HARRIS IRF640, IRF641, IRF642, S""""" [RF643, RF1S640, RF1S640SM 16A and 18A, 150V and 200V, 0.18 and 0.22 Ohm, July 1998 N-Channel Power MOSFETs Features Description * 16A and 18A, 150V and 200V These are N-Channel enhancement mode silicon gate _ power field effect transistors. They are advanced power * DS(ON) = 0.189 and 0.220 MOSFETs designed, tested, and guaranteed to withstand a Single Pulse Avalanche Energy Rated specified level of energy in the breakdown avalanche mode ; ooo _ of operation. All of these power MOSFETs are designed for * SOA Is Power Dissipation Limited applications such as switching regulators, switching conver- Nanosecond Switching Speed tors, motor drivers, relay drivers, and drivers for high power ; bipolar switching transistors requiring high speed and low * Linear Transfer Characteristics gate drive power. These types can be operated directly from + High Input Impedance integrated circuits. + Related Literature Formerly developmental type TA17422. - TB334 Guidelines for Soldering Surface Mount Components to PC Boards Symbol Ordering Information D PART NUMBER PACKAGE BRAND IRF640 TO-220AB IRF640 G IRF641 TO-220AB IRF641 IRF642 TO-220AB IRF642 s IRF643 TO-220AB IRF643 RF1S640 TO-262AA RF1S640 RF1S640SM TO-263AB RF1S640 NOTE: When ordering, use the entire part number. Add the suffix 9A to obtain the TO-263AB variant in the tape and reel, i.e., RF1IS640SM9A. Packaging JEDEC TO-220AB JEDEC TO-262AA SOURCE SOURCE DRAIN DRAIN DRAIN GATE (FLANGE) GATE DRAIN (FLANGE) a JEDEC TO-263AB DRAIN (FLANGE) GATE SOURCE CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures. File Number 1 585.4 Copyright Harris Corporation 1998 5-4IRF640, IRF641, IRF642, IRF643, RF1S640, RF1S640SM Absolute Maximum Ratings = T = 25C, Unless Otherwise Specified IRF640, RF1S640, RF1S640SM IRF641 IRF642 Drain to Source Breakdown Voltage (Note 1).......... Vos 200 150 200 Drain to Gate Voltage (Reg = 20kQ) (Note 1) ....... VpaGR 200 150 200 Continuous Drain Current..............0. 000.00 .00. ID 18 18 16 To = 100C... eee ID 11 11 10 Pulsed Drain Current (Note 3) ..................... IDM 72 72 64 Gate to Source Voliage ................. 000.0000. Vas +20 +20 +20 Maximum Power Dissipation ....................0.. Pp 125 125 125 Dissipation Derating Factor......................0.. 1.0 1.0 1.0 Single Pulse Avalanche Energy Rating (Note 4)......... Eas 580 580 580 Operating and Storage Temperature ............ Ty, Tsta -55 to 150 -55 to 150 -55 to 150 Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s......... TL 300 300 300 Package Body for 10s, See TB334............... Tpkg 260 260 260 IRF643 150 150 16 10 64 +20 125 1.0 580 -55 to 150 300 260 UNITS S ID(ON) X TDS(ON)MAX: Vas = 10V, IRF640, IRF641, (Figure 7) 18 - - A RF1S640, RF1S640SM IRF642, IRF643 16 - - A Gate to Source Leakage Current lass Veg = +20V - - +100 nA Drain to Source On Resistance (Note 1) | rps(oN) | !p = 10A, Vas = 10V, (Figures 8, 9) IRF640, IRF641, - 0.14 | 0.18 Q RF1S640, RF1S640SM IRF642, IRF643 - 0.20 0.22 Forward Transconductance (Note 1) Ofs Vps 2 10V, Ip = 11A, (Figure 12) 6.7 10 - $s Turn-On Delay Time ta(ON) Vpp = 100V, Ip = 18A, Reg = 9.12, Ry = 5.40, - 13 21 ns Rise Ti (Figures 17, 18) MOSFET Switching Times are ise lime tr Essentially Independent of Operating : 80 7 ns Turn-Off Delay Time ta(OFF) Temperature - 46 68 ns Fall Time tf - 35 54 ns Total Gate Charge QgcToT) | Vas= 10V, Ip = 18A, Vpg = 0.8 x Rated BVpss - 43 64 nC (Gate to Source + Gate to Drain) (Figures 14, 19, 20) Gate Charge is Essentially Independent of Operating Temperature Gate to Source Charge Qgs I@(REF) = 1.5mA - 8 - nC Gate to Drain Miller Charge Qga - 22 - nCIRF640, IRF641, IRF642, IRF643, RF1S640, RF1S640SM Electrical Specifications Tc = 25C, Unless Otherwise Specified (Continued) PARAMETER SYMBOL TEST CONDITIONS MIN | TYP | MAX | UNITS Input Capacitance Ciss Vos = 25V, Veg = OV, f = 1MHz, (Figure 11) - 1275 - pF Output Capacitance Coss - 400 - pF Reverse Transfer Capacitance Crss - 100 - pF Internal Drain Inductance Lp Measured From the Modified MOSFET - 3.5 - nH Contact Screw on Tab | Symbol Showing the to Center of Die Internal Devices Inductances Measured From the 9D - 4.5 - nH Drain Lead, 6mm (0.25in) From Package to Center of Die Internal Source Inductance Ls Measured From the - 7.5 - nH Source Lead, 6mm (0.25in) from Header to Source Bonding Pad Thermal Resistance Junction to Case Rasc - - 1 Cw Thermal Resistance RoJA Free Air Operation - - 62 C/W Junction to Ambient IRF640, IRF641, IRF642, IRF643, RF1S640 RoJA RF1S640SM Mounted on FR-4 Board with - - 62 Cw Minimum Mounting Pad Source to Drain Diode Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX | UNITS Continuous Source to Drain Current Isp Modified MOSFET - - 18 A : D Symbol Showing the Pulse Source to Drain Current ISDM Integral Reverse P-N - - 72 A (Note 2) Junction Diode G Ss Source to Drain Diode Voltage Vsp Ty = 25C, Isp = 18A, Vag = OV, (Figure 13) - - 2.0 v (Note 2) Reverse Recovery Time ter Ty = 25C, Isp = 18A, digp/dt = 100A/is 120 240 530 ns Reverse Recovery Charge QrRR Ty = 25C, Isp = 18A, digp/dt = 100A/is 1.3 2.8 5.6 pC NOTES: 2. Pulse Test: Pulse width < 300us, duty cycle < 2%. 3. Repetitive Rating: Pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3). 4. Vpp = 50V, starting Ty = 25C, L = 3.37mH, Re = 25, peak las = 18A. (Figures 15, 16).IRF640, IRF641, IRF642, IRF643, RF1S640, RF1S640SM Typical Performance CurveS unless Otherwise Specified 1.2 20 oc w 1.0 16 P| za = a 9 F ~ p _~ IRF640, IRF644 2 08 Z re RF1S640, RF1S640SM Ww Re J z o 12 3S 5 E 0.6 0 IRF642, IRF643 H a 8 ~ 2 oA x [=] 4 Z 0.2 a 0 Q 1 0 50 100 150 25 50 75 100 125 150 Tc, CASE TEMPERATURE (C) Tc, CASE TEMPERATURE (C) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs TEMPERATURE TEMPERATURE 10 0.5 0.2 0.1 0.05 Ppm 0.02 _ 0.01 ty 0.01 SINGLE PULSE ~!] to S a Zosc, TRANSIENT THERMAL IMPEDANCE (C/W) NOTES: DUTY FACTOR: D = ty/ty PEAK Ty = Ppm X Zouc + Te 0.001 10 10% 10 102 1071 1 10 tp, RECTANGULAR PULSE DURATION (s) FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE 1000 OPERATION IN THIS AREA MAY BE LIMITED BY 'DS(ON) 80us PULSE TEST Tc = 25C = 100 |!RF640, 1, RF1S640, SM z= ~ 10s aa b IRF642, 3 y 5 i |IRES40. 1, e rd 100us 3 IRF642, 3 z 10 ims z =z 4 oc a a 10ms a a a=) To = 25C pc 5V Ty = MAX RATED IRF640, 2 SINGLE PULSE IRF641, 3 RF1S640, SM Av 1 1 10 100 4000 0 12 24 36 48 60 Vps: DRAIN TO SOURCE VOLTAGE (V) Vps; DRAIN TO SOURCE VOLTAGE (V) FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. OUTPUT CHARACTERISTICSIRF640, IRF641, IRF642, IRF643, RF1S640, RF1S640SM Typical Performance Curves unless Otherwise Specified (Continued) 30 801s PULSE TEST Ves = 8V Ves = 10V 24 18 12 Ip, DRAIN CURRENT (A) 0 1.0 2.0 3.0 4.0 5.0 Vps; DRAIN TO SOURCE VOLTAGE (V) FIGURE 6. SATURATION CHARACTERISTICS 1.5 80s PULSE TEST 1.2 0.9 'ps(ON): DRAIN TO SOURCE ON RESISTANCE (Q) 0.6 03 Vgg= 10V a 0 0 15 30 45 60 75 Ip, DRAIN CURRENT (A) FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT Ip = 2501 1.05 LT 0.85 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 0.75 -60 -40 -20 0 20 40 60 80 100 120 140 160 Ty, JUNCTION TEMPERATURE (C) FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE 100 Vps 2 50V 80us PU 10 Ip, DRAIN CURRENT (A) 0.1 LSE TEST 2 4 6 8 Ves, GATE TO SOURCE VOLTAGE (V) FIGURE 7. TRANSFER CHARACTERISTICS 3.0 w Veg = 10V, Ip = 18A fz =) 2.4 a rons} ~ F2 z < 1.8 a) c= a i da ar 1.2 NZ ~ 50 wa < a = Lr o 0.6 - meen 2 0 -60 -40 -20 0O 20 40 60 80 100 120 140 Ty, JUNCTION TEMPERATURE (C) FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 3000 160 Vas = OV, f = 1MHz Ciss = Ces + Cap Crss = Cap 2400 Coss = Cps+Cep J + RN 8 1800 =e Zz z NT 3 neal < 1200 < o I NN. Coss Oo 600 a el _ Med) CRSS eel 10 Vps; DRAIN TO SOURCE VOLTAGE (V) 100 FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGEIRF640, IRF641, IRF642, IRF643, RF1S640, RF1S640SM Typical Performance Curves unless Otherwise Specified (Continued) 15 1000 PULSE DURATION = 80us PULSE DURATION = 80us 12 7 a 150C 25C 400 9 4 / 150C 6 10 9fs, TRANSCONDUCTANCE (S) Isp, SOURCE TO DRAIN CURRENT (A) 0 6 12 18 24 30 0 0.4 0.8 1.2 1.6 Ip, DRAIN CURRENT (A) Vsp, SOURCE TO DRAIN VOLTAGE (V) FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE 20 Ip = 28A Vps = 40V 1 oN Vps = 100V 16 12 Lf Vgs, GATE TO SOURCE VOLTAGE (V) 0 15 30 45 60 75 Qg(tor): TOTAL GATE CHARGE (nC) FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGEIRF640, IRF641, IRF642, IRF643, RF1S640, RF1S640SM Test Circuits and Waveforms Vps L VARY tp TO OBTAIN . REQUIRED PEAK las Rg i a = vopp 4 Ves . DUT tp 0 (es las 0.012 AAA aa VV FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT Rg iL Vas IT] my Al ile FIGURE 17. SWITCHING TIME TEST CIRCUIT Vps CURRENT [? SOPLY, REGULATOR ) SAME TYPE AS DUT oD _ G i a DUT 1, G(REF) os 0 W Ws Vos Ig CURRENT =e Ip CURRENT SAMPLING SAMPLING RESISTOR RESISTOR FIGURE 19. GATE CHARGE TEST CIRCUIT BVpss tp Vps / las Tl le es \ Vpp 7 7 \ \ / , \ , \ / \ s=| tav |a FIGURE 16. UNCLAMPED ENERGY WAVEFORMS | ton tore [<= ta(on) ta(orF)| t | tf Vv ns 90% 20% 0 10% + 10% 90% Ves 50% _ PULSE WIDTH 10% 0 FIGURE 18. RESISTIVE SWITCHING WAVEFORMS Vpp ee + _ a N g(TOT) KT Qga a we Qgs m>| * . Ds e IG(REF) FIGURE 20. GATE CHARGE WAVEFORMS