LM4860 LM4860 Series 1W Audio Power Amplifier with Shutdown Mode Literature Number: SNAS096B LM4860 Series 1W Audio Power Amplifier with Shutdown Mode General Description Key Specifications The LM4860 is a bridge-connected audio power amplifier capable of delivering 1W of continuous average power to an 8 load with less than 1% THD+N over the audio spectrum from a 5V power supply. Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components using surface mount packaging. Since the LM4860 does not require output coupling capacitors, bootstrap capacitors or snubber networks, it is optimally suited for low-power portable systems. n THD+N at 1W continuous average output power into 8: 1% (max) n Instantaneous peak output power: > 2W n Shutdown current: 0.6A (typ) The LM4860 features an externally controlled, low-power consumption shutdown mode, as well as an internal thermal shutdown protection mechanism. It also includes two headphone control inputs and a headphone sense output for external monitoring. The unity-gain stable LM4860 can be configured by external gain setting resistors for differential gains of up to 10 without the use of external compensation components. Higher gains may be achieved with suitable compensation. Typical Application Features n No output coupling capacitors, bootstrap capacitors, or snubber circuits are necessary n Small Outline (SO) packaging n Compatible with PC power supplies n Thermal shutdown protection circuitry n Unity-gain stable n External gain configuration capability n Two headphone control inputs and headphone sensing output Applications n n n n n Personal computers Portable consumer products Cellular phones Self-powered speakers Toys and games Connection Diagram Small Outline Package 01198802 Top View Order Number LM4860M See NS Package Number M16A 01198801 FIGURE 1. Typical Audio Amplifier Application Circuit The Boomer (R) registered trademark is licensed to National Semiconductor for audio integrated circuits by Rockford Corporation. Patents pending. (c) 2004 National Semiconductor Corporation DS011988 www.national.com LM4860 1W Audio Power Amplifier with Shutdown Mode August 2000 LM4860 Absolute Maximum Ratings (Note 2) Small Outline Package If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Supply Voltage -65C to +150C -0.3V to VDD + 0.3V Input Voltage Power Dissipation 215C Infrared (15 sec.) 220C See AN-450 "Surface Mounting and their Effects on Product Reliability" for other methods of soldering surface mount devices. 6.0V Storage Temperature Vapor Phase (60 sec.) Operating Ratings Internally limited Temperature Range ESD Susceptibility (Note 4) 3000V TMIN TA TMAX ESD Susceptibility (Note 5) 250V Junction Temperature 150C -20C TA +85C 2.7V VDD 5.5V Supply Voltage Soldering Information Electrical Characteristics (Notes 1, 2) The following specifications apply for VDD = 5V, RL = 8 unless otherwise specified. Limits apply for TA = 25C. Symbol VDD Parameter Conditions LM4860 Typical Limit (Note 6) (Note 7) Supply Voltage Units (Limits) 2.7 V (min) 5.5 V (max) 15.0 mA (max) IDD Quiescent Power Supply Current VO = 0V, IO = 0A (Note 8) 7.0 ISD Shutdown Current Vpin2 = VDD (Note 9) 0.6 VOS Output Offset Voltage VIN = 0V 5.0 50.0 mV (max) PO Output Power THD+N = 1% (max); f = 1 kHz 1.15 1.0 W (min) THD+N Total Harmonic Distortion + Noise PO = 1 Wrms; 20 Hz f 20 kHz 0.72 % PSRR Power Supply Rejection Ratio VDD = 4.9V to 5.1V 65 dB A Vod Output Dropout Voltage VIN = 0V to 5V, Vod = (Vo1 - Vo2) 0.6 VIH HP-IN High Input Voltage HP-SENSE = 0V to 4V 2.5 VIL HP-IN Low Input Voltage HP-SENSE = 4V to 0V 2.5 VOH HP-SENSE High Output Voltage IO = 500 A 2.8 2.5 V (min) VOL HP-SENSE Low Output Voltage IO = -500 A 0.2 0.8 V (max) 1.0 V (max) V V Note 1: All voltages are measured with respect to the ground pins, unless otherwise specified. Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance. Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX, JA, and the ambient temperature TA. The maximum allowable power dissipation is PDMAX = (TJMAX - TA)/JA or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4860, TJMAX = +150C, and the typical junction-to-ambient thermal resistance, when board mounted, is 100C/W. Note 4: Human body model, 100 pF discharged through a 1.5 k resistor. Note 5: Machine Model, 200 pF-240 pF discharged through all pins. Note 6: Typicals are measured at 25C and represent the parametric norm. Note 7: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level). Note 8: The quiescent power supply current depends on the offset voltage when a practical load is connected to the amplifier. Note 9: Shutdown current has a wide distribution. For Power Management sensitive designs, contact your local National Semiconductor Sales Office. www.national.com 2 LM4860 High Gain Application Circuit 01198803 FIGURE 2. Stereo Amplifier with AVD = 20 Single Ended Application Circuit 01198804 *CS and CB size depend on specific application requirements and constraints. Typical values of CS and CB are 0.1 F. **Pin 2, 6, or 7 should be connected to VDD to disable the amplifier or to GND to enable the amplifier. These pins should not be left floating. ***These components create a "dummy" load for pin 8 for stability purposes. FIGURE 3. Single-Ended Amplifier with AV = -1 3 www.national.com LM4860 External Components Description (Figures 1, 2) Components Functional Description 1. Ri Inverting input resistance which sets the closed-loop gain in conjunction with Rf. This resistor also forms a high pass filter with Ci at fC = 1/(2 Ri Ci). 2. Ci Input coupling capacitor which blocks DC voltage at the amplifier's input terminals. Also creates a highpass filter with Ri at fC = 1/(2 Ri Ci). 3. Rf Feedback resistance which sets closed-loop gain in conjunction with Ri. 4. CS Supply bypass capacitor which provides power supply filtering. Refer to the Application Information section for proper placement and selection of supply bypass capacitor. 5. CB Bypass pin capacitor which provides half supply filtering. Refer to Application Information section for proper placement and selection of bypass capacitor. 6. Cf (Note 10) Used when a differential gain of over 10 is desired. Cf in conjunction with Rf creates a low-pass filter which bandwidth limits the amplifier and prevents high frequency oscillation bursts. fC = 1/(2 Rf Cf) Note 10: Optional component dependent upon specific design requirements. Refer to the Application Information section for more in formation. Typical Performance Characteristics THD+N vs Frequency THD+N vs Frequency 01198809 01198810 THD+N vs Frequency THD+N vs Output Power 01198811 www.national.com 01198812 4 LM4860 Typical Performance Characteristics (Continued) THD+N vs Output Power THD+N vs Output Power 01198813 01198814 Supply Current vs Time in Shutdown Mode Supply Current vs Supply Voltage 01198815 01198816 LM4860 Noise Floor vs Frequency Power Derating Curve 01198817 01198818 5 www.national.com LM4860 Typical Performance Characteristics (Continued) Supply Current Distribution vs Temperature Power Dissipation vs Output Power 01198819 01198820 Output Power vs Load Resistance Output Power vs Supply Voltage 01198822 01198821 Open Loop Frequency Response Power Supply Rejection Ratio 01198823 www.national.com 01198824 6 BRIDGE CONFIGURATION EXPLANATION As shown in Figure 1, the LM4860 has two operational amplifiers internally, allowing for a few different amplifier configurations. The first amplifier's gain is externally configurable, while the second amplifier is internally fixed in a unity-gain, inverting configuration. The closed-loop gain of the first amplifier is set by selecting the ratio of Rf to Ri while the second amplifier's gain is fixed by the two internal 40 k resistors. Figure 1 shows that the output of amplifier one serves as the input to amplifier two which results in both amplifiers producing signals identical in magnitude, but out of phase 180. Consequently, the differential gain for the IC is: Avd = 2 * (Rf/Ri) By driving the load differentially through outputs VO1 and VO2, an amplifier configuration commonly referred to as "bridged mode" is established. Bridged mode operation is different from the classical single-ended amplifier configuration where one side of its load is connected to ground. A bridge amplifier design has a few distinct advantages over the single-ended configuration, as it provides differential drive to the load, thus doubling output swing for a specified supply voltage. Consequently, four times the output power is possible as compared to a single-ended amplifier under the same conditions. This increase in attainable output power assumes that the amplifier is not current limited or clipped. In order to choose an amplifier's closed-loop gain without causing excessive clipping which will damage high frequency transducers used in loudspeaker systems, please refer to the Audio Power Amplifier Deslgn section. A bridge configuration, such as the one used in Boomer Audio Power Amplifiers, also creates a second advantage over single-ended amplifiers. Since the differential outputs, VO1 and VO2, are biased at half-supply, no net DC voltage exists across the load. This eliminates the need for an output coupling capacitor which is required in a single supply, single-ended amplifier configuration. Without an output coupling capacitor in a single supply single-ended amplifier, the half-supply bias across the load would result in both increased internal IC power dissipation and also permanent loudspeaker damage. An output coupling capacitor forms a high pass filter with the load requiring that a large value such as 470 F be used with an 8 load to preserve low frequency response. This combination does not produce a flat response down to 20 Hz, but does offer a compromise between printed circuit board size and system cost, versus low frequency response. For the LM4860 surface mount package, JA = 100C/W and TJMAX = 150C. Depending on the ambient temperature, TA, of the system surroundings, Equation 2 can be used to find the maximum internal power dissipation supported by the IC packaging. If the result of Equation 1 is greater than that of Equation 2, then either the supply voltage must be decreased or the load impedance increased. For the typical application of a 5V power supply, with an 8 load, the maximum ambient temperature possible without violating the maximum junction temperature is approximately 88C, provided that device operation is around the maximum power dissipation point. Power dissipation is a function of output power and thus, if typical operation is not around the maximum power dissipation point, the ambient temperature can be increased. Refer to the Typical Performance Characteristics curves for power dissipation information for lower output powers. POWER SUPPLY BYPASSING As with any power amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection. The capacitor location on both the bypass and power supply pins should be as close to the device as possible. As displayed in the Typical Performance CharacterIstIcs section, the effect of a larger half-supply bypass capacitor is improved low frequency THD+N due to increased half-supply stability. Typical applications employ a 5V regulator with 10 F and a 0.1 F bypass capacitors which aid in supply stability, but do not eliminate the need for bypassing the supply nodes of the LM4860. The selection of bypass capacitors, especially CB, is thus dependant upon desired low frequency THD+N, system cost, and size constraints. SHUTDOWN FUNCTION In order to reduce power consumption while not in use, the LM4860 contains a shutdown pin to externally turn off the amplifier's bias circuitry. The shutdown feature turns the amplifier off when a logic high is placed on the shutdown pin. Upon going into shutdown, the output is immediately disconnected from the speaker. There is a built-in threshold which produces a drop in quiescent current to 500 A typically. For a 5V power supply, this threshold occurs when 2V-3V is applied to the shutdown pin. A typical quiescent current of 0.6 A results when the supply voltage is applied to the shutdown pin. In many applications, a microcontroller or microprocessor output is used to control the shutdown circuitry which provides a quick, smooth transition into shutdown. Another solution is to use a single-pole, single-throw switch that when closed, is connected to ground and enables the amplifier. If the switch is open, then a soft pull-up resistor of 47 k will disable the LM4860. There are no soft pulldown resistors inside the LM4860, so a definite shutdown pin voltage must be appliied externally, or the internal logic gate will be left floating which could disable the amplifier unexpectedly. POWER DISSIPATION Power dissipation is a major concern when designing a successful amplifier, whether the amplifier is bridged or single-ended. A direct consequence of the increased power delivered to the load by a bridge amplifier is an increase in internal power dissipation. Equation 1 states the maximum power dissipation point for a bridge amplifier operating at a given supply voltage and driving a specified output load. (1) PDMAX = 4 * (VDD)2/(22RL) Since the LM4860 has two operational amplifiers in one package, the maximum internal power dissipation is 4 times that of a single-ended amplifier. Even with this substantial increase in power dissipation, the LM4860 does not require heatsinking. From Equation 1, assuming a 5V power supply and an 8 load, the maximum power dissipation point is 625 HEADPHONE CONTROL INPUTS The LM4860 possesses two headphone control inputs that disable the amplifier and reduce IDD to less than 1 mA when either one or both of these inputs have a logic-high voltage placed on their pins. 7 www.national.com LM4860 mW. The maximum power dissipation point obtained from Equation 1 must not be greater than the power dissipation that results from Equation 2: PDMAX = (TJMAX - TA)/JA (2) Application Information LM4860 Application Information R1 and R2. Resistor R1 then pulls up the HP-IN1 pin, enabling the headphone function and disabling the LM4860 amplifier. The headphone amplifier then drives the headphones, whose impedance is in parallel with resistor R2. Since the typical impedance of headphones are 32, resistor R2 has negligible effect on the output drive capability. Also shown in Figure 5 are the electrical connections for the headphone jack and plug. A 3-wire plug consists of a Tip, Ring, and Sleave, where the Tip and Ring are signal carrying conductors and the Sleave is the common ground return. One control pin contact for each headphone jack is sufficient to indicate to control inputs that the user has inserted a plug into a jack and that another mode of operation is desired. (Continued) Unlike the shutdown function, the headphone control function does not provide the level of current conservation that is required for battery powered systems. Since the quiescent current resulting from the headphone control function is 1000 times more than the shutdown function, the residual currents in the device may create a pop at the output when coming out of the headphone control mode. The pop effect may be eliminated by connecting the headphone sensing output to the shutdown pin input as shown in Figure 4. This solution will not only eliminate the output pop, but will also utilize the full current conservation of the shutdown function by reducing IDD to 0.6 A. The amplifier will then be fully shutdown. This configuration also allows the designer to use the control inputs as either two headphone control pins or a headphone control pin and a shutdown pin where the lowest level of current consumption is obtained from either function. Figure 5 shows the implementation of the LM4860's headphone control function using a single-supply headphone amplifier. The voltage divider of R1 and R2 sets the voltage at the HP-IN1 pin to be approximately 50 mV when there are no headphones plugged into the system. This logic-low voltage at the HP-IN1 pin enables the LM4860 to amplify AC signals. Resistor R3 limits the amount of current flowing out of the HP-IN1 pin when the voltage at that pin goes below ground resulting from the music coming from the headphone amplifier. The output coupling cap protects the headphones by blocking the amplifier's half-supply DC voltage. The capacitor also protects the headphone amplifier from the low voltage set up by resistors R1 and R2 when there aren't any headphones plugged into the system. The tricky point to this setup is that the AC output voltage of the headphone amplifier cannot exceed the 2.0V HP-IN1 voltage threshold when there aren't any headphones plugged into the system, assuming that R1 and R2 are 100k and 1k, respectively. The LM4860 may not be fully shutdown when this level is exceeded momentarily, due to the discharging time constant of the bias-pin voltage. This time constant is established by the two 50k resistors (in parallel) with the series bypass capacitor value. When a set of headphones are plugged into the system, the contact pin of the headphone jack is disconnected from the signal pin, interrupting the voltage divider set up by resistors www.national.com For a system implementation where the headphone amplifier is designed using a split supply, the output coupling cap, CC and resistor R2 of Figure 5, can be eliminated. The functionality described earlier remains the same, however. In addition, the HP-SENSE pin, although it may be connected to the SHUTDOWN pin as shown in Figure 4, may still be used as a control flag. It is capable of driving the input to another logic gate or approximately 2 mA without serious loading. 01198807 FIGURE 4. HP-SENSE Pin to SHUTDOWN Pin Connection 8 LM4860 Application Information (Continued) 01198808 FIGURE 5. Typical Headphone Control Input Circuitry Ri = 10 k, Rf = 510k, Ci = 0.22 F, and Cf = 15 pF Five times away from a -3 dB point is 0.17 dB down from the flatband response. With this selection of components, the resulting -3 dB points, fL and fH, are 72 Hz and 20 kHz, respectively, resulting in a flatband frequency response of better than 0.25 dB with a rolloff of 6 dB/octave outside of the passband. If a steeper rolloff is required, other common bandpass filtering techniques can be used to achieve higher order filters. HIGHER GAIN AUDIO AMPLIFIER The LM4860 is unity-gain stable and requires no external components besides gain-setting resistors, an input coupling capacitor, and proper supply bypassing in the typical application. However if a closed-loop differential gain of greater than 10 is required, then a feedback capacitor is needed, as shown in Figure 2, to bandwidth limit the amplifier. The feedback capacitor creates a low pass filter that eliminates unwanted high frequency oscillations. Care should be taken when calculating the -3 dB frequency in that an incorrect combination of Rf and Cf will cause rolloff before 20 kHz. A typical combination of feedback resistor and capacitor that will not produce audio band high frequency rolloff is Rf = 100 k and Cf = 5 pF. These components result in a -3 dB point of approximately 320 kHz. Once the differential gain of the amplifier has been calculated, a choice of Rf will result, and Cf can then be calculated from the formula stated in the External Components Description section. SINGLE-ENDED AUDIO AMPLIFIER Although the typical application for the LM4860 is a bridged monoaural amp, it can also be used to drive a load singleendedly in applications, such as PC cards, which require that one side of the load is tied to ground. Figure 3 shows a common single-ended application, where VO1 is used to drive the speaker. This output is coupled through a 470 F capacitor, which blocks the half-supply DC bias that exists in all single-supply amplifier configurations. This capacitor, designated CO in Figure 3, in conjunction with RL, forms a highpass filter. The -3 dB point of this highpass filter is 1/(2RLCO), so care should be taken to make sure that the product of RL and CO is large enough to pass low frequencies to the load. When driving an 8 load, and if a full audio spectrum reproduction is required, CO should be at least 470 F. VO2, the output that is not used, is connected through a 0.1 F capacitor to a 2 k load to prevent instability. While such an instability will not affect the waveform of VO1, it is good design practice to load the second output. VOICE-BAND AUDIO AMPLIFIER Many applications, such as telephony, only require a voiceband frequency response. Such an application usually requires a flat frequency response from 300 Hz to 3.5 kHz. By adjusting the component values of Figure 2, this common application requirement can be implemented. The combination of Ri and Ci form a highpass filter while Rf and Cf form a lowpass filter. Using the typical voice-band frequency range, with a passband differential gain of approximately 100, the following values of Ri, Ci, Rf, and Cf follow from the equations stated in the External Components Description section. 9 www.national.com LM4860 Application Information Once the power dissipation equations have been addressed, the required differential gain can be determined from Equation 4. (Continued) AUDIO POWER AMPLIFIER DESIGN Design a 500 mW/8 Audio Amplifier Given: Power Output: 500 mWrms Load Impedance: 8 From equation 4, the minimum Avd is: Input Level: 1 Vrms(max) Input Impedance: 20 k Avd = 2 A designer must first determine the needed supply rail to obtain the specified output power. Calculating the required supply rail involves knowing two parameters, Vopeak and also the dropout voltage. The latter is typically 0.7V. Vopeak can be determined from equation 3. Since the desired input impedance was 20 k, and with an Avd of 2, a ratio of 1:1 of Rf to Riresults in an allocation of Ri = Rf = 20 k. Since the Avd was less than 10, a feedback capacitor is not needed. The final design step is to address the bandwidth requirements which must be stated as a pair of -3 dB frequency points. Five times away from a -3 dB point is 0.17 dB down from passband response which is better than the required 0.25 dB specified. This fact results in a low and high frequency pole of 4 Hz and 100 kHz respectively. As stated in the External Components section, Ri in conjunction with Ci create a highpass filter. For 500 mW of output power into an 8 load, the required Vopeak is 2.83V. A minimum supply rail of 3.53V results from adding Vopeak and Vod. But 3.53V is not a standard voltage that exists in many applications and for this reason, a supply rail of 5V is designated. Extra supply voltage creates dynamic headroom that allows the LM4860 to reproduce peaks in excess of 500 mW without clipping the signal. At this time, the designer must make sure that the power supply choice along with the output impedance does not violate the conditions explained in the Power Dissipation section. The high frequency pole is determined by the product of the desired high frequency pole, fH, and the differential gain, Avd. With a Avd = 2 and fH = 100 kHz, the resulting GBWP = 100 kHz which is much smaller than the LM4860 GBWP of 7 MHz. This figure displays that if a designer has a need to design an amplifier with a higher differential gain, the LM4860 can still be used without running into bandwidth problems. Bandwidth: www.national.com 20 Hz-20 kHz 0.25 dB Ci 1/(2 * 20 k * 4 Hz) = 1.98 F; 10 use 2.2 F. LM4860 1W Audio Power Amplifier with Shutdown Mode Physical Dimensions inches (millimeters) unless otherwise noted Small Outline Package (M) Order Number LM4860M NS Package Number M16A National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications. For the most current product information visit us at www.national.com. LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. BANNED SUBSTANCE COMPLIANCE National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no ``Banned Substances'' as defined in CSP-9-111S2. National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959 www.national.com National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Francais Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Communications and Telecom www.ti.com/communications Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps DLP(R) Products www.dlp.com Energy and Lighting www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap Wireless Connectivity www.ti.com/wirelessconnectivity TI E2E Community Home Page www.ti.com/video e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright (c) 2011, Texas Instruments Incorporated