8-/6-/4-Channel DAS with 16-
Bit, Bipolar
Input, Simultaneous Sampling ADC
Data Sheet
AD7606/AD7606-6/AD7606-4
Rev. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©20102012 Analog Devices, Inc. All rights reserved.
FEATURES
8/6/4 simultaneously sampled inputs
True bipolar analog input ranges: ±10 V, ±5 V
Single 5 V analog supply and 2.3 V to 5 V VDRIVE
Fully integrated data acquisition solution
Analog input clamp protection
Input buffer with 1 MΩ analog input impedance
Second-order antialiasing analog filter
On-chip accurate reference and reference buffer
16-bit ADC with 200 kSPS on all channels
Oversampling capability with digital filter
Flexible parallel/serial interface
SPI/QSPI™/MICROWIRE™/DSP compatible
Performance
7 kV ESD rating on analog input channels
95.5 dB SNR, 107 dB THD
±0.5 LSB INL, ±0.5 LSB DNL
Low power: 100 mW
Standby mode: 25 mW
64-lead LQFP package
APPLICATIONS
Power-line monitoring and protection systems
Multiphase motor control
Instrumentation and control systems
Multiaxis positioning systems
Data acquisition systems (DAS)
Table 1. High Resolution, Bipolar Input, Simultaneous
Sampling DAS Solutions
Resolution
Single-
Ended
Inputs
True
Differential
Inputs
Number of
Simultaneous
Sampling Channels
18 Bits AD7608 AD7609 8
16 Bits AD7606 8
AD7606-6 6
AD7606-4 4
14 Bits AD7607 8
FUNCTIONAL BLOCK DIAGRAM
V1
V1GND
R
FB
1MΩ
1MΩ R
FB
CLAMP
CLAMP
SECOND-
ORDE R LPF
T/H
V2
V2GND
R
FB
1MΩ
1MΩ R
FB
CLAMP
CLAMP
SECOND-
ORDE R LPF
T/H
V3
V3GND
R
FB
1MΩ
1MΩ R
FB
CLAMP
CLAMP
SECOND-
ORDE R LPF
T/H
V4
V4GND
R
FB
1MΩ
1MΩ R
FB
CLAMP
CLAMP
SECOND-
ORDE R LPF
T/H
V5
V5GND
R
FB
1MΩ
1MΩ R
FB
CLAMP
CLAMP
SECOND-
ORDE R LPF
T/H
V6
V6GND
R
FB
1MΩ
1MΩ R
FB
CLAMP
CLAMP
SECOND-
ORDE R LPF
T/H
V7
V7GND
R
FB
1MΩ
1MΩ R
FB
CLAMP
CLAMP
SECOND-
ORDE R LPF
T/H
V8
V8GND
R
FB
1MΩ
1MΩ R
FB
CLAMP
CLAMP
SECOND-
ORDE R LPF
T/H
8:1
MUX
AGND
BUSY
FRSTDATA
CONVS T A CONVS T B RESET RANGE
CONTROL
INPUTS
CLK O SC
REFIN/REFOUT
REF SELECT
AGND
OS 2
OS 1
OS 0
D
OUT
A
D
OUT
B
RD/SCLK
CS
PAR/SER/ BYTE SEL
V
DRIVE
16-BIT
SAR DIGITAL
FILTER PARALLEL/
SERIAL
INTERFACE
2.5V
REF
REFCAPB REFCAPA
SERIAL
PARALLEL
REGCAP
2.5V
LDO
REGCAP
2.5V
LDO
AV
CC
AV
CC
DB[15:0]
AD7606
08479-001
Figure 1.
AD7606/AD7606-6/AD7606-4 Data Sheet
Rev. C | Page 2 of 36
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
General Description ......................................................................... 3
Specifications ..................................................................................... 4
Timing Specifications .................................................................. 7
Absolute Maximum Ratings .......................................................... 11
Thermal Resistance .................................................................... 11
ESD Caution ................................................................................ 11
Pin Configurations and Function Descriptions ......................... 12
Typical Performance Characteristics ........................................... 17
Terminology .................................................................................... 21
Theory of Operation ...................................................................... 22
Converter Details........................................................................ 22
Analog Input ............................................................................... 22
ADC Transfer Function ............................................................. 23
Internal/External Reference ...................................................... 24
Typical Connection Diagram ................................................... 25
Power-Down Modes .................................................................. 25
Conversion Control ................................................................... 26
Digital Interface .............................................................................. 27
Parallel Interface (PAR/SER/BYTE SEL = 0) .......................... 27
Parallel Byte (PAR/SER/BYTE SEL = 1, DB15 = 1) ............... 27
Serial Interface (PAR /SER/BYTE SEL = 1) ............................. 27
Reading During Conversion ..................................................... 28
Digital Filter ................................................................................ 29
Layout Guidelines....................................................................... 32
Outline Dimensions ....................................................................... 34
Ordering Guide .......................................................................... 34
REVISION HISTORY
1/12—Rev. B to Rev. C
Changes to Analog Input Ranges Section ................................... 22
10/11Rev. A to Rev. B
Changes to Input High Voltage (VINH) and Input Low Voltage
(VINL) Parameters and Endnote 6, Table 2 ..................................... 4
Changes to Table 3 ............................................................................ 7
Changes to Table 4 .......................................................................... 11
Changes to Pin 32 Description, Table 6 ....................................... 13
Changes to Analog Input Clamp Protection Section ................. 22
Changes to Typical Connection Diagram Section ..................... 25
8/10Rev. 0 to Rev. A
Changes to Note 1, Table 2 .............................................................. 6
5/10Revision 0: Initial Ve rsion
Data Sheet AD7606/AD7606-6/AD7606-4
Rev. C | Page 3 of 36
GENERAL DESCRIPTION
The AD76061/AD7606-6/AD7606-4 are 16-bit, simultaneous
sampling, analog-to-digital data acquisition systems (DAS) with
eight, six, and four channels, respectively. Each part contains
analog input clamp protection, a second-order antialiasing filter,
a track-and-hold amplifier, a 16-bit charge redistribution successive
approximation analog-to-digital converter (ADC), a flexible
digital filter, a 2.5 V reference and reference buffer, and high
speed serial and parallel interfaces.
The AD7606/AD7606-6/AD7606-4 operate from a single 5 V
supply and can accommodate ±10 V and ±5 V true bipolar input
signals while sampling at throughput rates up to 200 kSPS for
all channels. The input clamp protection circuitry can tolerate
voltages up to ±16.5 V. The AD7606 has 1 MΩ analog input
impedance regardless of sampling frequency. The single supply
operation, on-chip filtering, and high input impedance eliminate
the need for driver op amps and external bipolar supplies. The
AD7606/AD7606-6/AD7606-4 antialiasing filter has a 3 dB cutoff
frequency of 22 kHz and provides 40 dB antialias rejection when
sampling at 200 kSPS. The flexible digital filter is pin driven, yields
improvements in SNR, and reduces the 3 dB bandwidth.
1 Patent pending.
AD7606/AD7606-6/AD7606-4 Data Sheet
Rev. C | Page 4 of 36
SPECIFICATIONS
VREF = 2.5 V external/internal, AVCC = 4.75 V to 5.25 V, VDRIVE = 2.3 V to 5.25 V, fSAMPLE = 200 kSPS, TA = TMIN to TMAX, unless otherwise noted.1
Table 2.
Parameter Test Conditions/Comments Min Typ Max Unit
DYNAMIC PERFORMANCE fIN = 1 kHz sine wave unless otherwise noted
Signal-to-Noise Ratio (SNR)2, 3 Oversampling by 16; ±10 V range; fIN = 130 Hz 94 95.5 dB
Oversampling by 16; ±5 V range; fIN = 130 Hz 93 94.5 dB
No oversampling; ±10 V Range 88.5 90 dB
No oversampling; ±5 V range 87.5 89 dB
Signal-to-(Noise + Distortion) (SINAD)2 No oversampling; ±10 V range 88 90 dB
No oversampling; ±5 V range
87
dB
Dynamic Range No oversampling; ±10 V range 90.5 dB
No oversampling; ±5 V range 90 dB
Total Harmonic Distortion (THD)2 −107 95 dB
Peak Harmonic or Spurious Noise (SFDR)2 108 dB
Intermodulation Distortion (IMD)2 fa = 1 kHz, fb = 1.1 kHz
Second-Order Terms −110 dB
Third-Order Terms 106 dB
Channel-to-Channel Isolation2 fIN on unselected channels up to 160 kHz 95 dB
ANALOG INPUT FILTER
Full Power Bandwidth −3 dB, ±10 V range 23 kHz
−3 dB, ±5 V range 15 kHz
−0.1 dB, ±10 V range 10 kHz
−0.1 dB, ±5 V range 5 kHz
t
GROUP DELAY
±10 V Range
µs
±5 V Range 15 µs
DC ACCURACY
Resolution No missing codes 16 Bits
Differential Nonlinearity2 ±0.5 ±0.99 LSB4
Integral Nonlinearity2 ±0.5 ±2 LSB
Total Unadjusted Error (TUE) ±10 V range ±6 LSB
±5 V range ±12 LSB
Positive Full-Scale Error2, 5 External reference ±8 ±32 LSB
Internal reference ±8 LSB
Positive Full-Scale Error Drift External reference ±2 ppm/°C
Internal reference ±7 ppm/°C
Positive Full-Scale Error Matching2 ±10 V range 5 32 LSB
±5 V range 16 40 LSB
Bipolar Zero Code Error
2,
6
±10 V range
±6
LSB
± 5 V range ±3 ±12 LSB
Bipolar Zero Code Error Drift ±10 V range 10 µV/°C
± 5 V range 5 µV/°C
Bipolar Zero Code Error Matching2 ±10 V range 1 8 LSB
±5 V range 6 22 LSB
Negative Full-Scale Error2, 5 External reference ±8 ±32 LSB
Internal reference ±8 LSB
Negative Full-Scale Error Drift External reference ±4 ppm/°C
Internal reference ±8 ppm/°C
Negative Full-Scale Error Matching2 ±10 V range 5 32 LSB
±5 V range 16 40 LSB
Data Sheet AD7606/AD7606-6/AD7606-4
Rev. C | Page 5 of 36
Parameter Test Conditions/Comments Min Typ Max Unit
ANALOG INPUT
Input Voltage Ranges RANGE = 1 ±10 V
RANGE = 0 ±5 V
Analog Input Current 10 V; see Figure 31 5.4 µA
5 V; see Figure 31
µA
Input Capacitance7 5 pF
Input Impedance See the Analog Input section 1
REFERENCE INPUT/OUTPUT
Reference Input Voltage Range See the ADC Transfer Function section 2.475 2.5 2.525 V
DC Leakage Current ±1 µA
Input Capacitance7 REF SELECT = 1 7.5 pF
Reference Output Voltage REFIN/REFOUT 2.49/
2.505
V
Reference Temperature Coefficient ±10 ppm/°C
LOGIC INPUTS
Input High Voltage (VINH) 0.7 × VDRIVE V
Input Low Voltage (VINL) 0.3 × VDRIVE V
Input Current (IIN) ±2 µA
Input Capacitance (CIN)7 5 pF
LOGIC OUTPUTS
Output High Voltage (VOH) ISOURCE = 100 µA VDRIVE 0.2 V
Output Low Voltage (VOL) ISINK = 100 µA 0.2 V
Floating-State Leakage Current ±1 ±20 µA
Floating-State Output Capacitance7 5 pF
Output Coding Twos complement
CONVERSION RATE
Conversion Time All eight channels included; see Table 3 4 µs
Track-and-Hold Acquisition Time 1 µs
Throughput Rate Per channel, all eight channels included 200 kSPS
POWER REQUIREMENTS
AVCC 4.75 5.25 V
VDRIVE 2.3 5.25 V
ITOTAL Digital inputs = 0 V or VDRIVE
Normal Mode (Static) AD7606 16 22 mA
AD7606-6 14 20 mA
AD7606-4
17
mA
Normal Mode (Operational)8 fSAMPLE = 200 kSPS
AD7606 20 27 mA
AD7606-6 18 24 mA
AD7606-4 15 21 mA
Standby Mode 5 8 mA
Shutdown Mode 2 6 µA
AD7606/AD7606-6/AD7606-4 Data Sheet
Rev. C | Page 6 of 36
Parameter Test Conditions/Comments Min Typ Max Unit
Power Dissipation
Normal Mode (Static) AD7606 80 115.5 mW
Normal Mode (Operational)8 fSAMPLE = 200 kSPS
AD7606 100 142 mW
AD7606-6
126
mW
AD7606-4 75 111 mW
Standby Mode 25 42 mW
Shutdown Mode 10 31.5 µW
1 Temperature range for the B version is −40°C to +85°C. The AD7606 is operational up to 125°C with throughput rates ≤ 160 kSPS, and the SNR typically reduces by
0.7 dB at 125°C.
2 See the Terminology section.
3 This specification applies when reading during a conversion or after a conversion. If reading during a conversion in parallel mode with VDRIVE = 5 V, SNR typically reduces by 1.5 dB
and THD by 3 dB.
4 LSB means least significant bit. With ±5 V input range, 1 LSB = 152.58 µV. With ±10 V input range, 1 LSB = 305.175 µV.
5 These specifications include the full temperature range variation and contribution from the internal reference buffer but do not include the error contribution from
the external reference.
6 Bipolar zero code error is calculated with respect to the analog input voltage. See the Analog Input Clamp Protection section.
7 Sample tested during initial release to ensure compliance.
8 Operational power/current figure includes contribution when running in oversampling mode.
Data Sheet AD7606/AD7606-6/AD7606-4
Rev. C | Page 7 of 36
TIMING SPECIFICATIONS
AVCC = 4.75 V to 5.25 V, VDRIVE = 2.3 V to 5.25 V, VREF = 2.5 V external reference/internal reference, TA = TMIN to TMAX, unless otherwise noted.1
Table 3.
Limit at TMIN, TMAX
(0.1 × VDRIVE and
0.9 × VDRIVE
Logic Input Levels)
Limit at TMIN, TMAX
(0.3 × VDRIVE and
0.7 × VDRIVE
Logic Input Levels)
Parameter Min Typ Max Min Typ Max Unit Description
PARALLEL/SERIAL/BYTE MODE
tCYCLE 1/throughput rate
5 5 µs Parallel mode, reading during or after conversion; or
serial mode: VDRIVE = 3.3 V to 5.25 V, reading during a
conversion using DOUTA and DOUTB lines
9.4 µs Serial mode reading after a conversion; VDRIVE = 2.7 V
9.7 10.7 µs Serial mode reading after a conversion; VDRIVE = 2.3 V,
DOUTA and DOUTB lines
t
CONV
2
Conversion time
3.45 4 4.15 3.45 4 4.15 µs Oversampling off; AD7606
3 3 µs Oversampling off; AD7606-6
2 2 µs Oversampling off; AD7606-4
7.87 9.1 7.87 9.1 µs Oversampling by 2; AD7606
16.05
18.8
16.05
18.8
µs
Oversampling by 4; AD7606
33 39 33 39 µs Oversampling by 8; AD7606
66 78 66 78 µs Oversampling by 16; AD7606
133 158 133 158 µs Oversampling by 32; AD7606
257 315 257 315 µs Oversampling by 64; AD7606
t
WAKE-UP STANDBY
100
100
µs
STBY rising edge to CONVST x rising edge; power-up
time from standby mode
tWAKE-UP SHUTDOWN
Internal Reference 30 30 ms STBY rising edge to CONVST x rising edge; power-up
time from shutdown mode
External Reference 13 13 ms STBY rising edge to CONVST x rising edge; power-up
time from shutdown mode
tRESET 50 50 ns RESET high pulse width
t
OS_SETUP
20
20
ns
BUSY to OS x pin setup time
tOS_HOLD 20 20 ns BUSY to OS x pin hold time
t1 40 45 ns CONVST x high to BUSY high
t2 25 25 ns Minimum CONVST x low pulse
t3 25 25 ns Minimum CONVST x high pulse
t
4
0
0
ns
BUSY falling edge to CS falling edge setup time
t53 0.5 0.5 ms Maximum delay allowed between CONVST A, CONVST
B rising edges
t6 25 25 ns Maximum time between last CS rising edge and BUSY
falling edge
t7 25 25 ns Minimum delay between RESET low to CONVST x high
PARALLEL/BYTE READ
OPERATION
t8 0 0 ns CS to RD setup time
t9 0 0 ns CS to RD hold time
t10 RD low pulse width
16 19 ns VDRIVE above 4.75 V
21
24
ns
V
DRIVE
above 3.3 V
25 30 ns VDRIVE above 2.7 V
32 37 ns VDRIVE above 2.3 V
t11 15 15 ns RD high pulse width
t12 22 22 ns CS high pulse width (see Figure 5); CS and RD linked
AD7606/AD7606-6/AD7606-4 Data Sheet
Rev. C | Page 8 of 36
Limit at TMIN, TMAX
(0.1 × VDRIVE and
0.9 × VDRIVE
Logic Input Levels)
Limit at TMIN, TMAX
(0.3 × VDRIVE and
0.7 × VDRIVE
Logic Input Levels)
Parameter Min Typ Max Min Typ Max Unit Description
t13 Delay from CS until DB[15:0] three-state disabled
16 19 ns VDRIVE above 4.75 V
20 24 ns VDRIVE above 3.3 V
25
30
ns
V
DRIVE
above 2.7 V
30 37 ns VDRIVE above 2.3 V
t144 Data access time after RD falling edge
16 19 ns VDRIVE above 4.75 V
21 24 ns VDRIVE above 3.3 V
25 30 ns VDRIVE above 2.7 V
32 37 ns VDRIVE above 2.3 V
t15 6 6 ns Data hold time after RD falling edge
t16 6 6 ns CS to DB[15:0] hold time
t17 22 22 ns Delay from CS rising edge to DB[15:0] three-state
enabled
SERIAL READ OPERATION
fSCLK Frequency of serial read clock
23.5 20 MHz VDRIVE above 4.75 V
17
15
MHz
V
DRIVE
above 3.3 V
14.5 12.5 MHz VDRIVE above 2.7 V
11.5 10 MHz VDRIVE above 2.3 V
t
18
Delay from CS until DOUTA/DOUTB three-state
disabled/delay from CS until MSB valid
15 18 ns VDRIVE above 4.75 V
20 23 ns VDRIVE above 3.3 V
30 35 ns VDRIVE = 2.3 V to 2.7 V
t
194
Data access time after SCLK rising edge
17 20 ns VDRIVE above 4.75 V
23 26 ns VDRIVE above 3.3 V
27 32 ns VDRIVE above 2.7 V
34 39 ns VDRIVE above 2.3 V
t20 0.4 tSCLK 0.4 tSCLK ns SCLK low pulse width
t21 0.4 tSCLK 0.4 tSCLK ns SCLK high pulse width
t22 7 7 SCLK rising edge to DOUTA/DOUTB valid hold time
t23 22 22 ns CS rising edge to DOUTA/DOUTB three-state enabled
FRSTDATA OPERATION
t24 Delay from CS falling edge until FRSTDATA three-
state disabled
15 18 ns VDRIVE above 4.75 V
20 23 ns VDRIVE above 3.3 V
25 30 ns VDRIVE above 2.7 V
30 35 ns VDRIVE above 2.3 V
t25 ns Delay from CS falling edge until FRSTDATA high,
serial mode
15 18 ns VDRIVE above 4.75 V
20
23
ns
V
DRIVE
above 3.3 V
25 30 ns VDRIVE above 2.7 V
30 35 ns VDRIVE above 2.3 V
t26 Delay from RD falling edge to FRSTDATA high
16 19 ns VDRIVE above 4.75 V
20
23
ns
V
DRIVE
above 3.3 V
25 30 ns VDRIVE above 2.7 V
30 35 ns VDRIVE above 2.3 V
Data Sheet AD7606/AD7606-6/AD7606-4
Rev. C | Page 9 of 36
Limit at TMIN, TMAX
(0.1 × VDRIVE and
0.9 × VDRIVE
Logic Input Levels)
Limit at TMIN, TMAX
(0.3 × VDRIVE and
0.7 × VDRIVE
Logic Input Levels)
Parameter Min Typ Max Min Typ Max Unit Description
t27 Delay from RD falling edge to FRSTDATA low
19 22 ns VDRIVE = 3.3 V to 5.25V
24 29 ns VDRIVE = 2.3 V to 2.7V
t
28
Delay from 16
th
SCLK falling edge to FRSTDATA low
17 20 ns VDRIVE = 3.3 V to 5.25V
22 27 ns VDRIVE = 2.3 V to 2.7V
t29 24 29 ns Delay from CS rising edge until FRSTDATA three-
state enabled
1 Sample tested during initial release to ensure compliance. All input signals are specified with tR = tF = 5 ns (10% to 90% of VDRIVE) and timed from a voltage level of 1.6 V.
2 In oversampling mode, typical tCONV for the AD7606-6 and AD7606-4 can be calculated using ((N × tCONV) + ((N − 1) × 1 µs)). N is the oversampling ratio. For the AD7606-6,
tCONV = 3 µs; and for the AD7606-4, tCONV = 2 µs.
3 The delay between the CONVST x signals was measured as the maximum time allowed while ensuring a <10 LSB performance matching between channel sets.
4 A buffer is used on the data output pins for these measurements, which is equivalent to a load of 20 pF on the output pins.
Timing Diagrams
t
CYCLE
t
3
t
5
t
2
t
4
t
1
t
7
t
RESET
t
CONV
CONV S T A,
CONV S T B
CONV S T A,
CONV S T B
BUSY
CS
RESET
08479-002
Figure 2. CONVST TimingReading After a Conversion
tCYCLE
t3
t5
t6
t2
t1
tCONV
CONV S T A,
CONV S T B
CONV S T A,
CONV S T B
BUSY
CS
t7
tRESET
RESET
08479-003
Figure 3. CONVST TimingReading During a Conversion
AD7606/AD7606-6/AD7606-4 Data Sheet
Rev. C | Page 10 of 36
DATA:
DB[15:0]
FRSTDATA
CS
RD
INVALID V1 V2 V3 V7 V8V4
t10
t8
t13
t24 t26 t27
t14
t11
t15
t9
t16
t17
t29
08479-004
Figure 4. Parallel Mode, Separate CS and RD Pulses
DATA:
DB[15:0]
FRSTDATA
CS AND RD
V1 V2 V3 V4 V5 V6 V7 V8
t
12
t
13
t
16
t
17
0
8479-005
Figure 5. CS and RD, Linked Parallel Mode
SCLK
D
OUT
A,
D
OUT
B
FRSTDATA
CS
DB15 DB14 DB13 DB1 DB0
t
18
t
19
t
21
t
20
t
22
t
23
t
29
t
28
t
25
08479-006
Figure 6. Serial Read Operation (Channel 1)
DATA: DB[ 7: 0 ]
FRSTDATA
CS
RD
INVALID HIGH
BYTE V 1 LOW
BYTE V 1 HIGH
BYTE V8 LOW
BYTE V 8
t
8
t
13
t
14
t
24
t
26
t
27
t
11
t
17
t
29
t
16
t
9
t
15
t
10
08479-007
Figure 7. BYTE Mode Read Operation
Data Sheet AD7606/AD7606-6/AD7606-4
Rev. C | Page 11 of 36
ABSOLUTE MAXIMUM RATINGS
TA = 25°C, unless otherwise noted.
Table 4.
Parameter Rating
AVCC to AGND −0.3 V to +7 V
VDRIVE to AGND −0.3 V to AVCC + 0.3 V
Analog Input Voltage to AGND1 ±16.5 V
Digital Input Voltage to AGND −0.3 V to VDRIVE + 0.3 V
Digital Output Voltage to AGND −0.3 V to VDRIVE + 0.3 V
REFIN to AGND −0.3 V to AVCC + 0.3 V
Input Current to Any Pin Except Supplies
1
±10 mA
Operating Temperature Range
B Version −40°C to +85°C
Storage Temperature Range 65°C to +150°C
Junction Temperature 150°C
Pb/SN Temperature, Soldering
Reflow (10 sec to 30 sec) 240 (+0)°C
Pb-Free Temperature, Soldering Reflow 260 (+0)°C
ESD (All Pins Except Analog Inputs) 2 kV
ESD (Analog Input Pins Only) 7 kV
1 Transient currents of up to 100 mA do not cause SCR latch-up.
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
THERMAL RESISTANCE
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages. These
specifications apply to a 4-layer board.
Table 5. Thermal Resistance
Package Type θJA θJC Unit
64-Lead LQFP 45 11 °C/W
ESD CAUTION
AD7606/AD7606-6/AD7606-4 Data Sheet
Rev. C | Page 12 of 36
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
AD7606
TOP VI EW
(No t t o Scal e)
64 63 62 61 60 59 58 57
V1GND
56 55 54 53 52 51 50 49
V5
V4
V6
V3
V2
V1
PIN 1
V7
V8
V2GND
V3GND
V4GND
V5GND
V6GND
V7GND
V8GND
DB13
DB12
DB11
DB14/HBEN
V
DRIVE
DB1
17 18 19 20 21 22 23 24 25
AGND
26 27 28 29 30 31 32
DB2
DB3
DB4
DB5
DB6
DB7/D
OUT
A
DB9
DB10
DB8/D
OUT
B
AGND
AV
CC 1
3
4
FRSTDATA
7
6
5
OS 2
2
8
9
10
12
13
14
15
16
11
DB0
BUSY
CONV S T B
CONV S T A
RANGE
RESET
RD/SCLK
CS
PAR/SER/BYTE SEL
OS 1
OS 0
STBY
DECO UP LING CAP P IN
DATA OUTP UT
POWER SUPPLY
ANALOG INPUT
GROUND PI N
DIGITAL OUTPUT
DIGITAL INPUT
REF E RE NCE INPUT /O UTPUT
DB15/BY TE SE L
REFIN/REFOUT
48
46
45
42
43
44
47
41
40
39
37
36
35
34
33
38
AGND
AV
CC
REFGND
REFCAPA
AGND
AGND
AGND
REFCAPB
REFGND
REGCAP
REGCAP
AV
CC
AV
CC
REF SELECT
08479-008
Figure 8. AD7606 Pin Configuration
AD7606-6
TOP VI EW
(No t t o Scal e)
64 63 62 61 60 59 58 57
V1GND
56 55 54 53 52 51 50 49
V4
AGND
V5
V3
V2
V1
PIN 1
V6
AGND
V2GND
V3GND
AGND
V4GND
V5GND
V6GND
AGND
DB13
DB12
DB11
DB14/HBEN
V
DRIVE
DB1
17 18 19 20 21 22 23 24 25
AGND
26 27 28 29 30 31 32
DB2
DB3
DB4
DB5
DB6
DB7/D
OUT
A
DB9
DB10
DB8/D
OUT
B
AGND
AV
CC 1
3
4
FRSTDATA
7
6
5
OS 2
2
8
9
10
12
13
14
15
16
11
DB0
BUSY
CONV S T B
CONV S T A
RANGE
RESET
RD/SCLK
CS
PAR/SER/BYTE SEL
OS 1
OS 0
STBY
DECO UP LING CAP P IN
DATA OUTP UT
POWER SUPPLY
ANALOG INPUT
GROUND PI N
DIGITAL OUTPUT
DIGITAL INPUT
REF E RE NCE INPUT /O UTPUT
DB15/BY TE SE L
REFIN/REFOUT
48
46
45
42
43
44
47
41
40
39
37
36
35
34
33
38
AGND
AV
CC
REFGND
REFCAPA
AGND
AGND
AGND
REFCAPB
REFGND
REGCAP
REGCAP
AV
CC
AV
CC
REF SELECT
08479-009
Figure 9. AD7606-6 Pin Configuration
Data Sheet AD7606/AD7606-6/AD7606-4
Rev. C | Page 13 of 36
AD7606-4
TOP VI EW
(No t t o Scal e)
64 63 62 61 60 59 58 57
V1GND
56 55 54 53 52 51 50 49
V3
AGND
V4
AGND
V2
V1
PIN 1
AGND
AGND
V2GND
AGND
AGND
V3GND
V4GND
AGND
AGND
DB13
DB12
DB11
DB14/HBEN
V
DRIVE
DB1
17 18 19 20 21 22 23 24 25
AGND
26 27 28 29 30 31 32
DB2
DB3
DB4
DB5
DB6
DB7/D
OUT
A
DB9
DB10
DB8/D
OUT
B
AGND
AV
CC 1
3
4
FRSTDATA
7
6
5
OS 2
2
8
9
10
12
13
14
15
16
11
DB0
BUSY
CONV S T B
CONV S T A
RANGE
RESET
RD/SCLK
CS
PAR/SER/BYTE SEL
OS 1
OS 0
STBY
DECO UP LING CAP P IN
DATA OUTP UT
POWER SUPPLY
ANALOG INPUT
GROUND PI N
DIGITAL OUTPUT
DIGITAL INPUT
REF E RE NCE INPUT /O UTPUT
DB15/BY TE SE L
REFIN/REFOUT
48
46
45
42
43
44
47
41
40
39
37
36
35
34
33
38
AGND
AV
CC
REFGND
REFCAPA
AGND
AGND
AGND
REFCAPB
REFGND
REGCAP
REGCAP
AV
CC
AV
CC
REF SELECT
08479-010
Figure 10. AD7606-4 Pin Configuration
Table 6. Pin Function Descriptions
Pin No. Type 1
Mnemonic
Description AD7606 AD7606-6 AD7606-4
1, 37, 38,
48
P AVCC AVCC AVCC Analog Supply Voltage, 4.75 V to 5.25 V. This supply voltage is applied to
the internal front-end amplifiers and to the ADC core. These supply pins
should be decoupled to AGND.
2, 26, 35,
40, 41, 47
P AGND AGND AGND Analog Ground. These pins are the ground reference points for all analog
circuitry on the AD7606. All analog input signals and external reference
signals should be referred to these pins. All six of these AGND pins should
connect to the AGND plane of a system.
5, 4, 3 DI OS [2:0] OS [2:0] OS [2:0] Oversampling Mode Pins. Logic inputs. These inputs are used to select the
oversampling ratio. OS 2 is the MSB control bit, and OS 0 is the LSB control
bit. See the Digital Filter section for more details about the oversampling
mode of operation and Table 9 for oversampling bit decoding.
6 DI PAR/SER/
BYTE SEL
PAR/SER/
BYTE SEL
PAR/SER/
BYTE SEL
Parallel/Serial/Byte Interface Selection Input. Logic input. If this pin is tied to
a logic low, the parallel interface is selected. If this pin is tied to a logic high,
the serial interface is selected. Parallel byte interface mode is selected when
this pin is logic high and DB15/BYTE SEL is logic high (see Table 8).
In serial mode, the RD/SCLK pin functions as the serial clock input. The
DB7/DOUTA pin and the DB8/DOUTB pin function as serial data outputs. When
the serial interface is selected, the DB[15:9] and DB[6:0] pins should be tied to
ground.
In byte mode, DB15, in conjunction with PAR/SER/BYTE SEL, is used to select
the parallel byte mode of operation (see Table 8). DB14 is used as the HBEN
pin. DB[7:0] transfer the 16-bit conversion results in two RD operations,
with DB0 as the LSB of the data transfers.
7 DI STBY STBY STBY Standby Mode Input. This pin is used to place the AD7606/AD7606-6/
AD7606-4 into one of two power-down modes: standby mode or shutdown
mode. The power-down mode entered depends on the state of the RANGE
pin, as shown in Table 7. When in standby mode, all circuitry, except the on-
chip reference, regulators, and regulator buffers, is powered down. When
in shutdown mode, all circuitry is powered down.
AD7606/AD7606-6/AD7606-4 Data Sheet
Rev. C | Page 14 of 36
Pin No. Type 1
Mnemonic
Description AD7606 AD7606-6 AD7606-4
8 DI RANGE RANGE RANGE Analog Input Range Selection. Logic input. The polarity on this pin deter-
mines the input range of the analog input channels. If this pin is tied to a
logic high, the analog input range is ±10 V for all channels. If this pin is tied to
a logic low, the analog input range is ±5 V for all channels. A logic change
on this pin has an immediate effect on the analog input range. Changing
this pin during a conversion is not recommended for fast throughput rate
applications. See the Analog Input section for more information.
9, 10 DI CONVST A,
CONVST B
CONVST A,
CONVST B
CONVST A,
CONVST B
Conversion Start Input A, Conversion Start Input B. Logic inputs. These
logic inputs are used to initiate conversions on the analog input channels.
For simultaneous sampling of all input channels, CONVST A and CONVST B
can be shorted together, and a single convert start signal can be applied.
Alternatively, CONVST A can be used to initiate simultaneous sampling: V1,
V2, V3, and V4 for the AD7606; V1, V2, and V3 for the AD7606-6; and V1
and V2 for the AD7606-4. CONVST B can be used to initiate simultaneous
sampling on the other analog inputs: V5, V6, V7, and V8 for the AD7606;
V4, V5, and V6 for the AD7606-6; and V3 and V4 for the AD7606-4. This is
possible only when oversampling is not switched on. When the CONVST A or
CONVST B pin transitions from low to high, the front-end track-and-hold
circuitry for the respective analog inputs is set to hold.
11 DI RESET RESET RESET Reset Input. When set to logic high, the rising edge of RESET resets the
AD7606/AD7606-6/AD7606-4. The part should receive a RESET pulse after
power-up. The RESET high pulse should typically be 50 ns wide. If a RESET
pulse is applied during a conversion, the conversion is aborted. If a RESET
pulse is applied during a read, the contents of the output registers reset
to all zeros.
12 DI RD/SCLK RD/SCLK RD/SCLK Parallel Data Read Control Input When the Parallel Interface Is Selected (RD)/
Serial Clock Input When the Serial Interface Is Selected (SCLK). When both
CS and RD are logic low in parallel mode, the output bus is enabled.
In serial mode, this pin acts as the serial clock input for data transfers.
The CS falling edge takes the DOUTA and DOUTB data output lines out
of three-state and clocks out the MSB of the conversion result. The rising
edge of SCLK clocks all subsequent data bits onto the DOUTA and DOUTB
serial data outputs. For more information, see the Conversion Control
section.
13 DI CS CS CS Chip Select. This active low logic input frames the data transfer. When
both CS and RD are logic low in parallel mode, the DB[15:0] output bus is
enabled and the conversion result is output on the parallel data bus lines.
In serial mode, CS is used to frame the serial read transfer and clock out
the MSB of the serial output data.
14 DO BUSY BUSY BUSY Busy Output. This pin transitions to a logic high after both CONVST A and
CONVST B rising edges and indicates that the conversion process has started.
The BUSY output remains high until the conversion process for all channels
is complete. The falling edge of BUSY signals that the conversion data is
being latched into the output data registers and is available to read after
a Time t4. Any data read while BUSY is high must be completed before the
falling edge of BUSY occurs. Rising edges on CONVST A or CONVST B have
no effect while the BUSY signal is high.
15 DO FRSTDATA FRSTDATA FRSTDATA Digital Output. The FRSTDATA output signal indicates when the first channel,
V1, is being read back on the parallel, byte, or serial interface. When the
CS input is high, the FRSTDATA output pin is in three-state. The falling
edge of CS takes FRSTDATA out of three-state. In parallel mode, the falling
edge of RD corresponding to the result of V1 then sets the FRSTDATA pin
high, indicating that the result from V1 is available on the output data bus.
The FRSTDATA output returns to a logic low following the next falling edge
of RD. In serial mode, FRSTDATA goes high on the falling edge of CS because
this clocks out the MSB of V1 on DOUTA. It returns low on the 16th SCLK
falling edge after the CS falling edge. See the Conversion Control section
for more details.
Data Sheet AD7606/AD7606-6/AD7606-4
Rev. C | Page 15 of 36
Pin No. Type 1
Mnemonic
Description AD7606 AD7606-6 AD7606-4
22 to 16 DO DB[6:0] DB[6:0] DB[6:0] Parallel Output Data Bits, DB6 to DB0. When PAR/SER/BYTE SEL = 0, these
pins act as three-state parallel digital input/output pins. When CS and RD
are low, these pins are used to output DB6 to DB0 of the conversion result.
When PAR/SER/BYTE SEL = 1, these pins should be tied to AGND. When
operating in parallel byte interface mode, DB[7:0] outputs the 16-bit con-
version result in two RD operations. DB7 (Pin 24) is the MSB; DB0 is the LSB.
23 P VDRIVE VDRIVE VDRIVE Logic Power Supply Input. The voltage (2.3 V to 5.25 V) supplied at this pin
determines the operating voltage of the interface. This pin is nominally at the
same supply as the supply of the host interface (that is, DSP and FPGA).
24 DO DB7/DOUTA DB7/DOUTA DB7/DOUTA Parallel Output Data Bit 7 (DB7)/Serial Interface Data Output Pin (DOUTA).
When PAR/SER/BYTE SEL = 0, this pins acts as a three-state parallel digital
input/output pin. When CS and RD are low, this pin is used to output DB7
of the conversion result. When PAR/SER/BYTE SEL = 1, this pin functions
as DOUTA and outputs serial conversion data (see the Conversion Control
section for more details). When operating in parallel byte mode, DB7 is
the MSB of the byte.
25 DO DB8/DOUTB DB8/DOUTB DB8/DOUTB Parallel Output Data Bit 8 (DB8)/Serial Interface Data Output Pin (DOUTB).
When PAR/SER/BYTE SEL = 0, this pin acts as a three-state parallel digital
input/output pin. When CS and RD are low, this pin is used to output
DB8 of the conversion result. When PAR/SER/BYTE SEL = 1, this pin functions
as DOUTB and outputs serial conversion data (see the Conversion Control
section for more details).
31 to 27
DO
DB[13:9]
DB[13:9]
DB[13:9]
Parallel Output Data Bits, DB13 to DB9. When
PAR
/SER/BYTE SEL = 0, these
pins act as three-state parallel digital input/output pins. When CS and RD
are low, these pins are used to output DB13 to DB9 of the conversion result.
When PAR/SER/BYTE SEL = 1, these pins should be tied to AGND.
32 DO/DI DB14/
HBEN
DB14/
HBEN
DB14/
HBEN
Parallel Output Data Bit 14 (DB14)/High Byte Enable (HBEN). When PAR/
SER/BYTE SEL = 0, this pin acts as a three-state parallel digital output pin.
When CS and RD are low, this pin is used to output DB14 of the conversion
result. When PAR/SER/BYTE SEL = 1 and DB15/BYTE SEL = 1, the AD7606/
AD7606-6/AD7606-4 operate in parallel byte interface mode. In parallel
byte mode, the HBEN pin is used to select whether the most significant byte
(MSB) or the least significant byte (LSB) of the conversion result is output first.
When HBEN = 1, the MSB is output first, followed by the LSB.
When HBEN = 0, the LSB is output first, followed by the MSB.
In serial mode, this pin should be tied to GND.
33 DO/DI DB15/
BYTE SEL
DB15/
BYTE SEL
DB15/
BYTE SEL
Parallel Output Data Bit 15 (DB15)/Parallel Byte Mode Select (BYTE SEL).
When PAR/SER/BYTE SEL = 0, this pin acts as a three-state parallel digital
output pin. When CS and RD are low, this pin is used to output DB15 of the
conversion result. When PAR/SER/BYTE SEL = 1, the BYTE SEL pin is used to
select between serial interface mode and parallel byte interface mode
(see Table 8). When PAR/SER/BYTE SEL = 1 and DB15/BYTE SEL = 0, the
AD7606 operates in serial interface mode. When PAR/SER/BYTE SEL = 1
and DB15/BYTE SEL = 1, the AD7606 operates in parallel byte interface mode.
34
DI
REF SELECT
REF SELECT
REF SELECT
Internal/External Reference Selection Input. Logic input. If this pin is set to
logic high, the internal reference is selected and enabled. If this pin is set to
logic low, the internal reference is disabled and an external reference
voltage must be applied to the REFIN/REFOUT pin.
36, 39 P REGCAP REGCAP REGCAP Decoupling Capacitor Pin for Voltage Output from Internal Regulator.
These output pins should be decoupled separately to AGND using a 1 μF
capacitor. The voltage on these pins is in the range of 2.5 V to 2.7 V.
AD7606/AD7606-6/AD7606-4 Data Sheet
Rev. C | Page 16 of 36
Pin No. Type 1
Mnemonic
Description AD7606 AD7606-6 AD7606-4
42 REF REFIN/
REFOUT
REFIN/
REFOUT
REFIN/
REFOUT
Reference Input (REFIN)/Reference Output (REFOUT). The on-chip reference
of 2.5 V is available on this pin for external use if the REF SELECT pin is set to
logic high. Alternatively, the internal reference can be disabled by setting
the REF SELECT pin to logic low, and an external reference of 2.5 V can be
applied to this input (see the Internal/External Reference section).
Decoupling is required on this pin for both the internal and external
reference options. A 10 μF capacitor should be applied from this pin to
ground close to the REFGND pins.
43, 46 REF REFGND REFGND REFGND Reference Ground Pins. These pins should be connected to AGND.
44, 45 REF REFCAPA,
REFCAPB
REFCAPA,
REFCAPB
REFCAPA,
REFCAPB
Reference Buffer Output Force/Sense Pins. These pins must be connected
together and decoupled to AGND using a low ESR, 10 μF ceramic capacitor.
The voltage on these pins is typically 4.5 V.
49 AI V1 V1 V1 Analog Input. This pin is a single-ended analog input. The analog input
range of this channel is determined by the RANGE pin.
50, 52 AI GND V1GND,
V2GND
V1GND,
V2GND
V1GND,
V2GND
Analog Input Ground Pins. These pins correspond to Analog Input Pin V1
and Analog Input Pin V2. All analog input AGND pins should connect to
the AGND plane of a system.
51 AI V2 V2 V2 Analog Input. This pin is a single-ended analog input. The analog input
range of this channel is determined by the RANGE pin.
53 AI/GND V3 V3 AGND Analog Input 3. For the AD7606-4, this is an AGND pin.
54 AI GND/
GND
V3GND V3GND AGND Analog Input Ground Pin. For the AD7606-4, this is an AGND pin.
55 AI/GND V4 AGND AGND Analog Input 4. For the AD7606-6 and the AD7606-4, this is an AGND pin.
56 AI GND/
GND
V4GND AGND AGND Analog Input Ground Pin. For the AD7606-6 and AD7606-4, this is an
AGND pin.
57 AI V5 V4 V3 Analog Inputs. These pins are single-ended analog inputs. The analog
input range of these channels is determined by the RANGE pin.
58 AI GND V5GND V4GND V3GND Analog Input Ground Pins. All analog input AGND pins should connect to
the AGND plane of a system.
59 AI V6 V5 V4 Analog Inputs. These pins are single-ended analog inputs.
60 AI GND V6GND V5GND V4GND Analog Input Ground Pins. All analog input AGND pins should connect to
the AGND plane of a system.
61
AI/GND
V7
V6
AGND
Analog Input Pins. For the AD7606-4, this is an AGND pin.
62 AI GND/
GND
V7GND V6GND AGND Analog Input Ground Pins. For the AD7606-4, this is an AGND pin.
63 AI/GND V8 AGND AGND Analog Input Pin. For the AD7606-4 and AD7606-6, this is an AGND pin.
64 AI GND/
GND
V8GND AGND AGND Analog Input Ground Pin. For the AD7606-4 and AD7606-6, this is an
AGND pin.
1 P is power supply, DI is digital input, DO is digital output, REF is reference input/output, AI is analog input, GND is ground.
Data Sheet AD7606/AD7606-6/AD7606-4
Rev. C | Page 17 of 36
TYPICAL PERFORMANCE CHARACTERISTICS
0
0 100k90k80k70k60k50k40k30k20k10k
–180
–160
–140
–120
–100
–80
–60
–40
–20
AMP LITUDE (d B )
INPUT FRE QUENCY ( Hz )
AV
CC
, V
DRIVE
= 5V
INT E RNAL REF E RE NCE
±10V RANG E
F
SAMPLE
= 200kSPS
F
IN
= 1kHz
16,384 POINT FFT
SNR = 90.17d B
THD = –106.25d B
08479-011
Figure 11. AD7606 FFT, ±10 V Range
0
0 100k90k80k70k60k50k40k30k20k10k
–180
–160
–140
–120
–100
–80
–60
–40
–20
AMP LITUDE (d B )
INPUT FRE QUENCY ( Hz )
AV
CC
, V
DRIVE
= 5V
INT E RNAL REF E RE NCE
±5V RANGE
F
SAMPLE
= 200kSPS
F
IN
= 1kHz
16,384 POINT FFT
SNR = 89.48d B
THD = –108.65d B
08479-012
Figure 12. AD7606 FFT Plot, ±5 V Range
–180
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
–130
–140
–150
–160
–170
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
AMP LITUDE (d B )
FREQUENCY ( kHz)
08479-031
AV
CC
, V
DRIVE
= 5V
INT E RNAL REF E RE NCE
±10V RANGE
F
SAMPLE
= 11. 5k S P S
T
A
= 25°C
F
IN
= 133Hz
8192 PO INT F FT
OS BY 16
SNR = 96.01d B
THD = –108.05d B
Figure 13. FFT Plot Oversampling By 16, ±10 V Range
2.0
060k50k40k30k20k10k
–2.0
–1.5
–1.0
–0.5
0
0.5
1.0
1.5
INL (LSB)
CODE
AV
CC
, V
DRIVE
= 5V
F
SAMPLE
= 200kSPS
T
A
= 25°C
INT E RNAL REF E RE NCE
±10V RANG E
08479-013
Figure 14. AD7606 Typical INL, ±10 V Range
1.0
060k50k40k30k20k10k
–1.0
–0.8
–0.6
–0.4
–0.2
0
0.4
0.2
0.6
0.8
DNL (LSB)
CODE
08479-014
AV
CC
, V
DRIVE
= 5V
F
SAMPLE
= 200kSPS
T
A
= 25°C
INT E RNAL REF E RE NCE
±10V RANGE
Figure 15. AD7606 Typical DNL, ±10 V Range
2.0
0 65,53657,34449,15240,96032,76824,57616,3848192
–2.0
–1.5
–1.0
–0.5
0
0.5
1.0
1.5
INL (LSB)
CODE
AV
CC
, V
DRIVE
= 5V
INT E RNAL REF E RE NCE
±5V RANGE
F
SAMPLE
= 200kSPS
T
A
= 25°C
08479-015
Figure 16. AD7606 Typical INL, ±5 V Range