1/18
XC61C Series
Low Voltage Detectors (VDF= 0.8V1.5V)
Standard Voltage Detectors (VDF 1.6V6.0V)
GENERAL DESCRIPTION
The XC61C series are highly precise, low power consumption voltage detectors, manufactured using CMOS and laser
trimming technologies.
Detect voltage is extremely accurate with minimal temperature drift.
Both CMOS and N-ch open drain output configurations are available.
A
PPLICATIONS
Microprocessor reset circuitry
Memory battery back-up circuits
Power-on reset circuits
Power failure detection
System battery life and charge voltage monitors
TYPICAL PERFORMANCE CHARACTERISTICS
FEATURES
Highly Accurate : ± 2%
:
± 1%(Standard Voltage VD: 2.6V~5.1V)
Low Power Consumption : 0.7μA (TYP.) [VIN=1.5V]
Detect Voltage Range : 0.8V ~ 6.0V in 0.1V increments
Operating Voltage Range : 0.7V ~ 6.0V (Low Voltage)
0.7V10.0V (Standard Voltage)
Detect Volt age Temperature Characteristics
: ±100ppm/ (TYP.)
Output Configuration : N-ch open drain or CMOS
Packages : SSOT-24
SOT-23
SOT-89
TO-92
Environmentally Friendly : EU RoHS Compliant, Pb Free
TYPICAL APPLICATION CIRCUITS
ETR0201_015a
2/18
XC61C Series
PIN NUMBER
SSOT-24 SOT-23 SOT-89 TO-92 PIN NAME FUNCTIONS
2 3 2 2 VIN Supply Voltage Input
4 2 3 3 VSS Ground
1 1 1 1 VOUT Output
3 - - - NC No Connection
DESIGNATOR ITEM SYMBOL DESCRIPTION
C CMOS output
Output Configuration
N N-ch open drain output
e.g.0.9V 0, 9
②③ Detect Voltage 08 ~ 60 e.g.1.5V 1, 5
Output Delay 0 No delay
1 Within ±1% (VDF(T)=2.6V~5.1V)
Detect Accuracy
2 Within ±2%
NR SSOT-24 (3,000/Reel)
NR-G SSOT-24 (3,000/Reel)
MR SOT-23 (3,000/Reel)
MR-G SOT-23 (3,000/Reel)
PR SOT-89 (1,000/Reel)
PR-G SOT-89 (1,000/Reel)
TH TO-92 Taping Type: Paper type (2,000/Tape)
TH-G TO-92 Taping Type: Paper type (2,000/Tape)
TB TO-92 Taping Type: Bag (500/Bag)
⑥⑦-⑧ (*1) Packages (Order Unit)
TB-G TO-92 Taping Type: Bag (500/Bag)
PIN CONFIGURATION
PIN ASSIGNMENT
PRODUCT CLASSIFICATION
Ordering Information
XC61C①②③④⑤⑥⑦-⑧(*1)
(*1) The “-G” suffix denotes Halogen and Antimony free as well as being fully RoHS compliant.
TO-92
(SIDE VIEW)
3/18
XC61C
Series
*1: Low voltage: VDF(T)=0.8V~1.5V
*2: Standard voltage: VDF(T)=1.6V~6.0V
PARAMETER SYMBOL RATINGS UNITS
*1 VSS-0.3 ~ 9.0
Input Voltage *2 VIN VSS-0.3 ~ 12.0 V
Output Current IOUT 50 mA
CMOS VSS -0.3 ~ VIN +0.3
N-ch Open Drain Output *1 VSS -0.3 ~ 9.0
Output Voltage
N-ch Open Drain Output *2
VOUT
VSS -0.3 ~ 12.0
V
SSOT-24 150
SOT-23 150
SOT-89 500
Power Dissipation
TO-92
Pd
300
mW
Operating Ambient Temperature Topr
-40+85
Storage Temperature Tstg -55+125
BLOCK DIAGRAMS
A
BSOLUTE MAXIMUM RATINGS
Ta = 25 OC
(1) CMOS Output (2) N-ch Open Drain Output
4/18
XC61C Series
PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX.
UNITS
CIRCUITS
VDF(T)=0.8V~1.5V *1
VDF(T)=1.6V~6.0V *2
VDF(T)
x 0.98 VDF(T) VDF(T)
x 1.02 V 1
Detect Voltage VDF
VDF(T)=2.6V~5.1V *2 VDF(T)
x 0.99 VDF(T) VDF(T)
x 1.01 V 1
Hysteresis Range VHYS VDF
x 0.02
VDF
x 0.05
VDF
x 0.08 V 1
VIN = 1.5V - 0.7 2.3
VIN = 2.0V - 0.8 2.7
VIN = 3.0V - 0.9 3.0
VIN = 4.0V - 1.0 3.2
Supply Current ISS
VIN = 5.0V - 1.1 3.6
μA2
Operating Voltage *1 VDF(T) = 0.8V to 1.5V 0.7 - 6.0
Operating Voltage *2
VIN VDF(T) = 1.6V to 6.0V 0.7 - 10.0 V 1
VIN = 0.7V 0.10 0.80 -
N-ch VDS = 0.5V VIN = 1.0V 0.85 2.70 - 3
Output Current *1
CMOS, P-ch VDS = 2.1V VIN = 6.0V - -7.5 -1.5 4
VIN = 1.0V 1.0 2.2 -
VIN = 2.0V 3.0 7.7 -
VIN = 3.0V 5.0 10.1 -
VIN = 4.0V 6.0 11.5 -
N-ch VDS = 0.5V
VIN = 5.0V 7.0 13.0 -
3
Output Current *2
IOUT
CMOS, P-ch VDS = 2.1V VIN = 8.0V - -10.0 -2.0
mA
4
CMOS
Output
(Pch)
VIN=VDFx0.9, VOUT=0V - -10 -
Leakage
Current N-ch
Open
Drain
ILEAK
VIN=6.0V, VOUT=6.0V*1
VIN=10.0V, VOUT=10.0V*2 - 10 100
nA 3
Temperature
Characteristics
ΔVDF/
(
Δ
Topr
V
DF
)
-40 Topr 85 - ±100 - ppm/
1
Delay Time
(V
DR
V
OUT
inversion)
tDLY Inverts from VDR to VOUT - 0.03 0.20 ms 5
ELECTRICAL CHARACTERISTICS
VDF (T) = 0.8V to 6.0V ± 2%
VDF (T) = 2.6V to 5.1V ± 1%
NOTE:
*1: Low Voltage: VDF(T)=0.8V~1.5V
*2: Standard Voltage: VDF(T)=1.6V~6.0V
VDF (T): Nominal detect voltage
Release Voltage: VDR = VDF + VHYS
Ta=2 5
5/18
XC61C
Series
OPERATIONAL EXPLANATION
(Especially prepared for CMOS output products)
When input voltage (VIN) is higher than detect voltage (VDF), output voltage (VOUT) will be equal to VIN.
(A condition of high impedance exists with N-ch open drain output configurations.)
When input voltage (VIN) falls below detect voltage (VDF), output voltage (VOUT) will be equal to the ground voltage (VSS)
level.
When input voltage (VIN) falls to a level below that of the minimum operating voltage (VMIN), output will become
unstable. (As for the N-ch open drain product of XC61CN, the pull-up voltage goes out at the output voltage.)
When input voltage (VIN) rises above the ground voltage (VSS) level, output will be unstable at levels below the
minimum operating voltage (VMIN). Between the VMIN and detect release voltage (VDR) levels, the ground voltage (VSS)
level will be maintained.
When input voltage (VIN) rises above detect release voltage (VDR), output voltage (VOUT) will be equal to VIN.
(A condition of high impedance exists with N-ch open drain output configurations.)
The difference between VDR and VDF represents the hysteresis range.
Timing Chart
6/18
XC61C Series
NOTES ON USE
1. Please use this IC within the stated absolute maximum ratings. For temporary, transitional voltage drop or voltage rising
phenomenon, the IC is liable to malfunction should the ratings be exceeded.
2. When a resistor is connected between the VIN pin and the power supply with CMOS output configurations, oscillation may
occur as a result of voltage drops at RIN if load current (IOUT) exists. (refer to the Oscillation Description (1) below)
3. When a resistor is connected between the VIN pin and the power supply with CMOS output configurations, irrespective of
N-ch open-drain output configurations, oscillation may occur as a result of through current at the time of voltage release even
if load current (IOUT) does not exist. (refer to the Oscillation Description (2) below )
4. Please use N-ch open drain output configuration, when a resistor RIN is connected between the VIN pin and power source.
In such cases, please ensure that RIN is less than 10k and that C is more than 0.1μF, please test with the actual device.
(refer to the Oscillation Description (1) below)
5. With a resistor RIN connected between the VIN pin and the power supply, the VIN pin voltage will be getting lower than the
power supply voltage as a result of the IC's supply current flowing through the VIN pin.
6. In order to stabilize the IC's operations, please ensure that VIN pin input frequency's rise and fall times are more than 2 μ s/ V.
7. Torex places an importance on improving our products and its reliability.
However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment.
Oscillation Description
(1) Load current oscillation with the CMOS output configuration
When the voltage applied at power supply, release operations commence and the detector's output voltage increases.
Load current (IOUT) will flow at RL. Because a voltage drop (RIN x IOUT) is produced at the RIN resistor, located between the
power supply and the VIN pin, the load current will flow via the IC's VIN pin. The voltage drop will also lead to a fall in the
voltage level at the VIN pin. When the VIN pin voltage level falls below the detect voltage level, detect operations will
commence. Following detect operations, load current flow will cease and since voltage drop at RIN will disappear, the
voltage level at the VIN pin will rise and release operations will begin over again.
Oscillation may occur with this " release - detect - release " repetition.
Further, this condition will also appear via means of a similar mechanism during detect operations.
(2) Oscillation as a result of through current
Since the XC61C series are CMOS IC S, through current will flow when the IC's internal circuit switching operates (during
release and detect operations). Consequently, oscillation is liable to occur as a result of drops in voltage at the through
current's resistor (RIN) during release voltage operations. (refer to Figure 3)
Since hysteresis exists during detect operations, oscillation is unlikely to occur.
Power supply
Power supply Power supply
7/18
XC61C
Series
100kΩ*
8/18
XC61C Series
TYPICAL PERFORMANCE CHARACTERISTICS
Low Voltage
Note : Unless otherwise stated, the N-ch open drain pull-up resistance value is 100kΩ.
9/18
XC61C
Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Low Voltage (Continued)
(4) N-ch Driver Output Current vs. V
DS
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
0 0.2 0.4 0.6 0.8 1.0
V
DS
(V)
0.7V
V
IN
=0.8V
Ta=25
0
0.5
1.0
1.5
2.0
2.5
3.0
0 0.2 0.4 0.6 0.8 1.0
V
DS
(V)
V
IN
=1.0V
Ta=25
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
0 0.2 0.4 0.6 0.8 1.0
V
DS
(V)
0.7V
V
IN
=0.8V
Ta=25
0
2.0
4.0
6.0
8.0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
V
DS
(V)
V
IN
=1.4V
Ta=25
1.2V
1.0V
XC61CC0902 (.)
Output Current: I
OUT
(mA)Output Current: I
OUT
(mA)
Output Current: I
OUT
(mA)
Output Current: I
OUT
(mA)
XC61CC1102 (.)
XC61CC1502 (.)XC61CC1502 (.)
(5) N-ch Driver Output Current vs. Input Voltage
0
0.5
1.0
1.5
2.0
2.5
0 0.2 0.4 0.6 0.8 1.0
V
DS
=0.5V
Ta=85
-40
25
0
1.0
2.0
3.0
4.0
5.0
0 0.2 0.4 0.6 0.8 1.0 1.2
V
DS
=0.5V Ta=-40
80
25
0
2
4
6
8
10
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
V
DS
=0.5V Ta=-40
85
25
XC61CC0902 (.)XC61CC1102 (.)XC61CC1502 (.)
Output Current: I
OUT
(mA)
Output Current: I
OUT
(mA)
Output Current: I
OUT
(mA)
Input Voltage: V
IN
(V) Input Voltage: V
IN
(V) Input Voltage: V
IN
(V)
(6) P-ch Driver Output Current vs. Input Voltage
0
2
4
6
8
10
12
0123456
V
DS
=2.1V
0.5V
Ta= 25
1.5V
1.0V
0
2
4
6
8
10
12
0123456
V
DS
=2.1V
0.5V
Ta= 2 5
1.5V
1.0V
0
2
4
6
8
10
12
0123456
V
DS
=2.1V
0.5V
Ta= 25
1.5V
1.0V
XC61CC0902 (.)XC61CC1102
 (.)
Input Voltage: V
IN
(V) Input Voltage: V
IN
(V) Input Voltage: V
IN
(V)
Output Current: I
OUT
(mA)
Output Current: I
OUT
(mA)
Output Current: I
OUT
(mA)
XC61CC1502 (.)
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
0 0.2 0.4 0.6 0.8 1.0
V
DS
(V)
0.7V
V
IN
=0.8V
Ta=25
Output Current: I
OUT
(mA)
XC61CC1102 (.)
10/18
XC61C Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Standard Voltage
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0246810
Ta=85
-40
25
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0246810
Ta=85
-40
25
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0246810
Ta=85
-40
25
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0246810
Ta=85
-40
25
XC61CC1802 (. XC61CC2702 (.7V)
XC61CC3602 (.6V)XC61CC4502 (.5V)
Input Voltage: V
IN
(V)Input Voltage: V
IN
(V)
Supply Current: I
SS
(μA)
Supply Current: I
SS
(μA)
Input Voltage: V
IN
(V)Input Voltage: V
IN
(V)
Supply Current: I
SS
(μA)
Supply Current: I
SS
(μA)
(2) Detect, Release Voltage vs. Ambient Temperature
1.75
1.80
1.85
1.90
-50 -25 0 25 50 75 100
Ambient Temperature : Ta ()
V
DR
V
DF
2.65
2.70
2.75
2.80
-50 -25 0 25 50 75 100
Ambient Temperature : Ta ()
V
DR
V
DF
3.5
3.6
3.7
3.8
-50 -25 0 25 50 75 100
Ambient Temperature : Ta ()
V
DR
V
DF
4.4
4.5
4.6
4.7
-50 -25 0 25 50 75 100
Ambient Temperature : Ta ()
V
DR
V
DF
XC61CC1802 (.8V)XC61CC2702 (.7V)
XC61CC4502 (.5V)XC61CC3602 (.6V)
Detect, Release Voltage: V
DF
,V
DR
(V)
Detect, Release Voltage: V
DF
,V
DR
(V)
Detect, Release Voltage: V
DF
,V
DR
(V)
Detect, Release Voltage: V
DF
,V
DR
(V)
(1) Supply Current vs. Input Voltage
11/18
XC61C
Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Standard Voltage (Continued)
(3) Output Voltage vs. Input Voltage
Note : The N-channel open drain pull up resistance value is 100k Ω.
0
1
2
3
0123
Ta=25
0
1
2
3
4
01234
Ta=25
0
1
2
3
4
5
012345
Ta=25
0
1
2
012
Ta=25
XC61CN1802 .V) XC61CN2702 .7V)
Input Voltage: V
IN
(V)
Input Voltage: V
IN
(V)
Output Voltage: V
OUT
(V)Output Voltage: V
OUT
(V)
Output Voltage: V
OUT
(V) Output Voltage: V
OUT
(V)
XC61CN4502 (.V)XC61CN3602 (.V)
Input Voltage: V
IN
(V) Input Voltage: V
IN
(V)
(4) N-ch Driver Output Current vs. V
DS
0
2
4
6
8
10
0 0.5 1.0 1.5 2.0
V
DS
(V)
1.0V
V
IN
=1.5VTa=25
0
5
10
15
20
25
30
0 0.5 1.0 1.5 2.0 2.5 3.0
V
DS
(V)
1.
0
V
V
IN
=2.5V
Ta=25
1.5V
2.0V
0
10
20
30
40
0 0.5 1.0 1.5 2.0 2.5 3.0
V
DS
(V)
1.5V
V
IN
=3.0V
Ta=25
2.0V
2.5V
0
10
20
30
40
50
60
70
80
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
V
DS
(V)
V
IN
=4.0V
Ta=25
1.5V
2.0V
2.5V
3
.
0
V
3.5V
XC61CC1802 (.8V)XC61CC2702 (.V)
XC61CC4502 (.V)XC61CC3602 (.6V)
Output Current: I
OUT
(mA)
Output Current: I
OUT
(mA)
Output Current: I
OUT
(mA)
Output Current: I
OUT
(mA)
Note : The N-ch open drain pull up resistance value is 100kΩ.
0
10
20
30
40
50
60
70
80
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
V
DS
(V)
XC61CC4502 (4.5V)
V
IN
=4.0V
Ta=25℃
1.5
V
2.0
V
2.5
V
3.0
V
3.5V
XC61CC4502 (4.5V)
12/18
XC61C Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Standard Voltage (Continued)
(4) N-ch Driver Output Current vs. V
DS
0
200
400
600
800
1000
0 0.2 0.4 0.6 0.8 1.0
V
DS
(V)
V
IN
=0.8V
0.7V
Ta=25
0
200
400
600
800
1000
0 0.2 0.4 0.6 0.8 1.0
V
DS
(V)
V
IN
=0.8V
0.7V
Ta=25
0
200
400
600
800
1000
0 0.2 0.4 0.6 0.8 1.0
V
DS
(V)
V
IN
=0.8V
0.7V
Ta=25
0
200
400
600
800
1000
0 0.2 0.4 0.6 0.8 1.0
V
DS
(V)
V
IN
=0.8V
0.7V
Ta=25
Output Current: I
OUT
(μA)
Output Current: I
OUT
(μA)
Output Current: I
OUT
(μA)
Output Current: I
OUT
(μA)
XC61CC1802 (.V) XC61CC2702 .V)
XC61CC3602 (.V) XC61CC4502 (.V)
(5) N-ch Driver Output Current vs. Input Voltage
0
5
10
15
0 0.5 1.0 1.5 2.0
V
DS
=0.5V Ta=-40
85
25
0
5
10
15
20
25
0 0.5 1.0 1.5 2.0 2.5 3.0
V
DS
=0.5V Ta=-40
85
25
0
5
10
15
20
25
30
01234
V
DS
=0.5V Ta=-40
85
25
0
10
20
30
40
012345
V
DS
=0.5V Ta=-40
25
85
XC61CC1802 (.V) XC61CC2702 (.V)
Output Current: I
OUT
(mA)
Output Current: I
OUT
(mA)
Output Current: I
OUT
(mA)
Output Current: I
OUT
(mA)
Input Voltage: V
IN
(V)Input Voltage: V
IN
(V)
Input Voltage: V
IN
(V) Input Voltage: V
IN
(V)
XC61CC3602 (.V) XC61CC4502 (.V)
13/18
XC61C
Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Standard Voltage (Continued)
(6) P-ch Driver Output Current vs. Input Voltage
0
5
10
15
0246810
VDS=2.1V
0.5V
1.0V
1.5V
0
5
10
15
0246810
VDS=2.1V
0.5V
1.0V
1.5V
0
5
10
15
0246810
VDS=2.1V
0.5V
1.0V
1.5V
0
5
10
15
0246810
VDS=2.1V
0.5V
1.0V
1.5V
XC61CC1802 (.V) XC61CC2702 (.V)
XC61CC4502 (.V)XC61CC3602 (.V)
Input Voltage: V
IN
(V) Input Voltage: V
IN
(V)
Input Voltage: V
IN
(V)Input Voltage: V
IN
(V)
Output Current: I
OUT
(mA)
Output Current: I
OUT
(mA)
Output Current: I
OUT
(mA)
Output Current: I
OUT
(mA)
14/18
XC61C Series
PACKAGING INFORMATION
SSOT-24 SOT-23
SOT-89
2.0±0.1
0.125
+0.1
-0.05
1.3±0.2
0.25
+0.15
-0.1
0
+0.1
-0
0.35
+0.15
-0.1
0.05
0.25
+0.15
-0.1
0.25
+0.15
-0.1
2.5±0.1
4.0±0.25
1.5±0.1
(0.1)
5°
(0.4)
1.0±0.2
15/18
XC61C
Series
PACKAGING INFORMATION(Continued)
TO-92
4.65+0.35
-0.45
0.45±0.1
(1.27)
0.4±0.05
3.7±0.3 4.65 +0.35
-0.45
4.8+0.4
10.0MIN
2.5+0.4
-0.1
0.45±0.1
3.7±0.3
0.4±0.05
-0.5
2.5+0.4
-0.1
TB TYPE TH TYPE
16/18
XC61C Series
MARK CONFIGURATION VOLTAGE (V)
A CMOS 0.X
B CMOS 1.X
C CMOS 2.X
D CMOS 3.X
E CMOS 4.X
F CMOS 5.X
H CMOS 6.X
MARK CONFIGURATION VOLTAGE (V)
K N-ch 0.X
L N-ch 1.X
M N-ch 2.X
N N-ch 3.X
P N-ch 4.X
R N-ch 5.X
S N-ch 6.X
MARK
VOLTAGE (V) MARK VOLTAGE (V)
0 X.0 5 X.5
1 X.1 6 X.6
2 X.2 7 X.7
3 X.3 8 X.8
4 X.4 9 X.9
MARK DELAY TIME PRODUCT SERIES
3 No Delay Time XC61Cxxx0xxx
represents integer of detect voltage and
CMOS Output (XC61CC series)
MARKING RULE
SSOT-24, SOT-23, SOT-89
①②④
12
34
12
3
123
N-Channel O
p
en Drain Out
p
ut
(
XC61CN series
)
represents decimal number of detect voltage
represents delay time
(Except for SSOT-24)
represents production lot number
Based on the internal standard. (G, I, J, O, Q, W excluded)
17/18
XC61C
Series
MARK
VOLTAGE (V)
3 3 3.3
5 0 5.0
MARK OUTPUT
CONFIGURATION
C CMOS
N N-ch
MARK DELAY TIME
0 No delay
MARK DETECT VOLTAGE ACCURACY
1 Within ± 1% (Semi-custom)
2 Within ± 2%
MARK PRODUCTION YEAR
5 2005
6 2006
MARKING RULE (Continued)
represents a least significant digit of production year
TO-92
represents production lot number
0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded)
* No character inversion used.
represents output configuration
, represents detect voltage (ex.)
represents delay time
represents detect voltage accuracy
TO-92
(SIDE VIEW)
18/18
XC61C Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics. Consult us, or our representatives
before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this datasheet.
3. Please ensure suitable shipping controls (including fail-safe designs and aging
protection) are in force for equipment employing products listed in this datasheet.
4. The products in this datasheet are not developed, designed, or approved for use with
such equipment whose failure of malfunction can be reasonably expected to directly
endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety
equipment thereof.)
5. Please use the products listed in this datasheet within the specified ranges.
Should you wish to use the products under conditions exceeding the specifications,
please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this datasheet may be copied or reproduced without the
prior permission of TOREX SEMICONDUCTOR LTD.