Freescale Semiconductor
Data Sheet: Advance Information Document Number: MCF54455
Rev. 8, 02/2012
© Freescale Semiconductor, Inc., 2007-2012. All rights reserved.
This document contains information on a new product. Specifications and information herein
are subject to change without notice.
MCF54455
MAPBGA–256
17mm x 17mm TEPBGA–360
23mm x 23mm
Features
Version 4 ColdFire Core with MMU and EMAC
Up to 410 Dhrystone 2.1 MIPS @ 266 MHz
16-KBytes instruction cache and 16-KBytes data cache
32-KBytes internal SRAM
Support for booting from SPI-compatible flash, EEPROM,
and FRAM devices
Crossbar switch technology (XBS) for concurrent access to
peripherals or RAM from multiple bus masters
16-channel DMA controller
16-bit 133-MHz DDR/mobile-DDR/DDR2 controller
USB 2.0 On-the-Go controller with ULPI su pport
32-bit PCI controller @ 66MHz
ATA/ATAPI controller
2 10/100 Ethernet MACs
Coprocessor for acceleration of the DES, 3DES, AES,
MD5, and SHA-1 algorithms
Random number generator
Synchronous serial interface (SSI)
4 periodic interrupt timers (PIT)
4 32-bit timers with DMA support
DMA-supported serial peripheral interface (DSPI)
3 UARTs
•I
2C bus interface
MCF5445x ColdFire
Microprocessor Data Sheet
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor2
Table of Contents
1 MCF5445x Family Comparison . . . . . . . . . . . . . . . . . . . . . . . .4
2 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
3 Hardware Design Considerations. . . . . . . . . . . . . . . . . . . . . . .5
3.1 Analog Power Filtering . . . . . . . . . . . . . . . . . . . . . . . . . .5
3.2 Oscillator Power Filtering . . . . . . . . . . . . . . . . . . . . . . . .6
3.3 Supply Voltage Sequencing . . . . . . . . . . . . . . . . . . . . . .6
3.3.1 Power-Up Sequence . . . . . . . . . . . . . . . . . . . . . .7
3.3.2 Power-Down Sequence. . . . . . . . . . . . . . . . . . . .7
4 Pin Assignments and Reset States . . . . . . . . . . . . . . . . . . . . .7
4.1 Signal Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
4.2 Pinout—256 MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . .15
4.3 Pinout—360 TEPBGA. . . . . . . . . . . . . . . . . . . . . . . . . .16
5 Electrical Characteri stics . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
5.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .17
5.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .18
5.3 ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
5.4 DC Electrical Specifications . . . . . . . . . . . . . . . . . . . . .19
5.5 ClockTiming Specifications. . . . . . . . . . . . . . . . . . . . . .20
5.6 Reset Timing Specifications . . . . . . . . . . . . . . . . . . . . .22
5.7 FlexBus Timing Specifications . . . . . . . . . . . . . . . . . . .23
5.8 SDRAM AC Timing Characteristics. . . . . . . . . . . . . . . .25
5.9 PCI Bus Timing Specifications . . . . . . . . . . . . . . . . . . .27
5.9.1 Overshoot and Undershoot . . . . . . . . . . . . . . . 28
5.10 ULPI Timing Specifications . . . . . . . . . . . . . . . . . . . . . 29
5.11 SSI Timing Specifications . . . . . . . . . . . . . . . . . . . . . . 30
5.12 I2C Timing Specifications . . . . . . . . . . . . . . . . . . . . . . 32
5.13 Fast Ethernet Timing Specifications . . . . . . . . . . . . . . 33
5.13.1 Receive Signal Timing Specifications . . . . . . . 33
5.13.2 Transmit Signal Timing Specifications . . . . . . . 34
5.13.3 Asynchronous Input Signal Timing
Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.13.4 MII Serial Management Timing Specifications. 35
5.14 32-Bit Timer Module Timing Specifications . . . . . . . . . 35
5.15 ATA Interface Timing Specifications. . . . . . . . . . . . . . . 36
5.16 DSPI Timing Specifications. . . . . . . . . . . . . . . . . . . . . 36
5.17 SBF Timing Specifications. . . . . . . . . . . . . . . . . . . . . . 38
5.18 General Purpose I/O Timing Specifications. . . . . . . . . 39
5.19 JTAG and Boundary Scan Timing . . . . . . . . . . . . . . . . 40
5.20 Debug AC Timing Specifications. . . . . . . . . . . . . . . . . 42
6 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8 Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor 3
Figure 1. MCF54455 Block Diagram
Version 4 ColdFire Core
LEGEND
2 INTCs
DSPI
EPORT
3 UARTs
I2C
Watchdog
4 DMA
RTC
ATA Advanced Technology Attachment Controller
BDM – Background debug module
CAU – Cryptography acceleration unit
DSPI – DMA serial peripheral interface
eDMA – Enhanced direct memory access
EMAC – Enchance multiply-accumulate unit
EPORT – Edge port module
FEC – Fast Ethernet controller
GPIO – General Purpose Input/Output
I2C– Inter-Intergrated Circuit
INTC Interrupt controller
JTAG – Joint Test Action Group interface
MMU – Memory management unit
PCI – Peripheral Component Interconnect
PIT – Programmable interrupt timers
PLL – Phase locked loop module
RNG – Random Number Generator
RTC – Real time clock
SSI – Synchronous Serial Interface
USB OTG – Universal Serial Bus On-the-Go controller
MCF54455
EMAC 2 FECs
Crossbar Switch (XBS)
32K
SRAM
Peripheral Bridge
CAU
16K
Instruction
Cache
16K
Data
Cache
Timers
BDM
ATA SDRAM
Controller FlexBus
eDMA
USB OT G
4 PITs
SSI RNG GPIO
MMU
Hardware
Divide
Oscillator PLLJTAG
PCI Serial Boot
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
MCF5445x Family Comparison
Freescale Semiconductor4
1 MCF5445x Family Comparison
The following table compares the various device derivatives avail able wit hin the MCF5445x family.
Table 1. MCF5445x Family Configurations
Module MCF54450 MCF54451 MCF54452 MCF54453 MCF54454 MCF54455
ColdFire Version 4 Core with EMAC
(Enhanced Multiply-Accumulate Unit) ••••••
Core (System) Clock up to 240 MHz up to 266 MHz
Peripheral Bus Clock
(Core clock 2) up to 120 MHz up to 133 MHz
External Bus Clock
(Core clock 4) up to 60 MHz up to 66 MHz
Performance (Dhrystone/2.1 MIPS) up to 370 up to 410
Independent Data/Instruction Cache 16 Kbytes each
Static RAM (SRAM) 32 Kbytes
PCI Controller ••••
Cryptography Acceleration Unit (CAU)
ATA Controller ————
DDR SDRAM Controller ••••••
FlexBus External Interface ••••••
USB 2.0 On-the-Go ••••••
UTMI+ Low Pin Interface (ULPI) ••••••
Synchronous Serial Interface (SSI) ••••••
Fast Ethernet Controller (FEC) 112222
UARTs 333333
I2C ••••••
DSPI ••••••
Real Time Clock ••••••
32-bit DMA Timers 444444
Watchdog Timer (WDT) ••••••
Periodic Interrupt Timers (PIT) 444444
Edge Po rt Module (EPORT) ••••••
Interrupt Controllers (INTC) 222222
16-channel Direct Memory Access (DMA)••••••
General Purpose I/O (GPIO) ••••••
JTAG - IEEE® 1149.1 Test Access Port ••••••
Package 256 MAPBGA 360 TEPBGA
Ordering Information
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor 5
2 Ordering Information
3 Hardware Design Considerations
3.1 Analog Power Filtering
To further enhance noise isolati on, an extern al filter is strongly recommended for the analog VDD pins (VDD_A_PLL,
VDD_RTC). The filter shown in Figure 2 should be connected between the board IVDD and the analog pins. The resistor and
capacitors should be placed as close to the dedicated analog VDD pin as possible. The 10- resistor in the given filter is required.
Do not implement the filter ci rcuit using only capacitors. The analog power pins draw very little current . Concerns regarding
voltage loss across the 10-ohm resistor are not valid.
Figure 2. System Analog VDD Power Filter
Table 2. Orderable Part Numbers
Freescale Part
Number Description Package Speed Temperature
MCF54450CVM180 MCF54450 Microprocessor
256 MAPBGA
180 MHz –40 to +85 C
MCF54450VM24 0 240 MHz 0 to +70 C
MCF54451CVM180 MCF54451 Microprocessor 180 MHz –40 to +85 C
MCF54451VM24 0 240 MHz 0 to +70 C
MCF54452CVR200
MCF54452 Microprocessor
360 TEPBGA
200 MHz –40 to +85 C
MCF54452YVR200 200 MHz –40 to +105 C
MCF54452VR266 266 MHz 0 to +70 C
MCF54453CVR200 MCF54453 Microprocesso r 200 MHz –40 to +85 C
MCF54453VR266 266 MHz 0 to +70 C
MCF54454CVR200 MCF54454 Microprocesso r 200 MHz –40 to +85 C
MCF54454VR266 266 MHz 0 to +70 C
MCF54455CVR200 MCF54455 Microprocesso r 200 MHz –40 to +85 C
MCF54455VR266 266 MHz 0 to +70 C
Board IVDD 10
0.1 µF
Analog VDD Pin
10 µF
GND
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Hardware Design Considerations
Freescale Semiconductor6
3.2 Oscillator Power Filtering
Figure 3 shows an example for isolating the oscillator power supply from th e I/O supply (EVD D) and ground.
Figure 3. Oscillator Power Filter
3.3 Supply Voltage Sequencing
Figure 4 shows situations in sequencing th e I/O VDD (EVDD), SDRAM VDD (SDVDD), PLL VDD (PVDD), and internal
logic/core VDD (IVDD).
Figure 4. Supply Voltage Sequencing and Separation Cautions
The relationship between SDVDD and EVDD is non-critical during power-up and power-down sequences. SDVDD (2.5 V or
1.8V) and EVDD are specified relative to IVDD.
VDD_OSC 10
0.1 µF
EVDD Pin
1 µF
GND
VSS_OSC 100 MHz
EVDD (3.3V)
IVDD, PVDD
Time
3.3V
1.5V
0
DC Power Supply Voltage
Notes:
1Input voltage must not be greater than the supply voltage (EVDD, SD VDD, IVDD, or PVDD) b y more than 0.5V
at any time, including during power-up.
2Use 50 V/millisecond or slower rise time for all supplies.
2.5V
Supplies Stable
SDVDD (2.5V — DDR)
1.8V SDVDD (1.8V — DDR2)
Pin Assignments and Res et States
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor 7
3.3.1 Power-Up Sequence
If EVDD/SDVDD are powered up with the IVDD at 0 V, the sense circuits in the I/O pads cause all pad output drivers connected
to the EVDD/SDVDD to be in a high impedance state. There is no limit on how long after EVDD/SDVDD powers up before IVDD
must power up. The rise times on the power supp lies shoul d be slower than 50 V/millisecond to avo id turnin g on the internal
ESD protection clamp diodes.
3.3.2 Power-Down Sequence
If IVDD/PVDD are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high impedance state.
There is no limit on how long after IVDD and PVDD power down before EVDD or SDVDD must power down. There are no
requirements for the fall times of the power supplies.
4 Pin Assignments and Reset States
4.1 Signal Multiplexing
The following table lists all the MCF5445x pins grouped by function. The Dir column is the direction for the primary function
of the pin only. Refer to Section 4, “Pin Assignments and Reset States,” for package diagrams . For a more detailed discussion
of the MCF5445x signals, consult the MCF54455 Refer ence Manual (MCF54455RM).
NOTE
In this table and throughout this document, a single signal within a group is designat ed
without square brackets (i.e., FB_AD23), while designations for multiple signals within a
group use brackets (i.e., FB_AD[23:21]) and is meant to include all signals within the two
bracketed numbers when these numbers are separated by a colon.
NOTE
The primary functionality of a pin is not necessarily its default functionality . Most pins that
are muxed with GPIO default to their GPIO functionali ty. See Table 3 for a list of the
exceptions.
Table 3. Special-Case Default Signal Functionality
Pin 256 MAPBGA 360 TEPBGA
FB_AD[31:0] FB_AD[31:0] except when serial boot selects 0-bit
boot port size.
FB_BE/BWE[3:0] FB_BE/BWE[3:0]
FB_CS[3:1] FB_CS[3:1]
FB_OE FB_OE
FB_R/W FB_R/W
FB_TA FB_TA
FB_TS FB_TS
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Pin Assignments and Reset States
Freescale Semiconductor8
PCI_GNT[3:0] GPIO PCI_GNT[3:0]
PCI_REQ[3:0] GPIO PCI_REQ[3:0]
IRQ1 GPIO PCI_INTA and
configured as an agent.
ATA_RESET GPIO ATA reset
Table 4. MCF5445x Signal Information and Muxing
Signal Name GPIO Alternate 1 Alternate 2
Pull-up (U)1
Pull-down (D)
Direction2
Voltage Domain
MCF54450
MCF54451
256 MAPBGA
MCF54452
MCF54453
MCF54454
MCF54455
360 TEPBGA
Reset
RESET U IEVDD L4 Y18
RSTOUT OEVDD M15 B17
Clock
EXTAL/PCI_CLK IEVDD M16 A16
XTAL U3OEVDD L16 A17
Mode Selection
BOOTMOD[1:0] IEVDD M5, M7 AB17, AB21
FlexBus
FB_AD[31:24] PFBADH[7:0]4FB_D[31:24] I/O EVDD A14, A13, D12,
C12, B12, A12,
D11, C11
J2, K4, J1, K1–3,
L1, L4
FB_AD[23:16] PFBADMH[7:0]4FB_D[23:16] I/O EVDD B11, A11, D10,
C10, B10, A10, D9,
C9
L2, L3, M1 –4 ,
N1–2
FB_AD[15:8] PFBADML[7:0]4FB_D[15:8] I/O EVDD B9, A9, D8, C8, B8,
A8, D7, C7 P1–2, R1–3, P4,
T1–2
FB_AD[7:0] PFBADL[7:0]4FB_D[7:0] I/O EVDD B7, A7, D6, C6, B6,
A6, D5, C5 T3–4, U1–3, V1–2,
W1
FB_BE/BWE[3:2] PBE[3:2] FB_TSIZ[1:0] OEVDD B5, A5 Y1, W2
FB_BE/BWE[1:0] PBE[1:0] OEVDD B4, A4 W3, Y2
FB_CLK OEVDD B13 J3
FB_CS[3:1] PCS[3:1] OEVDD C2, D4, C3 W5, AA4, AB3
FB_CS0 —— OEVDD C4 Y4
FB_OE PFBCTL3 OEVDD A2 AA1
FB_R/W PFBCTL2 OEVDD B2 AA3
FB_TA PFBCTL1 U IEVDD B1 AB2
Table 3. Special-Case Default Signal Functionality (continued)
Pin 256 MAPBGA 360 TEPBGA
Pin Assignments and Res et States
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor 9
FB_TS PFBCTL0 FB_ALE FB_TBST OEVDD A3 Y3
PCI Controller5
PCI_AD[31:0] FB_A[31:0] I/O EVDD C11, D11, A10,
B10, J4, G2, G3,
F1, D12, C12, B12,
A11, B11, B9, D9,
D10, A8, B8, A5,
B5, A4, A3, B3, D4,
D3, E3–E1, F3, C2,
D2, C1
FB_A[23:0] I/O EVDD K14–13, J15–13,
H13–15, G15–13,
F14–13, E15–13,
D16, B16, C15,
B15, C14, D15,
C16, D14
PCI_CBE[3:0] I/O EVDD G4, E4, D1, B1
PCI_DEVSEL —— OEVDD F2
PCI_FRAME —— I/O EVDD B2
PCI_GNT3 PPCI7 ATA_DMACK OEVDD B7
PCI_GNT[2:1] PPCI[6:5] OEVDD C8, C9
PCI_GNT0/
PCI_EXTREQ PPCI4 OEVDD A9
PCI_IDSEL IEVDD D5
PCI_IRDY —— I/O EVDD C3
PCI_PAR I/O EVDD C4
PCI_PERR —— I/O EVDD B4
PCI_REQ3 PPCI3 ATA_INTRQ IEVDD C7
PCI_REQ[2:1] PPCI[2:1] IEVDD D7, C5
PCI_REQ0/
PCI_EXTGNT PPCI0 IEVDD A2
PCI_RST —— OEVDD B6
PCI_SERR —— I/O EVDD A6
PCI_STOP —— I/O EVDD A7
PCI_TRDY —— I/O EVDD C10
SDRAM Controller
SD_A[13:0] OSDVDD R1, P1, N2, P2 ,
R2, T2, M4, N3,
P3, R3, T3, T4, R4,
N4
V22, U20–22,
T19–22, R20–22,
N19, P20–21
Table 4. MCF5445x Signal Information and Muxing (continued)
Signal Name GPIO Alternate 1 Alternate 2
Pull-up (U)1
Pull-down (D)
Direction2
Voltage Domain
MCF54450
MCF54451
256 MAPBGA
MCF54452
MCF54453
MCF54454
MCF54455
360 TEPBGA
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Pin Assignments and Reset States
Freescale Semiconductor10
SD_BA[1:0] OSDVDD P4, T5 P22, P19
SD_CAS —— OSDVDD T6 L19
SD_CKE OSDVDD N5 N22
SD_CLK OSDVDD T9 L22
SD_CLK —— OSDVDD T8 M22
SD_CS[1:0] OSDVDD P6, R6 L20, M20
SD_D[31:16] I/O SDVDD N6, T7, N7, P7, R7,
R8, P8, N8, N9,
T10, R1 0, P10,
N10, T11, R11,
P11
L21, K22, K21,
K20, J20, J19, J21,
J22, H20, G22,
G21, G20, G19,
F22, F21, F20
SD_DM[3:2] OSDVDD P9, N12 H21, E21
SD_DQS[3:2] OSDVDD R9, N11 H22, E22
SD_RAS —— OSDVDD P5 N21
SD_VREF ISDVDD M8 M21
SD_WE —— OSDVDD R5 N20
External Interrupts Port6
IRQ7 PIRQ7 IEVDD L1 ABB13
IRQ4 PIRQ4 SSI_CLKIN IEVDD L2 ABB13
IRQ3 PIRQ3 IEVDD L3 AB14
IRQ1 PIRQ1 PCI_INTA IEVDD F15 C6
FEC0
FEC0_MDC PFECI2C3 OEVDD F3 AB8
FEC0_MDIO PFECI2C2 I/O EVDD F2 Y7
FEC0_COL PFEC0H4 ULPI_DATA7 IEVDD E1 AB7
FEC0_CRS PFEC0H0 ULPI_DATA6 IEVDD F1 AA7
FEC0_RXCLK PFEC0H3 ULPI_DATA1 IEVDD G1 AA8
FEC0_RXDV PFEC0H2 FEC0_RMII_
CRS_DV IEVDD G2 Y8
FEC0_RXD[3:2] PFEC0L[3:2] ULPI_DATA[5:4] IEVDD G3, G4 AB9, Y9
FEC0_RXD1 PFEC0L1 FEC0_RMII_RXD1 IEVDD H1 W9
FEC0_RXD0 PFEC0H1 FEC0_RMII_RXD0 IEVDD H2 AB10
FEC0_RXER PFEC0L0 FEC0_RMII_RXER IEVDD H3 AA10
Table 4. MCF5445x Signal Information and Muxing (continued)
Signal Name GPIO Alternate 1 Alternate 2
Pull-up (U)1
Pull-down (D)
Direction2
Voltage Domain
MCF54450
MCF54451
256 MAPBGA
MCF54452
MCF54453
MCF54454
MCF54455
360 TEPBGA
Pin Assignments and Res et States
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor 11
FEC0_TXCLK PFEC0H7 FEC0_RMII_
REF_CLK IEVDD H4 Y10
FEC0_TXD[3:2] PFEC0L[7:6] ULPI_DATA[3:2] OEVDD J1, J2 W10, AB11
FEC0_TXD1 PFEC0L5 FEC0_RMII_TXD1 OEVDD J3 AA11
FEC0_TXD0 PFEC0H5 FEC0_RMII_TXD0 OEVDD J4 Y11
FEC0_TXEN PFEC0H6 FEC0_RMII_TXEN OEVDD K1 W11
FEC0_TXER PFEC0L4 ULPI_DATA0 OEVDD K2 AB12
FEC1
FEC1_MDC PFECI2C5 ATA_DIOR OEVDD W20
FEC1_MDIO PFECI2C4 ATA_DIOW I/O EVDD Y22
FEC1_COL PFEC1H4 ATA_DATA7 IEVDD AB18
FEC1_CRS PFEC1H0 ATA_DATA6 IEVDD AA18
FEC1_RXCLK PFEC1H3 ATA_DATA5 IEVDD W14
FEC1_RXDV PFEC1H2 FEC1_RMII_
CRS_DV ATA_DATA15 IEVDD AB15
FEC1_RXD[3:2] PFEC1L[3:2] ATA_DATA[4:3] IEVDD AA15, Y15
FEC1_RXD1 PFEC1L1 FEC1_RMII_RXD1 ATA_DATA14 IEVDD AA17
FEC1_RXD0 PFEC1H1 FEC1_RMII_RXD0 ATA_DATA13 IEVDD Y17
FEC1_RXER PFEC1L0 FEC1_RMII_RXER ATA_DATA12 IEVDD W17
FEC1_TXCLK PFEC1H7 FEC1_RMII_
REF_CLK ATA_DATA11 IEVDD AB19
FEC1_TXD[3:2] PFEC1L[7:6] ATA_DATA[2:1] OEVDD Y19, W18
FEC1_TXD1 PFEC1L5 FEC1_RMII_TXD1 ATA_DATA10 OEVDD AA19
FEC1_TXD0 PFEC1H5 FEC1_RMII_TXD0 ATA_DATA9 OEVDD Y20
FEC1_TXEN PFEC1H6 FEC1_RMII_TXEN ATA_DATA8 OEVDD AA21
FEC1_TXER PFEC1L4 ATA_DATA0 OEVDD AA22
USB On-the-Go
USB_DM OUSB
VDD F16 A14
USB_DP OUSB
VDD E16 A15
USB_VBUS_EN PUSB1 USB_PULLUP ULPI_NXT OUSB
VDD E5 AA2
USB_VBUS_OC PUSB0 ULPI_STP UD7IUSB
VDD B3 V4
Table 4. MCF5445x Signal Information and Muxing (continued)
Signal Name GPIO Alternate 1 Alternate 2
Pull-up (U)1
Pull-down (D)
Direction2
Voltage Domain
MCF54450
MCF54451
256 MAPBGA
MCF54452
MCF54453
MCF54454
MCF54455
360 TEPBGA
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Pin Assignments and Reset States
Freescale Semiconductor12
ATA
ATA_BUFFER_EN PATAH5 OEVDD Y13
ATA_CS[1:0] PATAH[4:3] OEVDD W21, W22
ATA_DA[2:0] PATAH[2:0] OEVDD V19–21
ATA_RESET PATAL2 OEVDD W13
ATA_DMARQ PATAL1 IEVDD AA14
ATA_IORDY PATAL0 IEVDD Y14
Real Time Clock
EXTAL32K IEVDD J16 A13
XTAL32K OEVDD H16 A12
SSI
SSI_MCLK PSSI4 OEVDD T13 D20
SSI_BCLK PSSI3 U1CTS I/O EVDD R13 E19
SSI_FS PSSI2 U1RTS I/O EVDD P12 E20
SSI_RXD PSSI1 U1RXD UD IEVDD T12 D21
SSI_TXD PSSI0 U1TXD UD OEVDD R12 D22
I2C
I2C_SCL PFECI2C1 U2TXD UI/O EVDD K3 AA12
I2C_SDA PFECI2C0 U2RXD UI/O EVDD K4 Y12
DMA
DACK1 PDMA3 ULPI_DIR OEVDD M14 C17
DREQ1 PDMA2 USB_CLKIN UIEVDD P16 C18
DACK0 PDMA1 DSPI_PCS3 OEVDD N15 A18
DREQ0 PDMA0 U IEVDD N16 B18
DSPI
DSPI_PCS5/PCSS PDSPI6 OEVDD N14 D18
DSPI_PCS2 PDSPI5 OEVDD L13 A19
DSPI_PCS1 PDSPI4 SBF_CS OEVDD P14 B20
DSPI_PCS0/SS PDSPI3 U I/O EVDD R16 D17
DSPI_SCK PDSPI2 SBF_CK I/O EVDD R15 A20
Table 4. MCF5445x Signal Information and Muxing (continued)
Signal Name GPIO Alternate 1 Alternate 2
Pull-up (U)1
Pull-down (D)
Direction2
Voltage Domain
MCF54450
MCF54451
256 MAPBGA
MCF54452
MCF54453
MCF54454
MCF54455
360 TEPBGA
Pin Assignments and Res et States
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor 13
DSPI_SIN PDSPI1 SBF_DI 8IEVDD P15 B19
DSPI_SOUT PDSPI0 SBF_DO OEVDD N13 C20
UARTs
U1CTS PUART7 IEVDD V3
U1RTS PUART6 OEVDD U4
U1RXD PUART5 IEVDD P3
U1TXD PUART4 OEVDD N3
U0CTS PUART3 IEVDD M3 Y16
U0RTS PUART2 OEVDD M2 AA16
U0RXD PUART1 IEVDD N1 AB16
U0TXD PUART0 OEVDD M1 W15
Note: The UART1 and UART 2 signals are multiplexed on the DMA timers and I2C pins.
DMA Timers
DT3IN PTIMER3 DT3OUT U2RXD IEVDD C13 H2
DT2IN PTIMER2 DT2OUT U2TXD IEVDD D13 H1
DT1IN PTIMER1 DT1OUT U2CTS IEVDD B14 H3
DT0IN PTIMER0 DT0OUT U2RTS IEVDD A15 G1
BDM/JTAG9
PSTDDATA[7:0] OEVDD E2, D1, F4, E3, D2,
C1, E4, D3 AA6, AB6, AB5,
W6, Y6, AA5, AB 4,
Y5
JTAG_EN D IEVDD M11 C21
PSTCLK TCLK IEVDD P13 C22
DSI TDI U IEVDD T15 C19
DSO TDO OEVDD T14 A21
BKPT TMS U IEVDD R14 B21
DSCLK TRST U IEVDD M13 B22
Test
TEST D IEVDD M6 AB20
PLLTEST OEVDD K16 D15
Table 4. MCF5445x Signal Information and Muxing (continued)
Signal Name GPIO Alternate 1 Alternate 2
Pull-up (U)1
Pull-down (D)
Direction2
Voltage Domain
MCF54450
MCF54451
256 MAPBGA
MCF54452
MCF54453
MCF54454
MCF54455
360 TEPBGA
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Pin Assignments and Reset States
Freescale Semiconductor14
Power Supplies
IVDD E6–12, F5, F12 D6, D8, D14, F4,
H4, N4, R4, W4,
W7, W8, W12,
W16, W19
EVDD G5, G12, H5, H12,
J5, J12, K5, K1 2,
L5–6, L12
D13, D19, G8,
G11, G14, G16, J7,
J16, L7, L16, N1 6,
P7, R16, T8, T12,
T14, T16
SD_VDD L7–11, M9, M10 F19, H19, K19,
M19, R19, U19
VDD_OSC L14 B16
VDD_A_PLL K15 C14
VDD_RTC M12 C13
VSS A1, A16, F6–11,
G6–11, H6–11,
J6–11, K6–11, T1,
T16
A1, A22, B14, G7,
G9–10, G12–13,
G15, H7, H16,
J9–14, K7, K9–14,
K16, L9–14, M7,
M9–M14, M16, N7,
N9–14, P9–14,
P16, R7, T7,
T9–11, T13, T15,
AB1, AB22
VSS_OSC L15 C16
1Pull-ups are generally only enabled on pins with their primary function, except as noted.
2Refers to pin’s primary function.
3Enabled only in oscillator bypass mode (internal crystal oscillator is disabled).
4Serial bo ot must select 0-bit boot port size to enable the GPIO mode on these pins.
5When the PCI is enabled, all PCI b us pins come up configured as such. This includes the PCI_GNT and PCI_REQ lines, which hav e
GPIO. The IRQ1/PCI_INTA signal is a special case. It comes up as PCI_INTA when booting as a PCI agent and as GPIO when booting
as a PCI host.
For the 360 TEPBGA, booting with PCI disabled results in all dedicated PCI pins being safe-stated. The PCI_GNT and PCI_REQ lines
and IRQ1/PCI_INTA come up as GPIO.
6GPIO functionality is determined by the edge port module. The pin multiple xing and control module is only responsible for assigning
the alternate functions.
7Depends on programmed polarity of the USB_VBUS_OC signal.
8Pull-up when the serial boot facility (SBF) controls the pin
9If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The pin multiplexing and control module is not
responsible for assigning these pins.
Table 4. MCF5445x Signal Information and Muxing (continued)
Signal Name GPIO Alternate 1 Alternate 2
Pull-up (U)1
Pull-down (D)
Direction2
Voltage Domain
MCF54450
MCF54451
256 MAPBGA
MCF54452
MCF54453
MCF54454
MCF54455
360 TEPBGA
Pin Assignments and Res et States
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor 15
4.2 Pinout—256 MAPBGA
The pinout for the MCF54450 and MCF54451 packages are shown below.
Figure 5. MCF54450 and MCF54451 Pinout (256 MAPBGA)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
AVSS FB_OE FB_TS FB_BE/
BWE0 FB_BE/
BWE2 FB_AD
2FB_AD
6FB_AD
10 FB_AD
14 FB_AD
18 FB_AD
22 FB_AD
26 FB_AD
30 FB_AD
31 T0IN VSS A
BFB_TA FB_R/W USB_
VBUS_
OC
FB_BE/
BWE1 FB_BE/
BWE3 FB_AD
3FB_AD
7FB_AD
11 FB_AD
15 FB_AD
19 FB_AD
23 FB_AD
27 FB_CLK T1IN FB_A
4FB_A
6B
CPST
DDATA2 FB_CS3 FB_CS1 FB_CS0 FB_AD
0FB_AD
4FB_AD
8FB_AD
12 FB_AD
16 FB_AD
20 FB_AD
24 FB_AD
28 T3IN FB_A
3FB_A
5FB_A
1C
DPST
DDATA6 PST
DDATA3 PST
DDATA0 FB_CS2 FB_AD
1FB_AD
5FB_AD
9FB_AD
13 FB_AD
17 FB_AD
21 FB_AD
25 FB_AD
29 T2IN FB_A
0FB_A
2FB_A
7D
EFEC0_
COL PST
DDATA7 PST
DDATA4 PST
DDATA1
USB_
VBUS_
EN IVDD IVDD IVDD IVDD IVDD IVDD IVDD FB_A
8FB_A
9FB_A
10 USB_
DP E
FFEC0_
CRS FEC0_
MDIO FEC0_
MDC PST
DDATA5 IVDD VSS VSS VSS VSS VSS VSS IVDD FB_A
11 FB_A
12 IRQ_1 USB_
DM F
GFEC0_
RXCLK FEC0_
RXDV FEC0_
RXD3 FEC0_
RXD2 EVDD VSS VSS VSS VSS VSS VSS EVDD FB_A
13 FB_A
14 FB_A
15 NC G
HFEC0_
RXD1 FEC0_
RXD0 FEC0_
RXER FEC0_
TXCLK EVDD VSS VSS VSS VSS VSS VSS EVDD FB_A
18 FB_A
17 FB_A
16 XTAL
32K H
JFEC0_
TXD3 FEC0_
TXD2 FEC0_
TXD1 FEC0_
TXD0 EVDD VSS VSS VSS VSS VSS VSS EVDD FB_A
19 FB_A
20 FB_A
21 EXTAL
32K J
KFEC0_
TXEN FEC0_
TXER I2C_
SCL I2C_
SDA EVDD VSS VSS VSS VSS VSS VSS EVDD FB_A
22 FB_A
23 VDD_A
_PLL PLL
TEST K
LIRQ_7 IRQ_4 IRQ_3 RESET EVDD EVDD SDVDD SDVDD SDVDD SDVDD SDVDD EVDD DSPI_
PCS2 VDD_
OSC VSS_
OSC XTAL L
MU0TXD U0RTS U0CTS SD_A7 BOOT
MOD1 TEST BOOT
MOD0 SD_
VREF SDVDD SDVDD JTAG_
EN VDD_
RTC TRST DACK1 RST
OUT EXTAL M
NU0RXD SD_A11 SD_A6 SD_A0 SD_
CKE SD_D31 SD_D29 SD_D24 SD_D23 SD_D19 SD_
DQS2 SD_DM2 DSPI_
SOUT DSPI_
PCS5 DACK0 DREQ0 N
PSD_A12 SD_A10 SD_A5 SD_BA1 SD_
RAS SD_
CS1 SD_D28 SD_D25 SD_
DM3 SD_D20 SD_D16 SSI_FS TCLK DSPI_
PCS1 DSPI_
SIN DREQ1 P
RSD_A13 SD_A9 SD_A4 SD_A1 SD_WE SD_
CS0 SD_D27 SD_D26 SD_
DQS3 SD_D21 SD_D17 SSI_TXD SSI_
BCLK TMS DSPI_
SCK DSPI_
PCS0 R
TVSS SD_A8 SD_A3 SD_A2 SD_BA0 SD_
CAS SD_D30 SD_
CLK SD_
CLK SD_D22 SD_D18 SSI_RXD SSI_
MCLK TDO TDI VSS T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Pin Assignments and Reset States
Freescale Semiconductor16
4.3 Pinout—360 TEPBGA
The pinout for the MCF54452, MCF54453, MCF54454, and MCF54455 packages are shown below.
Figure 6. MCF54452, MCF54453, MCF54454, and MCF54455 Pinout (360 TEPBGA)
12345678910111213141516171819202122
AGND PCI_
REQ0 PCI_
AD10 PCI_
AD11 PCI_
AD13 PCI_
SERR PCI_
STOP PCI_
AD15 PCI_
GNT0 PCI_
AD29 PCI_
AD20 XTAL
32K EXTAL
32K USB_
DM USB_
DP EXTAL XTAL DACK0 DSPI_
PCS2 DSPI_
SCK TDO GND A
BPCI_
CBE0 PCI_
FRAME PCI_
AD9 PCI_
PERR PCI_
AD12 PCI_
RST PCI_
GNT3 PCI_
AD14 PCI_
AD18 PCI_
AD28 PCI_
AD19 PCI_
AD21 NC GND NC VDD_
OSC RST
OUT DREQ0 DSPI_
SIN DSPI_
PCS1 TMS TRST B
CPCI_
AD0 PCI_
AD2 PCI_
IRDY PCI_
PAR PCI_
REQ1 IRQ1 PCI_
REQ3 PCI_
GNT2 PCI_
GNT1 PCI_
TRDY PCI_
AD31 PCI_
AD22 VDD_
RTC VDD_
A_PLL NC VSS_
OSC DACK1 DREQ1 TDI DSPI_
SOUT JTAG_
EN TCLK C
DPCI_
CBE1 PCI_
AD1 PCI_
AD7 PCI_
AD8 PCI_
IDSEL IVDD PCI_
REQ2 IVDD PCI_
AD17 PCI_
AD16 PCI_
AD30 PCI_
AD23 EVDD IVDD PLL
TEST NC DSPI_
PCS0 DSPI_
PCS5 EVDD SSI_
MCLK SSI_
RXD SSI_
TXD D
EPCI_
AD4 PCI_
AD5 PCI_
AD6 PCI_
CBE2 SSI_
BCLK SSI_FS SD_
DM2 SD_
DQS2 E
FPCI_
AD24 PCI_DE
VSEL PCI_
AD3 IVDD SDVDD SD_D16 SD_D17 SD_D18 F
GT0IN PCI_
AD26 PCI_
AD25 PCI_
CBE3 GND EVDD GND GND EVDD GND GND EVDD GND EVDD SD_D19 SD_D20 SD_D21 SD_D22 G
HT2IN T3IN T1IN IVDD GND GND SDVDD SD_D23 SD_
DM3 SD_
DQS3 H
JFB_AD
29 FB_AD
31 FB_CLK PCI_
AD27 EVDD GND GND GND GND GND GND EVDD SD_D26 SD_D27 SD_D25 SD_D24 J
KFB_AD
28 FB_AD
27 FB_AD
26 FB_AD
30 GND GND GND GND GND GND GND GND SDVDD SD_D28 SD_D29 SD_D30 K
LFB_AD
25 FB_AD
23 FB_AD
22 FB_AD
24 EVDD GND GND GND GND GND GND EVDD SD_
CAS SD_
CS1 SD_D31 SD_
CLK L
MFB_AD
21 FB_AD
20 FB_AD
19 FB_AD
18 GND GND GND GND GND GND GND GND SDVDD SD_
CS0 SD_
VREF SD_
CLK M
NFB_AD
17 FB_AD
16 U1TXD IVDD GND GND GND GND GND GND GND EVDD SD_A2 SD_WE SD_
RAS SD_
CKE N
PFB_AD
15 FB_AD
14 U1RXD FB_AD
10 EVDD GND GND GND GND GND GND GND SD_
BA0 SD_A1 SD_A0 SD_
BA1 P
RFB_AD
13 FB_AD
12 FB_AD
11 IVDD GND EVDD SDVDD SD_A5 SD_A4 SD_A3 R
TFB_AD
9FB_AD
8FB_AD
7FB_AD
6GND EVDD GND GND GND EVDD GND EVDD GND EVDD SD_A9 SD_A8 SD_A7 SD_A6 T
UFB_AD
5FB_AD
4FB_AD
3U1RTS SDVDD SD_A12 SD_A11 SD_A10 U
VFB_AD
2FB_AD
1U1CTS USB_
VBUS_
OC
ATA_
DA2 ATA_
DA1 ATA_
DA0 SD_A13 V
WFB_AD
0FB_BE/
BWE2 FB_BE/
BWE1 IVDD FB_CS3 PST
DDATA4 IVDD IVDD FEC0_
RXD1 FEC0_
TXD3 FEC0_
TXEN IVDD ATA_
RESET FEC1_
RXCLK U0TXD IVDD FEC1_
RXER FEC1_
TXD2 IVDD FEC1_
MDC ATA_
CS1 ATA_
CS0 W
YFB_BE/
BWE3 FB_BE/
BWE0 FB_TS FB_CS0 PST
DDATA0 PST
DDATA3 FEC0_
MDIO FEC0_
RXDV FEC0_
RXD2 FEC0_
TXCLK FEC0_
TXD0 I2C_
SDA
ATA_BU
FFER_
EN
ATA_
IORDY FEC1_
RXD2 U0CTS FEC1_
RXD0 RESET FEC1_
TXD3 FEC1_
TXD0 NC FEC1_
MDIO Y
AA FB_OE USB_
VBUS_
EN FB_R/W FB_CS2 PST
DDATA2 PST
DDATA7 FEC0_
CRS FEC0_
RXCLK NC FEC0_
RXER FEC0_
TXD1 I2C_
SCL IRQ4 ATA_
DMARQ FEC1_
RXD3 U0RTS FEC1_
RXD1 FEC1_
CRS FEC1_
TXD1 NC FEC1_
TXEN FEC1_
TXER AA
AB GND FB_TA FB_CS1 PST
DDATA1 PST
DDATA5 PST
DDATA6 FEC0_
COL FEC0_
MDC FEC0_
RXD3 FEC0_
RXD0 FEC0_
TXD2 FEC0_
TXER IRQ7 IRQ3 FEC1_
RXDV U0RXD BOOT
MOD1 FEC1_
COL FEC1_
TXCLK TEST BOOT
MOD0 GND AB
12345678910111213141516171819202122
Electrical Characteristics
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor 17
5 Electrical Characteristics
This document contains electrical specification tables and reference timing diagrams for the MCF54455 microprocessor. This
section contai ns detailed informa tion on DC/AC electrical characteristics and AC timing specifications.
The electrical specifications are preliminary and from previous designs or design simulations. These specifications may not be
fully tested or guaranteed at this early stage of the product life cycle. However , for production s ilicon, these specifications will
be met. Finalized specification s will be published after complete characterization and device qualifications have been
completed.
NOTE
The parameters specified in this MCU document supersede any values found in the module
specifications.
5.1 Absolute Maximum Ratings
Table 5. Absolute Maximum Ratings1, 2
1Functional operating conditions are given in Table 8. Absolute maximum ratings are stress ratings only, and functional
operation at the maximum is not guaranteed. Continued operation at these lev els may affect device reliability or cause
permanent damage to the device.
2This device contains circuitry protecting against damage due to high static voltage or electrical fields. However, it is
advised that normal precautions be taken to av oid application of any v oltages higher than maximum-rated v oltages to this
high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage le v el
(e.g., VSS or EVDD).
Rating Symbol Pin Name Value Units
External I/O pad supply voltage EVDD EVDD -0.3 to +4.0 V
Internal oscillator supply voltage OSCVDD VDD_OSC -0.3 to +4.0 V
Real-time clock supply voltage RTCVDD VDD_RTC -0.5 to +2.0 V
Internal logic supply voltage IVDD IVDD -0.5 to +2.0 V
SDRAM I/O pad supply voltage SDVDD SD_VDD -0.3 to +4.0 V
PLL supply voltage PVDD VDD_A_PLL -0.5 to +2.0 V
Digit al input voltage3
3Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,
calculate resistance values for positive and negative clamp v oltages, and then use the larger of the two values.
VIN -0.3 to +3.6 V
Instantaneous maximum current
Single pin limit (applies to all pins) 3, 4, 5
4All functional non-supply pins are internally clamped to VSS and EVDD.
5Power supply must maintain regulation within operating EVDD range during instantaneous and operating maximum
current conditions. If positiv e injection current (Vin > EVDD) is greater than IDD, the injection current may flo w out of EVDD
and could result in external power supply going out of regulation. Ensure the external EVDD load shunts current greater
than maximum injection current. This is the greatest risk when the MPU is not consuming power (e x; no clock). The power
supply must maintain regulation within operating EVDD range during instantaneous and operating maximum current
conditions.
IDD —25mA
Operating temperature range (packaged) TA
(TL - TH) -40 to +85 C
Storage temperature range Tstg -55 to +150 C
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Electrical Characteristics
Freescale Semiconductor18
5.2 Thermal Characteristics
The average chip-junction temperature (TJ) in C can be obtained from:
Eqn. 1
Where:
TA= Ambient Temperature, C
QJMA = Package Thermal Resistance, Junction-to-Ambient, C/W
PD=P
INT + PI/O
PINT =I
DD IVDD, Watts - Chip Internal Power
PI/O = Power Dissipation on Input and Output Pins — User Determined
For most applications PI/O < PINT and can be ignored. An approximate relationship between PD and TJ (if PI/O is neglected) is:
Eqn. 2
Solving equations 1 and 2 for K giv e s:
Eqn. 3
Table 6. Thermal Characteristics
Characteristic Symbol 256
MAPBGA 360
TEPBGA Unit
Junction to ambient, natural convection Four layer board
(2s2p) JA 291,2
1JMA and jt parameters are simulated in conf ormance with EIA/JESD Standard 51-2 for natural convection.
Fr eescale recommends the use of JmA and power dissipation specifications in the system design to prevent
device junction temperatures from exceeding the rated specification. System designers should be aware that
device junction temperatures can be significantly influenced by board layout and surrounding devices.
Conformance to the device junction temperature specification can be verified by physical measurement in the
customer’s system using the jt param et er, the device power diss ip a ti o n, and th e me th od de scribed in
EIA/JESD Standard 51-2.
2Per JEDEC JESD51-6 with the board horizontal.
241,2 C / W
Junction to ambient (@200 ft/min) Four layer bo ard
(2s2p) JMA 251,2 211,2 C / W
Junction to board JB 183
3Ther mal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8.
Board temperature is measured on the top surface of the board near the package.
153C / W
Junction to case JC 104
4Ther mal resistance between the die and the case top surface as measured by the cold plate method (MIL
SPEC-883 Method 1012.1).
114C / W
Junction to top of package jt 21,5
5Ther mal characterization parameter indicating the temperature difference between package top and the
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization
parameter is written in conformance with Psi-JT.
21,5 C / W
Maximum operating junction temperature Tj105 105 oC
TJTAPDJMA
+=
PDK
TJ273C+
---------------------------------
=
KP
DTA273CQJMA PD
2
+=
Electrical Characteristics
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor 19
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring PD (at equilibrium)
for a known T A. Using this value of K, the values of PD and TJ can be obtained by solving Equation 1 and Equation 2 iteratively
for any value of TA.
5.3 ESD Protection
5.4 DC Electrical Specifications
Table 7. ESD Protection Characteristics1, 2
1All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for
Automotive Grade Integrated Circuits.
2A device is defined as a f ailure if after exposure to ESD pulses the device no longer meets
the device specification requirements. Complete DC parametric and functional testing is
performed per applicable device specification at room temperature followed by hot
temperature, unless specified otherwise in the device specification.
Characteristics Symbol Value Units
ESD Target for Human Body Model HBM 2000 V
Table 8. DC Electrical Specifications
Characteristic Symbol Min Max Units
Internal logic supply voltage1IVDD 1.35 1.65 V
PLL analog operation voltage range 1PVDD 1.35 1.65 V
External I/O pad supply voltage EVDD 3.0 3.6 V
Inter nal oscillator supply voltage OSCVDD 3.0 3.6 V
Real-time clock supply voltage RTCVDD 1.35 1.65 V
SDRAM I/O pad supply voltage — DDR mode SDVDD 2.25 2.75 V
SDRAM I/O pad supply voltage — DDR2 mode SDVDD 1.7 1.9 V
SDRAM I/O pad supply voltage — Mobile DDR mode SDVDD 1.7 1.9 V
SDRAM input reference voltage SDVREF 0.49 x SDVDD 0.51 x SDVDD V
Input High Voltage VIH 0.7 x EVDD 3.65 V
Input Lo w Voltage VIL VSS – 0.3 0.35 x EVDD V
Input Hysteresis VHYS 0.06 x EVDD —mV
Input Leakage Current2
Vin = VDD or VSS, In put-only pins Iin –2.5 2.5 A
Input Leakage Current3
Vin = VDD or VSS, In put-only pins Iin –5 5 A
High Impedance (Off-State) Leakage Curren t4
Vin = VDD or VSS, All input/output and output pins IOZ –10.0 10.0 A
Output High Voltage (All input/output and all output pins)
IOH = –5.0 mA VOH 0.85 EVDD __ V
Output Low Voltage (Al l input/output and all output pi ns)
IOL = 5.0mA VOL __ 0.15 EVDD V
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Electrical Characteristics
Freescale Semiconductor20
5.5 Clock Timing Specifications
The clock module configures the device for one of several clocking me thods. Clocking modes include in ternal phase-locked
loop (PLL) clocking with an external clock reference or an external crystal reference supported by an internal crystal amplifier.
The PLL can also be disabled, and an external oscillator can directly clock the device.
The specifications in Table 9 are for the CLKIN input pin (EXTAL input driven by an external clock reference). The duty cycle
specification is based on an acceptable tolerance for the PLL, which yields 50% duty-cycle internal clocks to all on-chip
peripherals. The MCF5445x devices use the input clock signal as its synchronous bus clock for PCI. A poor duty cycle on the
input clock, may affect the overall timing margin to external devices. If negative edge logic is used to interface to PCI, providing
a 50% duty-cycle input clock aids in simplifying overall system design.
Weak Internal Pull Up Device Current, tested at VIL Max.5IAPU –10 –130 A
Input Capacitance 6
All input-only pins
All input/output (three-state) pins
Cin
7
7
pF
Load Capacitance
Low drive strength
High dr ive strength CL25
50
pF
DC Injection Current 3, 7, 8, 9
VNEGCLAMP =VSS– 0.3 V, VPOSCLAMP = VDD + 0.3
Single Pin Limit
Total MCU Limit, Includes sum of all stressed pins
IIC
-1.0
-10 1.0
10
mA
1IVDD and PVDD should be at the same voltage. PVDD should have a filtered input. Please see the PLL section of this
specification for an e xample circuit. There are three PVDD inputs, one for each PLL. A filter circuit should used on each
PVDD input.
2Valid for all parts, EXCEPT the MCF54452YVR200.
3Valid just the MCF54452YVR200 part number.
4Worst-case tristate leakage current with only one I/O pin high. Since all I/Os share power when high, the leakage current
is distributed among them. With all I/Os high, this spec reduces to ±2 A min/max.
5Refer to the MCF54455 Reference Manual signals description chapter for pins having weak internal pull-up devices.
6This parameter is characterized before qualification rather than 100% tested.
7All functional non-supply pins are internally clamped to VSS and their respective VDD.
8Input must be current limited to the value specified. To determ ine the value of the required current-limiting resistor,
calculate resistance values for posi ti ve and negative clamp voltages, then use the larger of the two values.
9Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum
current conditions. If positive injection current (Vin > VDD) is greater than IDD, the injection current may flow out of VDD
and could result in e xternal power supply going out of regulation. Ensure the external VDD load shunts current greater
than the maximum injection current. This is the greatest risk when the MCU is not consuming power. Examples are: if
no system clock is present, or if clock rate is very low which would reduce ov erall power consumption. Also , at power-up ,
the system clock is not present during the power-up sequence until the PLL has attained lock.
Table 8. DC Electrical Specifications
Characteristic Symbol Min Max Units
Electrical Characteristics
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor 21
Figure 7. Input Clock Timing Diagram
Table 9. Input Clock Timing Requirements
Item Specification Min Max Unit
C1 Cycle time 15 40 ns
1 / C1 Fr equency 25 66.66 MHz
C2 R ise time (20% of vdd to 80% of vdd) - 2 ns
C3 Fall time (80% of vdd to 20% of vdd) - 2 ns
C4 Duty cycle (at 50% of vdd) 40 60 %
Table 10. PLL Electrical Characteristics
Num Characteristic Symbol Min.
Value Max.
Value Unit
1 PLL Reference Freq uency Range
Crystal reference
External reference fref_crystal
fref_ext
16
16 40
66.66 MHz
MHz
2 Core/System Frequency fsys 512 Hz1266.67 MHz
Core/System Clock Period tsys —1/f
sys ns
19 VCO Frequency (fvco = fref PFDR) fvco 300 540 MHz
3 Crystal Start-up Time2, 3 tcst —10ms
4 EXTAL Input High Voltage
Crystal Mode4
All other modes (External, Limp) VIHEXT
VIHEXT
VXTAL + 0.4
EVDD/2 + 0.4
V
V
5 EXTAL Input Low Voltage
Crystal Mode4
All other modes (External, Limp) VILEXT
VILEXT
VXTAL - 0.4
EVDD/2 - 0.4 V
V
6 EXTAL Input Rise & Fall Time (20% to 80% EVDD)
(External, Limp) 12ns
7PLL Lock Time 3, 5 tlpll 50000 CLKIN
8 Duty Cycle of reference 3 (External, Limp) t dc 40 60 %
9 XTAL Current IXTAL 13mA
10 Total on-chip stray capacitance on XTAL CS_XTAL —1.5pF
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Electrical Characteristics
Freescale Semiconductor22
5.6 Reset Timing Specifications
Table 11 lists specifications for the reset timing paramet ers shown in Figure 8.
11 Total on-chip stray capacitance on EXTAL CS_EXTAL —1.5pF
12 Crystal capacitive load CLSee crystal spec
13 Discrete load capacitance for XTAL
Discrete load capacitance for EXTAL CL_XTAL
CL_EXTAL
—2(CL -
CS_XTAL -
CS_EXTAL -
CS_PCB)6
pF
14 Frequency un-LOCK Range fUL -4.0 4.0 % fsys
15 Frequency LOCK Range fLCK -2.0 2.0 % fsys
17 CL KOUT Period Jitter, 3, 4, 7 Measured at fSYS Max
Peak-to-peak Jitter (Clock edge to clock edge)
Long Term Jitter
Cjitter
10
TBD % FB_CLK
% FB_CLK
1The minimum system frequency is the minimum input clock divided by the maximum lo w-po w er divider (16 MHz 32,768).
When the PLL is enabled, the minimum system frequency (fsys) is 150 MHz.
2This parameter is guaranteed by characterization before qualification rather than 100% tested. Applies to external clock
reference only.
3Proper PC board layout procedures must be followed to achieve specifications.
4This parameter is guaranteed by design rather than 100% tested.
5This specification is the PLL lock time only and does not include oscillator start-up time.
6CS_PCB is the measured PCB stray capacitance on EXTAL and XTAL.
7Jitter is the average deviation from the programmed frequency measure d over the specified interval at maximum fsys.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise
injected into the PLL circuitry via PLL VDD, EVDD, and VSS and variation in crystal oscillator frequency increase the Cjitter
percentage for a given interval.
Table 11. Reset and Configuration Override Timing
Num Characteristic Min Max Unit
R11
1RESET and Configuration Override data lines are synchronized internally. Setup and hold times must be met only if
recognition on a particular clock is required.
RESET valid to CLKIN (setup) 9 ns
R2 CLKIN to RESET invalid (hold) 1.5 ns
R3 RESET valid time2
2During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously
to the system. Thus, RESET must be held a minimum of 100 ns.
5 CLKIN cycles
R4 CLKIN to RSTOU T valid 10 ns
R5 RSTOUT valid to Configuration Override inputs valid 0 ns
R6 Configuration Override inputs valid to RSTOUT invalid (setup) 20 CLKIN cycles
R7 Configuration Override inputs invalid after RSTOUT invalid (hold) 0 ns
R8 RSTOUT inv alid to Configuration Override inputs High Impedance 1 CLKIN cycles
Table 10. PLL Electrical Characteristics (continued)
Num Characteristic Symbol Min.
Value Max.
Value Unit
Electrical Characteristics
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor 23
Figure 8. RESET and Configuration Override Timing
5.7 FlexBus Timing Specifications
A multi-function external bus interface called FlexBus is provided with basic functionality to interface to slave-only devices up
to a maximum bus frequency of 66MHz. It can be directly connected to asynchronous or synchronous devices such as external
boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with litt le or no additional circuitry. For
asynchronous devices, a simple chip-select based interface can be used.
All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a
reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider
of that frequency.
The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock
(FB_CLK). All other timing relationships can be derived from these values.
NOTE
The processor drives the data lines during the first clock cycle of the transfer
with the full 32-bit address. This may be ignored by standard connected
devices using non-multiplexed address and data buses. However, some
applications may find this feature beneficial.
The address and data busses are muxed between the FlexBus and PCI
controller . At the end of the read and write bus cycles the address signals are
indeterminate.
Table 12. FlexBus AC Timing Specifications
Num Characteristic Min Max Unit Notes
Fr equency of Operation 25 66.66 MHz
FB1 Clock Period 15 40 ns
FB2 Output Valid 7.0 ns 1
1Specification is valid for all FB_AD[31:0], FB_BS[3:0], FB_CS[3:0], FB_OE, FB_R /W, FB_TBST,
FB_TSIZ[1:0], and FB_TS.
FB3 Output Hold 1.0 ns 1
FB4 Input Setup 3.0 ns 2
2Specification is valid for all FB_AD[31:0] and FB_TA .
FB5 Input Hold 0 ns 2
R1 R2
CLKIN
RESET
RSTOUT
R3
R4
R8
R7R6R5
Configu r at i o n Overrides* :
R4
(BOOTMOD[1:0],
Override pins])
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Electrical Characteristics
Freescale Semiconductor24
Figure 9. FlexBus Read Timing
Figure 10. Flexbus Write Timing
FB_CLK
FB_R/W
S0 S1 S2 S3
FB_ALE
FB_TSIZ[1:0] TSIZ[1:0]
Mux’d Bus
Non-Mux’d Bus FB_A[31:0]
FB_D[31:X]
FB_AD[Y:0]
FB_AD[31:X]
FB_CSn, FB_OE,
FB_BE/BWEn
FB_TA
DATA
DATA
ADDR[31:0]
ADDR[31:X]
ADDR[31:X]
ADDR[Y:0]
FB3
FB1
FB2 FB5
FB4
FB5
FB4
FB_CLK
FB_R/W
FB_ALE
FB_OE
S0 S2 S3
DATA
FB_TSIZ[1:0] TSIZ[1:0]
S1
DATA
Mux’d Bus
Non-Mux’d Bus FB_A[31:0] ADDR[31:0]
FB_D[31:X]
ADDR[31:X]
ADDR[31:X]
FB_AD[Y:0]
FB_AD[31:X]
ADDR[Y:0]
FB_CSn, FB_BE/BWEn
FB_TA
FB3
FB1
FB2
FB5
FB4
Electrical Characteristics
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor 25
5.8 SDRAM AC Timing Characteristics
The following timing numbers must be fol low ed to pro perly latch or drive data onto the SDRAM memory bus. All timin g
numbers are relative to the four DQS byte lanes.
Table 13. SDRAM Timing Specifications
Num Characteristic Symbol Min Max Unit Notes
Frequency of Operation 60 133.33 MHz 1
1The SDRAM interface operates at the same frequency as the internal system bus.
DD1 Clock Period tSDCK 7.5 16.67 ns
DD2 Pulse Width High tSDCKH 0.45 0.55 tSDCK 2
2Pulse width high plus pulse width low cannot exceed min and max clock period.
DD3 Pulse Width Low tSDCKL 0.45 0.55 tSDCK 3
DD4 Address , SD_CKE, SD_CAS, SD_RAS, SD_WE,
SD_CS[1:0] — Output Valid tCMV (0.5 x tSDCK)
+ 1.0ns ns 3
3Command output valid should be 1/2 the memory bus clock (tSDCK) plus some minor adjustments for process, temperature, and
voltage variations.
DD5 Address , SD_CKE, SD_CAS, SD_RAS, SD_WE,
SD_CS[1:0] — Output Hold tCMH 2.0 ns
DD6 Write Command to first DQS Latching Transition tDQSS (1.0 x tSDCK)
- 0.6ns (1.0 x tSDCK)
+ 0.6ns ns
DD7 Data and Data Mask Output Setup (DQ-->DQS)
Relative to DQS (DDR Write Mode) tQS 1.0 ns 4
5
4This specification relates to the required input setup time of DDR memories. The microprocessor’s output setup should be larger
than the input setup of the DDR memories. If it is not larger, then the input setup on the memory is in violation.
SD_D[31:24] is relative to SD_DQS[3]; SD_D[23:16] is relativ e to SD_DQS[2]
5The first data beat is valid bef ore the first rising edge of DQS and after the DQS write preamble. The remaining data beats are valid
for each subsequent DQS edge.
DD8 Data and Data Mask Output Hold (DQS-->DQ)
Relative to DQS (DDR Write Mode) tQH 1.0 ns 6
6This specification relates to the required hold time of DDR memo ries.
SD_D[31:24] is relative to SD_DQS[3]; SD_D[23:16] is relativ e to SD_DQS[2]
DD9 Input Data Skew Relative to DQS (Input Setup) tIS —1.0ns
7
7Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line becomes
valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors).
DD10 Input Data Hold Relative to DQS. tIH (0.25 x tSDCK)
+ 0.5ns —ns
8
8Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes
invalid.
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Electrical Characteristics
Freescale Semiconductor26
Figure 11. DDR Write Timing
SD_CLK
SD_CSn,SD_WE,
SD_DM3/SD_DM2
SD_D[31:24]/SD_D[23:16]
SD_A[13:0]
SD_RAS, SD_CAS CMD
ROW
DD1
DD5
DD4
COL
WD1 WD2 WD3 WD4
DD7
SD_DQS3/SD_DQS2
DD8
DD8
DD7
SD_CLK
DD3
DD2
DD6
Electrical Characteristics
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor 27
Figure 12. DDR Read Timing
5.9 PCI Bus Timing Specifications
The PCI bus on the device is PCI 2.2 compliant. The following timing numbers are mostly from the PCI 2.2 spec. Refer to the
PCI 2.2 spec for a more detailed timing analysis.
Table 14. PCI Timing Specifications1,2
Num Characteristic 33 MHz366 MHz3
Min Max Min Max Unit
Fr equency of Operation 33.33 33.33 66.66 MHz
P1 Clock Period 30 15 3 0 ns
P2 Bused PCI signals — input setup 7.0 3.0 ns
P3 PCI_GNT[3:0]/PCI_REQ[3:0] — input setup 10.0 5.0 ns
P4 All PCI signals — input hold 0 0 ns
P5 Bused PCI signals — output valid 11.0 6.0 ns
SD_CLK
SD_CSn,SD_WE,
SD_DQS3/SD_DQS2
D[31:24]/D[23:16]
SD_A[13:0]
SD_RAS, SD_CAS CMD
ROW
DD1
DD5
DD4
WD1WD2WD3WD4
SD_DQS3/SD_DQS2
DD9
SD_CLK
DD3
DD2
D[31:24]/D[23:16]
WD1 WD2 WD3 WD4
DD10
CL=2
CL=2.5
COL
DQS Read
Preamble DQS Read
Postamble
DQS Read
Preamble DQS Read
Postamble
CL = 2.5 CL = 2
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Electrical Characteristics
Freescale Semiconductor28
Figure 13. PCI Timing
5.9.1 Overshoot and Undershoot
Figure 14 shows the specification lim its for overshoot and undershoot for PCI I/O. To guarantee long term reliability, the
specification limits shown must be followed. Good transmission line design practices should be observed to gu arantee the
specification limits.
P6 PCI_REQ[3:0]/PCI_GNT[3:0] — output valid 12.0 6.0 ns
P7 All PCI signals — output hold 2.0 1.0 ns
1The PCI bus operates at the CLKIN frequency. All timings are relative to the input clock, CLKIN.
2All PCI signals are bused signals exce pt for PCI_GNT[3:0] and PCI_REQ[3:0]. These signals are defined as po int-to-point
signals by the PCI Specification.
3The 66-MHz parameters are only guaranteed when the 66-MHz PCI pad slew rates are selected. Like wise, the 33-MHz
parameters are only guaranteed when the 33-MHz PCI pad slew rates are selected.
Table 14. PCI Timing Specifications1,2 (continued)
Num Characteristic 33 MHz366 MHz3
Min Max Min Max Unit
CLKIN
Input
Setup/Hold
P1
P7
P4
Output Valid
Input Valid
Output
Valid/Hold
P5
P6
P2
P3
Electrical Characteristics
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor 29
Figure 14. Overshoot and Undershoot Limits
5.10 ULPI Timing Specifications
The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin Interface. Control and data timing
requirements for the ULPI pins are given in Table 15. These timings apply to synchronous mode only . All timings are measured
with respect to the clock as seen at the USB_CLKIN pin on the MCF5445x. The ULPI PHY is the source of the 60MHz clock.
NOTE
The USB controller requires a 60-MHz clock, even if using the on-chip FS/LS transceiver
instead of the ULPI interface . In this case , the 60-MHz clock can be generated by the PLL
or input on the USB_CLKIN pin.
Table 15. ULPI Interface Timing
Num Characteristic Min Nominal Max Units
USB_CLKIN operating frequency 60 MHz
USB_CLKIN duty cycle 50 %
U1 USB_CLKIN clock peri od 16.67 ns
U2 Input Setup (control and data) 5.0 ns
U3 Input Hold (control and data) 1.0 ns
U4 Output Valid (control and data) 9.5 ns
U5 Output Hold (control and data) 1.0
Not to exceed 17%
of PCI Cycle
VDD + 0.9V
VDD + 0.5V
VDD
GND - 1.0V
GND - 0.5V
GND
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Electrical Characteristics
Freescale Semiconductor30
Figure 15. ULPI Timing Diagram
5.11 SSI Timing Specifications
This section provides the AC timings for the SSI in master (clocks driven) and slave modes (clocks input). All timings are given
for non-inverted serial clock polarity (SSI_TCR[TSCKP] = 0, SSI_RCR[RSCKP] = 0) and a non-inverted frame sync
(SSI_TCR[TFSI] = 0, SSI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings
remain valid by inverting the clock sign al (SSI_BCLK) and/or the frame sync (SSI_FS) shown in the fi gures bel ow.
Table 16. SSI Timing — Master Modes1
1All timings specified with a capactive load of 25pF.
Num Description Symbol Min Max Units Notes
S1 SSI_MCLK cycle time tMCLK 2 tSYS —ns 2
2SSI_MCLK can be generated from SSI_CLKIN or a divided version of the internal system clock (fsys).
S2 SSI_MCLK pulse width high / low 45% 55% tMCLK
S3 SSI_BCLK cycle time tBCLK 8 tSYS —ns 3
3SSI_BCLK can be derived from SSI_CLKIN or a divided version of the internal system clock (fsys).
S4 SSI_BCLK pulse width 45% 55% tBCLK
S5 SSI_BCLK to SSI_FS output valid 15 ns
S6 SSI_BCLK to SSI_FS output invalid 0 ns
S7 SSI_BCLK to SSI_TXD valid 15 ns
S8 SSI_ BCLK to SSI_TXD invalid / high impedence -2 ns
S9 SSI_RXD / SSI_FS input setup before SSI_BCLK 10 ns
S10 SSI_RXD / SSI_FS input hold after SSI_BCLK 0 ns
ULPI_DATA[7:0]
(Data Output )
ULPI_DATA[7:0]
(Data Input )
ULPI_DIR / ULPI_NXT
(Control Input)
ULPI_STP
(Control Output)
USB_CLKIN U1
U2
U2
U3
U3
U4
U4 U5
U5
Electrical Characteristics
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor 31
Figure 16. SSI Timing—Master Modes
Table 17. SSI Timing—Slave Modes1
1All timings specified with a capactive load of 25pF.
Num Description Symbol Min Max Units Notes
S11 SSI_BCLK cycle time t BCLK 8 tSYS —ns
S12 SSI_BCLK pulse width hig h / low 45% 55% tBCLK
S13 SSI_FS input setup before SSI_BCLK 10 ns
S14 SSI_FS input hold after SSI_BCLK 2 ns
S15 SSI_BCLK to SSI_TXD / SSI_FS output valid 15 ns
S16 SSI_BCLK to SSI_TXD / SSI_FS output invalid / high
impedence 0— ns
S17 SSI_RXD setup before SSI_BCLK 10 ns
S18 SSI_RXD hold after SSI_BCLK 2 ns
SSI_MCLK
(Output)
SSI_BCLK
(Output)
SSI_FS
(Output)
SSI_TXD
SSI_RXD
S1 S2 S2
S3
S4 S4
S5 S6
S7 S8 S8
S9 S10
S7
SSI_FS
(Input)
S9 S10
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Electrical Characteristics
Freescale Semiconductor32
Figure 17. SSI Timing—Slave Modes
5.12 I2C Timing Specifications
Table 18 lists specifications for the I2C input timing paramete rs shown in Figure 18.
Table 19 lists specifications for the I2C output timing pa ram e ters shown in Figure 18.
Table 18. I2C Input Timing Specifications between SCL and SDA
Num Characteristic Min Max Units
I1 Start conditi on hold time 2 tSYS
I2 Clock low per iod 8 tSYS
I3 I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH =2.4 V) 1 ms
I4 Data hold time 0 ns
I5 I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL =0.5 V) 1 ms
I6 Clock high time 4 tSYS
I7 Data setup time 0 ns
I8 Start condition setup time (for repeated start condition only) 2 tSYS
I9 Stop condition setup time 2 tSYS
Table 19. I2C Output Timing Specifications between SCL and SDA
Num Characteristic Min Max Units
I11Start condition hold time 6 tSYS
I21Clock low period 10 tSYS
I32I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH =2.4 V) µs
I41Data hold time 7 tSYS
I53I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V) 3 ns
SSI_BCLK
(Input)
SSI_FS
(Input)
SSI_TXD
SSI_RXD
S11
S12 S12
S14
S15 S16 S16
S17 S18
S15
S13
SSI_FS
(Output)
S15 S16
Electrical Characteristics
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor 33
Figure 18. I2C Input/Output Timings
5.13 Fast Ethernet Timing Specifications
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing
specs/constraints for the physical interface.
5.13.1 Receive Signal Timing Specifications
The following timing specs meet the requirements for MII and 7-Wire style interfaces for a range of transceiver devices.
I61Clock high time 10 tSYS
I71Data setup time 2 tSYS
I81Start condition setup time (for repeated start condition only) 20 tSYS
I91Stop condition setu p ti me 10 tSYS
1Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum
frequency (IFDR = 0x20) results in minimum output timings as shown in Table 19. The I2C interface is
designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual
position is affected by the prescale and division values programme d into the IFDR. However, the numbers
given in Table 19 are minimum values.
2Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive
low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and
pull-up resistor values.
3Specified at a nominal 50-pF load.
Table 20. Receive Signal Timing
Num Characteristic MII Mode RMII Mode Unit
Min Max Min Max
RXCLK frequency 25 50 MHz
E1 RXD[n:0], RXDV, RXER to RXCLK setup1
1In MII mode, n = 3; In RMII mode, n = 1
5—4— ns
E2 RXCLK to RXD[n:0], RXDV, RXER hold15—2— ns
E3 RXCLK pulse width high 35% 65% 35% 65% RXCLK period
E4 RXCLK pulse width low 35% 65% 35% 65% RXCLK period
Table 19. I2C Output Timing Specifications between SCL and SDA (continued)
Num Characteristic Min Max Units
I2 I6
I1 I4 I7 I8 I9
I5
I3
I2C_SCL
I2C_SDA
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Electrical Characteristics
Freescale Semiconductor34
Figure 19. MII Receive Signal Timing Diagram
5.13.2 Transmit Signal Timing Specifications
Figure 20. MII Transmit Signal Timing Diagram
5.13.3 Asynchronous Input Signal Timing Specifications
Table 21. Transmit Signal Timing
Num Characteristic MII Mode RMII Mode Unit
Min Max Min Max
TXCLK frequency 25 50 MHz
E5 TXCLK to TXD[n:0], TXEN, TXER invalid1
1In MII mode, n = 3; In RMII mode, n = 1
5—5— ns
E6 TXCLK to TXD[n:0], TXEN, TXER va lid1 25 14 ns
E7 TXCLK pulse width high 35% 65% 35% 65% tTXCLK
E8 TXCLK puls e width low 35% 65% 35% 65% tTXCLK
Table 22. MII Transmit Signal Timing
Num Characteristic Min Max Unit
E9 CRS, COL minimum pulse width 1.5 TXCLK period
Valid Data
RXCLK (Input)
RXD[n:0]
RXDV,
RXER
E3
E4
E1 E2
Valid Data
TXCLK (Input)
TXD[n:0]
TXEN,
TXER
E7
E8
E5
E6
Electrical Characteristics
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor 35
Figure 21. MII Async Inputs Timing Diagram
5.13.4 MII Serial Management Timing Specifications
Figure 22. MII Serial Management Channel TIming Diagram
5.14 32-Bit Timer Module Timing Specifications
Table 24 lists timer module AC tim in g s.
Table 23. MII Serial Management Channel Signal Timing
Num Characteristic Symbol Min Max Unit
E10 MDC cycle time tMDC 400 ns
E11 MDC pulse width 40 60 % tMDC
E12 MDC to MDIO output valid 375 ns
E13 MDC to MDIO output inva lid 25 ns
E14 MDIO input to MDC setup 10 ns
E15 MDIO input to MDC hold 0 ns
Table 24. Timer Module AC Timing Specifications
Name Characteristic Min Max Unit
T1 DTnIN cycle time (n=0:3) 3 t
sys/2
T2 DTnIN pulse width (n=0:3) 1 t
sys/2
CRS, COL
E9
MDC (Output)
E11
MDIO (Output)
MDIO (Input)
E11
E12 E13
Valid Data
E14 E15
Valid Data
E10
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Electrical Characteristics
Freescale Semiconductor36
5.15 ATA Interface Timing Specifications
The ATA controller is compatible with the ATA/ATAPI-6 industry standard. Refer to the ATA/ATAPI-6 Specficiation and the
ATA controller chapter of the MCF54455 Reference Manual for timing diagrams of the various modes of operation.
The timings of the various ATA data transfer modes are determ ined by a set of timing equations described in the ATA section
of the MCF54455 Reference Manual. These timing equations must be fulfilled for the ATA host to meet tim ing. Table 25
provides implementation specific timing parameters necessary to complete the timing equations.
5.16 DSPI Timing Specifications
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the
transfer attributes are programmable. Table 26 provides DSPI timing characteristics for classic SPI timing modes. Refer to the
DSPI chapter of the MCF54455 Reference Manual for information on the modified transfer formats used for communicating
with slower peripheral devices.
Table 25. ATA Interface Timing Specifications1,2
1These parameters are guaranteed by design and not testable.
2All timings specified with a capacitive load of 40pF.
Name Characteristic Symbol Min Max Unit Notes
A1 Setup time — ATA_IORDY to SYSCLK falling tSUI 4.0 ns
A2 Hold time — ATA_IORDY from SYSCLK falling tHI 3.0 ns
A3 Setup time — ATA_DATA[15:0] to SYSCLK rising tSU 4.0 ns
A4 Propagation delay — SYSCLK rising to all outputs tCO —7.0ns 3
3Applies to ATA_CS[1:0], ATA_DA[2:0], ATA_DIOR, ATA_DIOW, ATA_DMACK, ATA_DATA[15:0]
A5 Output skew tSKEW1 —1.5ns 3
A6 Setup time — ATA_DATA[15:0] valid to ATA_IORDY tI_DS 2.0 ns 4
4Applies to Ultra DMA data-in burst only
A7 Hold time — ATA_IORDY to ATA_DATA[15:0] invalid tI_DH 3.5 ns 4
Table 26. DSPI Module AC Timing Specifications1
Name Characteristic Symbol Min Max Unit Notes
DS1 D SPI_SCK Cycle Time tSCK 4 x tSYS —ns
2
DS2 D SPI_SCK Duty Cycle (tsck 2) - 2.0 (tsck 2) + 2.0 ns 3
Master Mode
DS3 DSPI_PCSn to DSPI_SCK delay tCSC (2 tSYS) - 1.5 ns 4
DS4 DSPI_SCK to DSPI_PCSn delay tASC (2 tSYS) - 3.0 ns 5
DS5 DSPI_SCK to DSPI_SOUT valid 5 ns
DS6 DSPI_SCK to DSPI_SOUT invalid -5 ns
DS7 DSPI_SIN to DSPI_SCK input setup 9 n s
DS8 DSPI_SCK to DSPI_SIN input hold 0 ns
Slave Mode
DS9 D SPI_SCK to DSPI_SOUT valid 10 ns
Electrical Characteristics
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor 37
Figure 23. DSPI Classic SPI Timing—Master Mode
DS10 DSPI_SCK to DSPI_SOUT invalid 0 ns
DS11 DSPI_SIN to DSPI_SCK input setup 2 ns
DS12 DSPI_SCK to DSPI_SIN input hold 7 ns
DS13 DSPI_SS active to DSPI_SOUT driven 10 ns
DS14 DSPI_SS inactive to DSPI_SOUT not driven 10 ns
1Timings shown are f or DMCR[MTFE] = 0 (classic SPI) and DCTARn[CPHA] = 0. Data is sampled on the DSPI_SIN pin
on the odd-numbered DSPI_SCK edge s and driven on the DSPI_SOUT pin on even -numbered DSPI edges.
2When in master mode, the baud rate is programmable in DCTARn[DBR], DCTARn[PBR], and DCTARn[BR].
3This specification assumes a 50/50 duty cycle setting. The duty cycle is programmable in DCTARn[DBR],
DCTARn[CPHA], and DCTARn[PBR].
4The DSPI_PCSn to DSPI_SCK delay is programmable in DCTARn[PCSSCK] and DCTARn[CSSCK].
5The DSPI_SCK to DSPI_PCSn delay is programmable in DCTARn[PASC] and DCTARn[ASC].
Table 26. DSPI Module AC Timing Specifications1 (continued)
Name Characteristic Symbol Min Max Unit Notes
DSPI_PCSn
DSPI_SCK
DSPI_SOUT
DSPI_SIN
DSPI_SCK
(DCTARn[CPOL] = 1)
(DCTARn[CPOL] = 0)
Data Last Data
First Data
First Data Data Last Data
DS1
DS2
DS2
DS3 DS4
DS5
DS6
DS7
DS8
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Electrical Characteristics
Freescale Semiconductor38
Figure 24. DSPI Classic SPI Timing—Slave Mode
5.17 SBF Timing Specifications
The Serial Boot Facility (SBF) provides a means to read configuration information and system boot code from a broad array of
SPI-compatible EEPROMs, flashes, FRAMs, nVSRAMs, etc. Table 27 provides the AC timing specifications for the SBF.
Table 27. SBF AC Timing Specifications
Name Characteristic Symbol Min Max Unit Notes
SB1 SBF_CK Cycle Time tSBFCK 40 ns 1
1At reset, the SBF_CK cycle time is tREF 67. The first byte of data read from the serial memory contains a divider value
that is used to set the SBF_CK cycle time for the duration of the serial boot process.
SB2 SBF_CK High/Low Time 3 0% tSBFCK
SB3 SBF_CS to SBF_CK delay tSBFCK - 2.0 ns
SB4 SBF_CK to SBF_CS delay tSBFCK - 2.0 ns
SB5 SBF_CK to SBF_DO valid -5 ns
SB6 SBF_CK to SBF_DO inv a lid 5 ns
SB7 SBF_DI to SBF_SCK input setup 10 ns
SB8 SBF_CK to SBF_DI input hold 0 ns
DSPI_SS
DSPI_SCK
DSPI_SOUT
DSPI_SIN
DSPI_SCK
(DCTARn[CPOL] = 1)
(DCTARn[CPOL] = 0)
Last Data
First Data
Data
Data
First Data Last Data
DS1
DS2
DS2
DS9
DS10
DS11 DS12
DS13 DS14
Electrical Characteristics
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor 39
Figure 25. SBF Timing
5.18 General Purpose I/O Timing Specifications
Figure 26. GPIO Timing
Table 28. GPIO Timing1
1These general purpose specifications apply to the following signals: IRQn, all UART signals, all timer
signals, DACKn and DREQn, and all signals configured as GPIO.
Num Characteristic Min Max Unit
G1 FB_CLK High to GP IO Output Valid 9 ns
G2 FB_CLK High to GPIO Output Invalid 1.5 ns
G3 GPIO Input Valid to FB_CLK High 9 ns
G4 FB_CLK High to GPIO Input Invalid 1.5 ns
SBF_CS
SBF_DO
SBF_DI Data Last Data
First Data
First Data Data Last Data
SB3 SB4
SB5
SB6
SBF_CK
SB1
SB2 SB2
SB7 SB8
G1
FB_CLK
GPIO Outputs
G2
G3 G4
GPIO Input s
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Electrical Characteristics
Freescale Semiconductor40
5.19 JTAG and Boundary Scan Timing
Figure 27. Test Clock Input Timing
Table 29. JTAG and Boundary Scan Timing
Num Characteristics1
1JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.
Min Max Unit
J1 TCLK Frequency of Operation DC 20 MHz
J2 TCLK Cycle Per iod 50 ns
J3 TCLK Clock Pulse Width 20 30 ns
J4 TCLK Rise and Fall Times 3 ns
J5 Boundary Scan Input Data Setup Time to TCLK Rise 5 ns
J6 Boun dary Scan Input Data Hold Time after TCLK Rise 20 ns
J7 TCLK Low to Boundary Scan Output Data Valid 33 ns
J8 TCLK Low to Boundary Scan Output High Z 3 3 ns
J9 TMS, TDI Input Data Setup Time to TC L K Ris e 4 ns
J10 TMS, TDI Input Data Hold Time after TCLK Rise 10 ns
J11 TCLK Low to TDO Data Valid 11 ns
J12 TCLK Low to TDO High Z 11 ns
J13 TRST Assert Time 50 ns
J14 TRST Setup Time (Negation) to TCLK High 10 ns
TCLK VIL
VIH
J4 J4
(input)
J2
J3 J3
Electrical Characteristics
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor 41
Figure 28. Boundary Scan (JTAG) Timing
Figure 29. Test Access Port Timing
Figure 30. TRST Timing
Input Data Valid
Output Data Valid
Output Data Valid
TCLK
Data Inputs
Data Outputs
Data Outputs
Data Outputs
VIL VIH
J7
J8
J7
J6J5
Input Data Valid
Output Data Valid
Output Data Valid
TCLK
TDI
TDO
TDO
TDO
TMS
VIL VIH
J9 J10
J11
J12
J11
TCLK
TRST
J13
J14
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Electrical Characteristics
Freescale Semiconductor42
5.20 Debug AC Timing Specifications
Table 30 lists specifications for the debug AC timing parameters shown in Figure 31 and Table 32.
Figure 31. Real-Time Trace AC Timing
Figure 3 2. BDM Serial Port AC Timing
Table 30. Debug AC Timin g Specification
Num Characteristic Min Max Units
D0 PSTCLK cycle time 1 1 tSYS
D1 PSTCLK rising to PSTDDATA valid 3.0 ns
D2 PSTCLK rising to PSTDDATA invalid 1.5 n s
D3 DSI-to-DSCLK setup 1 PSTCLK
D41
1DSCLK and DSI are synchronized inter nally. D4 is measured from the synchronized
DSCLK input relative to the rising ed ge of PSTCLK.
DSCLK-to-DSO hold 4 PSTCLK
D5 DSCLK cycle time 5 PSTCLK
D6 BKPT assertion time 1 PSTCLK
PSTCLK
PSTDDATA[7:0]
D0
D1 D2
Past
Current
DSCLK
DSI
DSO
Next
Current
D5
D3
D4
Power Consumption
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor 43
6 Power Consumption
All power consumption data is lab data measured on an M54455 EVB running the Freescale Linux BSP.
Figure 33. Power Consumption in Various Applications
Table 31. MCF4455 Application Power Consumption1
1All voltage rails at nominal values: IVDD = 1.5 V, EVDD = 3.3 V, and SDVDD = 1.8 V.
Core
Freq. Idle MP3
Playback TFTP
Download USB HS
File Copy Units
266 MHz
IVDD 215.6 288.8 274.4 263.7
mAEVDD 27.6 33.6 32.6 32.4
SDVDD 142.9 158.2 161.1 158.0
Total Power 672 829 809 787 mW
200 MHz
IVDD 163.8 228.0 213.8 207.9
mAEVDD 29.9 34.7 34.3 33.8
SDVDD 142.2 158.5 160.0 153.4
Total Power 601 742 722 699 mW
500
550
600
650
700
750
800
850
Idl e M P3 P la yba ck TF T P Download US B HS F i l e Copy
T o tal Po w er (m W)
266 MHz 200 MHz
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Power Consumption
Freescale Semiconductor44
All current consumption data is lab data measured on a single device using an evaluation board. Table 32 shows the typical
power consumption in low-power modes. These current measurements are taken after executing a STOP instruction.
Table 32. Current Consumption in Low-Power Modes1,2
1All values are measured on an M54455EVB with 1.5V IVDD power supply. Tests performed at room
temperature.
2Refer to the Power Management chapter in the MCF54455 Reference Manual for more information
on low-power modes.
Mode Voltage Supply System Frequency
166 (Typ)3
3All peripheral clocks are off e xcept U AR T0, INTC0, IA CK, edge port, reset controller , CCM, PLL, and
FlexBus pr ior to entering low-power mode.
200 (Typ)3233 (Typ)3266 (Typ)3266 (Peak)4
4All peripheral clocks on prior to entering low-power mode.
RUN IVDD (mA) 93.4 110.9 128.2 145.4 202.1
Power (mW) 140.1 166.3 192.4 218.1 303.2
WAIT/DOZE IVDD (mA) 28.0 32.7 37.5 41.1 100.2
Power (mW) 42.0 49.1 56.2 61.7 150.3
STOP 0 IVDD (mA) 17.1 19.8 22.5 25.2 25.2
Power (mW) 25.7 29.7 33.7 37.8 37.8
STOP 1 IVDD (mA) 17.9 19.8 22.4 25.1 25.1
Power (mW) 26.8 29.6 33.6 37.6 37.6
STOP 2 IVDD (mA)5.75.75.75.75.7
Power (mW) 8.6 8.6 8.6 8.6 8.6
STOP 3 IVDD (mA)1.81.81.81.81.8
Power (mW) 2.6 2.6 2.6 2.6 2.6
Package Information
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor 45
Figure 34. IVDD Power Consumption in Low-Power Modes
7 Package Information
The latest package outline drawings are avail able on the product summary pages on http://www.freescale.com/coldfire.
Table 33 lists the case outline numbers per device. Use these numbers in the web page’ s keyword search engine to find the latest
package outline drawings.
8 Product Documentation
Documentation is available from a local Freescale distributor, a Freescale sales office, the Freescale Literature Distribution
Center, or through the Freescale world-wide web address at http://www.freescale.com/coldfire.
Table 33. Package In format io n
Device Package Type Case Outline Numbers
MCF54450 256 MAPBGA 98ARH98219A
MCF54451
MCF54452
360 TEPBGA 98ARE10605D
MCF54453
MCF54454
MCF54455
0.0
25.0
50.0
75.0
100.0
125.0
150.0
175.0
200.0
225.0
250.0
275.0
300.0
325.0
166 200 233 266 266 (peak)
System Frequency (M Hz)
IVDD Power Consumpti on (m W)
Run
Wait/Doze
Stop 0
Stop 1
Stop 2
Stop 3
MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8
Revision History
Freescale Semiconductor46
9 Re vision History
Table 34 summarizes revisions to this document.
Table 34. Revision History
Rev. No. Date Summary of Changes
0 Sept 17, 2007 Initial public release.
1 Feb 15, 2008 Corrected VSS pin locations in MCF5445x signal information and muxing table for the 360 TEPBGA
package: changed “...M9, M16, M17...to “...M9–M14, M16...
Updated FlexBus read and write timing dia grams and added two notes before them.
Change FB_A[23:0] to FB_A[31:0] in FlexBus read and write timing diagrams.
Added power consumption section.
2 May 1, 2008 In Family Configuration s table, added PCI as feature on 256-pin devices. On these devices the
PCI_AD bus is limited to 24-bits.
In Absolute Maximum Ratings table, changed RTCVDD specification from “-0.3 to +4.0” to “-0.5 to
+2.0”.
In DC Electrical Specifications table:
Changed RTCVDD specification from 3.0–3.6 to 1.35–1.65.
Changed High Impedance (Off-State) Leakage Current (IOZ) specification from ±1 to ±10A, and
added footnote to this spec: “Worst-case tristate leakage current with only one I/O pin high. Since
all I/Os share power when high, the leakage current is distributed among them. With all I/Os high,
this spec reduces to ±2 A min/max.“
3 Dec 1, 2008 Changed “360PBGA” heading to “360 TEPBGA” in Table 6.
Changed the following specs in Table 13:
Minimum frequency of operation from — to 60MHz.
Maximum clock period from — to 16.67 ns.
4 Apr 12, 2009 R escinded previous errata, the 256-pin devices do not contain the PCI bus controller:
•In Table 4, in PCI_ADn signal section, added a separate row for each package, with PCI_ADn
signals shown as — for 256-pin devices.
•In Figure 5, changed the PCI_ADn pins to their alternative function, FB_An.
5 Apr 27, 2009 In Table 2 changed MCF54450VM180 to MCF54450CVM180 and changed it’s temperature entry
from “0 to +70 C” to “–40 to +85 C”.
6 Oct 15, 2009 In Table 8 changed Input Leakag e Current (I in) from ±1.0 to ±2.5A.
7 Oct 18, 2011 In Table 2, added MCF54452YVR200 part number, with temperature range from –40 to +105 C.
In Table 8, added Input Leakage Cu rrent (Iin) values for MCF54452YVR200 part number.
8 Jan 18, 2012 In Table 4, added pin N7 in the VSS pin list for the 360 TEPBGA.
Document Number : MCF54455
Rev. 8
02/2012
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fa x: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
F reescale Semiconductor assume any liability arising out of the application or use of an y
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freesca le Semiconductor data sheets and/or sp ecifications can and do v ary
in different applications and actual performance may vary ov er time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, int ended, or authorized for use as components in systems intended for
surgical implant into the body, or other applicat ions intended to support or sustain life,
or f or any oth er application in which the failure of the Fre escale Semiconducto r product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized appli cation, Buyer shall indemnif y and hold Freescale Semi conductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs , damages, and expenses, and reasonable attorney f ees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representativ e.
F or information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.
Freescale™ and the Freescale logo are trademarks of Free scale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007-2012. All rights reserved.