General Description
The MAX4996/MAX4996L triple DPDT analog switches
operate from a single +2.5V to +5.5V supply, and fea-
ture 2.0Ω(typ) on-resistance, low 6pF (typ) on-capaci-
tance, and low power-supply current consumption. The
MAX4996/MAX4996L combine the low capacitance and
low resistance necessary for high-frequency switching
applications in portable electronics.
The MAX4996/MAX4996L have three logic inputs to
control the switches in pairs. The MAX4996 has an
active-high enable input (EN) to disable the switches,
while the MAX4996L has an active-low enable input
(EN) to disable the switches. The enable input decreas-
es the supply current and also places the COM_ out-
puts in a high-impedance state.
The MAX4996/MAX4996L feature a 5µA (max) supply-
current consumption when the logic inputs are not
rail-to-rail. This feature is especially valuable in applica-
tions where direct interface to low-voltage processors
is necessary.
The MAX4996/MAX4996L are available in a space-
saving 24-pin (3.5mm x 3.5mm) TQFN package and
operate over the -40°C to +85°C temperature range.
Applications
SD Card Switching
USB Signal Switching
UART Signal Switching
Cell Phones
PDAs
GPS
Portable Media Players (PMP)
Features
Multiplex SD2.0/SDIO Interfaces
Low Power Consumption (2µA max)
+2.5V to +5.5V Supply Voltage Range
Rail-to-Rail Signal Handling
Low-Capacitance Switches, 6pF (typ)
Low On-Resistance, 2Ω(typ)
Excellent On-Resistance Flatness Over the Range
of 0V to VCC
Wide -3dB Bandwidth, 670MHz
Small 24-Pin TQFN (3.5mm x 3.5mm)
MAX4996/MAX4996L
Triple DPDT, Low-Capacitance Data Switches
________________________________________________________________
Maxim Integrated Products
1
Ordering Information
19-4036; Rev 0; 2/08
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
Typical Operating Circuit appears at end of data sheet.
PART PIN-
PACKAGE
PAC KA GE
CODE
MAX4996ETG+ 24 TQFN-EP* T243A3-1
M A X4 9 9 6 L E TG+ 24 TQFN-EP* T243A3-1
Note: All devices operate over the -40°C to +85°C extended
temperature range.
+Denotes a lead-free package.
*
EP = Exposed paddle.
Pin Configuration/Truth Tables
CB12
LOW
HIGH
CB34
LOW
HIGH
NO1/NO2
OFF
ON
NC1/NC2
NO3/NO4 NC3/NC4
ON
OFF
EN
HIGH
HIGH
CB_
LOW
HIGH
NO_
OFF
ON
NC_
ON
OFF
LOW X OFF OFF
CB56
LOW
HIGH
NO5/NO6
OFF
ON
NC5/NC6
ON
OFF
OFF
ON
ON
OFF
18
17
16
15
1
2
3
4
7
8
9
10
11
12
24
23
22
21
20
19
MAX4996
MAX4996L
TQFN
3.5mm x 3.5mm
TRUTH TABLES
TOP VIEW
NO2
NO1
NO3
NO4
NO5
NO6
COM1
COM2
COM3
EN (EN)
14
V
CC
NC1
NC2
NC3
NC4
NC5
NC6
*EP
(EN) FOR MAX4996L ONLY.
*CONNECT EXPOSED PADDLE TO GROUND.
COM4
CB56
5
COM5
13
GND
6
COM6
CB34
CB12
MAX4996/MAX4996L MAX4996
EN
LOW
LOW
CB_
LOW
HIGH
NO_
OFF
ON
NC_
ON
OFF
HIGH X OFF OFF
MAX4996L
+
MAX4996/MAX4996L
Triple DPDT, Low-Capacitance Data Switches
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS
(VCC = +2.5V to +5.5V, TA= -40°C to +85°C, unless otherwise noted. Typical values are at VCC = 2.8V, TA= +25°C.) (Notes 2, 3)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations see www.maxim-ic.com/thermal-tutorial.
VCC to GND ...........................................................-0.3V to +6.0V
EN, EN, CB_ ..........................................................-0.3V to +6.0V
All Other Pins to GND ..................................-0.3V to VCC + 0.3V
Continuous Current
NO_, NC_, COM_ .......................................................±150mA
Peak Current NO_, NC_, COM_
(pulsed at 1ms, 50% Duty Cycle)...............................±300mA
(pulsed at 1ms, 10% Duty Cycle)...............................±450mA
ESD per Human Body Model...............................................±2kV
Continuous Power Dissipation (TA= +70°C)
24-Pin TQFN (derate 20.8mW/°C
above +70°C).............................................................1228mW
Thermal Resistance (Note 1)
θJA.............................................................................65.1°C/W
θJC...............................................................................5.4°C/W
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering) .........................................+300°C
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
ANALOG SWITCH
Analog Signal Range V
COM
,
V
NO
, V
NC
_0V
CC
V
On-Resistance R
ON
V
C OM
_= 0 to V
C C
, I
C OM
_= 25m A24Ω
On-Resistance Match Between
Channels ΔR
ON
V
CC
= 2.8V, I
COM
_= 25mA;
V
NO
_
= 1.5V or V
NC _
= 1.5V (Note 4) 0.1 0.2 Ω
On-Resistance Flatness R
FLAT
V
CC
= 2.5V, I
COM
_= 25mA;
V
COM
_= 0 to V
CC
(Note 5) 0.2 0.5 Ω
V
CC
= 4V , V
C OM
_ = 0, 4V ;
V
N O
_
, V
N C
_ = 4V , 0 -250 +250 nA
Off-Leakage Current I
COM
_
(OFF)
V
CC
= 5.5V , V
C OM
_ = 5.5V ;
V
N O
, V
N C
w i th 50µA sink cur r ent to GN D 180 µA
On-Leakage Current I
COM
_
(
ON
)
V
CC
= 5.5V , V
C OM
_ = 0, 5.5V ;
V
N O
_, V
N C
_unconnected -250 +250 nA
-3dB Bandwidth BW R
L
= R
S
= 50Ω, C
L
= 5pF, Figure 4 670 MHz
Off-Isolation V
ISO
f = 1MHz, V
NO
_, V
NC
_ = 0;
C
L
= 5pF, R
L
= R
S
= 50Ω,
Figure 4 (Note 6)
-60 dB
C r osstal kV
CT
f = 1MHz, V
NO
_, V
NC
_ = 0;
R
L
= R
S
= 50Ω, Figure 4 ( N ote 7) -120 dB
LOGIC INPUTS
Input Logic High V
IH
1.4 V
Input Logic Low V
IL
0.5 V
Input Leakage Current I
LEAK
0 V
V
IL
and V
IH
V
V
CC
;
V
CC
= 5.5V -250 +250 nA
MAX4996/MAX4996L
Triple DPDT, Low-Capacitance Data Switches
_______________________________________________________________________________________ 3
Note 2: The algebraic convention is used. The most negative value is shown in the minimum column.
Note 3: Parts are 100% tested at TA= +25°C. Limits across the full temperature range are guaranteed by correlation and design.
Note 4: ΔRON = RON(MAX) - RON(MIN).
Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the
specified analog signal ranges.
Note 6: Off-isolation = 20log10 [VCOM_ / (VNO_ or VNC_)], VCOM_ = output, VNO_ or VNC_= input to off switch.
Note 7: Between any two switches.
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
SWITCH DYNAMICS
Turn-On Time t
ON
V
CC
= 2.7V, V
NO
_ or V
NC
_ = 1.5V;
R
L
= 50Ω, C
L
= 35pF, Figure 1 100 µs
Turn-Off Time t
OFF
V
CC
= 2.7V, V
NO
_ or V
NC
_ = 1.5V;
R
L
= 50Ω, C
L
= 35pF, Figure 1 s
Break-Before-Make Interval t
BBM
V
CC
= 2.7V ; V
NO
_
,
or V
NC
_ = 1.5V;
R
L
= 50Ω, C
L
= 35pF, Figure 2 10 µs
Output Skew Between Switches t
SKEW
R
L
= R
S
= 50Ω, Figure 3 40 Ps
NO or NC Off-Capacitance C
NO
_
(
OFF
)
C
NC
_
(
OFF
)
f = 10MHz, V
BIAS
= 0V,
signal = 500mV
P-P
, Figure 5 2.5 pF
COM Off-Capacitance C
COM
_
(OFF)
f = 10MHz, V
BIAS
= 0V,
signal = 500mV
P-P
, Figure 5 4pF
COM On-Capacitance C
COM
_
(ON)
f = 10MHz, V
BIAS
= 0V,
signal = 500mV
P-P
, Figure 5 6pF
Operating Power-Supply Range V
CC
2.5 5.5 V
Shutdown S up p l y C ur r ent V
EN
= 0 (MAX4996), V
EN
= V
CC
(MAX4996L) 0.1 0.5 µA
V
CC
= 2.8V 1 2
V
CC
S up p l y C ur rent I
CC
V
CB
_ = 0 or V
CC
;
V
EN
= V
CC
(MAX4996);
V
EN
= 0 (MAX4996L) V
CC
= 5.5V 5 10
µA
Increase in Supply Current with
V
CB
/ V
EN
Voltage
0 V
CB
_ V
IL
or V
IH
V
CB
_ V
CC
or 0 V
EN
V
IL
or V
IH
V
EN
V
CC
A
ESD Protection Human Body Model ±2 kV
ELECTRICAL CHARACTERISTICS (continued)
(VCC = +2.5V to +5.5V, TA= -40°C to +85°C, unless otherwise noted. Typical values are at VCC = 2.8V, TA= +25°C.) (Notes 2, 3)
MAX4996/MAX4996L
Triple DPDT, Low-Capacitance Data Switches
4 _______________________________________________________________________________________
ON-RESISTANCE vs. VCOM
MAX4996/6L toc01
VCOM (V)
RON (Ω)
2.0
3.0
1.5
1.0
2.5
053142
VCC = 2.5V
VCC = 3.0V
VCC = 5.0V
VCC = 2.7V
ON-RESISTANCE vs. VCOM
MAX4996/6L toc02
VCOM (V)
RON (Ω)
2.0
3.0
1.5
1.0
2.5
0231
TA = +85°C
TA = +25°C
TA = -40°C
ON-RESISTANCE vs. VCOM
MAX4996/6L toc03
VCOM (V)
RON (Ω)
1.0
2.0
0.5
0
1.5
053142
VCC = 5.0V TA = +85°C
TA = +25°C
TA = -40°C
COM_ON LEAKAGE CURRENT
vs. OVERTEMPERATURE
MAX4996/6L toc04
VCOM (V)
ICOM_ON (nA)
45
0
10
20
30
40
5
15
25
35
0231
TA = -40°C TO +85°C
SUPPLY CURRENT vs. SUPPLY VOLTAGE
MAX4996/6L toc05
VCC (V)
ICC (μA)
5
0
2
4
1
3
0462
QUIESCENT SUPPLY CURRENT
vs. TEMPERATURE
MAX4996/6L toc06
TEMPERATURE (°C)
ICC (μA)
3.5
0
1.0
2.0
3.0
0.5
1.5
2.5
-40 10 60-15 35 85
VCC = 5.0V
VCC = 3.0V
LOGIC THRESHOLD vs. SUPPLY VOLTAGE
MAX4996/6L toc07
VCC (V)
THRESHOLD (V)
2.0
0.5
1.5
0
1.0
1.5 2.5 3.5 4.5 5.52.0 3.0 4.0 5.0 6.0
VIH
VIL
Typical Operating Characteristics
(VCC = 3V, TA= +25°C, unless otherwise noted.)
MAX4996/MAX4996L
Triple DPDT, Low-Capacitance Data Switches
_______________________________________________________________________________________
5
0
2
6
4
8
10
0 1.00.5 1.5 2.0 2.5 3.0
QUIESCENT SUPPLY CURRENT
vs. LOGIC LEVEL
MAX4996/6L toc08
VCB (V)
ICC (μA)
1 10010 1,000 10,000
INPUT ON-LOSS
FREQUENCY RESPONSE
MAX4996/6L toc09
FREQUENCY (MHz)
ON-LOSS (dB)
0
-20
0
-5
-10
-15
-25
-120
-80
-100
-40
-60
-20
0
INPUT CROSSTALK
FREQUENCY RESPONSE
MAX4996/6L toc10
FREQUENCY (MHz)
0.01 0.1 1 10 100 1,000
ON-LOSS (dB)
-120
-80
-100
-40
-60
-20
0
INPUT OFF-ISOLATION
FREQUENCY RESPONSE
MAX4996/6L toc11
FREQUENCY (MHz)
0.01 0.1 1 10 100 1,000
ON-LOSS (dB)
Typical Operating Characteristics (continued)
(VCC = 3V, TA= +25°C, unless otherwise noted.)
MAX4996/MAX4996L
Triple DPDT, Low-Capacitance Data Switches
6 _______________________________________________________________________________________
Pin Description
PIN NAME FUNCTION
1 CB12 Digital Control Input for Analog Switches 1 and 2. Drive CB12 low to connect COM1 to NC1 and COM2 to
NC2. Drive CB12 high to connect COM1 to NO1 and COM2 to NO2.
2 CB34 Digital Control Input for Analog Switches 3 and 4. Drive CB34 low to connect COM3 to NC3 and COM4 to
NC4. Drive CB34 high to connect COM3 to NO3 and COM4 to NO4.
3 CB56 Digital Control Input for Analog Switches 5 and 6. Drive CB56 low to connect COM5 to NC5 and COM6 to
NC6. Drive CB56 high to connect COM5 to NO5 and COM6 to NO6.
4 COM4 Analog Switch 4—Common Terminal
5 COM5 Analog Switch 5—Common Terminal
6 COM6 Analog Switch 6—Common Terminal
7 NC6 Analog Switch 6—Normally Closed Terminal
8 NC5 Analog Switch 5—Normally Closed Terminal
9 NC4 Analog Switch 4—Normally Closed Terminal
10 NC3 Analog Switch 3—Normally Closed Terminal
11 NC2 Analog Switch 2—Normally Closed Terminal
12 NC1 Analog Switch 1—Normally Closed Terminal
13 GND Ground
14 V
CC
P osi ti ve S up p l y V ol tag e. Byp ass V
C C
to G N D w i th a 0.F cer am i c cap aci tor as cl ose as p ossi b l e to the d evi ce.
15 EN, EN
Enable Logic Input. For the MAX4996, drive EN high to enable all the switches. Drive EN low to disable all
switches. For the MAX4996L, drive EN low to enable all the switches. Drive EN high to disable all switches.
COM_ is high impedance when the switch is disabled. (See Pin Configuration/Truth Tables.)
16 COM3 Analog Switch 3—Common Terminal
17 COM2 Analog Switch 2—Common Terminal
18 COM1 Analog Switch 1—Common Terminal
19 NO1 Analog Switch 1—Normally Open Terminal
20 NO2 Analog Switch 2—Normally Open Terminal
21 NO3 Analog Switch 3—Normally Open Terminal
22 NO4 Analog Switch 4—Normally Open Terminal
23 NO5 Analog Switch 5—Normally Open Terminal
24 NO6 Analog Switch 6—Normally Open Terminal
—EP
Exposed Paddle. Internally connected to GND. Connect to a large ground plane to maximize thermal
performance; not intended as an electrical connection point.
MAX4996/MAX4996L
Triple DPDT, Low-Capacitance Data Switches
_______________________________________________________________________________________ 7
Timing Circuits/Timing Diagrams
tr < 5ns
tf < 5ns
50%
0V
LOGIC
INPUT
RL
COM_
CB_
CL INCLUDES FIXTURE AND STRAY CAPACITANCE.
VOUT = VIN ( RL )
RL + RON
VIN
VCC
tOFF
0V
NO_
OR NC_
0.9 x V0UT 0.9 x VOUT
tON
VOUT
SWITCH
OUTPUT
LOGIC
INPUT
CL
VOUT
MAX4996
MAX4996L
50%
Figure 1. Switching Time
50%
VCC
0V
LOGIC
INPUT
VOUT 0.9 x VOUT
tBBM
LOGIC
INPUT
RL
CL INCLUDES FIXTURE AND STRAY CAPACITANCE.
NO_
CB_
NC_
VOUT
CL
VIN COM_
MAX4996
MAX4996L
Figure 2. Break-Before-Make Interval
MAX4996/MAX4996L
Triple DPDT, Low-Capacitance Data Switches
8 _______________________________________________________________________________________
VIN+
VIN-
CB
VOUT+
VOUT-
VIN+
VIN-
VOUT+
VOUT-
NC OR
NO_
NC OR
NO_
COM_
COM_
0V
VCC
VCC
VCC
VCC
0V
0V
0V
tPLHX tPHLX
tSKEW = |tPLHX - tPLHY| OR |tPHLX - tPHLY|
50%
50%
50%
50%
RL
RL
50%
50%
50%
50%
tPHLY tPLHY
RS
RS
VIL TO VIH
MAX4996/
MAX4996L
Figure 3. Input/Output Skew Timing Diagram
Timing Circuits/Timing Diagrams (continued)
MAX4996/MAX4996L
Triple DPDT, Low-Capacitance Data Switches
_______________________________________________________________________________________ 9
MEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT IC TERMINALS.
OFF-ISOLATION IS MEASURED BETWEEN COM_ AND OFF NO_ OR NC_ TERMINAL ON EACH SWITCH.
ON-LOSS IS MEASURED BETWEEN COM_ AND ON NO_ OR NC_ TERMINAL ON EACH SWITCH.
CROSSTALK IS MEASURED FROM ONE CHANNEL TO THE OTHER CHANNEL.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.
VOUT
CB_
NC1
COM1
NO1*
VIN
MAX4996
MAX4996L
OFF-ISOLATION = 20log VOUT
VIN
ON-LOSS = 20log VOUT
VIN
CROSSTALK = 20log VOUT
VIN
NETWORK
ANALYZER
50Ω
50Ω50Ω
50Ω
MEAS REF
0 OR VCC
50Ω
*FOR CROSSTALK THIS PIN IS NO2.
NC2 AND COM2 ARE OPEN.
Figure 4. On-Loss, Off-Isolation, and Crosstalk
CAPACITANCE
METER NC_ or
NO_
COM_
CB_ VIL OR VIH
f = 10MHz
MAX4996
MAX4996L
Figure 5. Channel On-/Off-Capacitance
Timing Circuits/Timing Diagrams (continued)
MAX4996/MAX4996L
Triple DPDT, Low-Capacitance Data Switches
10 ______________________________________________________________________________________
Detailed Description
The MAX4996/MAX4996L triple DPDT analog switches
operate from a single +2.5V to +5.5V supply and feature
2.0Ω(typ) on-resistance, low 6pF (typ) on-capacitance,
and low power-supply current consumption. The combi-
nation of low resistance and low capacitance make this
switch ideal for high-frequency applications.
The MAX4996 has an active-high enable input (EN) to
disable the switches, while the MAX4996L has an
active-low enable input (EN) to disable the switches.
The enable input decreases the supply current and also
places the COM_ outputs in a high-impedance state.
Digital Control Inputs
Each pair of switches feature a digital-control logic
input: CB_. CB_ controls the position of the switches as
shown in the
Pin Configuration/Truth Tables
. The
MAX4996/MAX4996L also feature an enable input to
turn all switches on or off. Drive EN low on the
MAX4996, or EN high on the MAX4996L, to disable the
switches. While disabled, the switches are high-imped-
ance and the supply current drops to 0.1µA (typ). To
enable all switches, drive EN high on the MAX4996 or
EN low on the MAX4996L.
Driving all digital inputs (CB_, EN, EN) rail-to-rail mini-
mizes supply current.
Analog Signal Levels
The on-resistance of the MAX4996/MAX4996L are very
low and stable as the analog input signals are swept
from ground to VCC (see the
Typical Operating
Characteristics
). These switches are bidirectional,
allowing NO_, NC_, and COM_ to be configured as
either inputs or outputs.
Applications Information
Power-Supply Bypassing
Power-supply bypassing improves noise margin and
prevents switching noise from propagating from the
VCC supply to other components. A 0.1µF ceramic
capacitor connected from VCC to GND is adequate for
most applications.
Power-Supply Sequencing
Always apply VCC before the analog signals.
Chip Information
PROCESS: BiCMOS
Functional Diagram
COM1
COM2
COM3
COM4
COM5
COM6
GND
VCC
CB12
CB34
CB56
NO1
NO2
NO3
NO4
NO5
NO6
NC1
NC2
NC3
NC4
NC5
NC6
EN (EN)
MAX4996/MAX4996L
MAX4996/MAX4996L
Triple DPDT, Low-Capacitance Data Switches
______________________________________________________________________________________ 11
Typical Operating Circuit
SD CARD
COM1
COM2
COM3
COM4
COM5
COM6
GND
EN (EN)
VCC
DIGITAL CONTROL
FROM BASEBAND
CB12
CB34
CB56
NO1
NO2
NO3
NO4
NO5
NO6
NC1
NC2
NC3
NC4
NC5
NC6
CLK
CMD
DAT0
DAT1
DAT2
DAT3
BASEBAND
SD CARD
INTERFACE
CLK
CMD
DAT0
DAT1
DAT2
DAT3
APPLICATION
PROCESSOR
SD CARD
INTERFACE
MAX4996/
MAX4996L
MAX4996/MAX4996L
Triple DPDT, Low-Capacitance Data Switches
12 ______________________________________________________________________________________
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to www.maxim-ic.com/packages.)
24L THIN QFN.EPS
MAX4996/MAX4996L
Triple DPDT, Low-Capacitance Data Switches
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________
13
© 2008 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to www.maxim-ic.com/packages.)