International TOR Rectifier Advanced Process Technology Isolated Package Sink to Lead Creepage Dist. = 4.8mm e e @ High Voltage Isolation = 2.5KVRMS e e Fully Avalanche Rated Description Fifth Generation HEXFET Power MOSFETs from international Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design for which HEXFET Power MOSFETs are well known, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The TO-220 Full-Pak eliminates the need for additional insulating hardware in commercial-industrial applications. The moulding compound used provides a high isolation capability and a low thermal resistance between the tab and external heatsink. This isolation is equivalent to using a 100 micron mica barrier with standard TO-220 product. The Full-Pak is mounted to a heatsink using a single clip or by a single screw fixing. Absolute Maximum Ratings PD - 9.1673 IRFIZ24E HEXFET Power MOSFET D Voss = 60V Rogion) = 0.0719 Ip = 14A S TO-220 Full-Pak Parameter Max. Units Ip @ Te = 26C Continuous Drain Current, Vag @ 10V 14 Ip @ Te = 100C! Continuous Drain Current, Ves @ 10V 9.6 A lom Pulsed Drain Current 68 Pp @Tg = 25C Power Dissipation 29 Ww Linear Derating Factor 0.19 We Ves Gate-to-Source Voltage + 20 Vv Eas Singie Pulse Avalanche Energy @ 71 mJ lan Avalanche Current T 10 A Ear Repetitive Avalanche Energy 2.9 md dv/dt Peak Diode Recovery dv/dt @ 5.0 Vins Ty Operating Junction and -5 to+175 Tste Storage Temperature Range C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting torque, 6-32 or M3 screw 10 Ibfein (1.1Nem) Thermal Resistance Parameter Typ. Max. Units Rec dunction-to-Case _ 5.2 CW Rea Junction-to-Ambient 65 C-320 www.irf.com International IRFIZ24E ToR Rectifier Electrical Characteristics @ T, = 25C (unless otherwise specified) Parameter Min. | Typ. | Max. | Units Conditions Vieryoss Drain-to-Source Breakdown Voltage 60 j | Vs] Vas = OV, Ip = 250pA AVeryoss/ATs| Breakdown Voltage Temp. Coefficient | (0.0521 | V/C | Reference to 25C, Ip = imA Rpsion) Static Drain-to-Source On-Resistance|] 10.071] Q | Veg= 10V,lbp=7.8AO Vascth) Gate Threshold Voltage 20 | 140 ] V | Vps= Ves, Ip = 250uA Os Forward Transconductance 4h |] |] S | Vos = 25V, Ip = 10A loss Drain-to-Source Leakage Current = {= 125 | a Vos = 60V, Vas = OV _ - | 250 Vos = 48V, Veg = OV, Ty = 150C less Gate-to-Source Forward Leakage ~ | 100 nA Ves = 20V Gate-to-Source Reverse Leakage _ |-100 Vag = -20V Qg Total Gate Charge _ | 20 Ip = 10A Qgs Gate-to-Source Charge _ | 53 | nC | Vps=44V Qoa Gate-to-Drain ("Miller") Charge _ | 7.6 Vag = 10V, see figure 6 and 13 @ tavon) Tum-On Delay Time | 49] Vpp = 28V tr Rise Time _ 34 Ip = 10A Taio Tum-Off Delay Time = T7917 | " | Re=240 te Fall Time | 27 | Rp = 2.6Q, see figure 10 @ Lo internal Drain Inductance 45) aH om (oes) Ae = Ls Intermai Source inductance 7.54 from package . An and center of die contact s Ciss Input Capacitance | 370/ Ves = OV Coss Output Capacitance | 140] pF Vps = 25V |Crss Reverse Transfer Capacitance } 6 | f = 1.0MHz, see figure 5 Cc Drain to Sink Capacitance 12) f = 1.0MHz Source-Drain Ratings and Characteristics Parameter Min. | Typ. | Max. | Units Conditions is Continuous Source Current _ |. 14 MOSFET symbol > (Body Diode) A showing the (> iow Pulsed Source Current integral reverse 8 (Body Diode) im | 88 p-n junction diode. a Vsp Diode Forward Voltage _ | 1.3 Vv Ty = 28C, Ip = 7.BA, Vag = OV tr Reverse Recovery Time | 56} 83 ns | Ty = 28C, Ip = 10A Qn Reverse Recovery Charge | 120] 180 | pC | di/dt = 100A/Us Ge ton Forward Turn-On Time Intrinsic turn-on time is negligible (tum-on is dominated by Ls+Lp} Notes: @ Repetitive rating; pulse width limited by max. junction Pulse width < 300us; duty cycle < 2% temperature. (see figure 11) @ Voo = 25V, starting Ty = 25C, L = 1.0mMHRg = 250, lag = 10A. (see figure 12) & t=60s, f = 6OHz Uses IRFZ24N data and test conditions @ Ign < 10A, di/dt < 280A/ys, Vpp S Vieryoss, Ty S 475C www.irf.com C-321 IRFIZ24E BOTTON 4! lp , Drain-to-Source Current (A) sapoa d a od | 20ps PULSE WIDTH To = 25C o4 1 10 Vos: Drain-to-Source Voltage (V) 100 Fig 1. Typical Output Characteristics 100 + 2 fon ork fe - 4 ays 25c La ATi ie 10 Ip, Drain-to-Source Current (A) Apo V os= 25V 1 : 20us PULSE WIDTH 4 5 7 8 Q 10 Veg , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics C-322 R ygion) : Drain-to-Source On Resistance lp , Drain-to-Source Current (A) International TOR Rectifier 100 10 - 20us PULSE WIDTH Tg = 175C 0.1 1 10 4100 Vos: Drain-to-Source Voltage (V) Fig 2. Typical Output Characteristics 3.0 oy : Ip = 17A rT 25 ct? ; So + 2.0 . . os : i i : i S i Lop pot 4 . Le o : Ty : YH & : | | | = 15 + E joo pepe pe wen ip z | U1 = 410 1 Lat. i : be 0.5 + ' Vag = 10V 0.0 Sm GS 60 -40 -20 0 20 40 60 80 109 120 140 160 180 T, , Junction Temperature (C) Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com International IRFIZ24E TOR Rectifier 700 20 Veg = OV," f= 1MHz Ip = 10A ; | ae |Eiss =Cgs + Cog , Cgg SHORTED _ eee - --Vog = 44V if. 600 metUrsg = Ogg > Vos = 28Vi_ > __ 1... fosg= Cas + Coa > 16 28 | No, -=nar ' & : 500 a a . So ' a A 2 400 RC S ie & ; 3 & 300 2, Z oO 2 - aS \ 200 o : 4 100 > FOR TEST CIRCUIT 0 0 SEE FIGURE 13 1 10 400 0 4 8 12 16 20 Vpg . Drain-to-Source Voltage (V) Qg, Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Fig 6. Typical Gate Charge Vs. Drain-to-Source Voltage Gate-to-Source Voltage 100 1000 oo IN TES = | o e i Lead i od 5 < 3} z= 100 a= 2 a 3 2 40 , oO @ I. _ > | QO 2 : > 10 c a a ww ims To= 26C ' y= 175C ; : Vas = OV 1 Pulse Lioms 04 06 08 10 12 14 16 18 26 1 10 100 1000 Vgp . Source-to-Drain Voltage (V) Vpsg_., Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area Forward Voltage www.irf.com C-323 IRFIZ24E International Thermal Response (Z thc) 0.01 0.4 Tar Rectifier 15 140 , ' ' > Ni fe A tb E ' propos peop Top 4.28 > 120 7.24 12 2 ' BOTTOM 10A eon c | i <= wt 400 : = S 80-% c = i 3 6 60 Ne N . a 2 .. NN a @ 49 _ ma ! | a . 20 : ; : 2 pe beg eS 0 ire 6 Vop = 25V | , r 25 50 75 100 125 150 175 35 30 75 100. 128St=iSSS*TS a Tc , Case Temperature (C) Starting T, , Junction Temperature (C) Fig 9. Maximum Drain Current Vs. Fig 12c. Maximum Avalanche Energy Case Temperature Vs. Drain Current 10 SINGLE PULSE | RESPONSE); Notes: 1. Duty factor D=ty/t2 2. Peak Ty=P om Zinuc + To 0.00001 0.0001 0.001 0.01 0.1 ty, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal impedance, Junction-to-Case Mechanical drawings, Appendix A Part marking information, Appendix B Test Circuit diagrams, Appendix C C-324 www.irf.com