ky SGS-THOMSON MICROELECTRONICS BU806/FI BU807/FI FAST SWITCHING DARLINGTON TRANSISTORS DESCRIPTION The BU806/807 and BU806FI/807FI are silicon epitaxial planar NPN power transistors in Dar- lington configuration with integrated base-emitter speed-up diode, mounted respectively in TO-220 plastic package and ISOWATT220 fully isolated package. They are high voltage, high current de- vices for fast switching applications. In particular they can be used in horizontal output stages of 110CRT video displays. The BU806/FI are prima- rily intended for large screen, while the BU807/FI are for medium and small screens. ABSOLUTE MAXIMUM RATINGS TO-220 ISOWATT220 INTERNAL SCHEMATIC DIAGRAM Symbol Parameter BUS8O6/FI BU807/Fl Unit Vceo | Collector-base Voltage (le = 0) 400 330 Vv Vcev_ | Collector-emitter Voltage (Var = 6V) 400 330 V Vceo | Collector-emitter Voltage (Ip = 0} 200 150 v Veso | Emitter-base Voltage (Ic = 0) 6 v Ic Collector Current 8 A lom Collector Peak Current 15 A lom Damper Diode Peak Forward Current 10 A lb Base Current 2 A TO-220 |ISOWATT220 Prot Total Power Dissipation at T, < 25C 60 30 Ww Tstg Storage Temperature 65 to 150 c Tj Max. Operating Junction Temperature 150 C December 1988 1/6 311THERMAL DATA TO-220 |ISOWATT220 Rthj-case | Thermal Resistance Junction-case Max 2.08 4.16 C/W Rthj-amp | Thermal Resistance Junction-ambient Max 70 C/W ELECTRICAL CHARACTERISTICS (T.as = 25C unless otherwise specified) Symbol Parameter Test Conditions Min. Typ. Max. Unit loes Coliector Cutoff Current | for BU807/FI Voe =330V 100 HA (Vee = 0) for BU806/FI Voce = 400V 100 uA Icev Collector Cutoff Current | for BU807/FI Vee =330V 100 pA (Vee = 6V) for BU806/Fi Voce =400V 100 bA leBo Emitter Cutoff Current Veg <6V 35 mA (Ic = 0) Veceotsus)| Collector-emitter Io = 100mA for BU807/FI 150 Vv Sustaining Voltage for BU806/FI 200 Vv (Ig = 0) Vceisat) | Collector-emitter _ _ Saturation Voltage Ic = 5A lg = SOMA 1S v VBE (sat) Base-emitier Saturation Io = 5A lg =50mA 24 Vv Voltage Ve Damper Diode Forward Ie = 4A 2 Vv Voitage tott** Turn-off Time Ic = 5A la1 =50mA 0.4 1 us ton Turn-on Time RESISTIVE LOAD 0.35 us ts Storage Time Ic = 5A Ip1 = 50mA 0.55 Ls 7 Ip2 =- 500MA Voc = 100V ty Fall Time 0.2 US * Pulsed : pulse duration = 300 ps, duty cycle= 1.5 %. ** See Test Circuit. Safe Operating Areas. DC Current Gain. IA} ne, OPERATION 8U806/FI 6U807, 2/6 312 i 5 SGS-THOMSON 1 (AY MICROELECTRONICSCollectoremitter Saturation Voltage. VCEteat)s we . w! z oes 1 468 2 a 68 10? 10 1 Te (A) Base-emitter Saturation Voltage. Yeeisat), o 4 10" soe 2 ee y 4 6a wo? wn Ig Saturated Switching Characteristics (resistive load). 1 Ic fa) SGS-THOMSO! MICROELECTRONICS ki woe ee ~~ ee Collector-emitter Saturation Voltage. {y) 1 10 Ip (ma) Damper Diode. Ve w! 4 Fy o o6 8 2 . 6 8 wo" 1 Ig (A) Saturated Switching Characteristics (inductive load). t ts) 6 0 1 2 3 4 5 6 ictal 3/6 313TN oe be eee HORIZONTAL DEFLECTION TURNOFF TIME TEST CIRCUIT 6BOF 23pF| (2s0) Tuy, W7) q 33n = 330F : Tico) a 1Sw 53-7886: 2 L1 = Horizontal yoke = 200 uH. Tr1 = EHT Transformer SAREAtype 900914 or equivalent. {1 = Horizontal oscillator linear |. C. TDA 1180P TURN-OFF TIME WAVEFORM a Pa f 0 3v < tott & i 2 9 Turn- oft time is the time for the collector current I to decrease to WOMA after the collector to emitter voltage Vee has risen 3V into its flyback excursion $0857 4/6 314 ro] SGS-THOMSON MIGROELECTRONICSSe dy APPLICATION INFORMATION Horizontal deflection circuit using the darlington BU806 directly driven by the TDA1 180 (B & W TV set: large screen solution). Li = Linearity inductance 19 + 39 pH. Horizontal deflection circuit using the darlington BU807 directly driven by the TDA1180 (B & W TV set : small screen solution). 108 O- b azz] vERT = el oF |i ae F i sn A | nf TOA toe It LL wom ic pays 3 asuo hana S708 a pooee | azn laren See10 r Yore: aun | faznn Li= Linearity inductance 37 + 67 UH. scs- 56 ky7 SSS:THOMSON 315Blade Fl-Bua vei = ISOWATT220 PACKAGE CHARACTERISTICS AND APPLICATION ISOWATT220 is fully isolated to 2000V dc. Its ther- mal impedance, given in the data sheet, is optimi- sed to give efficient thermal conduction together with excellent electrical isolation. The structure of the case ensures optimum di- stances between the pins and heatsink. The {SO- WATT220 package eliminates the need for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture assures consistent heat spreader-to-heatsink capa- citance. ISOWATT220 thermal performance is equivalent to that of the standard part, mounted with a 0.1mm mi- ca washer. The thermally conductive plastic has a higher break- down rating and is less fragile than mica or plastic sheets. Power derating for |SOWATT220 packages is determined by : Tj- Te Po= - Rib THERMAL IMPEDANCE OF ISOWATT220 PACKAGE Figure 1 illustrates the elements contributing to the thermal resistance of a transistor heatsink assem- bly, using ISOWATT220 package. The total thermal resistance Rth(tot) is the sum of each of these elements. The transient thermal impedance, Zth for different pulse durations can be estimated as follows : 1-for a short duration power pulse less than 1ms : Zth < Rihy-c 2-for an intermediate power pulse of 5ms to 50ms : Zth = Rihu-c 6/6 i SGS-THOMSON 3-for long power pulses of the order of 500ms or greater : Zth = Rthu-c + Rihc-Hs + RthHs-amb It is often possible to discern these areas on tran- sient thermal impedance curves. Figure 1. Riht-c Rtnc-Hs AthHs-amb MICROELECTRONICS 316