Datasheet 1 Rev. 1.0
www.infineon.com/hitfet 2018-07-19
HITFET
TM
- BTS3011TE
Smart Low-Side Power Switch
1 Overview
Features
Single channel device
Digital Feedback
Current limitation trigger concept
3.3 and 5 V compatible logic inputs
Electrostatic discharge protection (ESD)
Green Product (RoHS compliant)
AEC Qualified
Applications
Suitable for resistive, inductive and capacitive loads
Replaces electromechanical relays, fuses and discrete circuits
Most suitable for inductive loads as well as loads with inrush currents
Description
The BTS3011TE is a 11 m single channel Smart Low-Side Power Switch with in a PG-TO252-5 package
providing embedded protective functions. The power transistor is built by an N-channel vertical power
MOSFET.
The device is monolithically integrated. The BTS3011TE is automotive qualified and is optimized for 12 V
automotive and industrial applications.
Type Package Marking
BTS3011TE PG-TO252-5 S3011TE
Table 1 Product Summary
Operating voltage range VOUT 3 .. 28 V
Maximum battery voltage VBAT(LD) 40 V
Operating supply voltage range VDD 3.0 .. 5.5 V
Maximum input voltage VIN 5.5 V
Maximum On-State resistance at Tj = 150 °C, VDD = 5 V, VIN = 5 V RDS(ON)_150 22 m
Nominal load current IL(NOM) 10 A
Minimum current limitation trigger level IL(LIM)_TRIGGER 70 A
Datasheet 2 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Overview
Diagnostic Functions
Short circuit to battery
•Over temperature
Stable latching diagnostic signal
Protection Functions
Over temperature shutdown with delayed auto restart
Active clamp over voltage protection of the OUTput
Current limitation with current limitation trigger
Enhanced short circuit protection
Detailed Description
The device is able to switch all kind of resistive, inductive and capacitive loads, limited by maximum clamping
energy and maximum current capabilities.
The BTS3011TE offers dedicated ESD protection on the IN, VDD and STATUS pin referring to the Ground pin,
as well as an over voltage clamping of the Drain/OUT to Source/GND.
The over voltage protection gets activated during inductive turn off conditions or other over voltage events
(such as load dump). The power MOSFET is limiting the drain-source voltage, if it rises above the VOUT(CLAMP).
The over temperature protection prevents the device from overheating due to overload and/or bad cooling
conditions.
The BTS3011TE has a delayed auto restart thermal shut-down function. The device will turn on again, If the
input pin is still high after a delayed time tD(RESTART) considering the junction temperature has dropped below
the thermal hysteresis.
Minimum current limitation level IL(LIM) 35 A
Maximum OFF state load current at TJ 85 °C IL(OFF)_85 A
Maximum stand-by supply current at TJ 85 °C IDD(OFF)_85 A
Table 1 Product Summary (cont’d)
Datasheet 3 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Pin Assignment BTS3011TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3.1 PCB set up (from THB report) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3.2 Transient Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5 Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1 Output On-state Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Resistive Load Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3.1 Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3.2 Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4 Reverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6 Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.1 Over Voltage Clamping on OUTput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Thermal Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3 Overcurrent Limitation / Short Circuit Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.4 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.1 Functional Description of the STATUS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.2 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8 Supply and Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.1 Supply Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.1.1 Undervoltage Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.2 Input Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.3 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9.1 Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9.2 Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.3 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.4 Supply and Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
10 Characterisation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10.1 Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10.2 Dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
10.3 Supply and Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table of Contents
Datasheet 4 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
11 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
11.1 Design and Layout Recommendations/Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
12 Package Outlines BTS3011TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
13 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Datasheet 5 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Block Diagram
2 Block Diagram
Figure 1 Block Diagram
OUT
GND
IN
BlockDiagram_5pin.emf
VDD
STATUS
Over-
temperature
Protection
Short circuit
detection /
Current
limitation
Supply
Unit
Gate
Driving
Unit
Over
Voltage
Pr otecti on
Status
Feedback
ESD
Protection
Datasheet 6 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Pin Configuration
3 Pin Configuration
3.1 Pin Assignment BTS3011TE
Figure 2 Pin Configuration DPAK5
3.2 Pin Definitions and Functions
3.3 Voltage and Current Definition
Figure 3 shows all external terms used in this data sheet, with associated convention for positive values.
Table 2
Pin Symbol Function
1INInput pin
2 VDD 5 V supply pin
3,6 OUT Drain, Load connection for power DMOS
4 STATUS Open-drain status feedback (low active)
5 GND Ground, Source of power DMOS
OUT OUT
(top view )
GND
5
6 ( Tab)
4
3
2
1
STATUS
VDD
IN
PinConfig_DPAK5.emf
Datasheet 7 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Pin Configuration
Figure 3 Naming Definition of electrical parameters
V
BAT
GND
Terms_5pin.emf
IN
V
BAT
V
IN
I
IN
GND
Z
L
I
L
,I
D
V
OUT,
V
DS
OUT
VDD
I
DD
V
DD
V
DD
STATUS
I
STATU S
R
STATU S
V
STATU S
Datasheet 8 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
General Product Characteristics
4 General Product Characteristics
4.1 Absolute Maximum Ratings
Table 3 Absolute Maximum Ratings1)
Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise
specified)
Parameter Symbol Values Unit Note or
Test Condition
Number
Min. Typ. Max.
Voltages
Supply voltage VDD -0.3 5.5 V P_4.1.1
Output voltage VOUT ––40 Vinternally clampedP_4.1.2
Battery voltage for short
circuit protection
VBAT(SC) ––32 V
1)
l = 0 or 5 m
RSC = 30 m+RCable
RCable = l * 16 m/m
LSC = 5 µH + LCable
LCable = l * 1 µH/m
P_4.1.3
Battery voltage for load
dump protection
(VBAT(LD) =VA+VS with
VA=13.5 V)
VBAT(LD) ––40 V
2)
Ri=2;
RLoad =2.2;
td=400 ms;
suppressed pulse
P_4.1.4
Input Pin
Input voltage VIN -0.3 – 5.5 V P_4.1.8
Status Pin
Status voltage VSTATUS -0.3 5.5 V P_4.1.9
Power Stage
Load current |IL| ––IL(LIM)_TRIGGER A– P_4.1.12
Energies
Unclamped single inductive
energy single pulse
EAS 390 mJ IL(0) =IL(NOM)
VBAT = 13.5 V
TJ(0) = 150°C
P_4.1.13
Unclamped repetitive
inductive energy pulse with
100k cycles
EAR(100k) 290 mJ IL(0) =IL(NOM)
VBAT = 13.5 V
Tj(0) = 105°C
P_4.1.15
Temperatures
Operating temperature Tj-40 – +150 °C P_4.1.17
Storage temperature Tstg -55 – +150 °C P_4.1.18
ESD Susceptibility
Datasheet 9 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
General Product Characteristics
Notes
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation
4.2 Functional Range
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics
table.
ESD susceptibility (all pins) VESD -2 – 2 kV HBM3) P_4.1.19
ESD susceptibility OUT pin
vs. GND
VESD -4 – 4 kV HBM3) P_4.1.20
ESD susceptibility VESD -750 – 750 V CDM4) P_4.1.21
1) Not subject to production test, specified by design.
2) VBAT(LD) is setup without the DUT connected to the generator per ISO7637-1;
Ri is the internal resistance of the load dump test pulse generator;
td is the pulse duration time for load dump pulse (pulse 5) according ISO 7637-1, -2.
3) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS-001 (1.5 k, 100 pF)
4) ESD susceptibility, Charged Device Model “CDM” ESDA STM5.3.1 or ANSI/ESD S.5.3.1
Table 4 Functional Range1)
1) Not subject to production test, specified by design.
Parameter Symbol Values Unit Note or
Test Condition
Number
Min. Typ. Max.
Supply Voltage Range for Nominal
Operation
VDD(NOM) 3.0 5.0 5.5 V P_4.2.1
Supply current continuous ON
operation
IDD(ON) ––1 mA P_4.2.2
Standby supply current (ambient) IDD(OFF) –1.56 µATj 85°C P_4.2.4
Battery Voltage Range for Nominal
Operation
VBAT(NOR) 6 13.5 18 V P_4.2.5
Extended Battery Voltage Range for
Operation
VBAT(EXT) 0 32 V parameter
deviations possible
P_4.2.6
Table 3 Absolute Maximum Ratings1) (cont’d)
Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise
specified)
Parameter Symbol Values Unit Note or
Test Condition
Number
Min. Typ. Max.
Datasheet 10 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
General Product Characteristics
4.3 Thermal Resistance
Note: This thermal data was generated in accordance with JEDEC JESD51 standards.
For more information, go to www.jedec.org.
Table 5 Thermal Resistance
Parameter Symbol Values Unit Note or
Test Condition
Number
Min. Typ. Max.
Junction to Solder Point RthJSP –2– K/W
1) 2)
1) Not subject to production test, specified by design.
2) Specified RthJSP value is simulated at natural convection on a cold plate setup (all pins are fixed to ambient
temperature). Tc = 85°C. Device is loaded with 1 W power.
P_4.3.1
Junction to Ambient (2s2p) RthJA(2s2p) –25–K/W
1) 3)
3) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The product
(Chip and Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70 µm Cu, 2 x 35 µm
Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer. Ta = 85°C.
Device is loaded with 1 W power.
P_4.3.2
Junction to Ambient
(1s0p+600mm2 Cu)
RthJA(1s0p) –38–K/W
1) 4)
4) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The product
(Chip and Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with additional heatspreading copper area of
600mm2 and 70 µm thickness. Ta = 85°C. Device is loaded with 1 W power
P_4.3.3
Datasheet 11 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
General Product Characteristics
4.3.1 PCB set up (from THB report)
The following PCB set up was implemented to determine the transient thermal impedance.
Figure 4 Cross section JEDEC 2s2p.
Figure 5 Cross section JEDEC 1s0p.
Figure 6 PCB layout.
70µm modelled (traces)
35µm, 100% metalization*
1
,
5 mm
70µm, 5% metalization*
70µm modelled (traces, cooling area)
1
5 m
70µm; 5% metalization*
JEDEC 1s0p / 600 mm² JEDEC 1s0p / Footprint
JEDEC 2s2p
Detail: Solder area
Datasheet 12 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
General Product Characteristics
4.3.2 Transient Thermal Impedance
Figure 7 Typical transient thermal impedance ZthJA = f(tp), Ta = 85 °C
Value is according to Jedec JESD51-2,-7 at natural convection on FR4 2s2p board; The
product (Chip and Package) was simulated on a 76.2 x 114.3 x 1.5 mm3 board with 2 inner
copper layers (2 x 70 um Cu, 2 x 35 um Cu). Where applicable a thermal via array under the
exposed pad contacted the first inner copper layer. Device is dissipating 1 W power.
Figure 8 Typical transient thermal impedance ZthJA = f(tp), Ta = 85°C
Value is according to Jedec JESD51-3 at natural convection on FR4 1s0p board. Device is
dissipating 1 W power.
Datasheet 13 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Power Stage
5 Power Stage
5.1 Output On-state Resistance
The on-state resistance depends on the supply voltage as well as on the junction temperature TJ. Figure 9
shows this dependencies in terms of temperature and voltage for the typical on-state resistance RDS(ON). The
behavior in reverse polarity is described in chapter“Reverse Current Capability” on Page 16.
Figure 9 Typical On-State Resistance,
RDS(ON) = f(TJ);
VDD = 5 V, 3 V; VIN = high
A high signal at the input pin causes the power DMOS to switch ON with a dedicated slope.
To achieve the specified RDS(ON) and switching speed, a 5 V supply is required.
Datasheet 14 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Power Stage
5.2 Resistive Load Output Timing
Figure 10 shows the typical timing when switching a resistive load.
Figure 10 Definition of Power Output Timing for Resistive Load
5.3 Inductive Load
5.3.1 Output Clamping
When switching off inductive loads with low side switches, the drain-source voltage VOUT rises above battery
potential, because the inductance intends to continue driving the current. To prevent unwanted high voltages
the device has a voltage clamping mechanism to keep the voltage at VOUT(CLAMP). During this clamping
operation mode the device heats up as it dissipates the energy from the inductance. Therefore the maximum
allowed load inductance is limited. See Figure 11 and Figure 12 for more details.
Figure 11 Output Clamp Circuitry
t
V
OUT
V
BAT
Switching.emf
t
10 %
90 %
t
ON
t
DON
t
OFF
t
DOFF
V
IN
V
IN ( L)
V
IN ( H)
50 %
-(dV/dt)
ON
(dV/dt)
OFF
t
F
t
R
GND ( DMOS Source)
OUT (DMOS Drain)
I
GND
V
BAT
Z
L
I
L
V
OUT
Datasheet 15 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Power Stage
Figure 12 Switching an Inductive Load
Note: Repetitive switching of inductive load by VDD instead of using the input is a not recommended
operation and may affect the device reliability and reduce the lifetime.
5.3.2 Maximum Load Inductance
While demagnetization of inductive loads, energy has to be dissipated in the BTS3011TE.
This energy can be calculated by the following equation:
(5.1)
Following equation simplifies under assumption of RL = 0
(5.2)
Figure 13 shows the inductance / current combination the BTS3011TE can handle.
For maximum single avalanche energy please also refer to EAS parameter in Page 8
t
t
V
OUT
V
BAT
t
I
OUT
V
OUT( CLAMP)
V
IN
L
L
CLAMPOUTBAT
LL
L
CLAMPOUTBAT
CLAMPOUT R
L
I
VV
IR
R
VV
V×
+
×
×
×=
)(
)(
)( 1lnE
×=
)(
2
1
2
1
CLAMPOUTBAT
BAT
L
VV
V
LIE
Datasheet 16 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Power Stage
Figure 13 Maximum load inductance for single pulse
L = f(IL);
TJ(0) = 150°C; VBAT = 13.5 V
5.4 Reverse Current Capability
A reverse battery situation means the OUT pin is pulled below GND potential to -VBAT via the load ZL.
In this situation the load is driven by a current through the intrinsic body diode of the BTS3011TE and all
protection, such as current limitation, over temperature or over voltage clamping, are not active.
OT is active in inverse current if DMOS is ON
In certain application case (for example in a bridge or half-bridge configuration) the intrinsic reverse body
diode is used for freewheeling of an inductive load. In this case the device is still supplied but an inverse
current is flowing from GND to OUT(drain) and the OUT will be pulled below GND.
In inverse or reverse operation via the reverse body diode, the device is dissipating a power loss which is
defined by the driven current and the voltage drop on the body diode -VDS.
The BTS3011TE is capable of switching ON during inverse current by setting the IN high. In this condition, the
over temperature is active.
5.5 Characteristics
Please see “Power Stage” on Page 24 for electrical characteristic table.
Datasheet 17 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Protection Functions
6 Protection Functions
The device provides embedded protection functions. Integrated protection functions are designed to prevent
IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside”
normal operation. Protection functions are not to be used for continuous or repetitive operation.
6.1 Over Voltage Clamping on OUTput
The BTS3011TE is equipped with a voltage clamp circuitry that keeps the drain-source voltage VDS at a certain
level VOUT(CLAMP). The over voltage clamping is overruling the other protection functions. Power dissipation has
to be limited to not exceed the maximum allowed junction temperature.
This function is also used in terms of inductive clamping. Please see also “Output Clamping” on Page 14 for
more details.
6.2 Thermal Protection
The device is protected against over temperature due to overload and/or bad cooling conditions by an
integrated temperature sensor. The thermal protection is available if the device is active. .
The device incorporates an absolute (TJ(SD)) and a dynamic temperature limitation (ΔTJ(SW)). Triggering one of
them will cause the output to switch off.
The BTS3011TE has a delayed thermal-restart function. If the input (IN) is still high the device will turn on again
after a delayed time tD(RESTART) considering the junction temperature has dropped below the thermal
hysteresis.
Figure 14 Thermal protective switch OFF scenario with thermal restart
Note: For better understanding, the time scale is not linear. The real timing of this drawing is application
dependant and cannot be described.
IN
0t
Dynamic
th ermal shutdown
t
T
j(SD )
Auto restart
V
IN (H )
no overload
T
a
ΔT
j(SW )
Absolute over temperature
shutdown
Auto restart
ΔT
j(SD)_HY
T
j
(DMOS)
t
V
OUT
V
BA T
Thermal_faul t_restart
t
D(RES TART)
t
D(RES TART)
Datasheet 18 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Protection Functions
6.3 Overcurrent Limitation / Short Circuit Behavior
This device is providing a smart overcurrent limitation intended to provide protection against short circuit
conditions while allowing also load inrush currents higher than the current limitation level. To achieve this,
the device has a current limitation level IL(LIM) which is triggered by a higher trigger level IL(LIM)_TRIGGER.
The condition short circuit is an overload condition on the device.
If the load current IL reaches the current limitation trigger level IL(LIM)_TRIGGER the internal current limitation will
be activated and the device limits the current to a lower value IL(LIM). The device then starts heating up. When
the thermal shutdown temperature TJ(SD) is reached, the device turns off. The time from the beginning of
current limitation until the over temperature switch off depends strongly on the cooling conditions.
If input is still high, the device will turn on again after a delayed time tD(RESTART) considering the junction
temperature has dropped below the thermal hysteresis. The current limitation trigger is a latched signal. It will
be only reset by input (IN) pin low and resetting the latch fault signal (STATUS pin = high. See Chapter 7
Diagnostics) at the same time. This means if the input stays high all the time during short circuit, the current
will be limited to IL(LIM) during the following pulses (while on thermal restart). It also means that the output
current remains limited to the current limitation level IL(LIM) as long as the current limitation trigger is not reset.
Figure 15 shows this behavior.
Figure 15 Short circuit protection via current limitation and thermal switch off, with latched fault
signal on STATUS-pin
IN
0
t
T
j
(DMOS)
Absolute over temperature shutdown
I
L
I
L(LIM)
Auto restart;
li m ited to current l imitation lev el R e st ar t i n to
n or ma l l oa d co nd i ti o n
V
BAT
/Z
sc
t
t
Occurrence of short circuit
I
L(LIM )_T RI GGE R
Drain current triggering IL(LI M)_TRIGG ER -> current limit to IL(LI M)
V
IN ( H )
Reset current limit trigger by
ST ATUS=high“ and
„IN=low“ and
„DMOS off (IL=0A)“
R e st ar t i n to sh o r t
ci rcuit
T
j(SD )
ΔT
j(SD)_HY
T
a
t
V
ST ATU S
H
t
RESET
t
D(RES TART)
t
D(RES TART)
Datasheet 19 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Protection Functions
Note: For better understanding, the time scale is not linear. The real timing of this drawing is application
dependant and cannot be described.
Behavior with overload current below current limitation trigger level
The lower current limitation level IL(LIM) will be also triggered by a thermal shutdown. This could be the case in
terms of overload with a current still below the current limitation trigger level (IL < IL(LIM)TRIGGER).
Figure 16 Example of overload behavior with thermal shutdown
Note: For better understanding, the time scale is not linear. The real timing of this drawing is application
dependant and cannot be described.
6.4 Characteristics
Please see “Protection” on Page 26 for electrical characteristic table.
IN
0
I
L
I
L(LIM )
t
t
Occurrence of overload (below current limitation trigger level)
I
L(LIM )_T RI GGE R
V
IN (H )
Th er ma l r es ta rt i nt o
normal load condition
V
BAT
/Z
sc
T
j(SD )
ΔT
j(SD )_HY
T
j
(DMOS)
T
a
Reset current limit trigger by
ST ATUS=high“ and
IN=low and
„DM OS off (I
L
=0A)“
t
V
ST ATU S
H
t
RESET
t
D(RES TART)
t
D(RES TART)
Auto restart;
limited to current limitation level
Absolute over temperature shutdown
Datasheet 20 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Diagnostics
7 Diagnostics
The BTS3011TE provides a latching digital fault feedback signal on the STATUS pin triggered by an over
temperature shutdown.
7.1 Functional Description of the STATUS Pin
The BTS3011TE provides digital status information via the STATUS pin to give an alarm feedback to a
connected microcontroller. Please see Figure 17 “Feedback and control of STATUS pin” on Page 20
Normal operation mode
In normal operation (no fault is detected) the STATUS pin’s logic is set ”high”. It is pulled up via an external
Resistor (RSTATUS). Internally it is connected to an open drain MOSFET through an internal resistor.
Fault operation
In case of a thermal shutdown (fault), an internal MOSFET connected to the STATUS pin, pulls its voltage down
to GND, providing a “low” level signal to the microcontroller. Fault mode operation remains active
independent from the input pin state or internal restarts until it is reset.
Reset latch fault signal (external pull up)
To reset the latch fault signal of the BTS3011TE, the STATUS pin has to be pulled up to 5 V (recommended VDD).
Resetting the fault signal will not reset the current limitation trigger signal. To do so, the INPUT pin has to be
set in logic “low” at the same time the STATUS pin is set “high”. In this case, the fault latch signal and the
current limitation trigger will be reset (assuming the temperature has dropped below ΔTJ_HYS). Please refer to
Figure 15 and Figure 16.
Figure 17 Feedback and control of STATUS pin
For recommended values of external components please see “Application Information” on Page 40
7.2 Characteristics
Please see “Diagnostics” on Page 27 for electrical characteristic table.
GND
feedback.emf
IN
V
BAT
GND
I
GND
Z
L
I
L
V
OUT
OUT
VDD
I
DD
V
DD
STATUS
Micro
controller
I/O
I/O
R
STATU S
Datasheet 21 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Supply and Input Stage
8 Supply and Input Stage
8.1 Supply Circuit
The supply pin VDD is protected against ESD pulses as shown in Figure 18.
The device supply is not internal regulated but directly taken from a external supply. Therefore a reverse
polarity protected and buffered 5 V (or 3.3 V) voltage supply is required. To achieve the specified RDS(ON) and
switching speed a 5 V supply is required.
The device shall be supplied via the VDD pin before applying an input signal VIN to ensure the correct
functionality of the device.
Figure 18 Supply Circuit
8.1.1 Undervoltage Shutdown
In order to ensure a stable and defined device behavior under all allowed conditions the supply voltage VDD is
monitored.
The output switches off, if the supply voltage VDD drops below the switch-off threshold VDD(TH). In this case also
all latches will be reset. The device functions are only given for supply voltages above the supply voltage
threshold VDD(SD)MAX. There is no failure feedback ensured for VDD <VDD(SD).
3.0V .. 5.5V
GND
V
DD
ESD
prot ection
Logic &
Driver
Supply_Stage .emf
Datasheet 22 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Supply and Input Stage
8.2 Input Circuit
Figure 19 shows the input circuit of the BTS3011TE. Due to an internal pull-down it is ensured that the device
switches off in case of open input pin. A Zener structure protects the input circuit against ESD pulses. As the
BTS3011TE has a supply pin, the RDS(ON) of the power MOS is independent of the voltage on the IN pin (assumed
VDD is sufficient).
Figure 19 Simplified INput circuitry
GND
IN
R
IN(GND)
ESD
Logic
ON/OFF
Input .emf
R
IN
I
IN
V
IN
V
uC
Datasheet 23 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Supply and Input Stage
8.3 Characteristics
Please see “Supply and Input Stage” on Page 28 for electrical characteristic table.
Datasheet 24 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Electrical Characteristics
9 Electrical Characteristics
Note: Characteristics show the deviation of parameter at given input voltage and junction temperature.
Typical values show the typical parameters expected from manufacturing and in typical application
condition.
All voltages and currents naming and polarity in accordance to
Figure 3 “Naming Definition of electrical parameters” on Page 7
9.1 Power Stage
Please see Chapter “Power Stage” on Page 13 for parameter description and further details.
Table 6 Electrical Characteristics: Power Stage
Tj = -40°C to +150°C, VDD = 3.0 V to 5.5 V, VBAT = 6 V to 18 V, all voltages with respect to ground, positive current
flowing into pin (unless otherwise specified)
Parameter Symbol Values Unit Note or
Test Condition
Number
Min. Typ. Max.
Power Stage - Static Characteristics
On-State resistance
at 25°C
RDS(ON)_25 10.7 mIL= IL(NOM);
VDD =5V;
TJ= 25°C
P_9.1.1
On-State resistance
at 150°C
RDS(ON)_150 –1922mIL=IL(NOM);
VDD =5V;
Tj= 150°C
P_9.1.2
Nominal load current IL(NOM) –10 A1)
TJ< 150°C;
VDD =5V;
P_9.1.7
OFF state load current, Output
leakage current
IL(OFF)_85 ––3 µA
2)
VOUT =V
BAT;
VIN =0V;
VDD =5V;
TJ85°C
P_9.1.8
OFF state load current, Output
leakage current
at 150°C
IL(OFF)_150 –614µAVOUT =V
BAT;
VIN =0V;
VDD =5V;
TJ= 150°C
P_9.1.9
Reverse Diode
Reverse diode forward voltage -VDS 0.8 1.5 V IL=- IL(NOM);
VIN =0V
P_9.1.11
Power Stage - Dynamic characteristics - switching time VBAT = 13.5 V;VDD = 5 V; resistive load: RL = 2.2
see Figure 10 “Definition of Power Output Timing for Resistive Load” on Page 14 for definition details
Turn-on time tON 35 75 115 µs - P_9.1.12
Turn-off time tOFF 70 135 210 µs - P_9.1.13
Turn-on delay time tDON 51525µs- P_9.1.14
Datasheet 25 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Electrical Characteristics
Turn-off delay time tDOFF 40 75 120 µs - P_9.1.15
Turn-on output fall time tF30 60 90 µs - P_9.1.16
Turn-off output rise time tR30 60 90 µs - P_9.1.17
Turn-on Slew rate 3) (DV/Dt)ON 0.22 0.4 0.65 V/µs - P_9.1.18
Turn-off Slew rate 4) (DV/Dt)OFF 0.22 0.4 0.65 V/µs - P_9.1.19
1) Not subject to production test, calculated by RthJA and RDS(ON)
2) Not subject to production test, specified by design
3) Not subject to production test, calculated slew rate between 90% and 50%; dV/dt = (VOUT(90%) - VOUT(50%)) / |(t90% - t50%)|
4) Not subject to production test, calculated slew rate between 50% and 90%; dV/dt = (VOUT(50%) - VOUT(90%)) / |(t50% - t90%)|
Table 6 Electrical Characteristics: Power Stage (cont’d)
Tj = -40°C to +150°C, VDD = 3.0 V to 5.5 V, VBAT = 6 V to 18 V, all voltages with respect to ground, positive current
flowing into pin (unless otherwise specified)
Parameter Symbol Values Unit Note or
Test Condition
Number
Min. Typ. Max.
Datasheet 26 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Electrical Characteristics
9.2 Protection
Please see Chapter “Protection Functions” on Page 17 for parameter description and further details.
Note: Integrated protection functions are designed to prevent IC destruction under fault conditions
described in the data sheet. Fault conditions are considered as “outside” normal operating range.
Protection functions are not designed for continuous repetitive operation
Table 7 Electrical characteristics: Protection
Tj = -40°C to +150°C, VDD = 3.0 V to 5.5 V; VBAT = 6 V to 18 V, all voltages with respect to ground, positive current
flowing into pin (unless otherwise specified)
Parameter Symbol Values Unit Note or
Test Condition
Number
Min. Typ. Max.
Thermal shut down 1)
1) Not subject to production test, specified by design.
Thermal shut down
junction temperature
TJ(SD) 150 170 200 °C 1) P_9.2.1
Thermal hysteresis ΔTJ_HYS –20–K1) P_9.2.4
Dynamic temperature limitation ΔTJ(SW) –70–K1) P_9.2.5
Auto-restart delay time tD(RESTART) 10 30 40 ms 1) 2)
VDD = 5.0 V
2) Auto restart delay time after temperature protection shutdown. Thermal hysteresis must be also considered.
P_9.2.8
Over Voltage Protection / Clamping
Drain clamp voltage VOUT(CLAMP) 40 V VIN =0V; ID=50mA; P_9.2.9
Current limitation
Current limitation trigger level IL(LIM)_TRIGGER 70 140 A VIN =5V;
VDD =5V;
VDS =VBAT
P_9.2.10
Current limitation level IL(LIM) 35 70 A VIN =5V;
VDD =5V; VDS =VBAT
P_9.2.11
Datasheet 27 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Electrical Characteristics
9.3 Diagnostics
Please see Chapter “Diagnostics” on Page 20 for description and further details.
Table 8 Electrical Characteristics: Diagnostics
Tj = -40°C to +150°C, VDD = 3.0 V to 5.5 V, VBAT = 6 V to 18 V, all voltages with respect to ground, positive current
flowing into pin (unless otherwise specified)
Parameter Symbol Values Unit Note or Test Condition Number
Min. Typ. Max.
Feedback pin
Status pin voltage drop VSTATUS(ON) –0.50.8VISTATUS =0.5mA;
3VVIN 5.5 V
latched fault;
P_9.3.1
Status pin leakage current ISTATUS(OFF)_85 –1.56 µA
1)
VSTATUS 5.5 V;
TJ85°C;
0VVIN 5.5 V
1) Not subject to production test, specified by design.
P_9.3.2
Status pin leakage current
at 150°C
ISTATUS(OFF)_150 –612µAV
STATUS 5.5 V;
TJ150°C;
0VVIN 5.5 V
P_9.3.3
Status pin reset threshold VSTATUS(RESET) 0.9 1.8 2.7 V P_9.3.4
Status pin reset current ISTATUS(RESET) 3–7 mA P_9.3.5
Fault feedback reset time tSTATUS(RESET) 100 µs VSTATUS > VSTATUS(RESET);
no over temperature
P_9.3.6
Datasheet 28 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Electrical Characteristics
9.4 Supply and Input Stage
Please see Chapter “Supply and Input Stage” on Page 21 for description and further details.
Table 9 Electrical Characteristics: Supply and Input
Tj = -40°C to +150°C, VDD = 3.0 V to 5.5 V, VBAT = 6 V to 18 V, all voltages with respect to ground, positive current
flowing into pin (unless otherwise specified)
Parameter Symbol Values Unit Note or
Test Condition
Number
Min. Typ. Max.
Supply
Nominal supply voltage VDD(NOM) 3.0 5.0 5.5 V P_9.4.1
Supply Undervoltage Shutdown
Switch-on/off threshold voltage
VDD(TH) 1.3 2.2 3.0 V VIN =5.0V P_9.4.2
Supply current,
continuos ON operation
IDD(ON) 1 mA device on-state
VDD =5.0V
IL(0) =IL(NOM)
P_9.4.3
Supply current,
inverse condition on OUT to GND
IDD(-VOUT) ––1 mA
1)
VOUT <-0.3V
VIN = 5.0 V
1) Not subject to production test, specified by design.
P_9.4.5
Standby supply current IDD(OFF)_85 –1.56 µA
1)
VIN =0V
VDD =5.0V
TJ< 85°C
no fault signal
P_9.4.6
Standby supply current at 150°C IDD(OFF)_150 –614µAVIN =0V
VDD =5.0V
TJ< 150°C
no fault signal
P_9.4.7
Standby supply current,
inverse condition on OUT to GND
IDD(OFF)(-VOUT) 200 µA IL=-IL(NOM)
VIN = 0 V
P_9.4.8
Input
Low level input voltage VIN(L) -0.3 0.8 V P_9.4.9
High level input voltage VIN(H) 2.0 5.5 V P_9.4.10
Input voltage hysteresis VIN(HYS) 200 mV 1) P_9.4.11
Input pull down current IIN 160 µA 2.7 V < VIN <5.5V
-0.3 V < VDD <5.5V
P_9.4.12
Internal Input pull down resistor RIN(GND) 25 50 100 kP_9.4.13
Datasheet 29 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Characterisation Results
10 Characterisation Results
Typical performance characteristics
10.1 Power Stage
Figure 20 Typical RDS(ON) vs. VDD (3..5.5 V) @ Tj=-40, 25, 85, 150°C; IL(NOM)
Figure 21 Typical RDS(ON) vs. VDD (3..5.5 V) @ Tj=-40, 25, 85, 150°C; IL=2*IL(NOM)
Datasheet 30 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Characterisation Results
Figure 22 Typical RDS(ON) vs. Tj (-40..150°C) @ VDD=5 V, 3 V; IL(NOM)
Figure 23 Typical IL(OFF) vs. Tj (-40..150°C) @ VBAT=6 V, 13.5 V, 18 V, VBAT(SC)V, 40 V; VIN=0V;
Datasheet 31 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Characterisation Results
Figure 24 EAS [J] vs. IL (0.5*IL(NOM), IL(NOM), 2*IL(NOM)) @ TJ(0) = 25°C and 150°C
Figure 25 EAR [J] vs. No. cycles; @ IL(NOM), 2*IL(NOM); TJ(0) = 25, 105°C;
Datasheet 32 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Characterisation Results
10.2 Dynamic characteristics
Figure 26 Typical delay on time, delay off time vs. T (-40..150°C) @J VDD=5 V; VBAT=13.5 V
Figure 27 Typical fall time, rise time vs. TJ (-40..150°C) @ VDD=5 V; VBAT=13.5 V
Datasheet 33 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Characterisation Results
Figure 28 Typical slew rate (ON&OFF) vs. TJ (-40..150°C) @ VDD=5 V; VBAT=13.5 V
Figure 29 Typical delay on time, delay off time vs. RL @ TJ(-40..150°C); VDD=5 V; VBAT=13.5 V
Datasheet 34 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Characterisation Results
Figure 30 Typical fall time, rise time vs. IL (0.5A..IL(LIM)_MIN) @ TJ (-40, 25, 150°C); VJ=5 V; VBAT=13.5 V
Figure 31 Typical slew rate (ON&OFF) vs. RL @ TJ(-40, 25, 150°C); VDD=5 V; VBAT=13.5 V
Datasheet 35 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Characterisation Results
Figure 32 Typical delay on time, delay off time vs. VBAT (0..40V) @ TJ (-40, 25, 150°C); VDD=5 V; IL=IL(NOM)
Figure 33 Typical fall time, rise time vs. VBAT (0..40V) @ TJ (-40, 25, 150°C); VDD=5 V; IL=IL(NOM)
Datasheet 36 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Characterisation Results
Figure 34 Typical slew rate (ON&OFF) vs. VBAT (0..40V) @ TJ (-40, 25, 150°C); VDD=5 V; IL=IL(NOM)
10.3 Supply and Input Stage
Figure 35 VDD(UV_on, VDD(UV_off) vs. TJ
Datasheet 37 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Characterisation Results
Figure 36 IDD(on) vs. VDD @ Tj = -40, 25, 150°C
Figure 37 IDD(off) vs. Tj @ VDD = 3, 4, 5 V
Datasheet 38 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Characterisation Results
Figure 38 IIN vs. Vin @ Tj = -40, 25, 150°C
Figure 39 RIN(GND) vs. Tj
Datasheet 39 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Characterisation Results
Figure 40 VIN(L) vs. Tj @ VDD = 3, 4, 5 V
Figure 41 VIN(H) vs. Tj @ VDD = 3, 4, 5 V
Datasheet 40 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Application Information
11 Application Information
Note: The following information is given as a hint for the implementation of the device only and shall not
be regarded as a description or warranty of a certain functionality, condition or quality of the device.
Application Diagram
An application example with the BTS3011TE is shown below.
Figure 42 Simplified application diagram
Note: This is a very simplified example of an application circuit. The function must be verified in the real
application.
11.1 Design and Layout Recommendations/Considerations
As consequence of the fast switching times for high currents, special care has to be taken with the PCB layout.
Stray inductances have to be minimized.
Table 10 Recommended external components
Reference Value Description
RSTATUS 10 kPull-up resistor for STATUS pin
CVDD 100 nF Supply pin capacitor for fast supply current transients
V
BAT
C
VD D
optional:
e.g. 100nF
Load
VDD
STATUS
OUT
GND
IN
R
STAT U S
Voltage R egulator IN
OUT
I/O
PWM
Micro
contr oller
I/O
Status/ Reset
GND
VDD
Datasheet 41 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Package Outlines BTS3011TE
12 Package Outlines BTS3011TE
Figure 43 PG-TO252-5
Transistor Outline Package
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant
with government regulations the device is available as a green product. Green products are RoHS-Compliant
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
For further information on alternative packages, please visit our website:
http://www.infineon.com/packages.Dimensions in mm
Datasheet 42 Rev. 1.0
2018-07-19
HITFETTM - BTS3011TE
Smart Low-Side Power Switch
Revision History
13 Revision History
Revision Date Changes
Rev. 1.0 2018-07-19 Datasheet released
Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2018-07-19
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2018 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Document reference
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities
of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer's compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer's products and any use of the product of
Infineon Technologies in customer's applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer's technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to
such application.
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.