LM4906
1W, Bypass-Capacitor-less Audio Amplifier with Internal
Selectable Gain
General Description
The LM4906 is an audio power amplifier primarily designed
for demanding applications in mobile phones and other por-
table communication device applications. It is capable of
delivering 1W of continuous average power to an 8BTL
load with less than 1% distortion (THD+N) from a +5V power
supply.
The LM4906 is the first National Semiconductor Boomer
Power Amplifier that does not require an external PSRR
bypass capacitor. The LM4906 also has an internal select-
able gain of either 6dB or 12dB. In addition, no output
coupling capacitors or bootstrap capacitors are required
which makes the LM4906 ideally suited for cell phone and
other low voltage portable applications.
The LM4906 contains advanced pop and click circuitry that
eliminates noise, which would otherwise occur during
turn-on and turn-off transitions.
Boomer audio power amplifiers were designed specifically to
provide high quality output power with a minimal amount of
external components. The LM4906 features a low -power
consumption shutdown mode (the part is enabled by pulling
the SD pin high). Additionally, the LM4906 features an inter-
nal thermal shutdown protection mechanism.
Key Specifications
jImproved PSRR at 217Hz for +3V 71dB
jPower Output at +5V, THD+N = 1%, 81.0W (typ)
jPower Output at +3V, THD+N = 1%, 8390mW (typ)
jTotal shutdown power supply current 0.1µA (typ)
Features
nSelectable gain of 6dB (2V/V) or 12dB (4V/V)
nNo output or PSRR bypass capacitors required
nImproved “Click and Pop” suppression circuitry
nVery fast turn on time: 5ms (typ)
nMinimum external components
n2.6 - 5.5V operation
nBTL output can drive capacitive loads
nUltra low current shutdown mode (SD Low)
Applications
nPortable computers
nDesktop computers
nMultimedia monitors
Typical Application
Boomer®is a registered trademark of National Semiconductor Corporation.
200571B9
FIGURE 1. Typical Audio Amplifier Application Circuit
January 2005
LM4906 1W, Bypass-Capacitor-less Audio Amplifier with Internal Selectable Gain
© 2005 National Semiconductor Corporation DS200571 www.national.com
Connection Diagrams
MSOP Package MSOP Marking
20057102
Top View
Order Number LM4906MM
See NS Package Number MUB08A
200571F1
Z - Plant Code
X - Date Code
T - Die Traceability
LLP Package LD Marking
200571C3
Top View
Order Number LM4906LD
See NS Package Number LDA10B
200571F2
Z - Plant Code
XY - Date Code
T - Die Traceability
µArray LLP Package GR Marking
200571F8
Top View (Bump_side down)
Order Number LM4906GR
See NS Package Number GRA16A
200571G2
X - Date Code
TT - Die Traceability
LM4906
www.national.com 2
LM4906GR Pin Designation
Pin (Bump) Number Pin Function
A1 Shutdown
A2 No Connect
A3 V
O
2
A4 No Connect
B1 GND
B2 No Connect
B3 GND
B4 GND
C1 Gain Select
C2 IN
C3 No Connect
C4 V
DD
D1 No Connect
D2 No Connect
D3 V
O
1
D4 V
DD
LM4906
www.national.com3
Absolute Maximum Ratings (Note 2)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
Supply Voltage (Note 10) 6.0V
Storage Temperature −65˚C to +150˚C
Input Voltage −0.3V to V
DD
+0.3V
Power Dissipation (Notes 3, 11) Internally Limited
ESD Susceptibility (Note 4) 2000V
ESD Susceptibility (Note 5) 200V
Junction Temperature 150˚C
Thermal Resistance
θ
JC
(MSOP) 56˚C/W
θ
JA
(MSOP) 190˚C/W
θ
JC
(LLP) 12˚C/W
θ
JA
(LLP) 63˚C/W
θ
JA
(GRA) TBD˚C/W
θ
JC
(GRA) TBD˚C/W
Operating Ratings
Temperature Range
T
MIN
T
A
T
MAX
−40˚C T
A
85˚C
Supply Voltage 2.6V V
DD
5.5V
Electrical Characteristics V
DD
=5V (Notes 1, 2)
The following specifications apply for the circuit shown in Figure 1, unless otherwise specified. Limits apply for T
A
= 25˚C.
Symbol Parameter Conditions
LM4906 Units
(Limits)
Typical Limit
(Note 6) (Notes 7, 8)
I
DD
Quiescent Power Supply Current V
IN
= 0V, I
o
= 0A, No Load 3.5 7 mA (max)
V
IN
= 0V, I
o
= 0A, 8Load 4 8 mA (max)
I
SD
Shutdown Current V
SD
= GND 0.1 2 µA (max)
V
OS
Output Offset Voltage 7 35 mV (max)
P
o
Output Power THD+N = 1% (max);f=1kHz
R
L
=81.0 0.9 W (min)
T
WU
Wake-up time 5 ms
THD+N Total Harmonic Distortion+Noise P
o
= 0.4 Wrms; f = 1kHz 0.2 %
PSRR Power Supply Rejection Ratio
V
ripple
= 200mV sine p-p
Input terminated with 10
Gain at 6dB
67 (f =
217Hz)
70 (f = 1kHz)
dB
V
SDIH
Shutdown Voltage Input High SD Pin High = Part On 1.5 V (min)
V
SDIL
Shutdown Voltage Input Low SD Pin Low = Part Off 1.3 V (max)
Electrical Characteristics V
DD
=3V (Notes 1, 2)
The following specifications apply for the circuit shown in Figure 1, unless otherwise specified. Limits apply for T
A
= 25˚C.
Symbol Parameter Conditions
LM4906 Units
(Limits)
Typical Limit
(Note 6) (Notes 7, 8)
I
DD
Quiescent Power Supply Current V
IN
= 0V, I
o
= 0A, No Load 2.6 6 mA (max)
V
IN
= 0V, I
o
= 0A, 8Load 3 7 mA (max)
I
SD
Shutdown Current V
SD
= GND 0.1 2 µA (max)
V
OS
Output Offset Voltage 7 35 mV (max)
P
o
Output Power THD+N = 1% (max);f=1kHz
R
L
=8390 mW
T
WU
Wake-up time 4 ms
THD+N Total Harmonic Distortion+Noise P
o
= 0.15 Wrms; f = 1kHz 0.1 %
PSRR Power Supply Rejection Ratio
V
ripple
= 200mV sine p-p
Input terminated with 10
Gain at 6dB
71 (f =
217Hz)
73 (f = 1kHz)
dB
V
SDIH
Shutdown Voltage Input High SD Pin High = Part On 1.1 V (min)
V
SDIL
Shutdown Voltage Input Low SD Pin Low = Part Off 0.9 V (max)
LM4906
www.national.com 4
Note 1: All voltages are measured with respect to the ground pin, unless otherwise specified.
Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is
functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which
guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit
is given; however, the typical value is a good indication of device performance.
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX,θJA, and the ambient temperature TA. The maximum
allowable power dissipation is PDMAX =(T
JMAX–TA)/θJA or the number given in Absolute Maximum Ratings, whichever is lower. For the LM4906, see power derating
curves for additional information.
Note 4: Human body model, 100pF discharged through a 1.5kresistor.
Note 5: Machine Model, 220pF–240pF discharged through all pins.
Note 6: Typicals are measured at 25˚C and represent the parametric norm.
Note 7: Limits are guaranteed to National’s AOQL (Average Outgoing Quality Level).
Note 8: Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.
Note 9: ROUT is measured from the output pin to ground. This value represents the parallel combination of the 10koutput resistors and the two 20kresistors.
Note 10: If the product is in Shutdown mode and VDD exceeds 6V (to a max of 8V VDD), then most of the excess current will flow through the ESD protection circuits.
If the source impedance limits the current to a max of 10mA, then the device will be protected. If the device is enabled when VDD is greater than 5.5V and less than
6.5V, no damage will occur, although operation life will be reduced. Operation above 6.5V with no current limit will result in permanent damage.
Note 11: Maximum power dissipation in the device (PDMAX) occurs at an output power level significantly below full output power. PDMAX can be calculated using
Equation 1 shown in the Application Information section. It may also be obtained from the power dissipation graphs.
External Components Description
Components Functional Description
1. C
2
Input coupling capacitor which blocks the DC voltage at the amplifiers input terminals. Also creates a
highpass filter with R
i
at f
c
=1/(2πR
i
C
i
). Refer to the section, Proper Selection of External Components,
for an explanation of how to determine the value of C
i
.
2. C
1
Supply bypass capacitor which provides power supply filtering. Refer to the Power Supply Bypassing
section for information concerning proper placement and selection of the supply bypass capacitor.
LM4906
www.national.com5
Typical Performance Characteristics
THD+N vs Frequency
V
DD
= 5V, R
L
=8,
f = 1kHz, PWR = 500mW
THD+N vs Frequency
V
DD
= 3V, R
L
=8,
f = 1kHz, PWR = 250mW
200571C4 200571C5
THD+N vs Power Out
V
DD
= 5V, R
L
=8, f = 1kHz
THD+N vs Power Out
V
DD
= 3V, R
L
=8, f = 1kHz
200571C6 200571C7
Power Supply Rejection Ratio
vs Frequency
V
DD
= 5V, R
L
=8
Power Supply Rejection Ratio
vs Frequency
V
DD
= 3V, R
L
=8
200571E2 200571C9
LM4906
www.national.com 6
Typical Performance Characteristics (Continued)
Noise Floor
V
DD
= 5V, R
L
=8
80kHz Bandwith, Input to GND
Power Derating Curve
200571D0 200571E4
Power Dissipation
vs Output Power, V
DD
= 3V, R
L
=8
Power Dissipation
vs Output Power, V
DD
= 5V, R
L
=8
200571D1 200571D2
Shutdown Hysteresis Voltage
V
DD
= 5V, SD Mode = V
DD
(High)
Shutdown Hysteresis Voltage
V
DD
= 5V, SD Mode = V
DD
(Low)
200571D3 200571D4
LM4906
www.national.com7
Typical Performance Characteristics (Continued)
Shutdown Hysteresis Voltage
V
DD
= 3V, SD Mode = V
DD
(High)
Shutdown Hysteresis Voltage
V
DD
= 3V, SD Mode = GND (Low)
200571E5
200571D6
Output Power
vs Supply Voltage, R
L
=8
Output Power
vs Supply Voltage, R
L
=32
200571D7 200571D9
Output Power
vs Supply Voltage, R
L
=16
Frequency Response
vs Input Capacitor Size
200571D8
200571F3
LM4906
www.national.com 8
Typical Performance Characteristics (Continued)
PSRR Distribution
V
DD
= 5V, f = 1kHz, R
L
=8
PSRR Distribution
V
DD
= 5V, f = 217Hz, R
L
=8
200571F4 200571F5
PSRR Distribution
V
DD
= 3V, f = 1kHz, R
L
=8
PSRR Distribution
V
DD
= 3V, f = 217Hz, R
L
=8
200571F6 200571F7
LM4906
www.national.com9
Application Information
BRIDGE CONFIGURATION EXPLANATION
As shown in Figure 2, the LM4906 has two internal opera-
tional amplifiers. The first amplifier’s gain is either 6dB or
12dB depending on the gain select input (Low = 6dB, High =
12dB). The second amplifier’s gain is fixed by the two inter-
nal 20kresistors. Figure 2 shows that the output of ampli-
fier one serves as the input to amplifier two which results in
both amplifiers producing signals identical in magnitude, but
out of phase by 180˚. Consequently, the differential gain for
the IC is
A
VD
= 2 * (20k / 20k) or 2 * (40k / 20k)
By driving the load differentially through outputs Vo1 and
Vo2, an amplifier configuration commonly referred to as
“bridged mode” is established. Bridged mode operation is
different from the classical single-ended amplifier configura-
tion where one side of the load is connected to ground.
A bridge amplifier design has a few distinct advantages over
the single-ended configuration, as it provides differential
drive to the load, thus doubling output swing for a specified
supply voltage. Four times the output power is possible as
compared to a single-ended amplifier under the same con-
ditions. This increase in attainable output power assumes
that the amplifier is not current limited or clipped. In order to
choose an amplifier’s closed-loop gain without causing ex-
cessive clipping, please refer to the Audio Power Amplifier
Design section.
A bridge configuration, such as the one used in LM4906,
also creates a second advantage over single-ended amplifi-
ers. Since the differential outputs, Vo1 and Vo2, are biased
at half-supply, no net DC voltage exists across the load. This
eliminates the need for an output coupling capacitor which is
required in a single supply, single-ended amplifier configura-
tion. Without an output coupling capacitor, the half-supply
bias across the load would result in both increased internal
IC power dissipation and also possible loudspeaker damage.
POWER DISSIPATION
Power dissipation is a major concern when designing a
successful amplifier, whether the amplifier is bridged or
single-ended. A direct consequence of the increased power
delivered to the load by a bridge amplifier is an increase in
internal power dissipation. Since the LM4906 has two opera-
tional amplifiers in one package, the maximum internal
power dissipation is 4 times that of a single-ended amplifier.
The maximum power dissipation for a given application can
be derived from the power dissipation graphs or from Equa-
tion 1.
P
DMAX
=4*(V
DD
)
2
/(2π
2
R
L
) (1)
It is critical that the maximum junction temperature T
JMAX
of
150˚C is not exceeded. T
JMAX
can be determined from the
power derating curves by using P
DMAX
and the PC board foil
area. By adding copper foil, the thermal resistance of the
application can be reduced from the free air value of θ
JA
,
resulting in higher P
DMAX
values without thermal shutdown
protection circuitry being activated. Additional copper foil can
be added to any of the leads connected to the LM4906. It is
especially effective when connected to V
DD
, GND, and the
output pins. Refer to the application information on the
LM4906 reference design board for an example of good heat
sinking. If T
JMAX
still exceeds 150˚C, then additional
changes must be made. These changes can include re-
duced supply voltage, higher load impedance, or reduced
ambient temperature. Internal power dissipation is a function
of output power. Refer to the Typical Performance Charac-
teristics curves for power dissipation information for differ-
ent output powers and output loading.
POWER SUPPLY BYPASSING
As with any amplifier, proper supply bypassing is critical for
low noise performance and high power supply rejection. The
capacitor location on the power supply pin should be as
close to the device as possible. Typical applications employ
a 5V regulator with 10µF tantalum or electrolytic capacitor
and a ceramic bypass capacitor which aid in supply stability.
This does not eliminate the need for bypassing the supply
nodes of the LM4906.
TURNING ON THE LM4906
The power supply must first be applied before the application
of an input signal to the device and the ramp time to V
DD
must be less than 4ms, otherwise the wake-up time of the
device will be affected. After applying V
DD
, the LM4906 will
turn-on after an initial minimum threshold input signal of
7mV
RMS
, resulting in a generated output differential signal.
An input signal of less than 7mV
RMS
will result in a negligible
output voltage. Once the device is turned on, the input signal
can go below the 7mV
RMS
without shutting the device off. If,
however, SHUTDOWN or V
DD
is cycled, the minimum
threshold requirement for the input signal must first be met
again, with V
DD
ramping first.
SHUTDOWN FUNCTION
In order to reduce power consumption while not in use, the
LM4906 contains shutdown circuitry that is used to turn off
the amplifier’s bias circuitry. The device is placed into shut-
down mode by toggling the Shutdown pin Low/ground. The
trigger point for shutdown low is shown as a typical value in
the Supply Current vs Shutdown Voltage graphs in the Typi-
cal Performance Characteristics section. It is best to
switch between ground and supply for maximum perfor-
mance. While the device may be disabled with shutdown
voltages in between ground and supply, the idle current may
be greater than the typical value of 0.1µA. In either case, the
shutdown pin should be tied to a definite voltage to avoid
unwanted state changes.
In many applications, a microcontroller or microprocessor
output is used to control the shutdown circuitry, which pro-
vides a quick, smooth transition to shutdown. Another solu-
tion is to use a single-throw switch in conjunction with an
external pull-up resistor (or pull-down, depending on shut-
down high or low application). This scheme guarantees that
the shutdown pin will not float, thus preventing unwanted
state changes.
SELECTION OF INPUT CAPACITOR SIZE
Large input capacitors are both expensive and space hungry
for portable designs. Clearly, a certain sized capacitor is
needed to couple in low frequencies without severe attenu-
ation. But in many cases the speakers used in portable
systems, whether internal or external, have little ability to
reproduce signals below 100Hz to 150Hz. Thus, using a
large input capacitor may not increase actual system perfor-
mance.
In addition to system cost and size, click and pop perfor-
mance is effected by the size of the input coupling capacitor,
LM4906
www.national.com 10
Application Information (Continued)
C
i.
A larger input coupling capacitor requires more charge to
reach its quiescent DC voltage (nominally 1/2 V
DD
). This
charge comes from the output via the feedback and is apt to
create pops upon device enable. Thus, by minimizing the
capacitor size based on necessary low frequency response,
turn-on pops can be minimized.
AUDIO POWER AMPLIFIER DESIGN
A 1W/8Audio Amplifier
Given:
Power Output 1 Wrms
Load Impedance 8
Input Level 1 Vrms
Input Impedance 20 k
Bandwidth 100 Hz–20 kHz ±0.25 dB
A designer must first determine the minimum supply rail to
obtain the specified output power. By extrapolating from the
Output Power vs Supply Voltage graphs in the Typical Per-
formance Characteristics section, the supply rail can be
easily found.
Extra supply voltage creates headroom that allows the
LM4906 to reproduce peaks in excess of 1W without pro-
ducing audible distortion. At this time, the designer must
make sure that the power supply choice along with the
output impedance does not violate the conditions explained
in the Power Dissipation section.
The gain of the LM4906 is internally set at either 6dB or
12dB.
The final design step is to address the bandwidth require-
ments which must be stated as a pair of −3dB frequency
points. Five times away from a −3dB point is 0.17dB down
from passband response which is better than the required
±0.25dB specified.
f
L
= 100Hz/5=20Hz
f
H
= 20kHz*5=100kHz
As stated in the External Components section, R
in
(20k) in
conjunction with C
2
create a highpass filter.
C
2
1/(2π*20k*20Hz) = 0.397µF; use 0.39µF
200571C0
FIGURE 2. REFERENCE DESIGN BOARD SCHEMATIC
LM4906
www.national.com11
Application Information (Continued)
LM4906 MSOP DEMO BOARD ARTWORK
Top Layer
200571E6
Bottom Layer
200571E7
LM4906
www.national.com 12
Application Information (Continued)
LM4906 LD DEMO BOARD ARTWORK
Top Layer
200571E8
Bottom Layer
200571E9
LM4906
www.national.com13
Application Information (Continued)
Mono LM4906 Reference Design Boards
Bill of Material
Part Description Quantity Reference Designator
LM4906 Audio Amplifier 1 U1
Tantalum Capcitor, 1µF 1 C1
Ceramic Capacitor, 0.39µF 1 C2
Jumper Header Vertical Mount 2X1 0.100“ spacing 5 J1, J2, Input, Output, V
DD
PCB LAYOUT GUIDELINES
This section provides practical guidelines for mixed signal
PCB layout that involves various digital/analog power and
ground traces. Designers should note that these are only
"rule-of-thumb" recommendations and the actual results will
depend heavily on the final layout.
GENERAL MIXED SIGNAL LAYOUT
RECOMMENDATION
Power and Ground Circuits
For 2 layer mixed signal design, it is important to isolate the
digital power and ground trace paths from the analog power
and ground trace paths. Star trace routing techniques (bring-
ing individual traces back to a central point rather than daisy
chaining traces together in a serial manner) can have a
major impact on low level signal performance. Star trace
routing refers to using individual traces to feed power and
ground to each circuit or even device. This technique will
require a greater amount of design time but will not increase
the final price of the board. The only extra parts required will
be some jumpers.
Single-Point Power / Ground Connections
The analog power traces should be connected to the digital
traces through a single point (link). A "Pi-filter" can be helpful
in minimizing High Frequency noise coupling between the
analog and digital sections. It is further recommended to put
digital and analog power traces over the corresponding digi-
tal and analog ground traces to minimize noise coupling.
Placement of Digital and Analog Components
All digital components and high-speed digital signal traces
should be located as far away as possible from analog
components and circuit traces.
Avoiding Typical Design / Layout Problems
Avoid ground loops or running digital and analog traces
parallel to each other (side-by-side) on the same PCB layer.
When traces must cross over each other do it at 90 degrees.
Running digital and analog traces at 90 degrees to each
other from the top to the bottom side as much as possible will
minimize capacitive noise coupling and cross talk.
LM4906
www.national.com 14
Physical Dimensions inches (millimeters) unless otherwise noted
MSOP
Order Number LM4906MM
NS Package Number MUA08A
LLP
Order Number LM4906LD
NS Package Number LDA10B
LM4906
www.national.com15
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)
micro Array Pkg
Order Number LM4906GR
NS Package Number GRA16A
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves
the right at any time without notice to change said circuitry and specifications.
For the most current product information visit us at www.national.com.
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, and whose failure to perform when
properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result
in a significant injury to the user.
2. A critical component is any component of a life support
device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or
system, or to affect its safety or effectiveness.
BANNED SUBSTANCE COMPLIANCE
National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship
Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no ‘‘Banned
Substances’’ as defined in CSP-9-111S2.
National Semiconductor
Americas Customer
Support Center
Email: new.feedback@nsc.com
Tel: 1-800-272-9959
National Semiconductor
Europe Customer Support Center
Fax: +49 (0) 180-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790
National Semiconductor
Asia Pacific Customer
Support Center
Email: ap.support@nsc.com
National Semiconductor
Japan Customer Support Center
Fax: 81-3-5639-7507
Email: jpn.feedback@nsc.com
Tel: 81-3-5639-7560
www.national.com
LM4906 1W, Bypass-Capacitor-less Audio Amplifier with Internal Selectable Gain