W681310 3V SINGLE-CHANNEL VOICEBAND CODEC Data Sheet -1- Publication Release Date: September 2005 Revision B13 W681310 1. GENERAL DESCRIPTION The W681310 is a general-purpose single channel PCM CODEC with pin-selectable -Law or A-Law companding. The device is compliant with the ITU G.712 specification. It operates from a single +3V power supply and is available in 20-pin SOG, SSOP and TSSOP package options. Functions performed include digitization and reconstruction of voice signals, and band limiting and smoothing filters required for PCM systems. W681310 performance is specified over the industrial temperature range of -40C to +85C. The W681310 includes an on-chip precision voltage reference and an additional power amplifier, capable of driving 300 loads differentially up to a level of 3.544V peak-to-peak. The analog section is fully differential, reducing noise and improving the power supply rejection ratio. The data transfer protocol supports both long-frame and short-frame synchronous communications for PCM applications, and IDL and GCI communications for ISDN applications. W681310 accepts eight master clock rates between 256 kHz and 4.800 MHz, and an on-chip pre-scaler automatically determines the division ratio for the required internal clock. For fast evaluation and prototyping purposes, the W681310DK development kit is available. 2. FEATURES * ApplIcations * VoIP, Voice over Networks * Digital telephone systems * Wireless voice devices * PABX/SOHO systems * Local loop card * SOHO routers * Fiber-to-curb equipment * Single +3V power supply (2.7V to 5.25V) * Typical power dissipation of 10 mW, power-down mode of 0.5 W * Fully-differential analog circuit design * On-chip precision reference of 0.886 V for a -5 dBm TLP at 600 * Push-pull power amplifiers with external gain adjustment with 300 load capability * Eight master clock rates of 256 kHz to 4.800 MHz * Enterprise phones * ISDN equipment * Pin-selectable -Law and A-Law companding (compliant with ITU G.711) * Modems/PC cards * CODEC A/D and D/A filtering compliant with ITU G.712 * Digital Voice Recorders * Industrial temperature range (-40C to +85C) * Packages: 20-pin SOG (SOP), SSOP and TSSOP * Pb-Free package options available -2- and communication W681310 3. BLOCK DIAGRAM Re Int PC cei erf M ve ace Receive PCM Interface BCLKR FSR PCMR G.712 CODEC G.711 /A -Law Tra Int ns PC erf mitM ace Transmit PCM Interface BCLKT FST PCMT PAO+ PAOPAI RO ROAO AI+ AI- /A-Law VREF 512 kHz 256 kHz Voltage reference VAG 8 kHz PUI Power Conditioning VDD 256 kHz, 512 kHz, 1536 kHz, 1544 kHz, 2048 kHz, 2560 kHz 4096 kHz & 4800 kHz Pre -Scaler scaler VSS MCLK -3- Publication Release Date: September 2005 Revision B13 W681310 4. TABLE OF CONTENTS 1. GENERAL DESCRIPTION.................................................................................................................. 2 2. FEATURES ......................................................................................................................................... 2 3. BLOCK DIAGRAM .............................................................................................................................. 3 4. TABLE OF CONTENTS ...................................................................................................................... 4 5. PIN CONFIGURATION ....................................................................................................................... 6 6. PIN DESCRIPTION ............................................................................................................................. 7 7. FUNCTIONAL DESCRIPTION............................................................................................................ 8 7.1. Transmit Path ................................................................................................................................ 8 7.2. Receive Path ................................................................................................................................. 9 7.3. Power Management....................................................................................................................... 9 7.3.1. Analog and Digital Supply ..................................................................................................... 10 7.3.2. Analog Ground Reference Bypass ....................................................................................... 10 7.3.3. Analog Ground Reference Voltage Outpt ............................................................................. 10 7.4. PCM INTERFACE ....................................................................................................................... 10 7.4.1. Long Frame Sync.................................................................................................................. 11 7.4.2. Short Frame Sync ................................................................................................................. 11 7.4.3. General Circuit Interface (GCI) ............................................................................................. 11 7.4.4. Interchip Digital Link (IDL)..................................................................................................... 12 7.4.5. System Timing ...................................................................................................................... 12 8. TIMING DIAGRAMS.......................................................................................................................... 13 9. ABSOLUTE MAXIMUM RATINGS.................................................................................................... 20 9.1. Absolute Maximum Ratings ......................................................................................................... 20 9.2. Operating Conditions ................................................................................................................... 20 10. ELECTRICAL CHARACTERISTICS ............................................................................................... 21 10.1. General Parameters .................................................................................................................. 21 10.2. Analog Signal Level and Gain Parameters ............................................................................... 22 10.3. Analog Distortion and Noise Parameters .................................................................................. 23 10.4. Analog Input and Output Amplifier Parameters......................................................................... 24 10.5. DIGITAL I/O ...............................................................................................................................26 10.5.1. -Law Encode Decode Characteristics............................................................................... 26 10.5.2. A-Law Encode Decode Characteristics .............................................................................. 27 10.5.3. PCM Codes for Zero and Full Scale ................................................................................... 28 10.5.4. PCM Codes for 0dBm0 Output ........................................................................................... 28 11. TYPICAL APPLICATION CIRCUIT................................................................................................. 29 12. PACKAGE SPECIFICATION .......................................................................................................... 31 -4- W681310 12.1. 20L SOG (SOP)-300mil ............................................................................................................. 31 12.2. 20L SSOP-209 mil ..................................................................................................................... 32 12.3. 20L TSSOP - 4.4X6.5mm .......................................................................................................... 33 13. ORDERING INFORMATION........................................................................................................... 34 14. VERSION HISTORY ....................................................................................................................... 35 -5- Publication Release Date: September 2005 Revision B13 W681310 5. PIN CONFIGURATION VREF ROPAI PAOPAO+ VDD FSR PCMR BCLKR PUI 1 20 2 19 3 18 4 17 5 6 7 SINGLE CHANNEL CODEC 16 15 14 8 13 9 12 10 11 SOG/SSOP/TSSOP -6- VAG AI+ AIAO /A /A-Law VSS FST PCMT BCLKT MCLK W681310 6. PIN DESCRIPTION Pin Name Pin No. Functionality VREF 1 This pin is used to bypass the on-chip VDD/2 voltage reference. It needs to be decoupled to VSS through a 0.1 F ceramic decoupling capacitor. No external loads should be tied to this pin. RO- 2 Inverting output of the receive smoothing filter. This pin can typically drive a 2 k load to 0.886 volt peak referenced to the analog ground level. PAI 3 This pin is the inverting input to the power amplifier. Its DC level is at the VAG voltage. PAO- 4 Inverting power amplifier output. The PAO- and PAO+ can drive a 300 load differentially to 1.772 volt peak referenced to the VAG voltage level. PAO+ 5 Non-inverting power amplifier output. The PAO- and PAO+ can drive a 300 load differentially to 1.772 volt peak referenced to the VAG voltage level. VDD 6 Power supply. This pin should be decoupled to VSS with a 0.1F ceramic capacitor. FSR 7 8 kHz Frame Sync input for the PCM receive section. This pin also selects channel 0 or channel 1 in the GCI and IDL modes. It can also be connected to the FST pin when transmit and receive are synchronous operations. PCMR 8 PCM input data receive pin. The data needs to be synchronous with the FSR and BCLKR pins. BCLKR 9 PCM receive bit clock input pin. This pin also selects the interface mode. The GCI mode is selected when this pin is tied to VSS. The IDL mode is selected when this pin is tied to VDD. This pin can also be tied to the BCLKT when transmit and receive are synchronous operations. PUI 10 Power up input signal. When this pin is tied to VDD, the part is powered up. When tied to VSS, the part is powered down. MCLK 11 System master clock input. Possible input frequencies are 256 kHz, 512 kHz, 1536 kHz, 1544 kHz, 2048 kHz, 2560 kHz, 4096 kHz & 4800 kHz. For a better performance, it is recommended to have the MCLK signal synchronous and aligned to the FST signal. This is a requirement in the case of 256 and 512 kHz frequency. BCLKT 12 PCM transmit bit clock input pin. This pin accepts clocks of 512 kHz to 6176 kHz in the GCI mode and 256 kHz to 4800kHz in all other PCM modes. PCMT 13 PCM output data transmit pin. The output data is synchronous with the FST and BCLKT pins. FST 14 8 kHz transmit frame sync input. This pin synchronizes the transmit data bytes. VSS 15 This is the supply ground. This pin should be connected to 0V. /A-Law 16 Compander mode select pin. -Law companding is selected when this pin is tied to VDD. A-Law companding is selected when this pin is tied to VSS. AO 17 Analog output of the first gain stage in the transmit path. AI- 18 Inverting input of the first gain stage in the transmit path. AI+ 19 Non-inverting input of the first gain stage in the transmit path. VAG 20 Mid-Supply analog ground pin, which supplies a VDD/2 volt reference voltage for all-analog signal processing. This pin should be decoupled to VSS with a 0.01F capacitor. This pin becomes high impedance when the chip is powered down. -7- Publication Release Date: September 2005 Revision B13 W681310 7. FUNCTIONAL DESCRIPTION W681310 is a single-rail, single channel PCM CODEC for voiceband applications. The CODEC complies with the specifications of the ITU-T G.712 recommendation. The CODEC also includes a complete -Law and A-Law compander. The -Law and A-Law companders are designed to comply with the specifications of the ITU-T G.711 recommendation. The block diagram in section 3 shows the main components of the W681310. The chip consists of a PCM interface, which can process long and short frame sync formats, as well as GCI and IDL formats. The pre-scaler of the chip provides the internal clock signals and synchronizes the CODEC sample rate with the external frame sync frequency. The power conditioning block provides the internal power supply for the digital and the analog section, while the voltage reference block provides a precision analog ground voltage for the analog signal processing. The main CODEC block diagram is shown in section 3. VA VAG G + Receive Path - PAO+ + PAO PAI 8 /A/ACont Control ol + D/A Converter w fC= 3400Hz H Smoot Smoothing n Filter 1 RO - Smoothing Smoot nFilter 2 Transmit Path AO 8 A/D Converter /A /A- Control Cont ++ ffCC == 200Hz 200 High H Pass High Filt Filter Pas fC== 3400Hz AntH-Aliasi Aliasing Ant i Filter n AI+ AI - Ant-Aliasi Ant-Aliasing Filter Figure 7.1 The W681310 Signal Path 7.1. Transmit Path The A-to-D path of the CODEC contains an analog input amplifier with externally configurable gain setting (see application examples in section 11). The device has an input operational amplifier whose output is the input to the encoder section. If the input amplifier is not required for operation it can be powered down and bypassed. In that case a single ended input signal can be applied to the AO pin or the AI- pin. The AO pin becomes high input impedance when the input amplifier is powered down. The input amplifier can be powered down by connecting the AI+ pin to VDD or VSS. The AO pin is selected as an input when AI+ is tied to VDD and the AI- pin is selected as an input when AI+ is tied to VSS (see Table 7.1). -8- W681310 AI+ Input Amplifier Input VDD Powered Down AO 1.2 to VDD-1.2 Powered Up AI+, AI- VSS Powered Down AI- Table 7.1 Input Amplifier Modes of operation When the input amplifier is powered down, the input signal at AO or AI- needs to be referenced to the analog ground voltage VAG. The output of the input amplifier is fed through a 3.4 kHz switched capacitor low pass filter to prevent aliasing of input signals above 4 kHz, due to the sampling at 8 kHz. The output of the 3.4 kHz low pass filter is filtered by a high pass filter with a 200 Hz cut-off frequency. The filters are designed according to the recommendations in the G.712 ITU-T specification. From the output of the high pass filter the signal is digitized. The signal is converted into a compressed 8-bit digital representation with either -Law or A-Law format. The -Law or A-Law format is pin-selectable through the /A-Law pin. The compression format can be selected according to Table 7.2. /A-Law Pin Format VSS A-Law VDD -Law Table 7.2. Pin-selectable Compression Format The digital 8-bit -Law or A-Law samples are fed to the PCM interface for serial transmission at the sample rate supplied by the external frame sync FST. 7.2. Receive Path The 8-bit digital input samples for the D-to-A path are serially shifted in by the PCM interface and converted to parallel data bits. During every cycle of the frame sync FSR, the parallel data bits are fed through the pin-selectable -Law or A-Law expander and converted to analog samples. The mode of expansion is selected by the /A-Law pin as shown in Table 7.2. The analog samples are filtered by a low-pass smoothing filter with a 3.4 kHz cut-off frequency, according to the ITU-T G.712 specification. A sin(x)/x compensation is integrated with the low pass smoothing filter. The output of this filter is buffered to provide the receive output signal RO-. The RO- output can be externally connected to the PAI pin to provide a differential output with high driving capability at the PAO+ and PAO- pins. By using external resistors (see section 11 for examples), various gain settings of this output amplifier can be achieved. If the transmit power amplifier is not in use, it can be powered down by connecting PAI to VDD. 7.3. POWER MANAGEMENT -9- Publication Release Date: September 2005 Revision B13 W681310 7.3.1. Analog and Digital Supply The power supply for the analog and digital parts of the W681310 must be 2.7V to 5.25V. This supply voltage is connected to the VDD pin. The VDD pin needs to be decoupled to ground through a 0.1 F ceramic capacitor. 7.3.2. Analog Ground Reference Bypass The system has an internal precision voltage reference which generates the VDD/2 mid-supply analog ground voltage. This voltage needs to be decoupled to VSS at the VREF pin through a 0.1 F ceramic capacitor. 7.3.3. Analog Ground Reference Voltage Outpt The analog ground reference voltage is available for external reference at the VAG pin. This voltage needs to be decoupled to VSS through a 0.01 F ceramic capacitor. The analog ground reference voltage is generated from the voltage on the VREF pin and is also used for the internal signal processing. 7.4. PCM INTERFACE The PCM interface is controlled by pins BCLKR, FSR, BCLKT & FST. The input data is received through the PCMR pin and the output data is transmitted through the PCMT pin. The modes of operation of the interface are shown in Table 7.3. BCLKR FSR Interface Mode 64 kHz to 4.800 MHz 8 kHz Long or Short Frame Sync VSS VSS ISDN GCI with active channel B1 VSS VDD ISDN GCI with active channel B2 VDD VSS ISDN IDL with active channel B1 VDD VDD ISDN IDL with active channel B2 Table 7.3 PCM Interface mode selections - 10 - W681310 7.4.1. Long Frame Sync The Long Frame Sync or Short Frame Sync interface mode can be selected by connecting the BCLKR or BCLKT pin to a 64 kHz to 4.800 MHz clock and connecting the FSR or FST pin to the 8 kHz frame sync. The device synchronizes the data word for the PCM interface and the CODEC sample rate on the positive edge of the Frame Sync signal. It recognizes a Long Frame Sync when the FST pin is held HIGH for two consecutive falling edges of the bit-clock at the BCLKT pin. The length of the Frame Sync pulse can vary from frame to frame, as long as the positive frame sync edge occurs every 125 sec. During data transmission in the Long Frame Sync mode, the transmit data pin PCMT will become low impedance when the Frame Sync signal FST is HIGH or when the 8 bit data word is being transmitted. The transmit data pin PCMT will become high impedance when the Frame Sync signal FST becomes LOW while the data is transmitted or when half of the LSB is transmitted. The internal decision logic will determine whether the next frame sync is a long or a short frame sync, based on the previous frame sync pulse. To avoid bus collisions, the PCMT pin will be high impedance for two frame sync cycles after every power down state. More detailed timing information can be found in the interface timing section. 7.4.2. Short Frame Sync The W681310 operates in the Short Frame Sync Mode when the Frame Sync signal at pin FST is HIGH for one and only one falling edge of the bit-clock at the BCLKT pin. On the following rising edge of the bit-clock, the W681310 starts clocking out the data on the PCMT pin, which will also change from high to low impedance state. The data transmit pin PCMT will go back to the high impedance state halfway the LSB. The Short Frame Sync operation of the W681310 is based on an 8-bit data word. When receiving data on the PCMR pin, the data is clocked in on the first falling edge after the falling edge that coincides with the Frame Sync signal. The internal decision logic will determine whether the next frame sync is a long or a short frame sync, based on the previous frame sync pulse. To avoid bus collisions, the PCMT pin will be high impedance for two frame sync cycles after every power down state. More detailed timing information can be found in the interface timing section. 7.4.3. General Circuit Interface (GCI) The GCI interface mode is selected when the BCLKR pin is connected to VSS for two or more frame sync cycles. It can be used as a 2B+D timing interface in an ISDN application. The GCI interface consists of 4 pins : FSC (FST), DCL (BCLKT), Dout (PCMT) & Din (PCMR). The FSR pin selects channel B1 or B2 for transmit and receive. Data transitions occur on the positive edges of the data clock DCL. The Frame Sync positive edge is aligned with the positive edge of the data clock DCLK. The data rate is running half the speed of the bit-clock. The channels B1 and B2 are transmitted consecutively. Therefore, channel B1 is transmitted on the first 16 clock cycles of DCL and B2 is transmitted on the second 16 clock cycles of DCL. For more timing information, see the timing section. The GCI interface supports bit clocks of 512 kHz to 6176 kHz for data rates of 256 kHz to 3088 kHz. - 11 - Publication Release Date: September 2005 Revision B13 W681310 7.4.4. Interchip Digital Link (IDL) The IDL interface mode is selected when the BCLKR pin is connected to VDD for two or more frame sync cycles. It can be used as a 2B+D timing interface in an ISDN application. The IDL interface consists of 4 pins : IDL SYNC (FST), IDL CLK (BCLKT), IDL TX (PCMT) & IDL RX (PCMR). The FSR pin selects channel B1 or B2 for transmit and receive. The data for channel B1 is transmitted on the first positive edge of the IDL CLK after the IDL SYNC pulse. The IDL SYNC pulse is one IDL CLK cycle long. The data for channel B2 is transmitted on the eleventh positive edge of the IDL CLK after the IDL SYNC pulse. The data for channel B1 is received on the first negative edge of the IDL CLK after the IDL SYNC pulse. The data for channel B2 is received on the eleventh negative edge of the IDL CLK after the IDL SYNC pulse. The transmit signal pin IDL TX becomes high impedance when not used for data transmission and also in the time slot of the unused channel. For more timing information, see the timing section. 7.4.5. System Timing The system can work at 256 kHz, 512 kHz, 1536 kHz, 1544 kHz, 2048 kHz, 2560 kHz, 4096 kHz & 4800 kHz master clock rates. The system clock is supplied through the master clock input MCLK and can be derived from the bit-clock if desired. An internal pre-scaler is used to generate a fixed 256 kHz and 8 kHz sample clock for the internal CODEC. The pre-scaler measures the master clock frequency versus the Frame Sync frequency and sets the division ratio accordingly. If the Frame Sync is LOW for the entire frame sync period while the MCLK and BCLK pin clock signals are still present, the W681310 will enter the low power standby mode. Another way to power down is to set the PUI pin to LOW. When the system needs to be powered up again, the PUI pin needs to be set to HIGH and the Frame Sync pulse needs to be present. It will take two Frame Sync cycles before the pin PCMT will become low impedance. - 12 - W681310 8. TIMING DIAGRAMS T FTRH M T F T R SM TM CK L TM CK H T R ISE T FA L L M CLK TM CK T FS T F SL F ST T FTRH BCLK T 0 T FTRS 1 T FTFH 2 3 T FD TD TBCK H 4 5 6 7 T B DTD PC M T D7 D6 8 T H ID D5 D4 D3 D2 TBCK L 0 1 TBCK T H ID D1 D0 M SB L SB T FS T F SL F SR T FRRH BCLK R 0 T FRRS 1 T FRFH 2 3 TBCK H 4 5 6 7 8 TBCK L 0 1 TBCK PC M R D7 M SB TDRS D6 D5 D4 D3 D2 D1 D0 L SB TDRH Figure 8.1 Long Frame Sync PCM Timing - 13 - Publication Release Date: September 2005 Revision B13 W681310 SYMBOL DESCRIPTION 1/TFS FST, FSR Frequency 1 MIN TYP MAX UNIT --- 8 --- kHz TFSL FST / FSR Minimum Low Width TBCK sec 1/TBCK BCLKT, BCLKR Frequency 64 --- 4800 TBCKH BCLKT, BCLKR HIGH Pulse Width 50 --- --- ns TBCKL BCLKT, BCLKR LOW Pulse Width 50 --- --- ns TFTRH BCLKT 0 Falling Edge to FST Rising Edge Hold Time 20 --- --- ns TFTRS FST Rising Edge to BCLKT 1 Falling edge Setup Time 80 --- --- ns TFTFH BCLKT 2 Falling Edge to FST Falling Edge Hold Time 50 --- --- ns TFDTD FST Rising Edge to Valid PCMT Delay Time --- --- 60 ns TBDTD BCLKT Rising Edge to Valid PCMT Delay Time --- --- 60 ns THID Delay Time from the Later of FST Falling Edge, or 10 --- 60 ns kHz BCLKT 8 Falling Edge to PCMT Output High Impedance TFRRH BCLKR 0 Falling Edge to FSR Rising Edge Hold Time 20 --- --- ns TFRRS FSR Rising Edge to BCLKR 1 Falling edge Setup Time 80 --- --- ns TFRFH BCLKR 2 Falling Edge to FSR Falling Edge Hold Time 50 --- --- ns TDRS Valid PCMR to BCLKR Falling Edge Setup Time 0 --- --- ns TDRH PCMR Hold Time from BCLKR Falling Edge 50 --- --- ns Table 8.1 Long Frame Sync PCM Timing Parameters 1 TFSL must be at least TBCK - 14 - W681310 T FTRHM T F T R SM TM CK L TM CK H T R ISE T FA L L M CLK TM CK T FS T FTFH T FTFS F ST T FTRS T FTRH BCLK T -1 0 TBCK H 1 2 3 T B D TD D7 PC M T 4 5 6 7 0 8 TBDTD D6 D5 D3 D2 1 TBCK T H ID D4 TBCK L D1 D0 M SB L SB T FS T FRFH T FRFS F SR TFRRS T FRRH BCLK R -1 0 TBCK H 1 2 3 4 5 6 7 TBCK L 0 8 1 TBCK PC M R D7 M SB TDRS D6 D5 D4 D3 D2 D1 D0 L SB T DRH Figure 8.2 Short Frame Sync PCM Timing - 15 - Publication Release Date: September 2005 Revision B13 W681310 SYMBOL DESCRIPTION MIN TYP MAX UNIT 1/TFS FST, FSR Frequency --- 8 --- kHz 1/TBCK BCLKT, BCLKR Frequency 64 --- 4800 kHz TBCKH BCLKT, BCLKR HIGH Pulse Width 50 --- --- ns TBCKL BCLKT, BCLKR LOW Pulse Width 50 --- --- ns TFTRH BCLKT -1 Falling Edge to FST Rising Edge Hold Time 20 --- --- ns TFTRS FST Rising Edge to BCLKT 0 Falling edge Setup Time 80 --- --- ns TFTFH BCLKT 0 Falling Edge to FST Falling Edge Hold Time 50 --- --- ns TFTFS FST Falling Edge to BCLKT 1 Falling Edge Setup Time 50 --- --- ns TBDTD BCLKT Rising Edge to Valid PCMT Delay Time 10 --- 60 ns THID Delay Time from BCLKT 8 Falling Edge to PCMT Output High Impedance 10 --- 60 ns TFRRH BCLKR -1 Falling Edge to FSR Rising Edge Hold Time 20 --- --- ns TFRRS FSR Rising Edge to BCLKR 0 Falling edge Setup Time 80 --- --- ns TFRFH BCLKR 0 Falling Edge to FSR Falling Edge Hold Time 50 --- --- ns TFRFS FSR Falling Edge to BCLKR 1 Falling Edge Setup Time 50 --- --- ns TDRS Valid PCMR to BCLKR Falling Edge Setup Time 0 --- --- ns TDRH PCMR Hold Time from BCLKR Falling Edge 50 --- --- ns Table 8.2 Short Frame Sync PCM Timing Parameters - 16 - W681310 TFS F ST T F SF H T F SR S T F SR H BCLK T -1 0 1 TBCK H 2 3 4 T B D TD PC M T D7 D6 5 6 7 8 T H ID TB DTD D5 D4 D3 D2 D1 D0 M SB L SB T DRS PC M R D7 9 D6 10 11 12 14 D7 D6 D3 D2 D1 16 17 D0 D7 M SB T H ID TB DTD D5 D4 D3 D2 D1 D0 L SB M SB L SB 18 TBCK TDRS M SB 15 TB DTD TDRH D5 D4 13 TBCK L D6 BCH = 0 B 1 C hannel TDRH D5 D4 D3 D2 D1 D0 L SB BCH = 1 B 2 C hannel Figure 8.3 IDL PCM Timing SYMBOL DESCRIPTION MIN TYP MAX UNIT 1/TFS FST Frequency --- 8 --- kHz 1/TBCK BCLKT Frequency 256 --- 4800 kHz TBCKH BCLKT HIGH Pulse Width 50 --- --- ns TBCKL BCLKT LOW Pulse Width 50 --- --- ns TFSRH BCLKT -1 Falling Edge to FST Rising Edge Hold Time 20 --- --- ns TFSRS FST Rising Edge to BCLKT 0 Falling edge Setup Time 60 --- --- ns TFSFH BCLKT 0 Falling Edge to FST Falling Edge Hold Time 20 --- --- ns TBDTD BCLKT Rising Edge to Valid PCMT Delay Time 10 --- 60 ns THID Delay Time from the BCLKT 8 Falling Edge (B1 channel) or BCLKT 18 Falling Edge (B2 Channel) to PCMT Output High Impedance 10 --- 50 ns TDRS Valid PCMR to BCLKT Falling Edge Setup Time 20 --- --- ns TDRH PCMR Hold Time from BCLKT Falling Edge 75 --- --- ns Table 8.3 IDL PCM Timing Parameters - 17 - Publication Release Date: September 2005 Revision B13 W681310 T FS F ST T FSF H T F SR H TBCK H T FSR S TBCK L BCLK T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 T FDTD PC M T D7 D6 T B DTD D5 D4 D3 D2 T H ID D1 D0 TDRS D7 D7 D6 T B DTD D5 D4 D3 D2 D1 D0 L SB D6 TDRS TDRH D5 D4 D3 D2 M SB D1 T H ID TBCK L SB M SB M SB PC M R T B DTD D0 D7 D6 T DRH D5 D4 D3 D2 D1 D0 L SB M SB BCH = 0 B 1 C hannel L SB BCH = 1 B 2 C hannel Figure 8.4 GCI PCM Timing SYMBOL DESCRIPTION MIN TYP MAX 1/TFST FST Frequency 1/TBCK --- 8 --- kHz BCLKT Frequency 512 --- 6176 kHz TBCKH BCLKT HIGH Pulse Width 50 --- --- ns TBCKL BCLKT LOW Pulse Width 50 --- --- ns TFSRH BCLKT 0 Falling Edge to FST Rising Edge Hold Time 20 --- --- ns TFSRS FST Rising Edge to BCLKT 1 Falling edge Setup Time 60 --- --- ns TFSFH BCLKT 1 Falling Edge to FST Falling Edge Hold Time 20 --- --- ns TFDTD FST Rising Edge to Valid PCMT Delay Time --- --- 60 ns TBDTD BCLKT Rising Edge to Valid PCMT Delay Time --- --- 60 ns THID Delay Time from the BCLKT 16 Falling Edge (B1 channel) or BCLKT 32 Falling Edge (B2 Channel) to PCMT Output High Impedance 10 --- 50 ns TDRS Valid PCMR to BCLKT Rising Edge Setup Time 20 --- --- ns TDRH PCMR Hold Time from BCLKT Rising Edge --- --- 60 ns Table 8.4 GCI PCM Timing Parameters - 18 - UNIT W681310 SYMBOL DESCRIPTION 1/TMCK Master Clock Frequency TYP MIN --- 256 MAX --- UNIT kHz 512 1536 1544 2048 2560 4096 4800 TMCKH / TMCK MCLK Duty Operation Cycle for 256 kHz TMCKH Minimum Pulse Width HIGH for MCLK(512 kHz or Higher) 50 --- --- ns TMCKL Minimum Pulse Width LOW for MCLK (512 kHz or Higher) 50 --- --- ns TFTRHM MCLK falling Edge to FST Rising Edge Hold Time 50 --- --- ns TFTRSM FST Rising Edge to MCLK Falling edge Setup Time 50 --- --- ns TRISE Rise Time for All Digital Signals --- --- 50 ns TFALL Fall Time for --- --- 50 ns All Digital Signals 45% 55% Table 8.5 General PCM Timing Parameters - 19 - Publication Release Date: September 2005 Revision B13 W681310 9. ABSOLUTE MAXIMUM RATINGS 9.1. ABSOLUTE MAXIMUM RATINGS Condition Value Junction temperature 1500C Storage temperature range -650C to +1500C Voltage Applied to any pin (VSS - 0.3V) to (VDD + 0.3V) Voltage applied to any pin (Input current limited to +/-20 mA) (VSS - 1.0V) to (VDD + 1.0V) VDD - VSS -0.5V to +6V 1. Stresses above those listed may cause permanent damage to the device. Exposure to the absolute maximum ratings may affect device reliability. Functional operation is not implied at these conditions. 9.2. OPERATING CONDITIONS Condition Value 0 0 Industrial operating temperature -40 C to +85 C Supply voltage (VDD) +2.7V to +5.25V Ground voltage (VSS) 0V Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device. - 20 - W681310 10. ELECTRICAL CHARACTERISTICS 10.1. GENERAL PARAMETERS Conditions Min (2) Typ (1) Max (2) Units 0.6 V Symbol Parameters VIL Input LOW Voltage VIH Input HIGH Voltage VOL PCMT Output LOW Voltage IOL = 1.6 mA VOH PCMT Output HIGH Voltage IOL = -1.6 mA IDD VDD Current (Operating) - ADC + DAC No Load 3.3 5 ISB VDD Current (Standby) FST & FSR =Vss ; PUI=VDD 10 100 Ipd VDD Current (Power Down) PUI= Vss 0.1 10 A IIL Input Leakage Current VSS 150 ohms + 6 AI+ 20 1 27K FST BCLKT PCMT AI- PAO+ W681310 VSS 1.0 uF 16 10 MODE SELECT POWER CONTROL 15 DIFFERENTIAL AUDIO IN + VDD U2 27K 0.1 uF Figure 11.1 Typical circuit for Differential Analog I/O's VDD 18 AUDIO IN 1.0 uF 0.01 uF AUDIO OUT RL > 2K ohms AUDIO OUT RL > 150 ohms 0.1 uF 27K 19 27K 20 1 2 27K 3 27K 4 5 100 uF AO FST BCLKT PCMT AIAI+ MCLK VAG VREF PCMR BCLKR FSR RO- 14 12 13 11 8 9 7 8 KHz Frame Sy nc 2.048 MHz Bit Clock PCM OUT PCM IN PAI PAOPAO+ W681310 VSS 17 27K u/A PUI 16 10 MODE SELECT POWER CONTROL 15 1.0 uF VDD U3 27K 6 0.1 uF Figure 11.2 Typical circuit for Single Ended Analog I/O's - 29 - Publication Release Date: September 2005 Revision B13 W681310 VDD 1K 1.0 uF ELECTRET MICROPHONE 3.9K 100pF 3.9K 100pF 62K 0.01 uF 0.1 uF 27K 1.5K AO 18 27K 27K FST BCLKT PCMT AI- 19 AI+ 20 1 MCLK VAG VREF 2 PCMR BCLKR FSR RO- 3 14 12 13 8 KHz Frame Sy nc 2.048 MHz Bit Clock 11 PCM OUT 8 9 7 PCM IN PAI 4 PAO- 5 PAO+ W681310 u/A PUI VSS 1.0 uF 17 VDD U4 62k + 6 22 uF 0.1 uF 16 10 MODE SELECT POWER CONTROL 15 1.5K SPEAKER Figure 11.3 Handset Interface 18 1.0 uF 19 600 TRANSFORMER 600 OHM 1:1 27K 0.01 uF 0.1 uF 20 1 2 3 27K 4 5 VDD AO FST BCLKT PCMT AIAI+ MCLK VAG VREF PCMR BCLKR FSR RO- 11 8 9 7 PAO+ 8 KHz Frame Sy nc 4.096 MHz Bit Clock PCM OUT PCM IN B1/B2 SELECT PAO- W681310 u/A PUI Figure 11.4 Transformer Interface Circuit in GCI mode - 30 - 14 12 13 PAI VSS 27K U5 17 15 27K 0.1 uF 6 VDD 16 10 MODE SELECT POWER CONTROL W681310 12. PACKAGE SPECIFICATION 12.1. 20L SOG (SOP)-300MIL SMALL OUTLINE PACKAGE (SAME AS SOG & SOIC) DIMENSIONS 1 2 c E HE L 1 1 D 02 O A Y SEATING e SYMBOL GAUGE A b DIMENSION (MM) DIMENSION (INCH) MIN. MAX. MIN. MAX. A 2.35 2.65 0.093 0.104 A1 0.10 0.30 0.004 0.012 b 0.33 0.51 0.013 0.020 c 0.23 0.32 0.009 0.013 E 7.40 7.60 0.291 0.299 D 12.60 13.00 0.496 0.512 e 1.27 BSC 0.050 BSC HE 10.00 10.65 0.394 0.419 Y - 0.10 - 0.004 L 0.40 1.27 0.016 0.050 0 0 8 0 8 - 31 - Publication Release Date: September 2005 Revision B13 W681310 12.2. 20L SSOP-209 MIL SHRINK SMALL OUTLINE PACKAGE DIMENSIONS D 1 2 DTEAIL HE E 1 1 b A A SEATING SEATING Y e b L A L DETAIL DIMENSION (MM) DIMENSION (INCH) SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. A - - 2.00 - - 0.079 A1 0.05 - - 0.002 - - A2 1.65 1.75 1.85 0.065 0.069 - b 0.22 - 0.38 0.009 - 0.015 c 0.09 - 0.25 0.004 - 0.010 D 6.90 7.20 7.50 0.272 0.283 0.295 E 5.00 5.30 5.60 0.197 0.209 0.220 HE 7.40 7.80 8.20 0.291 0.307 0.323 e - 0.65 - - 0.0256 - L 0.55 0.75 0.95 0.021 0.030 0.037 L1 - 1.25 - - 0.050 - Y - - 0.10 - - 0.004 0 0 - 8 0 - 8 - 32 - W681310 12.3. 20L TSSOP - 4.4X6.5MM PLASTIC THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) DIMENSIONS SYMBOL DIMENSION (MM) NOM. MAX. 1.20 A A1 0.05 - 0.15 A2 0.80 0.90 1.05 0.031 0.035 0.041 E 4.30 4.40 4.50 0.169 0.173 0.177 HE MIN. - DIMENSION (INCH) NOM. MAX. 0.047 MIN. - 0.002 6.40 BSC - 0.006 .252 BSC D 6.40 6.50 6.60 0.252 0.256 0.260 L 0.50 0.60 0.75 0.020 0.024 0.030 0.30 0.007 L1 b 1.00 REF 0.19 e c 0 Y - 0.039 REF 0.65 BSC - 0.012 0.026 BSC 0.09 - 0.20 0.004 - 0.008 0 - 8 0 - 8 0.10 BASIC 0.004 BASIC - 33 - Publication Release Date: September 2005 Revision B13 W681310 13. ORDERING INFORMATION Winbond Part Number Description W681310_ _ Product Family W681310 Product Package Material: Blank = Standard Package G = Pb-free Package Package Type: S = 20-Lead Plastic Small Outline Package (SOG/SOP) R = 20-Lead Plastic Small Outline Package (SSOP) W = 20-Lead Plastic Thin Small Outline Package (TSSOP) When ordering W681310 series devices, please refer to the following part numbers. Part Number W681310S W681310R W681310W W681310SG W681310RG W681310WG - 34 - W681310 14. VERSION HISTORY VERSION DATE PAGE DESCRIPTION A1 August 10, 2003 Draft version A2 August 22, 2003 Update typo errors and parameters B11 November, 2004 6 Added reference packaging. 33 Added reference to TSSOP package. 34 Added description of TSSOP package. 22 Added W and G package ordering code. 23 Extended conditions on Table 10.2. 2 to TSSOP package and Pb-free Extended conditions on Table 10.3. Corrected Idle Channel Noise min/max and units. Improved Application Diagram Improved Application Diagram B12 April, 2005 36 B13 September, 2005 29,30 22 Various Add Important Notice Improved Application Diagram Added Reference to VRMS Capitalized logic HIGH/LOW - 35 - Publication Release Date: September 2005 Revision B13 W681310 Important Notice Winbond products are not designed, intended, authorized or warranted for use as components in systems or equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for other applications intended to support or sustain life. Further more, Winbond products are not intended for applications wherein failure of Winbond products could result or lead to a situation wherein personal injury, death or severe property or environmental damage could occur. Winbond customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Winbond for any damages resulting from such improper use or sales. The information contained in this datasheet may be subject to change without notice. It is the responsibility of the customer to check the Winbond USA website (www.winbond-usa.com) periodically for the latest version of this document, and any Errata Sheets that may be generated between datasheet revisions. Headquarters Winbond Electronics Corporation America Winbond Electronics (Shanghai) Ltd. No. 4, Creation Rd. III Science-Based Industrial Park, Hsinchu, Taiwan TEL: 886-3-5770066 FAX: 886-3-5665577 http://www.winbond.com.tw/ 2727 North First Street, San Jose, CA 95134, U.S.A. TEL: 1-408-9436666 FAX: 1-408-5441798 http://www.winbond-usa.com/ 27F, 299 Yan An W. Rd. Shanghai, 200336 China TEL: 86-21-62365999 FAX: 86-21-62356998 Taipei Office Winbond Electronics Corporation Japan Winbond Electronics (H.K.) Ltd. 9F, No. 480, Pueiguang Rd. Neihu District, Taipei, 114, Taiwan TEL: 886-2-81777168 FAX: 886-2-87153579 7F Daini-ueno BLDG, 3-7-18 Shinyokohama Kohoku-ku, Yokohama, 222-0033 TEL: 81-45-4781881 FAX: 81-45-4781800 Unit 9-15, 22F, Millennium City, No. 378 Kwun Tong Rd., Kowloon, Hong Kong TEL: 852-27513100 FAX: 852-27552064 Please note that all data and specifications are subject to change without notice. All the trademarks of products and companies mentioned in this datasheet belong to their respective owners. - 36 -