.3xaM
,sdaolpacetercsidxaM
V564.3=ddV
DNGroddV=stupnicitatsllA
edoMnwodrewoP
)
0=#NWDRWP( Am04
evitcAlluF Am063
2SF1SF0SF UPC
)zHM(
66V3
)0:1(
)zHM(
)0:2(ffuB66
)2:4(66V3
)zHM(
/NI_zHM66
5_66V3
F_ICP
ICP
)zHM(
0FER
)zHM(
TOD/BSU
)zH
M(
000 66.6666.6666.6666.6633.33813.4100.84
001 00.00166.6666.6666.6633.33813.4100.84
010 00.00266.6666.6666.6633.33813.4100.84
011 33.33166
.6666.6666.6633.33813.4100.84
100 66.6666.66
detroppuStoNedoMdereffuB
508059SCIeeS
10 1 00.00166.66
110 00.00266.66
111 33.33166.66
di
M00 etatsirTetatsirTetatsirTetatsirTetatsirTetatsirTetatsirT
diM01 2/KLCT4/KLCT4/KLCT4/KLCT8/KLCTKLCT2/KLCT
diM10 devreseRdevres
eRdevreseRdevreseRdevreseRdevreseRdevreseR
diM11 devreseRdevreseRdevreseRdevreseRdevreseRdevreseRdevreseR
0LESITLUM tegraTdraoB
ZmreT/ecarT
,RecnerefeR
=ferI
V
DD
)rR*3(/
tuptuO
tnerruC Z@hoV
0detroppuStoNedoMdereffuB
508059SCIeeS
1smho05 ,%1574=rR
Am23.2=ferI FERI*6=hoI05@V
7.0
4
ICS950811
0482E—08/09/07
1. The ICS clock generator is a slave/receiver, I2C component. It can read back the data stored in the latches
for verification. Read-Back will support Intel PIIX4 "Block-Read" protocol.
2. The data transfer rate supported by this clock generator is 100K bits/sec or less (standard mode)
3. The input is operating at 3.3V logic levels.
4. The data byte format is 8 bit bytes.
5. To simplify the clock generator I2C interface, the protocol is set to use only "Block-Writes" from the
controller. The bytes must be accessed in sequential order from lowest to highest byte with the ability to stop
after any complete byte has been transferred. The Command code and Byte count shown above must be
sent, but the data is ignored for those two bytes. The data is loaded until a Stop sequence is issued.
6. At power-on, all registers are set to a default condition, as shown.
General I2C serial interface information
The information in this section assumes familiarity with I2C programming.
How to Write:
Controller (host) sends a start bit.
Controller (host) sends the write address D2 (H)
ICS clock will acknowledge
Controller (host) sends a dummy command code
ICS clock will acknowledge
Controller (host) sends a dummy byte count
ICS clock will acknowledge
Controller (host) starts sending first byte (Byte 0)
through byte 5
ICS clock will acknowledge each byte one at a time .
How to Read:
Controller (host) will send start bit.
Controller (host) sends the read address D3 (H)
ICS clock will acknowledge
ICS clock will send the byte count
Controller (host) acknowledges
ICS clock sends first byte (Byte 0) through byte 6
Controller (host) will need to acknowledge each byte
Controller (host) will send a stop bit
Notes:
Controller (Host) ICS (Slave/Receiver)
Start Bit
Address
D2(H) AC
K
Dummy Command Code ACK
Dummy Byte Count AC
K
Byte 0 ACK
Byte 1 AC
K
Byte 2 ACK
Byte 3 AC
K
Byte 4 ACK
Byte 5 AC
K
Byte 6 ACK
Stop Bit
How to Wri te :
Controller (Host) ICS (Slave/Receiver)
Start Bit
Address
D3(H) AC
K
Byte Count
ACK Byte 0
ACK Byte 1
ACK Byte 2
ACK Byte 3
ACK Byte 4
ACK Byte 5
ACK Byte 6
ACK
Stop Bit
How to Read:
5
ICS950811
0482E—08/09/07
Byte 0: Control Register
Byte 1: Control Register
tiB#niPemaNDWP
2
epyT
1
noitpircseD
0tiB450SFXR nodelpmasnip0SFfoeulavehtstcelfeR
purewop
1tiB551SFXR nodelpmasnip1SFfoeulavehtstcelfeR
pur
ewop
2tiB042SFXR nodelpmasnip2SFfoeulavehtstcelfeR
purewop
3tiB43#POTS_ICP
3
XR foeulavehtstcelfeR:edomerawdraH
DWPnodelpmasnip#POTS_ICP
1WR
:edomerawtfoS
deppotsKLCICP=0
deppotstonKLCIC
P=1
4tiB35#POTS_UPCXR lanretxeehtfoeulavtnerrucehtstcelfeR
nip#POTS_UPC
5tiB53HCV/1_66V30WRzHM84/zHM66tceleSHCV
zHM84=1,zHM66=0
6tiB- )0:2(T_UPC0
leveltuptuoslortnocedomnwodrewopnI
hgihpots=0
wolpots=1
7tiB- daerpS
delbanE 0WRnOda
erpS=1,ffOdaerpS=0
Notes:
1. R= Read only RW= Read and Write
2. PWD = Power on Default
3. The purpose of this bit is to allow a system designer to implement PCI_STOP functionality in one of two ways.
Wither the system designer can choose to use the externally provided PCI_STOP# pin to assert and de-assert
PCI_STOP functionality via I2C Byte 0 Bit 3.
In Hardware mode it is not allowed to write to the I2C Byte 0 Bit3. In Software mode it is not allowed to pull the
external PCI_STOP pin low. This avoids the issues related with Hardware started and software stopped
PCI_STOP conditions. The clock chip is to be operated in the Hardware or Software PCI_STOP mode ONLY, it
is not allowed to mix these modes.
In Hardware mode the I2C byte 0 Bit 3 is R/W and should reflect the status of the part. Whether or not the chip
is in PCI_STOP mode.
Functionality PCI_STOP mode should be entered when [(PCI_STOP#=0) or (I2C Byte 0 Bit 3 = 0)].
4. For disabled clocks, they stop low for single ended clocks. Differential CPU clocks stop with CPUCLKT at high,
CPUCLKC off, and external resistor termination will bring CPUCLKC low.
tiB#niPemaNDWP
2
epyT
1
noitpircseD
0tiB15,25 0TKLCUPC
0CKLCUPC 1WRdelbanE=1delbasiD=0
4
1tiB84,94 1TKLCUPC
1CKLCUPC 1WRdelbanE=1delbasiD=0
4
2tiB44,54 2TKLCUPC
2CKLCUPC 1WRdelbanE=1delbasiD=0
4
3tiB15,25 0TKLCUPC
0CKLCUPC 0WR
noitressahtiw0C/0TKLCUPCfolortnocwollA
eerF=1gninnureerftoN=0#POTS_UPCfo
gninnur
4tiB84,94 1TKLCUPC
1CKLCUPC 0WR
noitressahtiw1C/1TKLCUPCfolortnocwollA
eerF=1gninnureerftoN=0#POTS_UPCfo
g
ninnur
5tiB44,54 2TKLCUPC
2CKLCUPC 0WR
noitressahtiw2C/2TKLCUPCfolortnocwollA
eerF=1gninnureerftoN=0#POTS_UPC
fo
gninnur
6tiB- - 0 - )devreseR(
7tiB340LESTLUMXR 0LESTLUMfoeulavtnerrucehtstcelfeR
6
ICS950811
0482E—08/09/07
Byte 2: Control Register
Notes:
1. R= Read only RW= Read and Write
2. PWD = Power on Default
tiB#niPemaNDWPepyTnoitpircseD
0tiB010KLCICP1WRdelbanE=1delbasiD=0
1tiB111KLCICP1WRdelbanE=1delbasiD=0
2tiB212KLCICP1WRdelban
E=1delbasiD=0
3tiB313KLCICP1WRdelbanE=1delbasiD=0
4tiB614KLCICP1WRdelbanE=1delbasiD=0
5tiB715KLCICP1WRdelbanE=1delbasiD
=0
6tiB816KLCICP1WRdelbanE=1delbasiD=0
7tiB- - 0 - )devreseR(
Byte 3: Control Register
Byte 4: Control Register
tiB#niPemaNDWPepyTnoitpircseD
0tiB122-66V31WRdelbanE=1delbasiD=0
1tiB223-66V31WRdelbanE=1delbasiD=0
2tiB324-66V31WRdelbanE=1
delbasiD=0
3tiB425_66V31WRdelbanE=1delbasiD=0
4tiB53KLC_HCV/1_66V31WRdelbanE=1delbasiD=0
5tiB330_66V31WRdelbanE=1delbas
iD=0
6tiB- - 0 R )devreseR(
7tiB- - 0 R )devreseR(
tiB#niPemaNDWPepyTnoitpircseD
0tiB5 0F_KLCICP1WRdelbanE=1delbasiD=0
1tiB6 1F_KLCICP1WRdelbanE=1delbasiD=0
2tiB7 2F_KLCICP1WRdel
banE=1delbasiD=0
3tiB5 0F_KLCICP0WR
fonoitressahtiw0F_KLCICPfolortnocwollA
eerftoN=1,gninnuReerF=0.#POTS_ICP
g
ninnur
4tiB6 1F_KLCICP0WR
fonoitressahtiw1F_KLCICPfolortnocwollA
eerftoN=1,gninnuReerF=0.#POTS_ICP
gninnur
5tiB7 2
F_KLCICP0WR
fonoitressahtiw2F_KLCICPfolortnocwollA
eerftoN=1,gninnuReerF=0.#POTS_ICP
gninnur
6tiB93BSU_zHM841WRd
elbanE=1delbasiD=0
7tiB83TOD_zHM841WRdelbanE=1delbasiD=0
7
ICS950811
0482E—08/09/07
Byte 6: Vendor ID Register
(1 = enable, 0 = disable)
tiB#niPemaNDWPepyTnoitpircseD
0tiBX 0tiBDIrodneV1R)devreseR(
1tiBX 1tiBDIrodneV1R)devreseR(
2tiBX 2tiBDIrodneV1R)devreseR(
3tiBX 3t
iBDIrodneV1R)devreseR(
4tiBX 0tiBDInoisiveR1R nodesabeblliwseulavDInoisiveR
noisivers'ecivedlaudividni
5tiBX 1tiBDIn
oisiveR1R
6tiBX 2tiBDInoisiveR1R
7tiBX 3tiBDInoisiveR1R
Byte 5: Programming Edge Rate
(1 = enable, 0 = disable)
Notes:
1. R= Read only RW= Read and Write
2. PWD = Power on Default
tiB#niPemaNDWPepyTnoitpircseD
0tiBX BSU_zHM840WRlortncetaregdeBSU
1tiBX BSU_zHM840WRlortncetaregdeBSU
2tiBX TOD_zHM840WRlortnoc
etaregdeTOD
3tiBX TOD_zHM840WRlortnocetaregdeTOD
4tiBX - 0 - )devreseR(
5tiBX - 0 - )devreseR(
6tiBX - 0 - )devreseR(
7tiBX - 0 - )devreseR(
8
ICS950811
0482E—08/09/07
Absolute Maximum Ratings
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V
Logic Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . GND –0.5 V to VDD + 0.5 V
Ambient Operating Temperature . . . . . . . . . . 0°C to +85°C
Case Temperature . . . . . . . . . . . . . . . . . . . . . . 115°C
Storage Temperature . . . . . . . . . . . . . . . . . . . . –65°C to +150°C
Stresses above those listed under
Absolute Maximum Ratings
may cause permanent damage to the device. These
ratings are stress specifications only and functional operation of the device at these or any other conditions above those
listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions
for extended periods may affect product reliability.
Electrical Characteristics - Input/Supply/Common Output Parameters
TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Input High Voltage VIH 2V
DD + 0.3 V
Input Low Voltage VIL VSS - 0.3 0.8 V
Input High Current IIH VIN = VDD -5 5 mA
IIL1 VIN = 0 V; Inputs with no pull-up resistors -5 mA
IIL2 VIN = 0 V; Inputs with pull-up resistors -200
mA
Operating Supply
Current IDD3.3OP CL = Full load; Select @ 100 MHz 229 230 360 mA
IDD3.3OP CL =Full load; Select @ 133 MHz 220 233 360 mA
Powerdown Current IDD3.3PD IREF=5 mA 38.1 45 mA
Input Frequency FiVDD = 3.3 V 14.318 MHz
Pin Inductance L
p
in 7nH
CIN Logic Inputs 5 pF
COUT Output pin capacitance 6 pF
CINX X1 & X2 pins 27 36 45 pF
Transition time1Ttrans To 1st crossing of target frequency 3 ms
Settling time1TsFrom 1st crossing to 1% target frequency 3 ms
Clk Stabilization1TSTAB From VDD = 3.3 V to 1% target frequency 1 3 ms
Time to first clock1T1C Time to first clock 1.8 ms
tPZH,tPZL Output enable delay (all outputs) 1 10 ns
tPHZ,tPLZ Output disable delay (all outputs) 1 10 ns
1Guaranteed by design, not 100% tested in production.
Delay1
Input Capacitance1
Input Low Current
9
ICS950811
0482E—08/09/07
Electrical Characteristics - CPU
TA = 0 - 70°C; VDD=3.3V +/-5%; CL = 10-20 pF (unless otherwise specified)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Current Source
Output Impedance Zo1 VO = Vx3000
Output High Voltage VOH3 IOH = -1 mA 2.4 V
Output Low Voltage VOL3 IOL = 1 mA 0.4
Rise Time tr3 VOL = 0.41V, VOH = 0.86V 175 240 700 ps
Fall Time tf3 VOH = 0.86V VOL = 0.41V 175 242 700 ps
Duty Cycle dt3 measurement from differential wavefrom -
0.35V to +035V 45 51 55 %
Skew tsk3 VT = 50% 50 100 ps
Jitter, Cycle to cycle tjcyc-cyc1VT = 50% 76 150 ps
1Guaranteed by design, not 100% tested in production.
2 IOWT can be varied and is selectable thru the MULTSEL pin.
Electrical Characteristics - PCICLK
TA = 0 - 70C; VDD=3.3V +/-5%; CL = 10-30 pF (unless otherwise specified)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Output Frequency FO1 33.33 MHz
Output Impedance RDSP11VO = VDD*(0.5) 12 33 55
Output High Voltage VOH1IOH = -1 mA 2.4 V
Output Low Voltage VOL1IOL = 1 mA 0.55 V
Output High Current IOH1V OH@MIN = 1.0 V, V OH@MAX = 3.135 V -33 -33 mA
Output Low Current IOL1VOL @MIN
= 1.95 V, VOL @MAX = 0.4 V 30 38 mA
Rise Time tr11VOL = 0.4 V, VOH = 2.4 V 0.5 1.32 0.5to 2 ns
Fall Time tf11VOH = 2.4 V, VOL = 0.4 V 0.5 1.39 0.5 to 2 ns
Duty Cycle dt11VT = 1.5 V 45 52 55 %
Skew tsk11VT = 1.5 V 247 500 ps
Jitter,cycle to cyc tjcyc-cyc1VT = 1.5 V 111 500 ps
1Guaranteed by design, not 100% tested in production.
10
ICS950811
0482E—08/09/07
Electrical Characteristics - 3V66
TA = 0 - 70°C; VDD=3.3V +/-5%; CL = 10-30 pF (unless otherwise specified)
PARAMETER SYMBO
L
CONDITIONS MIN TYP MAX UNITS
Output Frequency FO1 66.66 MHz
Output Impedance RDSP11VO = VDD*(0.5) 12 33 55
Output High Voltage VOH1IOH = -1 mA 2.4 V
Output Low Voltage VOL1IOL = 1 mA 0.55 V
Output High Current IOH1V OH@MIN = 1.0 V, V OH@MAX = 3.135 -33 -33 mA
Output Low Current IOL1VOL @MIN
= 1.95 V, VOL @MAX = 0.4
V
30 38 mA
Rise Time tr11VOL = 0.4 V, VOH = 2.4 V 0.5 1.38 2 ns
Fall Time tf11VOH = 2.4 V, VOL = 0.4 V 0.5 1.45 2 ns
Duty Cycle dt11VT = 1.5 V 45 54.4 55 %
Skew tsk11VT = 1.5 V 243 500 ps
Jitter tjcyc-cyc1VT = 1.5 V 3V66 139 300 ps
1Guaranteed by design, not 100% tested in production.
Electrical Characteristics - VCH, 48MHz DOT, 48MHz, USB
TA = 0 - 70°C; VDD=3.3V +/-5%; CL = 10-20 pF (unless otherwise specified)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Output Frequency FO1 48 MHz
Output Impedance RDSP11VO = VDD*(0.5) 20 48 60
Output High Voltage VOH1IOH = -1 mA 2.4 V
Output Low Voltage VOL1IOL = 1 mA 0.4 V
Output High Current IOH1V OH@MIN = 1.0 V, V OH@MAX = 3.135 V -29 -23 mA
Output Low Current IOL1VOL @MIN = 1.95 V, VOL @MAX = 0.4 V 29 27 mA
48DOT Rise Time tr11VOL = 0.4 V, VOH = 2.4 V 0.5 0.6 1 ns
48DOT Fall Time tf11VOH = 2.4 V, VOL = 0.4 V 0.5 0.8 1 ns
VCH 48 USB Rise Time tr11VOL = 0.4 V, VOH = 2.4 V 1 1.2 2 ns
VCH 48 USB Fall Time tf11VOH = 2.4 V, VOL = 0.4 V 1 1.3 2 ns
48 DOT Duty Cycle dt11VT = 1.5 V 45 52.8 55 %
VCH 48 USB Duty Cycle dt11VT = 1.5 V 45 53.5 55 %
48 DOT Jitter t
j
c
y
c-c
y
c1VT = 1.5 V 183 350 ps
VCH Jitter tjcyc-cyc1VT = 1.5 V 223 350 ps
1Guaranteed by design, not 100% tested in production.
11
ICS950811
0482E—08/09/07
Electrical Characteristics - REF
TA = 0 - 70°C; VDD=3.3V +/-5%; CL = 10-20 pF (unless otherwise specified)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Output Frequency FO1 14.318 MHz
Output Impedance RDSP11VO = VDD*(0.5) 20 48 60
Output High Voltage VOH1IOH = -1 mA 2.4 V
Output Low Voltage VOL1IOL = 1 mA 0.4 V
Output High Current IOH1V OH@MIN = 1.0 V, V OH@MAX = 3.135 V -29 -23 mA
Output Low Current IOL1VOL @MIN
= 1.95 V, VOL @MAX = 0.4 V 29 27 mA
Rise Time tr11VOL = 0.4 V, VOH = 2.4 V 1 1.25 2 ns
Fall Time tf11VOH = 2.4 V, VOL = 0.4 V 1 1.15 2 ns
Duty Cycle dt11VT = 1.5 V 455355%
Jitter tjcyc-cyc1VT = 1.5 V 723 1000 ps
1Guaranteed by design, not 100% tested in production.
12
ICS950811
0482E—08/09/07
All 3V66 clocks are to be in pphase with each other. In the case where 3V66_1 is configured as 48MHz VCH clock,
there is no defined phase relationship between 3V66_1/VCH and other 3V66 clocks. The PCI group should lag 3V66
by the standard skew described below as Tpci.
Un-Buffered Mode 3V66 & PCI Phase Relationship
3V66 (1:0)
3V66 (4:2)
3V66_5
PCICLK_F (2:0) PCICLK (6:0) Tpci
Group Skews at Common Transition Edges: (Un-Buffered Mode)
GROUP SYMBOL CONDITIONS MIN TYP MAX UNITS
3V66 3V66 3V66 (5:0) pin to pin skew 0 42 500 ps
PCI PCI PCI_F (2:0) and PCI (6:0) pin to pin skew 0 130 500 ps
3V66 to PCI S3V66-PCI 3V66 (5:0) leads 33MHz PCI 1.5 2.86 3.5 ns
1Guaranteed by design, not 100% tested in production.
13
ICS950811
0482E—08/09/07
Normal operation transition to Suspend State S1 Entry sequence of events:
1. Power-Down (PD#) pin is taken from a high to low to start into S1 Suspend state with digital filtering of the
transition in the clock circuit.
2. The first clocks to be forced to a Stop Low power down condition are the PCI buffer output clocks after a full
clock cycle. If the PCI_Stop# is low, then the free-running PCI clocks (for PCI and APIC signals) are the
remaining PCI buffer clocks stopped.
3. Immediately after the PCI clocks have been stopped the 66Buf_0:2 clocks are stopped low after the next
high to low transition. It will always be a sequence of PCI stopping, THEN the 66Buf clocks.
4. Following the two buffer output clocks being stopped (PCI then 66.6Buffer outputs), the remaining clocks
within a short delay will transition to a stopped power-down state. The first of these driven clocks that
transition to a stopped state are all of the CPU PLL clocks: the CPU and the driven 3V66 clocks.
5. After the CPU PLL clocks are stopped, the 48 MHz clocks (USB, DOT clocks) will stop low, then the REF
clock 14.318 MHz clock will stop low.
6. After the clocks have all been stopped, the internal PLL stages and the Crystal oscillator will all be driven to
a low power stopped condition.
7. As a note to power management calculations, please be aware that the CPU design requires that in the
Power-Down (S1 mode) the CPU outputs have a differential bias voltage driving the differential input stage of
the CPU in this S1 state. For this PD condition of the clock generator, the IDD_PD is running around 30 to
45 mA from having the Iref running (5 mA), the output multiplier bias generator at a 2X condition and the
output current source outputs are running at a 2xIref bias level (for approx 10 mA each CPU output). This
results in a higher level of Clock generator IDD_PD than in prior generations of clocks due to the CPU output
differential requirements.
Suspend State S1 Exit transition to normal operation sequence of events:
1. Power-Down (PD#) pin is taken from Low to High with digital filtering of the transition in the clock circuit to
return to normal running operation.
2. The Crystal Oscillator and the two PLL stages are released from PD to start-up to normal operation. No
clocks will operate until the Lock detect circuitry verifies the PLL has reached stable final frequency (the
same as normal initial power-up).
3. The CPU PLL clocks (differential CPU outputs and the driven 3V66_(0:1) clocks are operating first as soon
as the Lock detect releases the clocks. With the release of these clocks, the single 66Buf_1 buffer driven
output (at pin 22) is also released from the PD stopped state (but NOT the other 66Buf0,2 and not the PCI
outputs). This allows the GMCH chipset 66.6 MHz DLL stage to start operating and have an operating
feedback path before the other buffer outputs are released. This change is why the requirement is made that
pin 22 be the connection from the clock to the GMCH chipset. Note that along with the 66Buf_0,2 and the
PCI clocks, the 48 MHz and REF (14.318 MHz) clocks are also NOT released at this point.
4. A delay is built into the clock generator that allows the CPU, driven 3V66_0,1 and the single buffer clock
66Buf_1 (at pin 22) to operate before other clocks are released. This delay is larger than 30 uS and shorter
than 400 uS, and after this the other clocks are staged for a sequential release.
5. The initial clocks released after the delay are the 66Buf_0, 2 outputs.
6. After the 66Buf_0,2 clocks are released, then the PCI clocks are released.
7. It will always be the sequence of 66_1 (pin 22) released with the CPU clocks, then after the delay the
remaining 66Buf_0,2 first, THEN the PCI clocks.
8. Following the 66Buf_0,2 clocks, the 48 MHz (DOT and USB clocks) and the REF (14.318MHz) clocks are
released.
9. Note, the initial power-up time is the same as this PD release, the PLL will power-up and the outputs will be
running within a 3 ms time point.
14
ICS950811
0482E—08/09/07
Assertion of PCI_STOP# Waveforms
PCI_STOP# - Assertion (transition from logic "1" to logic "0")
CPU_STOP#
CPUT
CPUC
CPU_STOP# - Assertion (transition from logic "1" to logic "0")
Assertion of CPU_STOP# Waveforms
CPU_STOP# Functionality
#POTS_UPCTUPCCUPC
1lamroNlamroN
0tluM*feritaolF
PCI_STOP#
PCI_F[2:0] 33MHz
PCI[6:0] 33MHz
tsu
The impact of asserting the PCI_STOP# signal will be the following. All PCI[6:0] and stoppable PCI_F[2,0] clocks will
latch low in their next high to low transition. The PCI_STOP# setup time tsu is 10 ns, for transitions to be recognized
by the next rising edge.
The impact of asserting the CPU_STOP# pin is all CPU outputs that are set in the I2C configuration to be stoppable
via assertion of CPU_STOP# are to be stopped after their next transition following the two CPU clock edge sampling
as shown. The final state of the stopped CPU signals is CPUT=High and CPUC=Low. There is to be no change to the
output drive current values. The CPUT will be driven high with a current value equal to (MULTSEL0) X (I REF), the CPUC
signal will not be driven.
15
ICS950811
0482E—08/09/07
When PD# is sampled low by two consecutive rising edges of CPU clock then all clock outputs except CPU clocks
must be held low on their next high to low transition. CPU clocks must be held with the CPU clock pin driven high with
a value of 2x Iref, and CPUC undriven. Note the example below shows CPU = 100MHz, this diagram and description
is applicable for all valid CPU frequencies 66, 100, 133, 200MHz.
Due to the state of the internal logic, stopping and holding the REF clock outputs in the LOW state may require more
than one clock cycle to complete.
PD# - Assertion (transition from logic "1" to logic "0")
PD# Functionality
#POTS_UPCTUPCCUPC66V3TUO_zHM66 F_KLCICP
KLCICP KLCICP TOD/BSU
zHM84
1lamroNlamroNzHM66NI_zHM66NI_zHM66NI_zHM66zHM84
0tlu
M*feritaolFwoLwoLwoLwoLwoL
Power Down Assertion of Waveforms - Buffered Mode
0ns
PD#
CPUT 100MHz
CPUC 100MHz
3V66MHz
66MHz_IN
66MHz_OUT
PCI 33MHz
USB 48MHz
REF 14.318MHz
25ns 50ns
16
ICS950811
0482E—08/09/07
Ordering Information
950811yGLFT
Designation for tape and reel packaging
Lead Free, RoHS Compliant (Optional)
Package Type
G = TSSOP
Revision Designator (will not correlate with datasheet revision)
Device Type
Example:
XXXX y G - LF - T
INDEX
AREA
INDEX
AREA
12
1 2
N
D
E1 E
a
SEATING
PLANE
SEATING
PLANE
A1
A
A2
e
-C-
- C -
b
c
L
aaa
C
6.10 mm. Body, 0.50 mm. pitch TSSOP
(240 mil) (0.020 mil)
MIN MAX MIN MAX
A--1.20--.047
A1 0.05 0.15 .002 .006
A2 0.80 1.05 .032 .041
b 0.17 0.27 .007 .011
c 0.09 0.20 .0035 .008
D
E
E1 6.00 6.20 .236 .244
e
L 0.45 0.75 .018 .030
N
α
aaa -- 0.10 -- .004
MIN MAX MIN MAX
56 13.90 14.10 .547 .555
10-0039
VARIATIONS
ND mm. D (inch)
Reference Doc.: JEDEC Publication 95, M O-153
0.50 BASIC 0.020 BASIC
SEE VARIATIONS SEE VARIATIONS
SEE VARIATIONS SEE VARIATIONS
8.10 BASIC 0.319 BASIC
SYMBOL
In Millimeters In Inches
COMMON DIMENSIONS COMMON DIMENSIONS
17
ICS950811
0482E—08/09/07
Ordering Information
950811yFLFT
Designation for tape and reel packaging
Lead Free, RoHS Compliant (Optional)
Package Type
F = SSOP
Revision Designator (will not correlate with datasheet revision)
Device Type
Example:
XXXX y F - LF - T
MINMAXMINMAX
A 2.41 2.80 .095 .110
A1 0.20 0.40 .008 .016
b 0.20 0.34 .008 .0135
c 0.13 0.25 .005 .010
D
E 10.03 10.68 .395 .420
E1 7.40 7.60 .291 .299
e
h 0.38 0.64 .015 .025
L 0.50 1.02 .020 .040
N
α
VARIATIONS
MINMAXMINMAX
56 18.31 18.55 .720 .730
10-0034
0.635 BASIC 0.025 BASIC
COMMON DIMENSIONS
In Millimeters In Inches
COMMON DIMENSIONS
Reference Doc.: JEDEC Publication 95, MO-118
56-Lead, 300 mil Body, 25 mil, SSOP
N
SEE VARIATIONS SEE VARIATIONS
D mm. D (inch)
SYMBOL
SEE VARIATIONS SEE VARIATIONS
18
ICS950811
0482E—08/09/07
Revision History
Rev. Issue Date Description Page #
D 12/21/06
1. Removed SSOP Package Information.
2. Added LF Ordering Information. 16
E 08/09/07 Added SSOP Package Information. 17