Maxim Integrated Products 1
Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of
any device may be sim ultaneously available through v arious sales channels. For information about device errata, go to:
www.maxim-ic.com/errata. F or pricing, deliver y, and ordering inf ormation, please co ntact Maxim Direct at 1-888-629-46 42, or
visit Maxim’s website a t www.maxim-ic.com.
DS33X162/DS33X161/DS33X82/DS33X81/
DS33X42/DS33X41/DS33X11/DS33W41/DS33W11
Ethernet Over PDH Mapping De vices
General Description
The DS33X162 family of semiconductor devices
extend 10/100/1000Mbps Ethernet LAN segments by
encapsulating MAC frames in GFP-F, HDLC, cHDLC,
or X.86 (LAPS) for transmission over PDH/TDM data
streams . The devices support the Ethernet over PDH
(EoPDH) standards for the delivery of Ethernet
Access Services, including eLAN, eLINE, and VLAN.
The multiport devices support VCAT/LCAS for
dynamic link aggregation. The serial links support
bidirectional synchronous interconnect up to 52Mbps
over xDSL, T1/E1/J1, T3/E3, or V.35/Optical.
The devices perform store-and-forward of frames
with Ethernet traffic conditioning and bridging
functions at wire speed. The programmability of
classification, priority queuing, encapsulation, and
bundling allows great flexibility in providing various
Ethernet services. OAM flows can be extracted and
inserted by an external processor to manage the
Ethernet service.
The voice ports of the DS33W41 and DS33W11
easily connect to external codecs for integrated voice
and data service applications.
Applications
Bonded Transparent LAN Service
LAN Extension
Ethernet Delivery Over T1/E1/J1, T3/E3,
OC-1/EC-1, G.SHDSL, or HDSL2/4
Functional Diagram
Features
10/100/1000 IEEE 802.3 MAC (MII/RMII/GMII)
with Autonegotiation and Flow Control
GFP-F/LAPS/HDLC/cHDLC Encap sulation
VCAT/LCAS Link Aggregation for Up to 16
Links
Supports Up to 200ms Differential Delay
Quality of Service (QoS) Support
VLAN, Q-in-Q, 802.1p, and DSCP Support
Ethernet Bridging and Filtering
Add/Drop OAM Frames from μP Interface
Traffic Shaping Through CIR/CBS Policing
External 256Mb, 125MHz DDR SDRAM Buffer
Parallel and SPI™ Microprocessor Interfaces
1.8V, 2.5V, 3.3V Supplies
IEEE 1149.1 JTAG Support
Features continued in Section 2.
Ordering Information
PORTS
PART TDM ETHERNET VOICE PIN-
PACKAGE
DS33X162+ 16 2 0 256 CSBGA
DS33X161+ 16 1 0 256 CSBGA
DS33X82+ 8 2 0 256 CSBGA
DS33X81+ 8 1 0 256 CSBGA
DS33X42+ 4 2 0 256 CSBGA
DS33X41+ 4 1 0 256 CSBGA
DS33X11+ 1 1 0 144 CSBGA
DS33W41+ 4 1 1 256 CSBGA
DS33W11+ 1 1 1 256 CSBGA
Note: All devices are specified over the -40
°
C to +85
°
C industrial
operating temperature range.
+Denotes a lead-free/RoHS-compliant package.
SPI is a trademark of Motorola, Inc.
Rev: 063008
SDRAM CONTROLLER
MACs
ENET
PHYs
PROCESSOR
DDR SDRAM
TDM LIU/
FRAMER
TRAFFIC
MGMT
BRIDGING
8-BIT & SPI μP INTERFACE QoS
POLICY
BUFFER MANAGER
GFP/
LAPS/
HDLC
VOICE PORT
WAN
SERIAL
PORTS
CLAD
DS33X162
_________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 2 of 375
Table of Contents
1. DETAILED DESCRIPTION ..............................................................................................................9
2. FEATURE HIGHLIGHTS................................................................................................................ 10
2.1 GENERAL ......................................................................................................................................10
2.2 VCAT/LCAS LINK AGGREGATION (INVERSE MULTIPLEXING) ..........................................................10
2.3 HDLC...........................................................................................................................................10
2.3.1 cHDLC.................................................................................................................................................. 10
2.4 GFP-F..........................................................................................................................................11
2.5 X.86 SUPPORT .............................................................................................................................11
2.6 DDR SDRAM INTERFACE .............................................................................................................11
2.7 MAC INTERFACES.........................................................................................................................11
2.7.1 Ethernet Bridging for 10/100 ................................................................................................................ 12
2.7.2 Ethernet Traffic Classification .............................................................................................................. 12
2.7.3 Ethernet Bandwidth Policing ................................................................................................................ 12
2.7.4 Ethernet Traffic Scheduling.................................................................................................................. 12
2.7.5 Connection Endpoints.......................................................................................................................... 12
2.7.6 Virtual Connection................................................................................................................................ 12
2.7.7 Connection and Aggregation ............................................................................................................... 12
2.7.8 Ethernet Control Frame Processing..................................................................................................... 12
2.7.9 Q-in-Q .................................................................................................................................................. 12
2.8 SERIAL PORTS ..............................................................................................................................13
2.8.1 Voice Ports........................................................................................................................................... 13
2.9 MICROPROCESSOR INTERFACE......................................................................................................13
2.10 SLAVE SERIAL PERIPHERAL INTERFACE (SPI) FEATURES ............................................................13
2.11 TEST AND DIAGNOSTICS.............................................................................................................13
2.12 SPECIFICATIONS COMPLIANCE....................................................................................................13
3. APPLICABLE EQUIPMENT TYPES..............................................................................................14
4. ACRONYMS & GLOSSARY ..........................................................................................................17
5. DESIGNING WITH THE DS33X162 FAMILY OF DEVICES..........................................................18
5.1 IDENTIFICATION OF APPLICATION REQUIREMENTS ..........................................................................18
5.2 DEVICE SELECTION .......................................................................................................................18
5.3 ANCILLARY DEVICE SELECTION......................................................................................................19
5.4 CIRCUIT DESIGN............................................................................................................................19
5.5 BOARD LAYOUT.............................................................................................................................19
5.6 SOFTWARE DEVELOPMENT ............................................................................................................19
6. BLOCK DIAGRAMS ...................................................................................................................... 20
7. PIN DESCRIPTIONS......................................................................................................................21
7.1 PIN FUNCTIONAL DESCRIPTION......................................................................................................21
8. FUNCTIONAL DESCRIPTION .......................................................................................................34
8.1 PARALLEL PROCESSOR INTERFACE................................................................................................35
8.1.1 Read-Write/Data Strobe Modes........................................................................................................... 35
8.1.2 Clear on Read ...................................................................................................................................... 35
8.1.3 Interrupt and Pin Modes....................................................................................................................... 35
8.1.4 Multiplexed Bus Operation................................................................................................................... 35
8.2 SPI SERIAL PROCESSOR INTERFACE .............................................................................................36
8.3 CLOCK STRUCTURE.......................................................................................................................37
8.3.1 Serial Interface Clock Modes ............................................................................................................... 39
8.3.2 Ethernet Interface Clock Modes........................................................................................................... 39
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 3 of 375
8.4 RESETS AND LOW-POWER MODES ................................................................................................39
8.5 INITIALIZATION AND CONFIGURATION..............................................................................................41
8.6 GLOBAL RESOURCES ....................................................................................................................41
8.7 PER-PORT RESOURCES ................................................................................................................41
8.8 DEVICE INTERRUPTS .....................................................................................................................41
8.9 FORWARDING MODES AND WAN CONNECTIONS ............................................................................43
8.9.1 Forwarding Modes ............................................................................................................................... 43
8.9.2 WAN Connections................................................................................................................................ 49
8.9.3 Queue Configuration............................................................................................................................ 50
8.10 BANDWIDTH CAPABILITIES (THROUGHPUT)..................................................................................51
8.11 SERIAL (WAN)...........................................................................................................................52
8.11.1 Voice Support (DS33W11 and DW33W41 Only)................................................................................. 52
8.12 LINK AGGREGATION AND LINK CAPACITY ADJUSTMENT (VCAT/LCAS) ........................................53
8.12.1 VCAT/LCAS Control Frame for T3/E3 ................................................................................................. 54
8.12.2 VCAT/LCAS Configuration and Operation...........................................................................................55
8.12.3 Link Capacity Adjustment Scheme (LCAS) ......................................................................................... 56
8.12.4 Alarms and Conditions related to VCAT/LCAS.................................................................................... 57
8.13 ARBITER/BUFFER MANAGER.......................................................................................................57
8.14 FLOW CONTROL.........................................................................................................................58
8.14.1 Full Duplex Flow control....................................................................................................................... 59
8.14.2 Half Duplex Flow control ...................................................................................................................... 59
8.15 ETHERNET INTERFACES .............................................................................................................60
8.15.1 GMII Mode ........................................................................................................................................... 62
8.15.2 MII Mode .............................................................................................................................................. 63
8.15.3 DTE and DCE Mode ............................................................................................................................ 65
8.15.4 RMII Mode............................................................................................................................................ 66
8.16 QUALITY OF SERVICE (QOS) FEATURES .....................................................................................67
8.16.1 VLAN Forwarding by VID (IEEE 802.1q) ............................................................................................. 67
8.16.2 Programming the VLAN ID Table ........................................................................................................ 68
8.16.3 Priority Coding with VLAN Tags (IEEE 802.1p)................................................................................... 69
8.16.4 Priority Coding with Multiple (Q-in-Q) VLAN Tags............................................................................... 70
8.16.5 Priority Coding with DSCP ................................................................................................................... 71
8.16.6 Programming the Priority Table ........................................................................................................... 72
8.17 OAM SUPPORT WITH FRAME TRAPPING, EXTRACTION, AND INSERTION .......................................74
8.17.1 Frame Trapping.................................................................................................................................... 76
8.17.2 Frame Extraction and Frame Insertion ................................................................................................ 77
8.17.3 OAM by Ethernet Destination Address (DA)........................................................................................78
8.17.4 OAM by IP Address.............................................................................................................................. 78
8.17.5 OAM by VLAN Tag............................................................................................................................... 78
8.17.6 SNMP Support ..................................................................................................................................... 78
8.18 BRIDGING AND FILTERING...........................................................................................................79
8.18.1 Bridge Filter Table Reset ..................................................................................................................... 79
8.19 ETHERNET MAC ........................................................................................................................80
8.19.1 PHY MII Management Block and MDIO Interface ............................................................................... 83
8.19.2 Ethernet MAC Management Counters for RFC2819 RMON ............................................................... 84
8.19.3 Programmable Ethernet Destination Address Filtering........................................................................ 85
8.20 ETHERNET FRAME ENCAPSULATION ...........................................................................................86
8.20.1 Transmit Packet Processor (Encapsulator) ......................................................................................... 86
8.20.2 Receive Packet Processor (Decapsulator) .......................................................................................... 87
8.20.3 GFP-F Encapsulation and Decapsulation............................................................................................ 89
8.20.4 X.86 Encoding and Decoding .............................................................................................................. 94
8.20.5 HDLC Encoding and Decoding ............................................................................................................ 96
8.20.6 cHDLC Encoding And Decoding.......................................................................................................... 98
8.21 CIR/CBS CONTROLLER .............................................................................................................99
9. APPLICATIONS INFORMATION.................................................................................................101
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 4 of 375
9.1 INTERFACING TO MAXIM T1/E1 TRANSCEIVERS ............................................................................101
9.2 INTERFACING TO MAXIM T3/E3 TRANSCEIVERS ............................................................................103
10. DEVICE REGISTERS...................................................................................................................105
10.1 REGISTER BIT MAPS ................................................................................................................106
10.1.1 Global Register Bit Map ..................................................................................................................... 106
10.1.2 MAC Indirect Register Bit Map........................................................................................................... 131
10.2 GLOBAL REGISTER DEFINITIONS...............................................................................................141
10.2.1 Microport Registers ............................................................................................................................ 147
10.2.2 MAC 1 Interface Access Registers .................................................................................................... 152
10.2.3 MAC 2 Interface Access Registers .................................................................................................... 156
10.2.4 VLAN Control Registers..................................................................................................................... 160
10.3 ETHERNET INTERFACE REGISTERS ...........................................................................................164
10.3.1 WAN Extraction and Transmit LAN registers..................................................................................... 164
10.3.2 Receive LAN Register Definitions...................................................................................................... 175
10.3.3 Bridge Filter Registers........................................................................................................................ 188
10.4 ARBITER REGISTERS................................................................................................................189
10.4.1 Arbiter Register Bit Descriptions ........................................................................................................ 189
10.5 PACKET PROCESSOR (ENCAPSULATOR) REGISTERS .................................................................230
10.6 DECAPSULATOR REGISTERS ....................................................................................................236
10.7 VCAT/LCAS REGISTERS .........................................................................................................245
10.7.1 Transmit VCAT Registers .................................................................................................................. 245
10.7.2 VCAT Receive Register Description .................................................................................................. 252
10.8 SERIAL INTERFACE REGISTERS ................................................................................................265
10.8.1 Serial Interface Transmit and Common Registers............................................................................. 265
10.8.2 Serial Interface Transmit Register Bit Descriptions ........................................................................... 265
10.8.3 Transmit Per Serial Port Register Description ...................................................................................269
10.8.4 Transmit Voice Port Register Description .......................................................................................... 270
10.8.5 Receive Per Serial Port Register Description ....................................................................................273
10.8.6 Receive Voice Port Register Description ........................................................................................... 274
10.8.7 MAC Registers ................................................................................................................................... 275
11. FUNCTIONAL TIMING.................................................................................................................330
11.1 FUNCTIONAL SPI INTERFACE TIMING ........................................................................................330
11.1.1 SPI Transmission Format and CPHA Polarity ................................................................................... 330
11.2 FUNCTIONAL SERIAL INTERFACE TIMING ...................................................................................333
11.3 VOICE PORT FUNCTIONAL TIMING DIAGRAMS............................................................................335
11.4 MII/RMII AND GMII INTERFACES ..............................................................................................336
12. OPERATING PARAMETERS ......................................................................................................339
12.1 THERMAL CHARACTERISTICS....................................................................................................341
12.2 TRANSMIT AND RECEIVE GMII INTERFACE ................................................................................342
12.3 TRANSMIT AND RECEIVE MII INTERFACE ...................................................................................344
12.4 TRANSMIT AND RECEIVE RMII INTERFACE ................................................................................346
12.5 MDIO INTERFACE ....................................................................................................................348
12.6 TRANSMIT AND RECEIVE WAN INTERFACE................................................................................349
12.7 TRANSMIT AND RECEIVE VOICE PORT INTERFACE .....................................................................351
12.8 DDR SDRAM INTERFACE........................................................................................................353
12.9 AC CHARACTERISTICS—MICROPROCESSOR BUS INTERFACE TIMING ........................................355
12.10 JTAG INTERFACE ....................................................................................................................362
13. JTAG INFORMATION..................................................................................................................363
13.1 JTAG TAP CONTROLLER STATE MACHINE DESCRIPTION .........................................................364
13.1.1 TAP Controller State Machine ........................................................................................................... 364
13.2 INSTRUCTION REGISTER...........................................................................................................367
13.2.1 SAMPLE:PRELOAD .......................................................................................................................... 367
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 5 of 375
13.2.2 BYPASS............................................................................................................................................. 367
13.2.3 EXTEST ............................................................................................................................................. 367
13.2.4 CLAMP............................................................................................................................................... 367
13.2.5 HIGHZ ................................................................................................................................................ 367
13.2.6 IDCODE ............................................................................................................................................. 367
13.3 JTAG ID CODES......................................................................................................................368
13.4 TEST REGISTERS .....................................................................................................................368
13.4.1 Boundary Scan Register .................................................................................................................... 368
13.4.2 Bypass Register ................................................................................................................................. 368
13.4.3 Identification Register......................................................................................................................... 368
13.5 JTAG FUNCTIONAL TIMING ......................................................................................................369
14. PIN CONFIGURATION ................................................................................................................370
14.1 DS33X162/X161/X82/X81/X42/X41 PIN CONFIGURATION—256-BALL CSBGA.......................370
14.2 DS33W41/DS33W11 PIN CONFIGURATION—256-BALL CSBGA .............................................371
14.3 DS33X11 PIN CONFIGURATION—144-BALL CSBGA................................................................372
15. PACKAGE INFORMATION .........................................................................................................373
15.1 256-BALL CSBGA, 17MM X 17MM (56-G6017-001) .................................................................373
15.2 144-BALL CSBGA, 10MM X 10MM (56-G6008-003) .................................................................374
16. DOCUMENT REVISION HISTORY ..............................................................................................375
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 6 of 375
List of Figures
Figure 3-1. Standardized Ethernet Transport over Multiple T1/E1 Lines .................................................................. 14
Figure 3-2. Standardized Ethernet Transport over a Single T1/E1 Line ................................................................... 15
Figure 3-3. Remote IP DSLAM T1/E1 Trunk Card .................................................................................................... 16
Figure 6-1. Simplified Logical Block Diagram............................................................................................................ 20
Figure 7-1. 256-Ball, 17mm x 17mm CSBGA Pinout (DS33X162/X161/X82/X81/X42/X41) .................................... 31
Figure 7-2. 256-Ball, 17mm x 17mm CSBGA Pinout (DS33W41/DS33W11)........................................................... 32
Figure 7-3. 144-Ball, 10mm x 10mm, CSBGA Pinout (DS33X11) ............................................................................ 33
Figure 8-1. Clocking Diagram .................................................................................................................................... 38
Figure 8-2. Device Interrupt Information Flow Diagram ............................................................................................ 42
Figure 8-3. Forwarding Mode 1: Single Ethernet Port with Priority Forwarding ........................................................ 44
Figure 8-4. Forwarding Mode 2: One or Two Ethernet Port Forwarding with Scheduling......................................... 45
Figure 8-5. Forwarding Mode 3: Single Ethernet Port with LAN-VLAN Forwarding.................................................. 46
Figure 8-6. Forwarding Mode 4: 1 Ethernet port with Port ID and LAN-VLAN Forwarding....................................... 47
Figure 8-7. Forwarding Mode 5: Full LAN-to-WAN and WAN-to-LAN VLAN Forwarding......................................... 48
Figure 8-8. IEEE 802.3 Ethernet Frame .................................................................................................................... 60
Figure 8-9. Example Configuration of GMII Interface (DTE Mode Only)................................................................... 62
Figure 8-10. Example Configuration as DTE connected to an Ethernet PHY in MII Mode ....................................... 63
Figure 8-11. Example Configuration as a DCE in MII Mode ..................................................................................... 65
Figure 8-12. RMII Interface (DTE Mode Only)........................................................................................................... 66
Figure 8-13. IEEE 802.1Q and 802.1p Field Format................................................................................................. 69
Figure 8-14. VLAN Q-in-Q Field Format.................................................................................................................... 70
Figure 8-15. Differentiated Services Code Point (DSCP) Header Information.......................................................... 71
Figure 8-16. Supported Trapped Ethernet Frame Types .......................................................................................... 75
Figure 8-17. MII Management Frame........................................................................................................................ 83
Figure 8-18. GFP-F NULL Encapsulated Frame Format .......................................................................................... 91
Figure 8-19. GFP-F LINEAR EXTENSION Encapsulated Frame Format................................................................. 93
Figure 8-20. LAPS / X.86 Encapsulated Frame Format ............................................................................................ 94
Figure 8-21. HDCL Encapsulated Frame Format...................................................................................................... 97
Figure 8-22. cHDLC Encapsulated Frame Format .................................................................................................... 98
Figure 9-1. Interfacing with T1/E1 Transceivers...................................................................................................... 101
Figure 9-2. Example Functional Timing: DS2155 E1 Transmit-Side Boundary Timing .......................................... 101
Figure 9-3. Example Functional Timing: DS2155 T1 Transmit-Side Boundary Timing........................................... 102
Figure 9-4. Example Functional Timing: DS2155 E1 Receive-Side Boundary Timing ........................................... 102
Figure 9-5. Example Functional Timing: DS2155 T1 Receive-Side Boundary Timing............................................ 102
Figure 9-6. Interfacing with T3/E3 Transceivers...................................................................................................... 103
Figure 9-7. Example Functional Timing: DS3170 DS3 Transmit-Side Boundary Timing........................................ 103
Figure 9-8. Example Functional Timing: DS3170 DS3 Receive-Side Boundary Timing......................................... 104
Figure 11-1. SPI Serial Port Access For Read Mode, SPI_CPOL=0, SPI_CPHA = 0 ............................................ 330
Figure 11-2. SPI Serial Port Access For Read Mode, SPI_CPOL = 1, SPI_CPHA = 0 .......................................... 330
Figure 11-3. SPI Serial Port Access For Read Mode, SPI_CPOL = 0, SPI_CPHA = 1 .......................................... 331
Figure 11-4. SPI Serial Port Access For Read Mode, SPI_CPOL = 1, SPI_CPHA = 1 .......................................... 331
Figure 11-5. SPI Serial Port Access For Write Mode, SPI_CPOL = 0, SPI_CPHA = 0 .......................................... 331
Figure 11-6. SPI Serial Port Access For Write Mode, SPI_CPOL = 1, SPI_CPHA = 0 .......................................... 331
Figure 11-7. SPI Serial Port Access For Write Mode, SPI_CPOL = 0, SPI_CPHA = 1 .......................................... 332
Figure 11-8. SPI Serial Port Access For Write Mode, SPI_CPOL = 1, SPI_CPHA = 1 .......................................... 332
Figure 11-9. Transmit Serial Port Interface, without VCAT ..................................................................................... 333
Figure 11-10. Transmit Serial Port Interface with VCAT ......................................................................................... 333
Figure 11-11. Transmit Serial Port Interface, with Gapped Clock ........................................................................... 333
Figure 11-12. Transmit Serial Port Interface with VCAT, early TSYNC (2 cycles)..................................................334
Figure 11-13. Receive Serial Port Interface, without VCAT, rising edge sampling .................................................334
Figure 11-14. Receive Serial Port Interface with VCAT, rising edge sampling ....................................................... 334
Figure 11-15. Receive Serial Port Interface with Gapped Clock (T1) ..................................................................... 334
Figure 11-16. Transmit Voice Port Interface with PCM Octets................................................................................ 335
Figure 11-17. Receive Voice Port Interface with PCM Octets................................................................................. 335
Figure 11-18. GMII Transmit Interface Functional Timing....................................................................................... 336
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 7 of 375
Figure 11-19. GMII Receive Interface Functional Timing........................................................................................ 336
Figure 11-20. MII Transmit Functional Timing......................................................................................................... 337
Figure 11-21. MII Transmit Half Duplex with a Collision Functional Timing............................................................ 337
Figure 11-22. MII Receive Functional Timing.......................................................................................................... 337
Figure 11-23. RMII Transmit Interface Functional Timing ....................................................................................... 338
Figure 11-24. RMII Receive Interface Functional Timing ........................................................................................ 338
Figure 12-1. Transmit GMII Interface Timing........................................................................................................... 342
Figure 12-2. Receive GMII Interface Timing............................................................................................................ 343
Figure 12-3. Transmit MII Interface Timing ............................................................................................................. 344
Figure 12-4. Receive MII Interface Timing .............................................................................................................. 345
Figure 12-5. Transmit RMII Interface Timing........................................................................................................... 346
Figure 12-6. Receive RMII Interface Timing............................................................................................................ 347
Figure 12-7. MDIO Interface Timing ........................................................................................................................ 348
Figure 12-8. Transmit WAN Timing (Noninverted TCLK)........................................................................................ 349
Figure 12-9. Receive WAN Timing (Noninverted RCLK) ........................................................................................ 350
Figure 12-10. Transmit Voice Port Interface Timing................................................................................................ 351
Figure 12-11. Receive Voice Port Interface Timing................................................................................................. 352
Figure 12-12. DDR SDRAM Interface Timing.......................................................................................................... 354
Figure 12-13. Intel Bus Read Timing (MODE = 0) .................................................................................................. 356
Figure 12-14. Intel Bus Write Timing (MODE = 0)................................................................................................... 356
Figure 12-15. Motorola Bus Read Timing (MODE = 1) ........................................................................................... 357
Figure 12-16. Motorola Bus Write Timing (MODE = 1) ........................................................................................... 357
Figure 12-17. Multiplexed Intel Bus Read Timing (MODE = 0) ............................................................................... 359
Figure 12-18. Multiplexed Intel Bus Write Timing (MODE = 0) ............................................................................... 359
Figure 12-19. Multiplexed Motorola Bus Read Timing (MODE = 1)........................................................................ 360
Figure 12-20. Multiplexed Motorola Bus Write Timing (MODE = 1) ........................................................................ 360
Figure 12-21. SPI Interface Timing Diagram ........................................................................................................... 361
Figure 12-22. JTAG Interface Timing ...................................................................................................................... 362
Figure 13-1. JTAG Functional Block Diagram ......................................................................................................... 363
Figure 13-2. TAP Controller State Diagram............................................................................................................. 366
Figure 13-3. JTAG Functional Timing...................................................................................................................... 369
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 8 of 375
List of Tables
Table 1-1. Product Selection Matrix............................................................................................................................. 9
Table 7-1. Detailed Pin Descriptions ......................................................................................................................... 21
Table 8-1. Clocking Options for the Ethernet Interface ............................................................................................. 37
Table 8-2. Software Reset Functions ........................................................................................................................ 39
Table 8-3. Block Enable Functions............................................................................................................................ 40
Table 8-4. Forwarding Modes Supported by Device ................................................................................................. 49
Table 8-5. Maximum Number of T3/E3 Lines Per Encapsulator (DS33X162 and DS33X82 Only) .......................... 51
Table 8-6. VCAT/LCAS Control Frame for T1/E1...................................................................................................... 53
Table 8-7. VCAT/LCAS Control Frame for T3/E3...................................................................................................... 54
Table 8-8. Configuration Recommendations for Maximum Frame Length................................................................ 61
Table 8-9. Selection of MAC Interface Modes for Port 1........................................................................................... 61
Table 8-10. Selection of MAC Interface Modes for Port 2......................................................................................... 61
Table 8-11. MII Mode Options ................................................................................................................................... 64
Table 8-12. Example Priority Table Configuration for DSCP .................................................................................... 72
Table 8-13. Example Priority Table Configuration for PCP ....................................................................................... 73
Table 8-14. MAC Control Registers........................................................................................................................... 81
Table 8-15. MAC Status Registers ............................................................................................................................ 81
Table 8-16. MAC Counter Registers.......................................................................................................................... 82
Table 8-17. GFP Type/tHEC Field (Payload Header) Definition ............................................................................... 89
Table 8-18. GFP UPI Definitions ............................................................................................................................... 89
Table 8-19. Example GFP Type + tHEC Values ....................................................................................................... 90
Table 8-20. GFP CID/Spare/eHEC (Extension Header) Field Definition................................................................... 92
Table 8-21. Example CID + Spare + eHEC Values................................................................................................... 92
Table 8-22. Credit Threshold Settings with Resulting Bandwidths.......................................................................... 100
Table 10-1. Register Address Map .......................................................................................................................... 105
Table 10-2. Global Register Bit Map........................................................................................................................ 106
Table 10-3. MAC Indirect Register Bit Map ............................................................................................................. 131
Table 10-4. Default GL.IDR Values ......................................................................................................................... 141
Table 10-5. Valid Conditions for MPL > 2048.......................................................................................................... 182
Table 12-1. Recommended DC Operating Conditions............................................................................................ 339
Table 12-2. DC Electrical Characteristics................................................................................................................ 340
Table 12-3. Thermal Characteristics........................................................................................................................ 341
Table 12-4. Transmit GMII Interface........................................................................................................................ 342
Table 12-5. Receive GMII Interface......................................................................................................................... 343
Table 12-6. Transmit MII Interface........................................................................................................................... 344
Table 12-7. Receive MII Interface............................................................................................................................ 345
Table 12-8. Transmit RMII Interface........................................................................................................................ 346
Table 12-9. Receive RMII Interface ......................................................................................................................... 347
Table 12-10. MDIO Interface ................................................................................................................................... 348
Table 12-11. Transmit WAN Interface ..................................................................................................................... 349
Table 12-12. Receive WAN Interface ...................................................................................................................... 350
Table 12-13. Transmit Voice Port Interface............................................................................................................. 351
Table 12-14. Receive Voice Port Interface.............................................................................................................. 352
Table 12-15. DDR SDRAM Interface....................................................................................................................... 353
Table 12-16. Parallel Microprocessor Bus............................................................................................................... 355
Table 12-17. Multiplexed Microprocessor Bus ........................................................................................................ 358
Table 12-18. SPI Microprocessor Bus Mode........................................................................................................... 361
Table 12-19. JTAG Interface ................................................................................................................................... 362
Table 13-1. Instruction Codes for IEEE 1149.1 Architecture................................................................................... 367
Table 13-2. ID Code Structure................................................................................................................................. 368
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 9 of 375
1. Detailed Description
The DS33X162 family of devices provide interconnection and mapping functionality between Ethernet Systems and
WAN Time-Division Multiplexed (TDM) systems such as T1/E1/J1, HDSL, T3/E3, and SONET/SDH. The device is
composed of up to two 10/100/1000 Ethernet MACs, up to 16 Serial Ports, a Arbiter, GFP-F /HDLC/cHDLC/X.86
(LAPS) Mappers, a DDR SDRAM interface, and control ports. Ethernet traffic is encapsulated with GFP-F, HDLC,
cHDLC, or X.86 (LAPS) to be transmitted over the WAN Serial Interfaces. The WAN Serial Interfaces also receive
encapsulated Ethernet frames and transmit the extracted frames over the Ethernet ports. The LAN frame interface
consists of Ethernet interfaces using one of two physical layer protocols. It can be configured with up to two
10/100Mbps MII/RMII ports or a single GbE GMII port. The WAN Serial Interface can be configured for up to eight
serial data streams at up to 52Mbps each, or 16 serial data streams at up to 2.5Mbps each. The Serial Interfaces
can be seamlessly connected to the Maxim T1/E1/J1 Framers, Line Interface Units (LIUs), and Single-Chip
Transceivers (SCTs). The WAN interfaces can also be seamlessly connected to the Maxim T3/E3/STS-1 Framers,
LIUs, and SCTs to provide T3, E3, or STS1 connectivity.
Microprocessor control can be accomplished through a 8-bit Micro controller port or SPI Bus. The device has a
125MHz DDR SDRAM controller and interfaces to a 32-bit wide 256Mb DDR SDRAM via a 16-bit data bus. The
DDR SDRAM is used to buffer data from the Ethernet and WAN ports for transport.
The power supplies consist of a 1.8V core supply, a 2.5V DDR SDRAM supply, and 3.3V I/O supply. The DDR
interface also requires a 1.25V reference voltage that can be obtained through a resistor-divider network.
Table 1-1. Product Selection Matrix
Ordering
Number
Ethernet
Ports
TDM
Ports
Voice
Ports
VLAN
Forwarding
Support
Supported
Forwarding
Modes
WAN
Groups
(VCGs)
μP
Control Package
DS33X11+ 1
10/100/GbE 1 0 No 2 1 SPI
10mm 144
CSBGA
DS33W11+ 1
10/100/GbE 1 1 No 2 1
SPI or
Parallel
17mm 256
CSBGA
DS33X41+ 1
10/100/GbE 4 0 No 2 1
SPI or
Parallel
17mm 256
CSBGA
DS33W41+ 1
10/100/GbE 4 1 No 1, 2, 3 1 & 3 SPI or
Parallel
17mm 256
CSBGA
DS33X42+ 2 10/100
or 1 GbE 4 0 Yes 1, 2, 3, 5 1 & 3 SPI or
Parallel
17mm 256
CSBGA
DS33X81+ 1
10/100/GbE 8 0 No 2 1
SPI or
Parallel
17mm 256
CSBGA
DS33X82+ 2 10/100
or 1 GbE 8 0 Yes 1, 2, 3, 4, 5 1, 2, 3, 4 SPI or
Parallel
17mm 256
CSBGA
DS33X161+ 1
10/100/GbE 16 0 No 2 1 SPI or
Parallel
17mm 256
CSBGA
DS33X162+ 2 10/100
or 1 GbE 16 0 Yes 1, 2, 3, 4, 5 1, 2, 3, 4 SPI or
Parallel
17mm 256
CSBGA
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 10 of 375
2. Feature Highlights
2.1 General
17mm 256 pin CSBGA Package (DS33X162/X161/X82/X81/X41/W41/W11)
10mm 144 pin CSBGA Package (DS33X11)
1.8V, 2.5V, 3.3V supplies
IEEE 1149.1 JTAG boundary scan
Software access to device ID and silicon revision
Development support includes evaluation kit, driver source code, and reference designs
2.2 VCAT/LCAS Link Aggregation (Inverse Multiplexing)
Link aggregation for up to 16 links per ITU-T G.7043/G.7042
Up to 16 members per VCG
4 VCGs for the DS33X162/X82, 2 VCGs for the DS33X42, 1 VCG for the DS33X161/X81/X41/W41
Differential delay compensation for up to 200 ms among members of a VCG
Receive and Transmit are independent (asymmetry support)
User programmable configuration of WAN ports used for VCG
Supports Virtual Concatenation of up to 8 T3/E3 or 16 T1/E1
VCAT/LCAS link aggregation not available in the DS33X11 and DS33W11
2.3 HDLC
Up to 4 HDLC Controller Engines
Compatible with polled or interrupt driven environments
Supports Bit stuffing/destuffing without Address/Control/PID fields
Programmable FCS insertion and extraction, with removal of payload FCS
16-bit or 32-bit FCS, with support for FCS error insertion
Programmable frame size limits (Minimum 64 bytes and maximum 2016 bytes)
Selectable self-synchronizing X43+1 frame scrambling/descrambling
Separate valid and invalid frame counters
Programmable inter-frame fill for transmit HDLC
Supports Transparency Processing and Abort Sequence
Programmable frame filtering for FCS errors, aborts, or frame length errors
2.3.1 cHDLC
Bit stuffing with Address/Control/PID/FCS fields
Programmable Interframe fill length.
Transparency processing
Counters: Number of received valid frames and erred frames
Incoming Frame Discard due to FCS error, abort or frame length longer than preset max.
The default maximum frame length is associated with the maximum PDU length of MAC frame
Extract SLARP for external processor interpretation
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 11 of 375
2.4 GFP-F
GFP Frame mode per ITU-T G.7041
GFP idle frame insertion and extraction
Supports Null and Linear headers
cHEC based frame delineation
X43 +1 payload and Barker Sequence scrambling/descrambling
CSF frame generation and detection
Error detection over core header and type headers
Programmable CRC-32 generation and verification
2.5 X.86 Support
Encapsulation Per ITU-T X.86 (Link Access Procedure for SONET/SDH), with 32 bit FCS
Transmit Transparency processing - 7E is replaced by 7D, 5E
Transmit Transparency processing – 7D replaced by 7D, 5D
Receive rate adaptation (7D, DD) removal.
Receive Transparency processing - 7D, 5E is replaced by 7D
Receive Transparency processing – 7D, 5D is replaced by 7D
Receive Abort Sequence - frame is dropped if 7D7E is detect
Selectable self-synchronizing X43+1 frame scrambling/descrambling
Counters: Number of received valid frames and erred frames
Frame filtering due to bad Address/Control/SAPI, FCS error, abort, or frame length errors
2.6 DDR SDRAM Interface
16-bit wide data bus with dual edge transfers and Auto Refresh Timing
Designed to interface with 256Mbit JEDEC JESD79D compliant DDR SDRAMs with a 16-bit data bus
Addressable memory range up to 256 Mbits
JESD79D compliant device sizes other than 256 Mbits may be used, limited to 256 Mbit utilization
Compatible with DDR266+
SDRAM Interface Clock output of 125MHz
Direct connection to external DDR SDRAM (P2P Mode Support)
Example devices: Micron MT46V16M16, Samsung K4H561638F and Hynix HY5DU561622CF
2.7 MAC Interfaces
Two E/FE MAC ports with MII/RMII or one GbE port with GMII.
10Mbps/100Mbps/1000Mbps Data rates
Configurable for DTE or DCE mode
Facilitates auto-negotiation by host microprocessor
Programmable half and full-duplex modes
Flow control per 802.3 half-duplex (back-pressure) and full-duplex (pause) modes
Auto Negotiation for Rates and duplex modes
Programmable max MAC frame Lengths up to 2016 Bytes for E/FE, 12KB for GbE.
Minimum MAC frame length: 64 bytes
Discards frames larger than the max MAC frame size, Runt, non-octet bounded, or bad-FCS frames upon
reception
Programmable threshold for SDRAM queues to initiate flow control, with status indication
Terminal and Facility Loopbacks at MAC port (without SA/DA swapping)
Ethernet management interface (MDIO)
Supports all applicable RMON (RFC2819) 32 bit counters with saturation at max count.
Configurable for promiscuous mode and broadcast-discard mode.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 12 of 375
2.7.1 Ethernet Bridging for 10/100
4K Address and VLAN ID lookup table for Learning and Filtering
Programmable Aging between 1 to 300 seconds in 1 second intervals
2.7.2 Ethernet Traffic Classification
Ingress Classification according to Ethernet COS
Programmable class map to 4 queues for each Ethernet port
2.7.3 Ethernet Bandwidth Policing
Bandwidth Policing with programmable CIR/CBS on Ethernet Ingress direction.
Bandwidth Policing based on a per port basis.
Programmable IEEE 802.3 Pause flow control or discard based on CIR/CBS
Programmable Non-conforming Ethernet frame discard based on CIR/CBS
See Section 8.21 for details on the granularity of CIR/CBS.
2.7.4 Ethernet Traffic Scheduling
Programmable scheduler for Ethernet flows toward PDH port(s):
o Strict priority, or
o Weighted Queuing
2.7.5 Connection Endpoints
Connection between Ethernet port(s) and Serial(s) based on
Ethernet side:
o per Ethernet port, or
o per VLAN ID (sub-interface)
o Priority (VLAN PCP or DSCP)
WAN side (Serial):
o per Serial port, or
o per VCG bundle
2.7.6 Virtual Connection
Each connection configured for bi-directional flow with selected encapsulation.
2.7.7 Connection and Aggregation
Forwarding between Endpoints based on the following options:
o Per Ethernet port per serial port or per VCG
o Per VLAN ID per Serial port or port VCG
VLAN Forwarding supported only in the DS33X42, DS33X82, and DS33X162
2.7.8 Ethernet Control Frame Processing
Control Frames, except PAUSE and OAM, shall be forwarded without processing.
PAUSE and OAM frames can be programmed to be intercepted, discarded or forwarded.
2.7.9 Q-in-Q
Programmable Carrier VLAN tag insertion.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 13 of 375
2.8 Serial Ports
Four, Eight or Sixteen Serial ports with Synchronous Clock/Data at 128kbps to 52MHz.
Independently clock inputs for RX and TX operations on the per port bases.
Input clock supports either continuous or gapped clock
Seamless interconnect with Maxim LIU/Framer/Transceiver devices for T1/E1/J1, and T3/E3
Terminal and Facility Loopbacks per port
2.8.1 Voice Ports
The DS33W41 supports up to four voice ports; DS33W11 supports one voice port
Each voice port supports up to 16 DS0s of voice to be multiplexed with Ethernet traffic
Devices supporting voice input are restricted to T1/E1 WAN data rates
2.9 Microprocessor Interface
Selectable 8-bit Parallel or SPI Serial data bus
Multiplexed/Non-multiplexed Intel and Motorola Timing Modes
Internal software reset and External Hardware reset input pin
Global interrupt output pin
2.10 Slave Serial Peripheral Interface (SPI) Features
Four-signal synchronous serial data link operating in full duplex slave mode up to 10Mbps
Direct connection and fully compliant to popular communication processors such as MPC8260 and
microcontrollers such as M68HC11
2.11 Test and Diagnostics
IEEE 1149.1 Support
Diagnostic Loopbacks
2.12 Specifications Compliance
The DS33X162 family of products adhere to the applicable telecommunications standards. The following list
provides the specifications and relevant sections.
IEEE: 802.3-2002, CSMA/CD access method and physical layer specifications.
802.1D (1998): MAC Bridge
802.1Q (1998): Virtual LANs
802.1v-2001: VLAN Classification by Protocol and Port
802.1ag: Ethernet OAM (extract/insert support)
802.3ah: Ethernet First Mile (OAM extract/insert support)
IETF: RFC1662, PPP in HDLC-like Framing
RFC2615, PPP over SONET/SDH
RFC2918, RMON MIB (Hardware counters, extract/insert support)
ITU-T: X.86 Ethernet over LAPS
G.707 Network node interface for the synchronous digital hierarchy (SDH)
G.7041 Generic Framing Procedure (GFP) (12/2001)
G.7042 LCAS for VCAT signal (02/2004)
G.7043 VCAT of PDH signals (07/2004)
G.8040 GFP over PDH
Y.1303 Framed GFP
Y.1323 Ethernet over LAPS
Y.1731 Ethernet OAM (extract/insert support)
ANSI: T1X1/2000-0243R Generic Framing Procedure
Other: RMII: Industry Implementation Agreement for “Reduced MII Interface,” Sept 1997
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 14 of 375
3. Applicable Equipment Types
Bonded Transparent LAN Service
LAN Extension
Ethernet Delivery over T1/E1/J1, T3/E3, xDSL, V.35/Optical
Figure 3-1. Standardized Ethernet Transport over Multiple T1/E1 Lines
SOLUTION ADVANTAGES:
Up to 200ms of Differential Delay Tolerance, with VCAT/LCAS (ITU-T G.7042/G.7043) Link
Aggregation
Ethernet Transport Over Up to 16 T1/E1s or 8 DS3s with QoS and Ethernet OAM Capability!
No Data Path Code Development Required!
Committed Information Rate (CIR) Controller Can Be Used to Throttle Subscriber Bandwidth Usage!
GFP, HDLC, LAPS, or cHDLC Encapsulation
Advanced Forwarding Modes Allow Use of VLAN or Priority for Physical Port Assignment of
Frames
DS33X162
ETHERNET-TO-SERIAL
CONVERSION, QoS,
VCAT/LCAS
AGGREGATION,
BRIDGING & FILTERING,
BUFFERING, RATE
MATCHING, ERROR
DETECTION, STATISTICS
GATHERING,
OAM EXTRACT/INSERT
DDR
SDRAM
DS80C320 μC FOR
CONFIGURATION
MII,
RMII,
GMII
10/100/1000
ETHERNET
10/100/
1000
PHY
E1/T1 #1
MAX3232e
RS-232
CONFIG MAX809L
μC RESET
DS26521
T1/E1
SCT #1
MAGNETICS
DS26521
T1/E1
SCT #2
MAGNETICS
DS26521
T1/E1
SCT #16
MAGNETICS
E1/T1 #2
E1/T1 #16
10/100
ETHERNET
10/100/
PHY
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 15 of 375
Figure 3-2. Standardized Ethernet Transport over a Single T1/E1 Line
SOLUTION ADVANTAGES:
Ethernet Transport Over Single or Fractional E1/T1 with QoS and Ethernet OAM Capability!
Flexible Fractional E1/T1 (Nx64kbps in Any DS0s) Support, Using DS26521 Channel Blocking
No Data Path Code Development Required!
GFP, HDLC, LAPS, or cHDLC Encapsulation
Solution Extends Easily to DS3/E3
DS33X11
ETHERNET-TO-SERIAL
CONVERSION, QoS,
BRIDGING & FILTERING,
BUFFERING, RATE
MATCHING, ERROR
DETECTION, STATISTICS
GATHERING, OAM
EXTRACT/INSERT
DDR
SDRAM
DS80C320 μC
FOR CONFIGURATION
MII,
RMII,
GMII
10/100/1000
ETHERNET
10/100/
1000
PHY
E1/T1
MAX3232
RS-232
CONFIG MAX809L
μC RESET
DS26521
T1/E1
SCT #1
PROGRAMMABLE
GAPPED CLOCK,
DATA, AND
FRAME SYNC
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 16 of 375
Figure 3-3. Remote IP DSLAM T1/E1 Trunk Card
SOLUTION ADVANTAGES:
Standards Compliant Ethernet Transport Over Multiple E1/T1 Links
QoS and Ethernet OAM Capability!
No Data Path Code Development Required!
GFP, HDLC, LAPS, or cHDLC Encapsulation
Cost-Optimized Ethernet Transport
Solution Extends Easily to DS3/E3
8 AGGREGATED
T1/E1/J1s
TO
SUBSCRIBERS
DS33X81
ETHERNET-TO-
SERIAL LINK
AGGREGATION
GFP/VCAT/LCAS
VLAN, Q-IN-Q,
10/100/GbE
SDRAM
DS80C320 μC
MII/
RMII/
GMII
DS26528
OCTAL T1/E1/J1
SINGLE-CHIP
TRANSCEIVER
GbE TRANSCEIVER
1000BASE-LX
BACKPLANE
xDSL LINE CARD
xDSL LINE CARD
xDSL LINE CARD
xDSL LINE CARD
ETHERNET SWITCH / ROUTER
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 17 of 375
4. Acronyms & Glossary
CLE - Customer Located Equipment.
CoS - Class of Service, 802.1Q defined three User priority bits in Tag control Info Field.
DCE - Data Communication Interface.
DSCP - Diff Serve Code Point, IETF defined six bits in the IP ToS field.
DTE - Data Terminating Interface.
EoPDH - Ethernet over PDH. Ethernet encapsulated in HDLC or GFP, transported via one or more PDH lines.
EoPoS - Ethernet transport over PDH over SONET/SDH. Maintaining a PDH framing layer enables re-use of
existing Ethernet-over-SSONET/SDH and PDH-over-SONET/SDH equipment for delivering Ethernet services.
EoS – Ethernet over SONET/SDH.
FCS - Frame Check Sequence.
Frame – A Layer-2 Protocol Data unit. (In general, Layer 2 frames carry Layer 3 packets).
Gapped Clock - Non-continuous clock used to strobe the associated synchronous Data at certain times.
HDLC - High Level Data Link Control.
LAN - Local Area Network. Usually used to refer to a local Ethernet segment.
MAC - Media Access Control. Lowest Digital Layer of Protocol Stack. Performs Framing, Sequencing, and
Addressing.
MII - Media Independent Interface. One type of data bus between the physical layer (PHY) and the MAC.
Packet – A Layer 3 Protocol Data unit.
PDH - Plesiochronous Digital Hierarchy. The existing telephone network’s “last mile.” Primarily T1/E1 lines.
PHY - A device that interfaces an OSI logical layer to a physical media (Cat-5, twisted-pair, etc.). In this
document, interfaces an Ethernet MAC to copper or fiber.
RMII - Reduced Media Independent Interface.
VID- Virtual LAN Identifier.
VCAT - Virtual Concatenation. Used in conjunction with the Link Capacity Adjustment Scheme for transporting
Ethernet over bonded PDH or SDH/SONET tributaries.
WAN - Wide Area Network. Typically T1(DS1), E1, T3(DS3), E3, or xDSL.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 18 of 375
5. Designing with the DS33X162 Family of Devices
The DS33X162 family of products provide the required flexibility and complexity to meet the needs of a very broad
range of applications. Although typical applications using these devices are very complex and each application has
a unique set of needs, most application developments follow a predictable set of steps:
1. Identification of Application Requirements
2. Device Selection
3. Ancillary Device Identification
4. Circuit Design
5. Board Layout
6. Software Development
7. Production
5.1 Identification of Application Requirements
The designer of an application using one of the devices in the DS33X162 product line should begin by answering
several high-level questions.
The solutions to these questions, in conjunction with referencing Table 1-1, will lead to a proper device selection:
How many and what type of TDM links are needed?
How does data need to move between the various interfaces of the mapping device?
What traffic prioritization methodologies will be needed?
How many Ethernet ports are needed?
Is direct multiplexing of PCM encoded voice traffic a requirement.
5.2 Device Selection
The answer to “How many and what type of TDM links are needed?” will normally narrow the selection to devices
that contain at least that many ports. For example, if 16 E1 links are required, the applicable solutions are the
DS33X161 and DS33X162. If 4 DS-3 links are required, the applicable solutions are the DS33X41, DS33X42,
DS33X81, DS33X82, DS33X161, and DS33X162.
The answer to “How does data need to move between the various interfaces of the mapping device?” will usually
further narrow the selection. The path any given frame takes through the device can be determined by the contents
of the frame, the port of entry, the user configured WAN Connections, and the user configured Forwarding Mode.
Note that all devices in the product family allow insertion and extraction of frames for inspection, (including ITU-T
Y.1731 OAM frames) by the host microprocessor, based on a number of conditions outlined in Section 8.17
If traffic flow is to be governed by VLAN tag information, the choices are narrowed to only those devices that
support VLAN forwarding: DS33X42, DS33X82, and DS33X162. If ingress traffic is to be segregated by VLAN ID or
DSCP Priority into separate WAN flows, the available number of WAN Groups in Table 1-1 should be considered.
Several Forwarding Modes govern the flow of frames through the device. See Table 8-4 in Section 8.9 for more
information.
________________________________________________DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 19 of 375
5.3 Ancillary Device Selection
All devices in the product family require an external DDR SDRAM for operation. The user must select a JEDEC
JESD79D compliant DDR SDRAM. DDR 266 or faster may be used. The recommended size is 256 Mbit (4 Meg x
16 x 4 banks), although it is possible to use other sizes (see Section 5.4). P2P operation is supported, and 0-ohm
series termination is po ssible with proper PCB layout.
All devices in the product family require an external microprocessor for configuration and status monitoring.
Because the DS33X162 family of devices are designed to require only a minimal amount of processor support, an
inexpensive microcontroller can normally be used. In applications which make extensive use of the support for
higher-layer protocols may require additional protocol processing capability, microprocessor selection can normally
be determined by evaluating the management frame processing requirements of the particular application. All
devices in the product family are designed to support both polled and interrupt-driven environments.
Microprocessor control is possible through the 8-bit parallel control port or SPI Slave port. More information on
microprocessor control is available in Section 8.1. Note that the parallel bus is not available in the 144 pin
DS33X11, and the SPI Slave port must be used for processor control.
Depending on the application, external PDH framers and LIUs may be required. Maxim offers a broad range of
framers, LIUs, and single-chip transceivers compatibl e with the DS33X162 family of products.
The Ethernet interface will normally be connected to an external Ethernet PHY or Ethernet switch device. Many
commercially-available products are available and will seamlessly interface with the device’s MII, RMII, or GMII
options.
Several external clock sources are required for proper operation. See Section 8.3 for more information.
5.4 Circuit Design
Note that all devices except the DS33X11, DS33W11, and DS33W41 share a common footprint. This is intended to
make it very easy to design a circuit that easily scales from 4 to 16 WAN ports with alternate assembly BOMs.
When designing a PCB for 4 or 8 ports, care should be taken to tie the unused input pins for serial ports 5-16 or 9-
16 to ground. This will allow for use of the higher density device for prototype purposes. Care should be taken that
outputs from the DS33X162 family device that are present in the high-port count option but not in the low port-count
option may potentially leave inputs on other devices floating, and should be pulled appropriately to a known
voltage.
The device’s DDR SDRAM interface is designed to use a JESD79D 256 Mbit (4 Meg x 16 x 4 bank) DDR SDRAM
with a 16 bit data bus. If a larger DDR SDRAM must be used, the lowest 13 address lines (A0-A12) should be
used, and care should be taken to ground any unused address inputs on the DDR SDRAM. Note that in such a
case, only 256 Mbits are addressable by the device. If a smaller JESD79D DDR SDRAM is to be used (such as the
128 Mbit MT46V8M16), the unused address outputs should be left unconnected, and care should be taken in
software to keep the starting and ending addresses of each queue within the same memory bank. In all cases, P2P
operation is supported, and 0Ω series termination is possible with proper PCB layout.
5.5 Board Layout
The DDR SDRAM interface has particularly stringent layout requirements. Traces should have matched
impedances, be of equal length, and should not have stubs. Refer to the DDR SDRAM’s data sheet for more
information. Supply decoupling should be placed as close to the device as possible.
5.6 Software Development
All devices in the product family have a common register set. An example initialization sequence is shown in
Section 8.5. Software drivers and demonstration kit software are both available from Maxim. Go to
www.maxim-ic.com/support for the latest information.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 20 of 375
6. Block Diagrams
Figure 6-1. Simplified Logical Block Diagram
(MII MODE)
RXD[0:4]
RX_CLK
RX_CRS
RX_ERR
COL1
TX_CLK
TX_EN
TXD[0:4]
MDC
MDIO
TCLK1
TDATA1
TSYNC1
RCLK1
RDATA1
RSYNC1
ETHERNET MAC1
μ
P Port
DDR SDRAM PORT
C
S
A
0-A10
D0-D7
WR
R
D
I
NT
SD_UDM
SD_LDM
SD_LDQS
SD_UDQS
SDC
S
SRA
S
SCA
S
SW
E
SBA[0:1]
SDA[0:12]
SDATA[0:15]
SD_CL
K
SD_CL
K
SDCLKEN
JTAG Pin
s
ARBITER/
BUFFER MANAGER
4 x GFP/HDLC
ENCAPSULATORS
TRANSMIT SERIAL
PORT 1
JTAG
CLAD
(MII MODE)
RXD[0:4]
RX_CLK
RX_CRS
RX_ERR
COL2
TX_CLK
TX_EN
TXD[0:4]
MDC
MDIO
ETHERNET MAC2(X162/82/42)
SYSCLKI
BRDIGE/FILTER
SPI
QoS
PRIORITY
SCHEDULING
4 x VCAT/LCAS
Add/Drop
OAM Frames
4 x GFP/HDLC
DECAPSULATORS
4 x VCAT/LCAS
TRANSMIT SERIAL
PORT 2
TRANSMIT SERIAL
PORT 16
RECEIVE SERIAL
PORT 1
RECEIVE SERIAL
PORT 2
RECEIVE SERIAL
PORT 16
TVDAT
A
TVCL
K
TVSYNC
TVDEN
RVDAT
A
RVCL
K
RVSYNC
RVDEN
VOICE PORT(W41/W11)
TCLK2
TDATA2
TSYNC2
TMCLK4
TDATA16
TMSYNC4
RCLK2
RDATA2
RSYNC2
RCLK16
RDATA16
RSYNC16
SPI_MOSI
SPI_MISO
SPI_CLK
CIR/CBS CIR/CBS
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 21 of 375
7. Pin Descriptions
7.1 Pin Functional Description
Note that all digital pins are inout pins in JTAG mode. This feature increases the effectiveness of board level ATPG
patterns.
Table 7-1. Detailed Pin Descriptions
PACKAGE PINS
NAME 256 144
TYPE FUNCTION
MICROPROCESSOR PORT
A0 K10 I
Address Bit 0. Address bit 0 of the microprocessor interface. Least
Significant Bit. Note that the parallel bus is not available in the 144 pin
DS33X11, and the SPI Slave port must be used for processor control.
A1 L9 I
Address Bit 1. Address bit 1 of the microprocessor interface.
A2 K11 I
Address Bit 2. Address bit 2 of the microprocessor interface.
A3 L10 I
Address Bit 3. Address bit 3 of the microprocessor interface.
A4 K13 I
Address Bit 4. Address bit 4 of the microprocessor interface.
A5 L11 I
Address Bit 5. Address bit 5 of the microprocessor interface.
A6 K12 I
Address Bit 6. Address bit 6 of the microprocessor interface.
A7 L12 I
Address Bit 7. Address bit 7 of the microprocessor interface.
A8 G10 I
Address Bit 8. Address bit 8 of the microprocessor interface.
A9 L13 I
Address Bit 9. Address bit 9 of the microprocessor interface.
A10 G11 I
Address Bit 10. Address bit 10 of the microprocessor interface.
D0/
SPI_MISO K6 J4 IOz
Data Bit 0. Bi-directional data bit 0 of the microprocessor interface. Least
Significant Bit. Not driven when CS=1 or RST=0.
SPI_MISO (SPI_SEL=1). SPI Serial Data Output (Master-in Slave-Out).
D1/
SPI_MOSI L6 K4 IOz
Data Bit 1. Bi-directional data bit 1 of the microprocessor interface. Not
driven when CS=1 or RST=0.
SPI_MOSI (SPI_SEL=1). SPI Serial Data Input (Master-out Slave-in)
D2/
SPI_CLK K7 L4 IOz
Data Bit 2. Bi-directional data bit 2 of the microprocessor interface. Not
driven when CS=1 or RST=0.
SPI_CLK (SPI_SEL=1). SPI Serial Clock Input.
D3 L7 IOz
Data Bit 3. Bi-directional data bit 3 of the microprocessor interface. Not
driven when CS=1 or RST=0.
D4 K8 IOz
Data Bit 4. Bi-directional data bit 4 of the microprocessor interface. Not
driven when CS=1 or RST=0.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 22 of 375
PACKAGE PINS
NAME 256 144
TYPE FUNCTION
D5/
SPI_SWAP L8 J5 IOz
Data Bit 5. Bi-directional data bit 5 of the microprocessor interface. Not
driven when CS=1 or RST=0.
SPI_SWAP (SPI_SEL=1). Controls the address and data bit order of the
SPI interface. The R/W and B bit positions do not change.
0 = LSB is transmitted and received first. The resulting bit order is:
R/W, A7, A8, A9, A10, A11, A12, A13,
A0, A1, A2, A3, A4, A5, A6, Burst,
D0, D1, D2, D3, D4, D5, D6, D7...
1 = MSB is transmitted and received first. The resulting bit order is:
R/W, A13, A12, A11, A10, A9, A8, A7,
A6, A5, A4, A3, A2, A1, A0, Burst,
D7, D6, D5, D4, D3, D2, D1, D0…
D6/
SPI_CPHA K9 K5 IOz
Data Bit 6. Bi-directional data bit 6 of the microprocessor interface. Not
driven when CS=1 or RST=0.
SPI_CPHA (SPI_SEL=1). When in SPI mode, setting this bit to 1 inverts
the phase of the clock signal on SPICK. See Section 2.10 for detailed
timing and functionality information. Default setting is low.
D7/
SPI_CPOL M9 L5 IOz
Data Bit 7. Bi-directional data bit 7 of the microprocessor interface. Not
driven when CS=1 or RST=0.
SPI_CPOL (SPI_SEL=1). When in SPI mode, setting this bit to 1 inverts
the clock signal on SPICK. See Section 2.10 for detailed timing and
functionality information. Default setting is low.
CS J8 J3 I
Chip Select. This pin must be taken low for read/write operations. When
CS is high, the RD/DS and WR signals are ignored.
RD/DS J9 — I
Read Data Strobe (Intel Mode). The device drives the data bus with the
contents of the addressed register while RD and CS are both low.
Data Strobe (Motorola Mode). Used to latch data through the
microprocessor interface. DS must be low during read and write
operations.
WR/RW J10 — I
Write (Intel Mode). The device captures the contents of the data bus on
the rising edge of WR and writes them to the addressed register location.
CS must be held low during write operations.
Read Write (Motorola Mode). Used to indicate read or write operation.
RW must be set high for a register read cycle and low for a register write
cycle.
ALE J7 I
Address Latch Enable. This signal is used to internally latch an address,
allowing multiplexing of the parallel interface address and data lines.
When ALE is high, the values of the A[10:0] pins are used for read/write
operations. On the falling edge of ALE, the values of the A[10:0] pins are
latched internally, and the latched value is used for read/write operations
until the next rising edge of ALE. ALE should be tied high for non-
multiplexed address systems.
MODE J12 I
Mode. Selects RD/WR or DS strobe mode.
0 = Read/Write Strobe Mode
1 = Data Strobe Mode
INT J11 G5 Oz
Interrupt Output. Outputs a logic zero when an unmasked interrupt event
is detected. INT is de-asserted when all interrupts have been
acknowledged and serviced. Active low. Inactive state is configured with
the GL.CR2.INTM bit.
SPI_SEL J16 I
Parallel/SPI Interface Select
0 = Parallel Interface
1 = SPI Interface Selected
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 23 of 375
PACKAGE PINS
NAME 256 144
TYPE FUNCTION
GMII/MII/RMII PORT
TXD[0]/TXD1[0],
TXD[1]/TXD1[1],
TXD[2]/TXD1[2],
TXD[3]/TXD1[3],
TXD[4]/TXD2[0],
TXD[5]/TXD2[1],
TXD[6]/TXD2[2],
TXD[7]/TXD2[3]
J13,
K15,
J15,
H13,
N15,
P15,
R15,
T15
J8,
J9,
H8,
H9,
L8,
K8,
L9,
K9
O
Transmit Data 0 through 7(GMII Mode). TXD[0:7] is presented
synchronously with the rising edge of TX_CLK1. TXD[0] is the least
significant bit of the data. When TX_EN1 is low the data on TXD should
be ignored.
MAC 1 Transmit Data 0 through 3(MII Mode – TXD1[0:3]). Four bits of
data TXD1[0:3] presented synchronously with the rising edge of
TX_CLK1.
MAC 1 Transmit Data 0 through 1(RMII Mode – TXD1[0:1]). Two bits of
data TXD1[0:1] presented synchronously with the rising edge of
TX_CLK1.
MAC 2 Transmit Data 0 through 3(MII Mode– TXD2[0:3]).Four bits of
data TXD2[0:3] presented synchronously with the rising edge of
TX_CLK2. Note that TXD2[0:3] is only available on devices with two
Ethernet ports.
MAC 2 Transmit Data 0 through 1(RMII Mode– TXD2[0:1]). Two bits of
data TXD2[0:1] presented synchronously with the rising edge of
TX_CLK2. Note that TXD2[0:1] is only available on devices with two
Ethernet ports.
RXD[0]/RXD1[0],
RXD[1]/RXD1[1],
RXD[2]/RXD1[2],
RXD[3]/RXD1[3],
RXD[4]/RXD2[0],
RXD[5]/RXD2[1],
RXD[6]/RXD2[2],
RXD[7]/RXD2[3]
G14,
F13,
F14,
H14,
N16,
M16,
L15,
K16
J10,
J11,
H10,
H11,
L10,
L11,
K10,
K11
I
MAC 1 Receive Data 0 through 7(GMII Mode). Eight bits of received
data, sampled synchronously with the rising edge of RX_CLK. For every
clock cycle, the PHY transfers 8 bits to the device. RXD[0] is the least
significant bit of the data. Data is not considered valid when RX_DV is
low.
MAC 1 Receive Data 0 through 3(MII Mode – RXD1[0:3]). Four bits of
received data, sampled synchronously with RX_CLK1. Accepted when
RX_CRS1 is asserted.
MAC 1 Receive Data 0 through 1(RMII Mode – RXD1[0:1]). Two bits of
received data, sampled synchronously with RX_CLK1. Accepted when
RX_CRS1 is asserted.
MAC 2 Receive Data 0 through 3(MII Mode – RXD2[0:3]): Four bits of
received data, sampled synchronously with RX_CLK2. Accepted when
RX_CRS2 is asserted.
MAC 2 Receive Data 0 through 1(RMII Mode – RXD2[0:1]). Two bits of
received data, sampled synchronously with RX_CLK2. Accepted when
RX_CRS2 is asserted.
RX_CLK1,
RX_CLK2
G16,
N13 J12 IO
Receive Clock 1 (GMII). 125MHz clock. This clock is used to sample the
RXD[7:0] data.
Receive Clock 1 (MII). Timing reference for RX_DV, RX_ERR and
RXD[3:0], which are clocked on the rising edge. RX_CLK frequency is
25MHz for 100Mbps operation and 2.5MHz for 10Mbps operation. In DTE
mode, this is a clock input provided by the PHY.
Receive Clock 2 (MII Only). Timing reference for RX_DV2, RX_ERR2 and
RXD2[3:0], which are clocked on the rising edge. RX_CLK2 frequency is
25MHz for 100Mbps operation and 2.5MHz for 10Mbps operation. In DTE
mode, this is a clock input provided by the PHY. Note that RX_CLK2 is
only available on devices with two Ethernet ports.
TX_CLK1,
TX_CLK2
M15,
T16 L12 IO
Transmit Clock 1 (MII). Timing reference for TX_EN1 and TXD1[3:0].
The TX_CLK1 frequency is 25MHz for 100Mbps operation and 2.5MHz
for 10Mbps operation. In DTE mode, this is a clock input provided by the
PHY. Sourced from REF_CLK Input.
Transmit Clock 2 (MII Only). Timing reference for TX_EN2 and TXD2[3:0].
The TX_CLK2 frequency is 25MHz for 100Mbps operation and 2.5MHz
for 10Mbps operation. In DTE mode, this is a clock input provided by the
PHY. Note that TX_CLK2 is only available on devices with two Ethernet
ports. Sourced from REF_CLK Input.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 24 of 375
PACKAGE PINS
NAME 256 144
TYPE FUNCTION
TX_EN1,
TX_EN2
K14,
P16 F8 O
Transmit Enable 1(GMII). When this signal is asserted, the data on
TXD[7:0] is valid.
Transmit Enable 1, 2 (MII/RMII). In MII mode, this pin is asserted high
when data TXD[3:0] is being provided by the device. In RMII mode, this
pin is asserted high when data TXD[1:0] is being provided by the device.
The signal is deasserted prior to the first nibble of the next frame. This
signal is synchronous with the rising edge TX_CLK. It is asserted with the
first bit of the preamble.
Note that TX_EN2 is only available on devices with two Ethernet ports.
Unused output pins should not be connected.
RX_DV1,
RX_DV2
G15,
M11 F9 I
Receive Data Valid 1 (GMII). This signal is synchronous to the RX_CLK1
and provides a valid signal for the RXD[7:0].
Receive Data Valid 1, 2 (MII/RMII). This active-high signal indicates valid
data from the PHY. In MII mode the data RXD[3:0] is ignored if RX_DV is
not asserted high. In RMII mode the data RXD[1:0] is ignored if RX_DV is
not asserted high.
Note that RX_DV2 is only available on devices with two Ethernet ports.
RX_CRS1,
RX_CRS2
E13,
J14 G12 I
Receive Carrier Sense 1 (GMII). This signal is asserted (high) when data
is valid from the PHY. This signal is asserted by the PHY when either
transmit or receive medium is active. This signal is not synchronous to
any of the clocks.
Receive Carrier Sense 1, 2 (MII). This signal is asserted by the PHY when
either transmit or receive medium is active. This signal is not synchronous
to any of the clocks.
Note that RX_CRS2 is only available on devices with two Ethernet ports.
RX_ERR1,
RX_ERR2
H15,
M12 G9 I
Receive Error 1 (GMII). This signal indicates a receive error or a carrier
extension in the GMII Mode.
Receive Error 1, 2 (MII). Asserted by the MAC PHY for one or more
RX_CLK periods indicating that an error has occurred. Active High
indicates Receive code group is invalid. If RX_CRS is low, RX_ERR has
no effect. This is synchronous with RX_CLK. In DCE mode, this signal
must be grounded.
Note that RX_ERR2 is only available on devices with two Ethernet ports.
TX_ERR1,
TX_ERR2
L14,
R16 G8 O
Transmit Error 1(GMII). When this signal is asserted, the PHY will
respond by sending one or more code groups in error.
Transmit Error 1, 2(GMII, MII). When this signal is asserted, the PHY will
respond by sending one or more code groups in error.
Note that TX_ERR2 is only available on devices with two Ethernet ports.
COL1,
COL2
E14,
L16 G10 I
Collision Detect 1, 2 (MII). Asserted by the Ethernet PHY to indicate that
a collision is occurring. In DCE Mode this signal should be connected to
ground. This signal is only valid in half duplex mode, and is ignored in full
duplex mode.
Note that COL2 is only available on devices with two Ethernet ports.
DCEDTES P13 L7 I
DCE or DTE Selection (MII). Setting this pin high places all Ethernet
ports in DCE Mode. Setting this pin low places the Ethernet ports in DTE
Mode.
In DCE Mode, the MII interface can be directly connected to another
MAC. In DCE Mode, the Transmit clock (TX_CLK) and Receive clock
(RX_CLK) are outputs.
Note that there is no software bit selection of DCEDTES. Note that DCE
operation is only valid for 10/100, MII mode.
RMII_SEL M14 K7 I
RMII Selection Input. Set this pin to 1 for RMII operation. In devices with
2 Ethernet ports, both ports will operate in RMII mode. REF_CLK must be
50MHz. Set this pin to 0 for GMII or MII operation.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 25 of 375
PACKAGE PINS
NAME 256 144
TYPE FUNCTION
REF_CLK T13 M8 I
Reference Clock Input. REF_CLK must be 125MHz for GMII operation.
REF_CLK must be 25MHz for MII DCE operation. REF_CLK must be
50MHz for RMII operation.
GTX_CLK R14 M10 O
GbE Transmit Clock Output (GMII). 125MHz clock output available for
GMII operation. This clock is sourced from the 125MHz REF_CLK input.
PHY MANAGEMENT BUS
MDC F15 H5
O
Management Data Clock. Clocks management data to and from the PHY.
The clock is derived from SYSCLKI, with a maximum frequency is
1.67MHz.
MDIO G13 H4 IO
MII Management Data IO. Data path for control information between the
device and the PHY. Pull to logic high externally through a 1.5 kΩ resistor.
The MDC and MDIO pins are used to write or read up to 32 Control and
Status Registers in PHY Controllers. This port can also be used to initiate
Auto-Negotiation for the PHY.
SDRAM CONTROLLER
SDATA[0] C16 A11
SDATA[1] B16 B11
SDATA[2] B15 D11
SDATA[3] C15 C11
SDATA[4] A14 A10
SDATA[5] C12 B10
SDATA[6] A13 D10
SDATA[7] B13 C10
SDATA[8] D9 C8
SDATA[9] C9 D8
SDATA[10] D12 B8
SDATA[11] C10 E9
SDATA[12] B10 C9
SDATA[13] B11 D9
SDATA[14] C11 B9
SDATA[15] B12 A9
IOz
SDRAM Data Bus Bits 0 through 15. The 16 pins of the SDRAM data
bus are inputs for read operations and outputs for write operations. At all
other times, these pins are high impedance.
SDA[0] C3 A3
SDA[1] C2 D2
SDA[2] B2 B2
SDA[3] A2 D1
SDA[4] D3 C1
SDA[5] D4 E1
SDA[6] B5 C2
SDA[7] C5 E2
SDA[8] D5 B3
SDA[9] B6 A4
SDA[10] A3 C3
SDA[11] C6 B4
SDA[12] A5 D3
O
SDRAM Address Bus 0 through 12. The 13 pins of the SDRAM address
bus output the row address first, followed by the column address. The row
address is determined by SDA[0] to SDA[12] at the rising edge of clock.
Column address is determined by SDA[0]-SDA[9] and SDA[11] at the
rising edge of the clock. SDA[10] is used as an auto-precharge signal.
SBA[0],
SBA[1] B4, B3 D4, C4 I SDRAM Bank Select. These 2 bits select 1 of 4 banks for the
read/write/precharge operations.
SDCS A4 A5 O
SDRAM Chip Select.All commands are masked when SDCS is registered
high. SDCS provides for external bank selection on systems with multiple
banks. SDCS is considered part of the command code.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 26 of 375
PACKAGE PINS
NAME 256 144
TYPE FUNCTION
SRAS A6 B5 O
SDRAM Row Address Strobe. Active-low output, used to latch the row
address on rising edge of SD_CLK. It is used with commands for Bank
Activate, Precharge, and Mode Register Write.
SCAS B7 D5 O
SDRAM Column Address Strobe. Active low output, used to latch the
column address on the rising edge of SD_CLK. It is used with commands
for Bank Activate, Precharge, and Mode Register Write.
SWE A7 C5 O
SDRAM Write Enable. This active low output enables write operation and
auto precharge.
SD_UDM D7 E7 O
SDRAM Upper Data Mask. SD_UDM is an active high output mask
signal for write data. SD_UDM is updated on both edges of SD_UDQS.
SD_UDM corresponds to data on SDATA15-SDATA8.
SD_LDM D13 E6 O
SDRAM Lower Data Mask. SD_LDM is an active high output mask signal
for write data. SD_LDM is updated on both edges of SD_LDQS. SD_LDM
corresponds to data on SDATA7-SDATA0.
SD_LDQS C13 E8 IOz
Lower Data Strobe. Output with write data, input with read data.
SD_LDQS corresponds to data on SDATA7-SDATA0.
SD_UDQS D8 D7 IOz
Upper Data Strobe. Output with write data, input with read data.
SD_UDQS corresponds to data on SDATA15-SDATA8.
SD_CLK A8 A8 O
SDRAM Clock. SD_CLK and SD_CLK are differential clock outputs. All
address and control input signals are sampled on the crossing of the
positive edge of SD_CLK and negative edge of SD_CLK. Output (write)
data is referenced to the crossings of SD_CLK and SD_CLK (both
directions of crossing).
SD_CLK A9 A7 O
SDRAM Clock (Inverted). SD_CLK and SD_CLK are differential clock
outputs. All address and control input signals are sampled on the crossing
of the positive edge of SD_CLK and negative edge of SD_CLK. Output
(write) data is referenced to the crossings of SD_CLK and SD_CLK (both
directions of crossing).
SD_CLKEN C4 E5 O
SDRAM Clock Enable. Active High. SD_CLKEN must be active
throughout DDR SDRAM READ and WRITE accesses.
SERIAL INTERFACE IO PINS
TDATA1 T6 L3
TDATA2 T7
TDATA3 P6
TDATA4 N9
TDATA5 M5
TDATA6 N6
TDATA7 N7
TDATA8 R9
TDATA9 N10
TDATA10 R11
TDATA11 N11
TDATA12 R12
TDATA13 P14
TDATA14 P12
TDATA15 N12
TDATA16 P11
O
Transmit Serial Data Output. Output on the rising edge of TCLK. The
maximum data rate is 52Mbps.
Not all serial port signals are available on all products in the device family.
Unused output pins should not be connected.
DS33X41/X42/W41/W11: TDATA5 – TDATA16 not used.
DS33X81/X82: TDATA9 – TDATA16 not used.
TCLK1/TMCLK1 R5 M3
TCLK2 P5
TCLK3 R8
TCLK4 P9
I Serial Interface Transmit Clock Input (TCLK[1:8]).The clock reference
for TDATA, which is output on the rising edge of the clock. TCLK supports
gapped clocking, up to a maximum frequency of 52MHz.
Note that TCLK1 is also TMCLK1, TCLK5 is also TMCLK2. TMCLK3
and TMCLK4 are stand-alone pins.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 27 of 375
PACKAGE PINS
NAME 256 144
TYPE FUNCTION
TCLK5/TMCLK2 M7
TCLK6 P10
TCLK7 T10
TCLK8 R10
TMCLK3 T11
TMCLK4 M10
Transmit Master Clock (TMCLK[1:4]). Input clock that TDATA is
referenced to. This clock may be gapped. Maximum clock speed is
52MHz. This clock can be inverted.
Not all serial port signals are available on all products in the device family.
Unused input pins should be tied to VSS.
DS33X41/X42/W41/W11: TCLK5 – TCLK8 not used.
TSYNC1/
TMSYNC1 R6 M4
TSYNC2 T8
TSYNC3 M6
TSYNC4 P7
TSYNC5/
TMSYNC2 R7 —
TSYNC6 P8
TSYNC7 N8
TSYNC8 T9
TMSYNC3 T12
TMSYNC4 N14
I
Transmit Synchronization Input (TSYNC[1:8]). Input that indicates
frame boundaries on TDATA, referenced to TCLK. This signal may be a
frame or multiframe sync. It must be a multiframe sync for VCAT
applications. Data is octet aligned to this signal.
Note that TSYNC1 is also TMSYNC1, TSYNC5 is also TMSYNC2.
TMSYNC3 and TMSYNC4 are stand-alone pins.
Transmit Master Sync (TMSYNC[1:4]). This input indicates frame
boundaries on TDATA if selected via LI.TCR.TD_SEL, referenced to
TMCLK1.
Not all serial port signals are available on all products in the device family.
Unused input pins should be tied to VSS.
DS33X41/X42/W41/W11: TSYNC5 – TTSYNC8 not used.
RDATA1 D1 J2
RDATA2 G8
RDATA3 G4
RDATA4 H2
RDATA5 F3
RDATA6 F2
RDATA7 K1
RDATA8 L1
RDATA9 K2
RDATA10 K3
RDATA11 N1
RDATA12 L4
RDATA13 P2
RDATA14 R1
RDATA15 N3
RDATA16 N4
I
Receive Serial Data Input (RDATA[1:16]). Receive Serial data from a
T1/E1/T3/E3/xDSL Framer. Data input on the rising edge of RCLK.
Not all serial port signals are available on all products in the device family.
Unused input pins should be tied to VSS.
DS33X41/X42/W41/W11: RDATA5 – RDATA16 not used.
DS33X81/X82: RDATA9 – RDATA16 not used.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 28 of 375
PACKAGE PINS
NAME 256 144
TYPE FUNCTION
RCLK1 E1 G1
RCLK2 G7
RCLK3 G1
RCLK4 H4
RCLK5 F4
RCLK6 J1
RCLK7 J5
RCLK8 J4
RCLK9 J3
RCLK10 J2
RCLK11 M2
RCLK12 N2
RCLK13 L5
RCLK14 T1
RCLK15 T4
RCLK16 R3
I
Serial Interface Receive Clock Input (RCLK[1:16]). Reference clock for
receive serial data on RDATA. Gapped clocking is supported, up to the
maximum RCLK frequency of 52MHz.
Not all serial port signals are available on all products in the device family.
Unused input pins should be tied to VSS.
DS33X41/X42/W41/W11: RCLK5 – RCLK16 not used.
DS33X81/X82: RCLK9 – RCLK16 not used.
RSYNC1 F1 J1
RSYNC2 H7
RSYNC3 G2
RSYNC4 H1
RSYNC5 G3
RSYNC6 H3
RSYNC7 N5
RSYNC8 L2
RSYNC9 K4
RSYNC10 M1
RSYNC11 L3
RSYNC12 P1
RSYNC13 M4
RSYNC14 R2
RSYNC15 P3
RSYNC16 T3
I
Receive Frame/Multiframe Synchronization Input (RSYNC[1:16]).
Receive Sync that indicates frame boundaries or multiframe boundaries
for T1/E1/T3/E3 signals present on RDATA. It must be a multiframe sync
for VCAT applications.
Not all serial port signals are available on all products in the device family.
Unused input pins should be tied to VSS.
DS33X41/X42/W41/W11: RSYNC5 – RSYNC16 not used.
DS33X81/X82: RSYNC9 – RSYNC16 not used.
VOICE INTERFACE IO PINS - DS33W41 AND DS33W11 ONLY
TVDATA M5 I
Transmit Voice Data Input. Input voice data stream containing multiple
DS0s. Referenced to TVCLK. Disabled when TVDEN is high. This signal
is only available on the DS33W41 and DS33W11.
TVCLK M7 I
Transmit Voice Clock Input. Input clock that times TVDATA. May be
gapped. Maximum clock speed 52MHz. This signal is only available on
the DS33W41 and DS33W11.
TVSYNC R7 I
Transmit Voice Synchronization Input. Input signal that indicates frame
boundaries on voice data stream (TVDATA), sampled by TVCLK,
frequency of 8 kHz. This signal is only available on the DS33W41 and
DS33W11.
TVDEN N6 — I
Transmit Voice Data Enable. May be used in place of a gapped TVCLK.
If low, TVDATA is valid. If a gapped TVCLK is used and this signal is not
used, tie this input low. This signal is only available on the DS33W41 and
DS33W11.
RVDATA F2 O
Receive Voice Data Output. Outputs voice data stream from internal
FIFO using RVCLK. Maximum DS0s is dependent on WAN data rate (T1
max is 24, E1 is 31). This is a tri-state output, high impedance when
RVDEN is high. This signal is only available on the DS33W41 and
DS33W11.
RVCLK F3 I
Receive Voice Clock Input. Receive clock that times RVDATA signal.
May be gapped. Maximum clock speed 52MHz. This signal is only
available on the DS33W41 and DS33W11.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 29 of 375
PACKAGE PINS
NAME 256 144
TYPE FUNCTION
RVSYNC F4 I
Receive Voice Synchronization Input. Receive sync that indicates
frame boundaries present on RVDATA – referenced to RVCLK, frequency
of 8 kHz. This signal is only available on the DS33W41 and DS33W11.
RVDEN G3 — I
Receive Voice Data Enable: May be used in place of a gapped RVCLK.
If low, RVDATA is valid. If gapped RVCLK is used and this signal is not
used, tie this input low. This signal is only available on the DS33W41 and
DS33W11.
HARDWARE AND STATUS PINS
HIZ H16 F10 I
High-Impedance Test Enable (Active Low). This signal puts all digital
output and bi-directional pins in the high impedance state when it is low
and JTRST is low. For normal operation tie high. This is an asynchronous
input.
RST E8 F2 I
Reset (Active Low). An active low signal on this pin resets the internal
registers and logic. While this pin is held low, the microprocessor interface
is kept in a high-impedance state. This pin should remain low until power
is stable and then set high for normal operation.
SYSTEM CLOCKS
SYSCLKI E16 E12 I
System Clock In: 125MHz, ±100ppm System Clock input.
JTAG INTERFACE
JTRST B1 G4 Ipu
JTAG Reset (Active Low). JTRST is used to asynchronously reset the
test access port controller. After power-up, a rising edge on JTRST will
reset the test port and cause the device I/O to enter the JTAG DEVICE ID
mode. Pulling JTRST low restores normal device operation. JTRST is
pulled HIGH internally via a 10kΩ resistor operation. If boundary scan is
not used, this pin should be held low.
JTCLK A1 G3 Ipu
JTAG Clock. This signal is used to shift data into JTDI on the rising edge
and out of JTDO on the falling edge.
JTDO E2 H2 Oz
JTAG Data Out. Test instructions and data are clocked out of this pin on
the falling edge of JTCLK. If not used, this pin should be left unconnected.
JTDI D2 H3 Ipu
JTAG Data In. Test instructions and data are clocked into this pin on the
rising edge of JTCLK. This pin has a 10kΩ pullup resistor.
JTMS C1 G2 Ipu
JTAG Mode Select. This pin is sampled on the rising edge of JTCLK and
is used to place the test access port into the various defined IEEE 1149.1
states. This pin has a 10kΩ pullup resistor.
POWER SUPPLIES
VDD3.3
E10,
E12,
E9, F7,
G5,
K5,
M8,
P4,
T14
F3,
F11,
H1,
H6,
H7,
K12,
M2,
M7
I Connect to 3.3V Power Supply
VDD1.8
D11,
E3, E4,
F12,
G12,
H11,
H12,
M3,
R13
F1,
G6,
G7,
H12,
L1,
M5,
M11
I Connect to 1.8V Power Supply
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 30 of 375
PACKAGE PINS
NAME 256 144
TYPE FUNCTION
VSS
A10,
C7, F6,
F8, F9,
F10,
F11,
F16,
G6,
G9,
H5,
H9,
H10,
M13,
R4,
T5
F6, F7,
F12,
G11,
J6, J7,
K1, K2,
K6, L6,
M1,
M6,
M9,
M12
I Ground Connection for 3.3V and 1.8V Supplies. Connect to the
common supply ground.
AVDD F5 D12 I
Analog PLL Power. Connect to a 1.8V power supply.
AVSS E11 C12 I
Analog PLL Ground
VDD2.5 B8, E5,
E7 B1, C6 I SDRAM Digital Power. Connect to a 2.5V power supply.
VDDQ
A11,
A12,
A15,
A16,
C14,
D10,
D14
A2,
B12,
C7,
E4,
E10
I SDRAM Digital DQ Power. Connect to a 2.5V (±0.2V) .
VSSQ
B14,
C8,
D6,
D15,
D16,
E15,
E6
A1, A6,
A12,
B6, B7,
E3,
E11
I SDRAM Digital Ground.
VREF B9 D6 I
SDRAM SSTL_2 Reference Voltage for SDRAM. Must equal one-half
VDDQ. Can be derived from a resistor-divider.
DNC
H6,
H8, J6,
T2
F4, F5,
K3, L2 Do Not Connect. Do not connect these pins.
Notes:
I = Input
Oz = Output, with tri-state
O = Output
IO = Bi-directional pin
Ipu = Input, with pullup
IOz = Bi-directional pin, with tri-state
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 31 of 375
Figure 7-1. 256-Ball, 17mm x 17mm CSBGA Pinout (DS33X162/X161/X82/X81/X42/X41)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A JTCLK SDA[3] SDA[10] SDCS SDA[12] SRAS SWE
SD_CLK SD_CLK VSS VDDQ VDDQ SDATA[6] SDATA[4] VDDQ VDDQ
B JTRST SDA[2] SBA[1] SBA[0] SDA[6] SDA[9] SCAS VDD2.5 VREF SDATA[12] SDATA[13] SDATA[15] SDATA[7] VSSQ SDATA[2] SDATA[1]
C JTMS SDA[1] SDA[0]
SD_CLKE
N SDA[7] SDA[11] VSS VSSQ SDATA[9] SDATA[11] SDATA[14] SDATA[5] SD_LDQS VDDQ SDATA[3] SDATA[0]
D RDATA1 JTDI SDA[4] SDA[5] SDA[8] VSSQ SD_UDM SD_UDQS SDATA[8] VDDQ VDD1.8 SDATA[10] SD_LDM VDDQ VSSQ VSSQ
E RCLK1 JTDO VDD1.8 VDD1.8 VDD2.5 VSSQ VDD2.5 RST VDD3.3 VDD3.3 AVSS VDD3.3 RX_CRS1 COL1 VSSQ SYSCLKI
F RSYNC1 RDATA6 RDATA5 RCLK5 AVDD VSS VDD3.3 VSS VSS VSS VSS VDD1.8
RXD[1] /
RXD1[1]
RXD[2] /
RXD1[2] MDC VSS
G RCLK3 RSYNC3 RSYNC5 RDATA3 VDD3.3 VSS RCLK2 RDATA2 VSS A8 A10 VDD1.8 MDIO RXD[0] /
RXD1[0] RX_DV1 RX_CLK1
H RSYNC4 RDATA4 RSYNC6 RCLK4 VSS DNC RSYNC2 DNC VSS VSS VDD1.8 VDD1.8
TXD[3] /
TXD1[3]
RXD[3] /
RXD1[3] RX_ERR1 HIZ
J RCLK6 RCLK10 RCLK9 RCLK8 RCLK7 DNC ALE CS RD / DS WR / RW INT MODE TXD[0] /
TXD1[0] RX_CRS2 TXD[2] /
TXD1[2] SPI_SEL
K RDATA7 RDATA9 RDATA10 RSYNC9 VDD3.3 D0 /
SPI_MISO
D2 /
SPI_CLK D4 D6 /
SPI_CPHA A0 A2 A6 A4 TX_EN1
TXD[1] /
TXD1[1]
RXD[7] /
RXD2[3]
L RDATA8 RSYNC8 RSYNC11 RDATA12 RCLK13 D1 /
SPI_MOSI D3 D5 /SPI_
SWAP A1 A3 A5 A7 A9 TX_ERR1 RXD[6] /
RXD2[2] COL2
M RSYNC10 RCLK11 VDD1.8 RSYNC13 TDATA5 TSYNC3 TCLK5 VDD3.3 D7 /
SPI_CPOL TMCLK4 RX_DV2 RX_ERR2 VSS RMII_SEL TX_CLK1 RXD[5] /
RXD2[1]
N RDATA11 RCLK12 RDATA15 RDATA16 RSYNC7 TDATA6 TDATA7 TSYNC7 TDATA4 TDATA9 TDATA11 TDATA15 RX_CLK2 TMSYNC4 TXD[4] /
TXD2[0]
RXD[4] /
RXD2[0]
P RSYNC12 RDATA13 RSYNC15 VDD3.3 TCLK2 TDATA3 TSYNC4 TSYNC6 TCLK4 TCLK6 TDATA16 TDATA14 DCEDTES TDATA13 TXD[5] /
TXD2[1] TX_EN2
R RDATA14 RSYNC14 RCLK16 VSS TCLK1 TSYNC1 TSYNC5 TCLK3 TDATA8 TCLK8 TDATA10 TDATA12 VDD1.8 GTX_CLK TXD[6] /
TXD2[2] TX_ERR2
T RCLK14 DNC RSYNC16 RCLK15 VSS TDATA1 TDATA2 TSYNC2 TSYNC8 TCLK7 TMCLK3 TMSYNC3 REF_CLK VDD3.3 TXD[7] /
TXD2[3] TX_CLK2
Note: Shaded pins do not apply to all devices in the product family. See the pin listing for specific pin availability. In the high port
count devices, the shaded input pins DO NOT HAVE PULLUP/PUL-DOWN resistors. Consideration must be taken during board
design to bias the inputs appropriately, and to float output pins (TDATA5-TDATA16, TX_EN2, TX_ERR2) if lower port count
designs are to be potentially stuffed with higher port count devices.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 32 of 375
Figure 7-2. 256-Ball, 17mm x 17mm CSBGA Pinout (DS33W41/DS33W11)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A JTCLK SDA[3] SDA[10] SDCS SDA[12] SRAS SWE
SD_CLK SD_CLK VSS VDDQ VDDQ SDATA[6] SDATA[4] VDDQ VDDQ
B JTRST SDA[2] SBA[1] SBA[0] SDA[6] SDA[9] SCAS VDD2.5 VREF SDATA[12] SDATA[13] SDATA[15] SDATA[7] VSSQ SDATA[2] SDATA[1]
C JTMS SDA[1] SDA[0]
SD_CLKE
N SDA[7] SDA[11] VSS VSSQ SDATA[9] SDATA[11] SDATA[14] SDATA[5] SD_LDQS VDDQ SDATA[3] SDATA[0]
D RDATA1 JTDI SDA[4] SDA[5] SDA[8] VSSQ SD_UDM SD_UDQS SDATA[8] VDDQ VDD1.8 SDATA[10] SD_LDM VDDQ VSSQ VSSQ
E RCLK1 JTDO VDD1.8 VDD1.8 VDD2.5 VSSQ VDD2.5 RST VDD3.3 VDD3.3 AVSS VDD3.3 RX_CRS1 COL1 VSSQ SYSCLKI
F RSYNC1 RVDATA RVCLK RVSYNC AVDD VSS VDD3.3 VSS VSS VSS VSS VDD1.8
RXD[1] /
RXD1[1]
RXD[2] /
RXD1[2] MDC VSS
G RCLK3 RSYNC3 RVDEN RDATA3 VDD3.3 VSS RCLK2 RDATA2 VSS A8 A10 VDD1.8 MDIO
RXD[0] /
RXD1[0] RX_DV1 RX_CLK1
H RSYNC4 RDATA4 RCLK4 VSS DNC RSYNC2 DNC VSS VSS VDD1.8 VDD1.8
TXD[3] /
TXD1[3]
RXD[3] /
RXD1[3] RX_ERR1 HIZ
J DNC ALE CS RD / DS WR / RW INT MODE TXD[0] /
TXD1[0] TXD[2] /
TXD1[2] SPI_SEL
K VDD3.3 D0 /
SPI_MISO
D2 /
SPI_CLK D4 D6 /
SPI_CPHA A0 A2 A6 A4 TX_EN1
TXD[1] /
TXD1[1]
RXD[7] /
RXD2[3]
L D1 /
SPI_MOSI D3 D5 /SPI_
SWAP A1 A3 A5 A7 A9 TX_ERR1 RXD[6] /
RXD2[2]
M VDD1.8 TVDATA TSYNC3 TVCLK VDD3.3 D7 /
SPI_CPOL VSS RMII_SEL TX_CLK1 RXD[5] /
RXD2[1]
N TVDEN TDATA4 TXD[4] /
TXD2[0]
RXD[4] /
RXD2[0]
P VDD3.3 TCLK2 TDATA3 TSYNC4 TCLK4 DCEDTES TXD[5] /
TXD2[1]
R VSS TCLK1 TSYNC1 TVSYNC TCLK3 VDD1.8 GTX_CLK TXD[6] /
TXD2[2]
T DNC RCLK15 VSS TDATA1 TDATA2 TSYNC2 REF_CLK VDD3.3 TXD[7] /
TXD2[3]
Note 1: Shaded pins do not apply to all devices in the product family. See the pin listing for specific pin availability.
Note 2: The TVDEN pin is an input on the DS33W41/DS33W11, and is an output pin on other devices in the product family.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 33 of 375
Figure 7-3. 144-Ball, 10mm x 10mm, CSBGA Pinout (DS33X11)
1 2 3 4 5 6 7 8 9 10 11 12
A VSS VDDQ SDA[0] SDA[9]
SDCS VSS SD_CLK SD_CLK SDATA[15] SDATA[4] SDATA[0] VSS
B VDD2.5 SDA[2] SDA[8] SDA[11] SRAS VSS VSS SDATA[10] SDATA[14] SDATA[5] SDATA[1] VDDQ
C SDA[4] SDA[6] SDA[10] SBA[1] SWE VDD2.5 VDDQ SDATA[8] SDATA[12] SDATA[7] SDATA[3] AVSS
D SDA[3] SDA[1] SDA[12] SBA[0] SCAS VREF SD_UDQS SDATA[9] SDATA[13] SDATA[6] SDATA[2] AVDD
E SDA[5] SDA[7] VSS VDDQ SD_CLKEN SD_LDM SD_UDM SD_LDQS SDATA[11] VDDQ VSS SYSCLKI
F VDD1.8 RST VDD3.3 DNC DNC VSS VSS TX_EN1 RX_DV1 HIZ VDD3.3 VSS
G RCLK1 JTMS JTCLK JTRST INT VDD1.8 VDD1.8 TX_ERR1 RX_ERR1 COL1 VSS RX_CRS1
H VDD3.3 JTDO JTDI MDIO MDC VDD3.3 VDD3.3 TXD[2] TXD[3] RXD[2] RXD[3] VDD1.8
J RSYNC1 RDATA1 CS SPI_MISO SPI_SWAP VSS VSS TXD[0] TXD[1] RXD[0] RXD[1] RX_CLK1
K VSS VSS DNC SPI_MOSI SPI_CPHA VSS RMII_SEL TXD[5] TXD[7] RXD[6] RXD[7] VDD3.3
L VDD1.8 DNC TDATA1 SPI_CLK SPI_CPOL VSS DCEDTES TXD[4] TXD[6] RXD[4] RXD[5] TX_CLK1
M VSS VDD3.3 TCLK1 TSYNC1 VDD1.8 VSS VDD3.3 REF_CLK VSS GTX_CLK VDD1.8 VSS
Note that the parallel bus is not available in the 144-pin DS33X11, and the SPI slave port must be used for processor control.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 34 of 375
8. Functional Description
The DS33X162 family of devices provide interconnection and mapping functionality between Ethernet Systems and
WAN Time-Division Multiplexed (TDM) systems such as T1/E1/J1, HDSL, T3/E3, and SONET/SDH. The device is
composed of up to two 10/100/1000 Ethernet MACs, up to 16 Serial Ports, a Arbiter, GFP/HDLC/cHDLC/X.86
(LAPS) Mappers, a DDR SDRAM interface, and control ports.
Ethernet traffic is encapsulated with GFP-F, HDLC, cHDLC, or X.86 (LAPS) to be transmitted over the WAN Serial
Interfaces. The WAN Serial Interfaces also receive encapsulated Ethernet frames and transmit the extracted
frames over the Ethernet ports.
The LAN interface consists of Ethernet MACs using one of two physical layer protocols. The interface can be
configured with up to two 10/100Mbps MII/RMII ports or a single GbE GMII port. The MII/RMII and GMII interfaces
allow connection to commercially available Ethernet PHY and MAC devices.
The WAN physical interface supports 8 serial data streams up to 52Mbps each. The DS33X162 and DS33X161
support an additional 8 serial data streams with data rates up to 2.5Mbps each. The WAN serial interfaces receive
encapsulated Ethernet frames and transmit the extracted frames over the Ethernet ports. The WAN serial ports can
operate with a gapped clock, and can be connected to a framer, electrical LIU, optical transceiver, or T/E-Carrier
transceiver for transmission to the WAN. The Serial Interfaces can be seamlessly connected to the Maxim
T1/E1/J1 Framers, Line Interface Units (LIUs), and Single-Chip Transceivers (SCTs). The WAN interfaces can also
be seamlessly connected to the Maxim T3/E3/STS-1 Framers, LIUs, and SCTs to provide T3, E3, and STS1
connectivity.
Ethernet frames are queued and stored in an external 32-bit DDR SDRAM. The DDR SDRAM controller enables
connection to a 256Mb SDRAM without external glue logic, at clock frequencies up to 125MHz. The SDRAM is
used for the LAN Data, WAN Data, Frame Extraction, and Frame Insertion Queues. The user can program a “near
full threshold” (watermark) for the LAN and WAN queues that can be used to initiate automatic flow control. The
device also provides the capability for X43 +1 payload and Barker sequence scrambling.
Microprocessor control can be accomplished through a 8-bit Micro controller port or SPI Bus. The device has a
125MHz DDR SDRAM controller and interfaces to a 32-bit wide 256Mb DDR SDRAM via a 16-bit data bus. The
DDR SDRAM is used to buffer data from the Ethernet and WAN ports for transport.
The power supplies consist of a 1.8V core supply, a 2.5V DDR SDRAM supply, and 3.3V I/O supply.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 35 of 375
8.1 Parallel Processor Interface
Configuration and control can be accomplished through the 8-bit parallel microprocessor port. The device’s 16-bit
registers are accessed as sequential byte addresses. The 8-bit parallel data bus can be configured for Intel or
Motorola modes of operation. The 8-bit parallel data bus can be configured for Intel or Motorola modes of operation
with the MODE pin. When MODE = 0, bus timing is in Intel mode, as shown in Figure 12-13 and Figure 12-14.
When MODE = 1, bus timing is in Motorola mode, as shown in Figure 12-15 and Figure 12-16. The address space
is mapped through the use of 11 address lines, A0-A10. An address latch enable [ALE] pin is provided to allow for
multiplexing of the data and address signals. Note that the parallel bus is not available in the 144 pin DS33X11,
and the SPI Slave port must be used for processor control.
The Chip Select (CS) pin must be brought to a logic low level to gain read and write access to the microprocessor
port. With Intel timing selected, the Read (RD) and Write (WR) pins are used to indicate read and write operations
and latch data through the interface. With Motorola timing selected, the Read-Write (RW) pin is used to indicate
read and write operations while the Data Strobe (DS) pin is used to latch data through the interface.
The interrupt output pin (INT) is an open-drain output that will assert a logic-low level upon a number of software
maskable interrupt conditions. The inactive state of this pin can be configured with the GL.CR2.INTM bit. This pin is
normally connected to the microprocessor interrupt input. The register map is shown in Table 10-1 on Page 105.
8.1.1 Read-Write/Data Strobe Modes
The processor interface can operate in either read-write strobe mode or data strobe mode. When MODE = 0 the
read-write strobe mode is enabled and a negative pulse on RD performs a read cycle, and a negative pulse on WR
performs a write cycle. When MODE pin = 1, the data strobe mode is enabled and a negative pulse on DS when
RW is high performs a read cycle, and a negative pulse on DS when RW is low performs a write cycle. The read-
write strobe mode is commonly called the “Intel” mode, and the data strobe mode is commonly called the
“Motorola” mode.
8.1.2 Clear on Read
The latched status registers will clear on a read access. It is important to note that in a multi-task software
environment, the user should handle all status conditions of each register at the same time to avoid inadvertently
clearing status conditions. The latched status register bits are carefully designed so that an event occurrence
cannot collide with a user read access.
8.1.3 Interrupt and Pin Modes
The interrupt (INT) pin is configurable to drive high or float when not active. The GL.CR2.INTM bit controls the pin
configuration, when it is set to 1, the INT pin will drive high when inactive. After reset, the INT pin is in high
impedance mode until an interrupt source is active and enabled to drive the interrupt pin.
8.1.4 Multiplexed Bus Operation
An address latch enable [ALE] pin is provided to allow for multiplexing of the data and address signals. For
multiplexed operation, each of the eight data lines (D0-D7) must be externally connected to each of the lower eight
address lines (A0-A7). The remaining address lines (A8-A10) are connected as normal. Address inputs are latched
upon the falling edge of the ALE signal. ALE must remain low until the read or write operation is complete.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 36 of 375
8.2 SPI Serial Processor Interface
The SPI interface is a four-signal serial interface that allows configuration and monitoring of the device with a
minimal number of electrical connections. The SPI interface uses Full-Duplex SPI Slave operation. The maximum
clock frequency of the SPI interface is 10MHz. Each access (read or write) takes approximately 2.4μs. With two
Address/Control bytes required for each data byte, the maximum data throughput rate is approximately 3.3
megabits per second. See the Section 11.1 for functional timing diagrams, and Section 12 for AC parametric
timing. Note that the parallel bus is not available in the 144-pin DS33X11, and the SPI Slave port must be used for
processor control.
The SPI bus is implemented using four signals: Clock (SPI_CLK), Master-Out Slave-In data (SPI_MOSI), Master-In
Slave-Out data (SPI_MISO), and Chip Select (CS). SPI_CLK polarity and phase can be set by the SPI_CPOL and
SPI_CPHA pins. The order of the address and data bits in the serial stream is selectable using the SPI_SWAP pin.
The Read/Write (R/W) bit is always the first bit and the Burst (B) bit is always last bit of the Address/Control Bytes
and their location is not affected by the SPI_SWAP pin setting.
Note that SPI “Burst mode” is not applicable for OAM frame insertion or extraction, due to the indirect access of the
extract and insert queues. The interface overhead associated with frame insertion and extraction is 5 register
accesses per frame.
The SPI protocol defines four combinations of SCK phase and polarity with respect to the data controlled by CPOL
(clock polarity) and CPHA (clock phase):
SPI_CPOL SPI_CPHA Transfer
0 0 SPI_CLK rising-edge transfer.
SPI_CLK transitions in middle of bit timing.
1 0 SPI_CLK falling-edge transfer.
SPI_CLK transitions in middle of bit timing.
0 1 SPI_CLK falling-edge transfer.
SPI_CLK transitions at beginning of bit timing.
1 1 SPI_CLK rising-edge transfer.
SPI_CLK transitions at beginning of bit timing.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 37 of 375
8.3 Clock Structure
The clock sources and functions are as follows:
Serial Transmit Data (TCLKn) and Serial Receive Data (RCLKn) clock inputs are used to transfer data from
the serial interface. These clocks can be continuous or gapped.
The Serial Transmit Clock for ports 9-12 is a shared clock (TMCLK3). The Serial Transmit Sync for ports 9-
12 is also shared (TMSYNC3).
The Serial Transmit Clock for ports 13-16 is a shared clock (TMCLK4). The Serial Transmit Sync for ports
13-16 is also shared (TMSYNC4).
System Clock (SYSCLKI) input. Used for internal operation. This clock input cannot be a gapped clock. A
clock supply with +/- 100 ppm frequency accuracy is suggested. A buffered version of this clock is provided
on the SD_CLK pin for the operation of the SDRAM.
The Transmit and Receive clocks for the MII/RMII Interface (TX_CLK and RX_CLK). In DTE mode, these
are input pins and accept clocks provided by an Ethernet PHY.
A Management Data Clock (MDC) output is derived from SYSCLKI and is used for information transfer
between the internal Ethernet MAC and external PHY. The MDC clock frequency is 1.67MHz.
The device expects gapped clocks for T3/E3/T1/E1 data streams, minimally gapped for line overhead periods
The following table provides the different clocking options for the Ethernet interface.
Table 8-1. Clocking Options for the Ethernet Interface
Ethernet Interface Mode MII MII RMII GMII
Speed 100Mbps 10Mbps 10/100 Mbps 1000 Mbps
TX_CLKn Frequency 25MHz 2.5MHz N/A N/A I/O
RX_CLKn Frequency 25MHz 2.5MHz N/A 125MHz I/O
REF_CLK Frequency 25MHz 25MHz 50MHz 125MHz Input
GTX_CLK N/A N/A N/A 125MHz Output
MDC Output Clock Frequency 1.67MHz 1.67MHz 1.67MHz 1.67MHz Output
RMII_SEL Input Pin 0 0 1 0 Input
GL.CR1.P1SPD /
GL.CR1.P2SPD
1 0 0=10Mbps
1=100Mbps
N/A Register
SU.MACCR.GMIIMIIS 1 1 1 0 Register
*Clock sources should be accurate to
±
100ppm.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 38 of 375
Figure 8-1. Clocking Diagram
(MII MODE)
RX_CLK
TX_CLK
MDC
TCLK1
RCLK1
ETHERNET MAC1
μ
P Port
DDR SDRAM PORT
SD_CL
K
SD_CL
K
ARBITER/
BUFFER MANAGER
CIR/CBS
CONTROLLER
GFP/X.86/
HDLC/cHDLC
TRANSMIT SERIAL
PORT 1
JTAG
CLAD
(MII MODE)
RX_CLK
TX_CLK
MDC
ETHERNET MAC2(X162/82/42)
SYSCLKI
ETHERNET
BRDIGE/FILTER
SPI
QoS
VCAT/LCAS
Add/Drop
OAM Frames
ETHERNET
BRDIGE/FILTER
GFP/X.86/
HDLC/cHDLC
VCAT/LCAS
TRANSMIT SERIAL
PORT 2
TRANSMIT SERIAL
PORT 16
RECEIVE SERIAL
PORT 1
RECEIVE SERIAL
PORT 2
RECEIVE SERIAL
PORT 16
TVCL
K
RVCL
K
VOICE PORT(W41/W11)
TCLK2
TMCLK4
RCLK2
RCLK16
SPI_CLK
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 39 of 375
8.3.1 Serial Interface Clock Modes
Serial Interface timing is determined by the line clocks. Both the transmit and receive clocks (TCLK and RCLK) are
inputs, and can be gapped.
8.3.2 Ethernet Interface Clock Modes
The Ethernet interfaces can be configured for MII, RMII, or GMII operation with the GL.CR1.P1SPD,
GL.CR1.P2SPD, SU.MACCR.GMIIMIIS bits and the RMII_SEL input pin. See Table 8-1 for details of the clock
requirements for the various Ethernet Interface configurations.
8.4 Resets and Low-Power Modes
The external RST pin and the reset bit GL.CR2.RST generate global reset signals. A global reset signal resets the
status and control registers on the chip (except the GL.CR2.RST bit) to their default values and resets all the other
flops to their reset values. The processor bus output signals are also placed in high-impedance mode when the
RST pin is active (low). The global reset bit (GL.CR2.RST) stays set after a one is written to it, but is reset to zero
when the external RST pin is active or when a zero is written to it. The system clock must be active for the device to
properly execute the reset. Allow 5 milliseconds after initiating a reset condition for the reset operation to complete.
The DS33X162 family of devices contain up to 54 individual software reset bits, depending on the port count of the
device. These functions of the various reset bits are outlined in the table below.
Table 8-2. Software Reset Functions
Bit Location Function
GL.CR2.RST Global Device Reset.
SU.BFC.BFTR Resets each of the 4096 Bridge Filter Table entries.
SU.LP1C.LP1FR LAN port FIFO Reset
SU.LP2C.LP2FR LAN port FIFO Reset
AR.LQ1SAAR.LQ16SA.LQnPR LAN Queue Pointer Reset
AR.WQ1SAAR.WQ16SA.WQnPR WAN Queue Pointer Reset
AR.LIQSA.LIQPR LAN Insert Queue Pointer Reset
AR.LEQSA.LEQPR LAN Extract Queue Pointer Reset
AR.WIQSA.WIQPR WAN Insert Queue Pointer Reset
AR.WEQSA.WEQPR WAN Extract Queue Pointer Reset
AR.MQC.ASQPR LAN Queue, WAN Queue, LAN Insert Queue, LAN
Extract Queue, WAN Insert Queue, and WAN Extract
Queue Reset.
PP.DFSCR.DSMR (1-4) Decapsulator Reset
PP.DFSCR.DEPRE (1-4) Pointer Reset Enable
VCAT.RCR4.RFRST (1-16) VCAT Receive FIFO Reset/Power-Down.
LI.TVPCR.TVFRST Transmit Voice FIFO Reset/Power-Down.
LI.RCR1.RFRST (1-16) Receive FIFO Reset/Power-Down.
LI.RVPCR.RVRST Receive Voice FIFO Reset/Power-Down.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 40 of 375
There are several features included to reduce power consumption. The reset bits of the LI.RCR1.RFRST,
LI.RVPCR.RVRST, LI.TVPCR.TVFRST, and VCAT.RCR4.RFRST registers also place the associated circuitry in a
low-power mode. Additionally, the RST pin may be held low indefinitely to keep the entire device in a low-power
mode. Note that exiting the low-power condition requires re-initialization and configuration.
Table 8-3. Block Enable Functions
Block Enables
SU.LP1C.LP1E LAN Port 1 Enable
SU.LP2C.LP2E LAN Port 2 Enable
VCAT.TCR1.TVBLKEN Transmit VCAT Enable
VCAT.RCR1.RVBLKEN Receive VCAT Enable (Global)
VCAT.RCR1.RVEN1-RVEN4 Receive VCAT Enable (Per WAN Group)
LI.TVPCR.TPE Transmit Voice Port Enable
LI.RVPCR.RPE Receive Voice Port Enable
SU.BFC.BFE Bridge Filter Enable
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 41 of 375
8.5 Initialization and Configuration
EXAMPLE DEVICE INITIALIZATION SEQUENCE:
STEP 1: Reset the device
STEP 2: Configure Serial Ports, TX VCAT, RX VCAT, Encapsulator, Decapsulator
STEP 3: Enable transmit serial, transmit VCAT, Encapsulator, Receive LAN
STEP 4: Enable transmit and receive MAC1 (SU.MACCR.TE, SU.MACCR.RE)
STEP 5: Enable transmit and receive MAC2 (SU.MACCR.TE, SU.MACCR.RE)
STEP 6: Enable receive VCAT, Decapsulator, Transmit LAN
STEP 7: Enable Interrupts
8.6 Global Resources
The set of Global Registers begin at address location 000h. The global registers include Global resets, global
interrupt status, interrupt masking, clock configuration, and the Device ID registers. See the Global Register
Definitions in Table 10-2.
8.7 Per-Port Resources
The device contains a common set of global registers. The Serial (Line) Interfaces each have a set of registers for
configuration and control, denoted in this document with the “LI.” prefix. The Ethernet (Subscriber) Interfaces each
have a set of registers for configuration and control, denoted in this document with the “SU.” prefix.
8.8 Device Interrupts
Figure 8-2 diagrams the flow of interrupt conditions from their source status bits through the multiple levels of
information registers and mask bits to the interrupt pin. When an interrupt occurs, the host can read the Global
Interrupt Status register GL.ISR to initially determine the source of the interrupt. The host can then read the higher-
level status registers to further identify the source of the interrupt(s). All global status bits (GL.ISR) and
intermediate status bits (AR.BMIS, VCAT.RISR) are real-time bits that will clear once all appropriate interrupts
have been serviced and cleared. The interrupts from any source can be blocked at a global level by the writing a
zero in appropriate location in the global interrupt enable register GL.IER. Some portions of the device use interrupt
mask registers. Placing a “1” in the associated bit location associated with an interrupt condition prevents that
condition from causing a device interrupt. Some portions of the device use interrupt enable registers. Placing a “1”
in the associated bit location associated with an interrupt condition allows that condition to cause a device interrupt.
Latched Status bits that have been enabled or are un-masked are allowed to pass their interrupt conditions to the
Global Interrupt Status Registers. The Interrupt enable registers allow individual Latched Status conditions to
generate an interrupt, but when set to zero, they do not prevent the Latched Status bits from being set. Therefore,
when servicing interrupts, the user should AND the Latched Status with the associated Interrupt Enable Register in
order to exclude bits for which the user wished to prevent interrupt service. The user should NAND the Latched
Status bits with the associated Interrupt Mask Register. Latched Status Registers clear once read as described in
Section 8.1.2. This architecture allows the application host to periodically poll the latched status bits for non-
interrupt conditions, while using only one set of registers.
Note that the inactive state of the interrupt output pin is configurable. The GL.CR2.INTM bit controls the inactive
state of the interrupt pin, allowing selection of high-impedance or active driver.
The interrupt structure is designed to efficiently guide the user to the source of an enabled interrupt source. The
latched status bits for the interrupting entity must be read to clear the interrupt. Note that reading one latched status
bit will reset all bits in that register. During a reset condition, interrupts cannot be generated.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 42 of 375
Figure 8-2. Device Interrupt Information Flow Diagram
Drawing Legend:
Status / Interrupt
Source
Register /
Bit Name
Interrupt Enable/
Mask Registers
Register /
Bit Name
Interrupt Pin
0
RXLANIS
1 TXLANIS
2 ECIS1
3 DECIS1
4 TSPIS
5 -
6 BUFIS
7 -
8
RVCATIS
9 ECIS2
10 ECIS3
11 ECIS4
12 DECIS2
13 DECIS3
14 DECIS4
15 MICIS
GL.ISR
GL.IER
GL.MLSR3 GL.MSIER3
AR.BMIS
ARBITE
R
XMT SERIAL
DECAPSULATO
R
RCV LAN 1
MAC 1
MICROPORT
XMT LAN
SU.LP1C
SU.WOS SU.WOM
VCAT.RSLSR[1-16] VCAT.RSIE[1-16]
VCAT.RRLSR VCAT.RRSIE
AR.LQOS AR.LQOIM
AR.WQOS AR.WQOIM
AR.LQNFS AR.LQNFIM
AR.WQNFS AR.WQNFIM
AR.EQOS AR.EQOIM
LI.TVFLSR LI.TVFSRIE
PP.ESMLS[1-4] PP.ESMIE[1-4]
PP.DMLSR[1-4] PP.DMLSIE[1-4]
VCAT.RISR
SU.MMCRSR
(MAC1)
SU.MMCRIM
(MAC1)
SU.LIQOS
RCV LAN 2
MAC 2
SU.LP2C
SU.MMCRSR
(MAC2)
SU.MMCRIM
(MAC2)
SU.LIQOS
ENCAPSULATO
R
RCV VCAT
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 43 of 375
8.9 Forwarding Modes and WAN Connections
The path any given frame takes through the device can be determined by the contents of the frame, the port of
entry, the user configured WAN Connections, and the user configured Forwarding Mode.
8.9.1 Forwarding Modes
The set of rules that determine the route of frames between the Ethernet Interface(s) and WAN data stream(s) is
called the Forwarding Mode. The forwarding mode is selected in the GL.CR1 register. The five Forwarding Modes
are listed below. The connections between the Serial (WAN) Interfaces and the logical WAN data streams
described below are independent of these Forwarding Modes and will be described later. See Table 8-4 for
forwarding modes supported by each device.
Mode 1 - Single Ethernet Port with Priority Forwarding
Mode 2 - Per-Ethernet-Port Forwarding with Priority Scheduling
Mode 3 - Single Ethernet Port with VLAN Forwarding and Priority Scheduling
Mode 4 - Per-Ethernet-Port Forwarding, with VLAN Forwarding and Priority Scheduling within each VLAN group
Mode 5 – Full VLAN Forwarding in both the LAN-to-WAN and WAN-to-LAN directions.
Forwarding Mode 1 is Single Ethernet Port with Priority Forwarding. In this mode, Ethernet frames are segregated
into up to four priority queues and transmitted in separate WAN data streams. One example application is an
Ethernet Switch that forwards its traffic according to each frame’s priority encoding, as in an IP DSLAM or ISAM
that has a WAN connection with a VoIP Gateway on WAN Interface #1, a Video Stream device on WAN Interface
#2, and an internet POP on WAN Interface #3.
Forwarding Mode 2 is Per-Ethernet-Port Forwarding with Priority Scheduling. In this mode, frames from each
Ethernet port are forwarded to their own group of four priority queues, generating two separate WAN data streams
with priority scheduled traffic. One example application is a Leased Line Service for two independent Ethernet
subscribers. Each subscriber pays its own leased line fee and is guaranteed the full bandwidth of the WAN line
from end to end. This is the only mode that supports 1000Mbps Jumbo Frames (must use single Ethernet port
operation).
Forwarding Mode 3 is Single Ethernet Port with VLAN Forwarding and Priority Scheduling. In this mode, Ethernet
frames are forwarded by VLAN tag (VID) into up to four groups of four priority queues (WAN Groups) each. Each
WAN Group forms a separate WAN data stream with priority scheduled traffic. One example application is an
Service Router that is connected to four IP DSLAMs via DS3s. In the LAN-to-WAN direction, VLAN IDs are used to
distinguish the forwarding path while Priority coding is used to schedule the selection of frames within a Queue
Group.
Forwarding Mode 4 is Per-Ethernet-Port Forwarding, with VLAN Forwarding and Priority Scheduling within each
VLAN Group. In this mode, Ethernet frames from each Ethernet port are forwarded separately, by VLAN tag, into
two sets of four priority queues (WAN Groups) each. The two WAN Groups form separate WAN data streams with
priority scheduled traffic. One example application is 2 Leased Lines for 2 independent Ethernet subscribers (one
route might go to Chicago and the other to Santa Clara). VLAN tagging is used to segregate the traffic bound for
each route, and Priority coding can be used to provide prioritized scheduling within a VLAN group.
Forwarding Mode 5 is Full VLAN Forwarding in both the LAN-to-WAN and WAN-to-LAN directions. In this mode,
Ethernet frames from both ports can be forwarded by VLAN tag (VID) to one of two shared WAN groups. Within
each shared WAN group, there are two sets of four strict priority queues. The two sets of strict priority queues are
serviced with a round-robin algorithm. Frames are then encapsulated by Encapsulator #1 or #3. Frames received
from the WAN side can be forwarded by VLAN tag to either Ethernet port. The LAN-to-WAN and WAN-to-LAN
mappings are independent and can be configured separately. One example application is Central Office traffic
grooming where the time sensitive voice and video are segregated from a network and combined with other data
streams of similar priority.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 44 of 375
Figure 8-3. Forwarding Mode 1: Single Ethernet Port with Priority Forwarding
WAN
Group 1
Ethernet MAC 1
Serial
Port 1
LAN Queue 1
Priority 1
TRANSMIT:
The 16 Serial Ports
are assigned to the
four Encapsulator
WAN Groups with
VCAT.TCR3.TVGS
RECEIVE:
The 16 Serial Ports
are assigned to the
four Decapsulator
WAN Groups with
VCAT.RCR4.RVGS
Frames from the
Ethernet Interface
are forwarded to
the LAN Queues
based on Priority
(802.1p or DSCP).
WAN Ports
LAN Ports
WAN Insert
Queue
QoS
Bridge / Filte
r
Scheduler and Transmit VCAT/LCAS Processing
Receive
VCAT/LCAS
Processor
Decapsulator #1 WAN Trap
LAN Extract
Queue
WAN Extract
Queue
LAN Insert
Queue
Encapsulator 1
LAN Trap
WAN
Group 2
LAN Queue 5
Priority 2
Encapsulator 2
WAN
Group 3
LAN Queue 9
Priority 3
Encapsulator 3
WAN
Group 4
LAN Queue 13
Priority 4
Encapsulator 4
Priority Lookup Table
Serial
Port 2
Serial
Port 3
Serial
Port 4
Serial
Port 5
Serial
Port 6
Serial
Port 7
Serial
Port 8
Serial
Port 9
Serial
Port 10
Serial
Port 11
Serial
Port 12
Serial
Port 13
Serial
Port 14
Serial
Port 15
Serial
Port 16
Decapsulator #2 WAN Trap
Decapsulator #3 WAN Trap
Decapsulator #4 WAN Trap
Frames toward
the Ethernet
Interface
are forwarded
based on the
order of
receipt.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 45 of 375
Figure 8-4. Forwarding Mode 2: One or Two Ethernet Port Forwarding with Scheduling
* Note that Forwarding Mode 2 is the only forwarding mode available in the DS33X11.
WAN
Group 1 LAN Queue 4-P4
LAN
Q
ueue 3-P3
LAN
Q
ueue 2-P2
Ethernet MAC 1
Serial
Port 1
LAN Queue 1
Priority 1
TRANSMIT:
The 16 Serial Ports
are assigned to the
four Encapsulator
WAN Groups with
VCAT.TCR3.TVGS
RECEIVE:
The 16 Serial Ports
are assigned to the
four Decapsulator
WAN Groups with
VCAT.RCR4.RVGS
WAN Ports
LAN Ports
WAN Insert
Queue
QoS
Bridge / Filte
r
Scheduler and Transmit VCAT/LCAS Processing
Receive
VCAT/LCAS
Processor
Decapsulator #1 WAN Trap
Ethernet MAC 2
LAN Extract
Queue
WAN Extract
Queue
LAN Insert
Queue
Encapsulator 1
LAN Trap
WAN
Group 3 LAN Queue 12-P4
LAN
Q
ueue 11-P3
LAN
Q
ueue 10-P2
LAN Queue 9
Priority 1
QoS
Encapsulator 3
Priority Lookup Table
Serial
Port 2
Serial
Port 3
Serial
Port 4
Serial
Port 5
Serial
Port 6
Serial
Port 7
Serial
Port 8
Serial
Port 9
Serial
Port 10
Serial
Port 11
Serial
Port 12
Serial
Port 13
Serial
Port 14
Serial
Port 15
Serial
Port 16
Decapsulator #3 WAN Trap
Frames from the
Ethernet Interfaces
are forwarded to
the WAN groups
based on physical
port, then
scheduled by
Priority (802.1p
or DSCP).
Frames toward
the Ethernet
Interface are
forwarded based
on the physical
port.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 46 of 375
Figure 8-5. Forwarding Mode 3: Single Ethernet Port with LAN-VLAN Forwarding
WAN
Group 1 LAN Queue 4-P4
LAN
Q
ueue 3-P3
LAN
Q
ueue 2-P2
Ethernet MAC 1
Serial
Port 1
LAN Queue 1
Priority 1
TRANSMIT:
The 16 Serial Ports
are assigned to the
four Encapsulator
WAN Groups with
VCAT.TCR3.TVGS
RECEIVE:
The 16 Serial Ports
are assigned to the
four Decapsulator
WAN Groups with
VCAT.RCR4.RVGS
WAN Ports
LAN Ports
WAN Insert
Queue
QoS
Bridge / Filte
r
Scheduler and Transmit VCAT/LCAS Processing
VLAN (VID)
Lookup Table
Receive
VCAT/LCAS
Processor
Decapsulator #1 WAN Trap
LAN Extract
Queue
WAN Extract
Queue
LAN Insert
Queue
Encapsulator 1
LAN Trap
VLAN Processing
WAN
Group 2 LAN Queue 8-P4
LAN
Q
ueue 7-P3
LAN
Q
ueue 6-P2
LAN Queue 5
Priority 1
QoS
Encapsulator 2
WAN
Group 3 LAN Queue 12-P4
LAN
Q
ueue 11-P3
LAN
Q
ueue 10-P2
LAN Queue 9
Priority 1
QoS
Encapsulator 3
WAN
Group 4 LAN Queue 16-P4
LAN
Q
ueue 15-P3
LAN
Q
ueue 14-P2
LAN Queue 13
Priority 1
QoS
Encapsulator 4
Priority Lookup Table
Serial
Port 2
Serial
Port 3
Serial
Port 4
Serial
Port 5
Serial
Port 6
Serial
Port 7
Serial
Port 8
Serial
Port 9
Serial
Port 10
Serial
Port 11
Serial
Port 12
Serial
Port 13
Serial
Port 14
Serial
Port 15
Serial
Port 16
VLAN Processing
Decapsulator #2 WAN Trap
Decapsulator #3 WAN Trap
Decapsulator #4 WAN Trap
Frames from the
Ethernet Interface
are forwarded to
the WAN groups
based on VLAN
Tag, then
scheduled by
Priority
Frames
toward the
Ethernet
Interface are
forwarded based
on the order of
receipt.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 47 of 375
Figure 8-6. Forwarding Mode 4: 1 Ethernet port with Port ID and LAN-VLAN Forwarding
WAN
Group 1 LAN Queue 4-P4
LAN
Q
ueue 3-P3
LAN
Q
ueue 2-P2
Ethernet MAC 1
Serial
Port 1
LAN Queue 1
Priority 1
TRANSMIT:
The 16 Serial Ports
are assigned to the
four Encapsulator
WAN Groups with
VCAT.TCR3.TVGS
RECEIVE:
The 16 Serial Ports
are assigned to the
four Decapsulator
WAN Groups with
VCAT.RCR4.RVGS
WAN Ports
LAN Ports
WAN Insert
Queue
QoS
Bridge / Filte
r
Scheduler and Transmit VCAT/LCAS Processing
VLAN (VID)
Lookup Table
Receive
VCAT/LCAS
Processor
Decapsulator #1 WAN Trap
Ethernet MAC 2
LAN Extract
Queue
WAN Extract
Queue
LAN Insert
Queue
Encapsulator 1
LAN Trap
VLAN Processing
WAN
Group 2 LAN Queue 8-P4
LAN
Q
ueue 7-P3
LAN
Q
ueue 6-P2
LAN Queue 5
Priority 1
QoS
Encapsulator 2
WAN
Group 3 LAN Queue 12-P4
LAN
Q
ueue 11-P3
LAN
Q
ueue 10-P2
LAN Queue 9
Priority 1
QoS
Encapsulator 3
WAN
Group 4 LAN Queue 16-P4
LAN
Q
ueue 15-P3
LAN
Q
ueue 14-P2
LAN Queue 13
Priority 1
QoS
Encapsulator 4
Priority Lookup Table
Serial
Port 2
Serial
Port 3
Serial
Port 4
Serial
Port 5
Serial
Port 6
Serial
Port 7
Serial
Port 8
Serial
Port 9
Serial
Port 10
Serial
Port 11
Serial
Port 12
Serial
Port 13
Serial
Port 14
Serial
Port 15
Serial
Port 16
VLAN Processing
Decapsulator #2 WAN Trap
Decapsulator #3 WAN Trap
Decapsulator #4 WAN Trap
Frames
from the Ethernet
Interfaces are
forwarded to the
WAN groups based
on physical port,
then by VLAN Tag,
and are scheduled
by Priority
(802.1p or
DSCP).
Frames
toward
the Ethernet
Interface are
forwarded based
on physical port, in
order of receipt.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 48 of 375
Figure 8-7. Forwarding Mode 5: Full LAN-to-WAN and WAN-to-LAN VLAN Forwarding
WAN
Group 1 LAN Queue 4-P4
LAN
Q
ueue 3-P3
LAN
Q
ueue 2-P2
Ethernet MAC 1
Serial
Port 1
LAN Queue 1
Priority 1
TRANSMIT:
The 16 Serial Ports
are assigned to the
four Encapsulator
WAN Groups with
VCAT.TCR3.TVGS
RECEIVE:
The 16 Serial Ports
are assigned to the
four Decapsulator
WAN Groups with
VCAT.RCR4.RVGS
WAN Ports
LAN Ports
WAN Insert
Queue
QoS
Bridge / Filte
r
Scheduler and Transmit VCAT/LCAS Processing
VLAN (VID)
Lookup Table
Receive
VCAT/LCAS
Processor
Decapsulator #1 WAN Trap
Ethernet MAC 2
LAN Extract
Queue
WAN Extract
Queue
LAN Insert
Queue
LAN Trap
VLAN Processing
WAN
Group 3 LAN Queue 8-P4
LAN
Q
ueue 7-P3
LAN
Q
ueue 6-P2
LAN Queue 5
Priority 1
QoS
WAN
Group 2 LAN Queue 12-P4
LAN
Q
ueue 11-P3
LAN
Q
ueue 10-P2
LAN Queue 9
Priority 1
QoS
WAN
Group 4 LAN Queue 16-P4
LAN
Q
ueue 15-P3
LAN
Q
ueue 14-P2
LAN Queue 13
Priority 1
QoS
Priority Lookup Table
Serial
Port 2
Serial
Port 3
Serial
Port 4
Serial
Port 5
Serial
Port 6
Serial
Port 7
Serial
Port 8
Serial
Port 9
Serial
Port 10
Serial
Port 11
Serial
Port 12
Serial
Port 13
Serial
Port 14
Serial
Port 15
Serial
Port 16
VLAN Processing
Decapsulator #3 WAN Trap
Frames from
MAC 1 are sent to
WAN groups 1 or 2
based on VID.
Frames from MAC 2
are sent to WAN
Groups 3 or 4. All
are scheduled
by Priority
(802.1p or
DSCP)
Frames
toward
the Ethernet
Interface are
forwarded based
on the VLAN TAG
Encapsulator 1 Encapsulator 3
Note: Frames in
each pair of WAN
groups are
scheduled by a
round-robin
scheduler.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 49 of 375
The user may choose to disable unused features in a forwarding mode. In the forwarding modes with Priority
Forwarding or Priority Scheduling, both 802.1p VLAN PCP and DSCP are supported. The user-programmable
Priority Table is accessed through the SU.PTC, SU.PTAA, SU.PTWD, SU.PTRD, and SU.PTSA registers. The
Priority and Quality of Service (QoS) features of the device are discussed further in Section 8.16. Gigabit Ethernet
applications may only use Forwarding modes that support 1 Ethernet Port (modes 1, 2, or 3). In all forwarding
modes, VCAT/LCAS can be used to aggregate multiple physical serial ports for each WAN Group’s data stream,
except on the devices in the product family that do not support VCAT/LCAS. More information on the use of
VCAT/LCAS for link aggregation can be found in Section 8.12.
In the forwarding modes that use VLAN VID tags, the device references a user-programmable lookup table to
make forwarding decisions. Through the SU.VTC, SU.VTAA, SU.VTWD, and SU.VTRD registers, the user must
program a lookup table that maps up to 4096 VLAN VID tags each to one of the four WAN Groups in the LAN-to-
WAN direction, and from the WAN Groups to the two Ethernet Interfaces in the WAN-to-LAN direction. More
information on VLAN mapping can be found in Section 8.16. Within each WAN Queue group, 802.1p VLAN Priority
coding or DSCP Priority Coding can be used to assign traffic to 4 different priority queues. More information on
priority forwarding and scheduling for quality of service can be found in Section 8.16.
Table 8-4. Forwarding Modes Supported by Device
Forwarding
Mode
DS33X161
DS33X81
DS33X41
DS33X11
DS33W11 DS33W41 DS33X42
DS33X162
DS33X82
1 No Yes Yes Yes
2 Yes Yes Yes Yes
3 No Yes Yes Yes
4 No No No Yes
5 No No Yes Yes
8.9.2 WAN Connections
Each Serial (WAN) Interface is mapped to a WAN Group through the VCAT.TCR3(1-16) and VCAT.RCR4(1-16)
registers. A WAN interface can only be assigned to one WAN Group. In devices in the product family that support
VCAT operation, if enabled, more than one WAN interface can be assigned to a WAN Group. Whenever a WAN
Group has more than one member, VCAT must be enabled for that group. A VCAT enabled WAN Group can
include up to 16 WAN Interfaces. More information on the use of VCAT/LCAS for link aggregation can be found in
Section 8.12.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 50 of 375
8.9.3 Queue Configuration
The starting and ending locations for each queue in DDR SDRAM are user-configured. The address space of a 256
Mbit DDR SDRAM is 24-bits, providing an address range covering 16M 16-bit words. To reduce the complexity of
the user interface, only the upper 10 bits of each start/end queue address are user-configured. This provides a
minimum queue size granularity of 16K 16-bit words, or 32 Kbytes. The 10-bit values programmed into the queue
configuration registers can be multiplied by 32,768 in order to convert to bytes.
Each Serial (WAN) interface has an associated receive WAN Queue in external DDR SDRAM. The WAN Queues
receive data from the WAN interfaces and buffer it for processing. The user configures the size and location of
these queues through control registers in the Arbiter. Starting WAN queue addresses are configured in
AR.WQ1SA-AR.WQ16SA, and ending addresses in AR.WQ1EA-AR.WQ16EA. When using VCAT/LCAS, the
WAN queues are also used for differential delay compensation between members of a VCG. The user-configured
depth of these queues should provide for approximately 200 ms of data at the WAN line rate. This translates to
approximately 10Mb at a 52Mbps rate, and 300kb at 1.544Mbps. While it is possible to configure larger WAN
queues, note that limitations of the VCAT protocol only allow the resolution of 200ms at the line rate, and aliasing
may occur at larger WAN queue depths.
Data from the LAN interface is received into an internal buffer monitored by the SU.LIQOS.LIQOS bits. It is then
immediately processed and placed into one of 16 LAN Queues in external SDRAM, based on the forwarding mode
and information within the frame. Starting WAN queue addresses are configures in AR.LQ1SA-AR.WQ16SA and
ending addresses are configured in AR.LQ1EA-AR.LQ16EA.
The user defines a LAN queue threshold (watermark) that is used to trigger Ethernet flow control or device
interrupts in the AR.LQW register. Because WAN standards do not have a method for interactive flow-control, the
WAN queues do not have user-programmable watermark. The device provides overflow status for the WAN
queues in AR.WQOS and for the LAN queues in AR.LQOS. The device provides an indication that frame
discarding has been triggered due to the level of the WAN queues in AR.WQNFS. The interrupt operation related
to these functions is further defined in Section 8.8.
There are also four special-purpose external SDRAM queues used for frame insertion and extraction. The user
configures the size and location of these through control registers in the Arbiter. The LAN Insert queue is defined
by AR.LIQSA and AR.LIQEA. The LAN Extract Queue is defined by AR.LEQSA and AR.LEQEA. The WAN insert
queue is defined by AR.WIQSA and AR.WIQEA. The WAN Extract queue is defined by AR.WEQSA and
AR.WEQEA. Overflow status for the extraction queues is provided in AR.EQOS
An additional portion of the external SDRAM must be allocated for the Bridge/Filter function when in use. The 4k x
6-byte table used for DA lookup operations will be constructed at the location in the AR.BFTOA register.
The device does not provide error indication if the user creates a connection and queue that overwrites
data for another connection queue. The user must take care in setting the queue sizes.
The LAN and WAN queue pointers must be reset before traffic flow can begin. If this procedure is not followed,
incorrect data may be transmitted. The proper procedure for setting up a connection follows:
Set up the queue sizes for both LAN and WAN queues.
Set up the LAN Queue threshold and associated interrupt enables if desired.
Reset the pointers for the associated queues
Enable the associated ports.
If a port is disconnected, reset the queue pointer after the disconnection.
Each queue can be individually reset as needed through the starting address register for that queue. All queue
pointers can be reset simultaneously through the AR.MQC register. This register also configures the behavior of
the WAN frame insertion.
Two scheduling algorithms can be used for prioritizing traffic to be transmitted from the LAN queues to the WAN
interface: Strict Priority and Weighted Round-Robin (WRR). WRR scheduling is available only in Forwarding Mode
2, with one Ethernet port. This is configured in the AR.LQSC register.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 51 of 375
8.10 Bandwidth Capabilities (Throughput)
All devices in the product family support approximately 416Mbps aggregate throughput. However, on the high-port
count devices with dual Ethernet Interfaces (the DS33X162 and DS33X82), it is necessary to conform to certain
constraints when interfacing with T3/E3 WAN lines. These constraints do not apply for T1/E1 transport. Also, these
constraints do not apply to devices other than the DS33X162 and DS33X82.
Table 8-5. Maximum Number of T3/E3 Lines Per Encapsulator (DS33X162 and DS33X82 Only)
Enabled
Encapsulators
DS33X82 DS33X162
(with 8 ports enabled)
DS33X162
(with more than 8 ports enabled)
1 8 T3/E3 8 T3/E3 Not Applicable
2 5 T3/E3 5 T3/E3 3 T3/E3
3 3 T3/E3 3 T3/E3 2 T3/E3
4 2 T3/E3 2 T3/E3 2 T3/E3
Attempting operation of the DS33X162 or DS33X82 outside of these constraints may cause data loss. If the user
wishes to operate outside of the device’s designed capabilities, it is recommended that the user evaluate the
device performance under the specific application conditions and determine if the measured performance is
acceptable.
Note that the WAN Groups support the following rates:
Maximum data rate for WAN Groups 1 and 2 = up to 416Mbps total (Group 1 + Group 2 418Mbps)
Maximum data rate for WAN Groups 3 and 4 = 180Mbps each
Note that the individual WAN ports support the following rates:
Maximum line rate for WAN ports 1-8 = 52Mbps each
Maximum line rate for WAN ports 9-16 = 2.044Mbps each
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 52 of 375
8.11 Serial (WAN)
The Serial Interfaces support time-division multiplexed, serial data I/O up to 52Mbps. The Serial Interface receives
and transmits encapsulated Ethernet frames, and consists of a physical serial port with a GFP/X.86/HDLC/cHDLC
engine. Each physical interface consists of a data pin, clock pin, and a synchronization pin in both the transmit and
receive directions. The Serial Interface can operate with a gapped clock, and can be connected to a framer,
electrical LIU, optical transceiver, or T/E-Carrier transceiver for WAN transmission. The Serial Interface can be
seamlessly connected to the Maxim T1/E1/J1 Framers, Line Interface Units (LIUs), and Single-Chip Transceivers
(SCTs). The interface can also be seamlessly connected to the Maxim T3/E3/STS-1 Framers, LIUs, and SCTs to
provide T3, E3, and STS1 connectivity.
Receive features:
User configurable receive serial ports (up to 16)
User configurable receive voice port(s) (DS33W41/DS33W11 only)
Programmable clock inversion
Serial data is byte-aligned with reference to Receive Frame Sync (MSB follows Frame Sync)
Demuxes Voice traffic from T1/E1/xDSL (maximum of 16 DS0s per port) and output on voice port
(DS33W41/DS33W11 only)
Buffers demuxed voice traffic and realign with RVSYNC and RVCLK (DS33W41/DS33W11 only)
Reports Loss of RCLKn
Capability of RDATA to TDATA loopback
Reports FIFO underflow/overflow
Transmit features:
Data is byte-aligned to TMSYNC/TSYNC (MSB follows TMSYNC/TSYNC)
TMSYNC/TSYNC is an input that may be lined up with the framing overhead of the T1/E1/T3/E3 frame or
programmable to be expected three cycles early.
User configurable transmit ports (up to 16)
User configurable transmit voice port(s) (DS33W41/DS33W11 only)
Programmable clock inversion
Muxes Voice traffic to T1/E1/xDSL (DS33W41/DS33W11 only, ports 1-4)
Buffers voice traffic(maximum 16 DS0s per port) to mux in with frame data and retime to TMCLK/TCLK and
TMSYNC/TSYNC (DS33W41/DS33W11 only)
Reports Loss of TCLK
Capable of TDATA to RDATA loopback (replaces RCLK with TMCLK/TCLK)
8.11.1 Voice Support (DS33W11 and DW33W41 Only)
Voice demuxing is done on Frame Sync boundaries, with a programmable number of octets (with a maximum of
16) to be demuxed to the Voice FIFO. These are the octets immediately following the Frame Sync boundary. Voice
octets are read from Voice FIFO one frame later after written to FIFO.
Voice Muxing occurs on Frame Sync boundaries and a programmable number of octets(with a maximum of 16) are
read from the Voice FIFO. These octets will appear on TDATA immediately following the TMSYNC/TSYNC signal.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 53 of 375
8.12 Link Aggregation and Link Capacity Adjustment (VCAT/LCAS)
Virtual Concatenation (VCAT) allows information to be transmitted over up to 16 aggregated WAN links. The VCAT
function aligns all members of the VCG to the link with the most transmission delay. The information on all
members of the VCG must be buffered until the last data is received from the link with the most transmission delay.
The maximum differential delay allowed between the link with the most delay and the link with the least delay is
200 ms. Note that the queue size is user-programmed and could potentially be configured for values larger than
200 ms of data. In VCAT mode, the maximum recommended queue size is 200 ms worth of data. If the user
configures a queue size larger than 200ms while in VCAT mode, errors may occur due to aliasing. Note that link
aggregation is not possible using the DS33X11 and DS33W11, but the insertion of VCAT overhead is supported on
these devices.
VCAT Features:
4 VCGs for the DS33X162/X82, 2 VCGs for the DS33X42, 1 VCG for the DS33X161/X81/X41/W41
Max differential delay = 200 ms
Receive and Transmit are independent (asymmetrical support)
User programmable configuration of WAN ports used for VCG
Supports Virtual Concatenation of up to 8 T3/E3 or 16 T1/E1
RCLKs of a VCG must be frequency locked.
All TMCLKs/TCLKs used for a VCG must be frequency locked.
Table 8-6. VCAT/LCAS Control Frame for T1/E1
Concatenation Overhead Octet Definition
Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8
Control Packet MFI1
MST (1-4) 1 0 0 0
MST (5-8) 1 0 0 1
0 0 0 RS-ACK 1 0 1 0
RESERVED (0000) 1 0 1 1
RESERVED (0000) 1 1 0 0
RESERVED (0000) 1 1 0 1
RESERVED (0000) 1 1 1 0
SQ Bits 1-4 1 1 1 1
MFI2 MSBs (1-4) 0 0 0 0
MFI2 LSBs (5-8) 0 0 0 1
CTRL 0 0 1 0
0 0 0 GID 0 0 1 1
RESERVED (0000) 0 1 0 0
RESERVED (0000) 0 1 0 1
C1 C
2 C
3 C
4 0 1 1 0
C5 C
6 C
7 C
8 0 1 1 1
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 54 of 375
8.12.1 VCAT/LCAS Control Frame for T3/E3
Table 8-7. VCAT/LCAS Control Frame for T3/E3
Concatenation Overhead Octet Definition
Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8
Control Packet MFI1
MST (1-4) 1 0 0 0
MST (5-8) 1 0 0 1
0 0 0 RS-ACK 1 0 1 0
RESERVED (0000) 1 0 1 1
RESERVED (0000) 1 1 0 0
RESERVED (0000) 1 1 0 1
RESERVED (0000) 1 1 1 0
0 SQ Bits 1-3 1 1 1 1
MFI2 MSBs (1-4) 0 0 0 0
MFI2 LSBs (5-8) 0 0 0 1
CTRL 0 0 1 0
0 0 0 GID 0 0 1 1
RESERVED (0000) 0 1 0 0
RESERVED (0000) 0 1 0 1
C1 C
2 C
3 C
4 0 1 1 0
C5 C
6 C
7 C
8 0 1 1 1
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 55 of 375
8.12.2 VCAT/LCAS Configuration and Operation
VCAT/LCAS setup requires an external Micro to issue an instruction to setup and tear down the IMUX function.
The microprocessor can turn off links that are not participating. Once any changes to the transmit VCAT
configuration are made, a zero-to-one transition on VCAT.TCR1.TLOAD is required in order to load the updated
configuration.
8.12.2.1Receive VCAT Initialization
1. Configure the VCG Frame Mode via VCAT.RCR1.T3T1
2. Configure VCAT.RCR3 with the number of members per VCG.
3. Assign each port to the appropriate VCG via VCAT.RCR4.RVGS[2:0] and VCAT.RCR4.RPA.
4. Enable the Receive VCAT Blocks via VCAT.RCR1.RVBLKEN and VCAT.RCR1.RVENn.
5. Clear the FIFO Reset in VCAT.RCR4.
6. If needed, enable LCAS via VCAT.RCR2.LE[4:1].
8.12.2.2Transmit VC Group Initialization – LCAS Enabled
1. Assign each port to the appropriate VCG via VCAT.TCR3.TVGS[2:0] and VCAT.TCR3.TPA.
2. Assign the Sequence number to each port via VCAT.TCR3.SQ[3:0].
3. Configure VCAT.TCR2 with the number of members per VCG.
4. Configure the VCG Frame Mode via VCAT.TCR1.VnFM[1:0].
5. Write the LCAS Control word via VCAT.TLCR8.CTRL[3:0] to IDLE for participating links.
6. Enable LCAS through VCAT.RCR2.LE[4:1].
7. Enable the Transmit VCAT Block via VCAT.TCR1.TVBLKEN.
8. Initiate a zero-to-one transition on VCAT.TCR1.TLOAD in order to load the configuration.
8.12.2.3Transmit VC Group Initialization (LCAS Disabled)
1. Assign each port to the appropriate VCG via VCAT.TCR3.TVGS[2:0] and VCAT.TCR3.TPA.
2. Assign the Sequence number to each port via VCAT.TCR3.SQ[3:0].
3. Configure each VCG Frame Mode via VCAT.TCR1.VnFM[1:0].
4. Configure VCAT.TCR2 with the number of members per VCG.
5. Enable the Transmit VCAT Block via VCAT.TCR1.TVBLKEN.
6. Initiate a zero-to-one transition on VCAT.TCR1.TLOAD in order to load the configuration.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 56 of 375
8.12.3 Link Capacity Adjustment Scheme (LCAS)
The Link Capacity Adjustment Scheme (LCAS) provides the capability to add and remove members from a VCAT
VCG. If LCAS is enabled viaVCAT.RCR2.LE[3:0], the receive LCAS block will extract all LCAS frame information
from the VCAT overhead. The LCAS status registers report the CTRL, GID, RS-ACK, and MST fields of the VCAT
frame. The LCAS CTRL field communicates the intent to add or remove a member from the group. The device
coordinates the addition or removal of links from the group of active members so that changes are hitless.
The transmit MST values are automatically controlled by the device by default. Optionally, this function can be
controlled by user software via the VCAT.TLCR3VCAT.TLCR6 registers. The Transmit MST field communicates
the condition of the line (e.g., an LOM alarm), the reception of an Add command (and subsequent successful
alignment to the VCG), and the reception of a Remove command.
To enable Transmit LCAS, follow the initialization steps outlined in Section 8.12.2.2. Note that the
VCAT.TLCR8.CTRL[3:0] bits should be initialized with a CTRL command of IDLE. All changes to the CTRL[3:0]
register bits must be followed with a zero-to-one transition on VCAT.TCR1.TLOAD for the change to take effect.
Receive LCAS Functions:
• Aligns all members of the VCG
• Reports relevant fields and alarms to status registers
• Automatically transmits MST back to the Source (Manual control also configurable)
Transmit LCAS Functions:
• Outputs CTRL, MST, GID, RS-Ack to be inserted into VCAT overhead
• GID PRBS generator and insertion
• User-Configured GID insertion
• CRC generation and insertion
8.12.3.1Example LCAS Operation
1. Initial CTRL command of IDLE, SQ value = max (16 for T1/E1, 8 for T3/E3)
2. Addition of Member:
a. Send ADD command, Change SQ value to 1+ SQ value(active link with the highest SQ)
b. Wait for MST=OK on Receive LCAS (VCAT.RLSR1 register)
c. Send EOS on this port; Port that was sending EOS now sends NORM
3. Removal of Member
a. Change command from NORM/EOS to IDLE; Change SQ value to max; Reorder other active
members’ SQ; If change was from EOS to IDLE, then next highest member changes from NORM
to EOS
4. Response to Receive LCAS reporting MST=FAIL
a. If the Receive LCAS reports that a MST value changed from OK to FAIL, the Transmit LCAS
should send DNU on that port.
b. The SQ value remains the same.
c. If the member that changes to DNU was EOS, EOS must be assigned to the member next in line.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 57 of 375
8.12.4 Alarms and Conditions related to VCAT/LCAS
The latched status bits for the VCAT/LCAS sequence (VCAT.RSLSR.SQL), control (VCAT.RSLSR.CTRL) and
RS-Ack (VCAT.RSLSR.RSACKL) bits can be used to generate device interrupts on a change of state.
The latched Loss of Multiframe Sync (VCAT.RSLSR.LOML), Realign (VCAT.RRLSR.REALIGN[1-4]) and
Differential Delay (VCAT.RRLSR.DDE[1-4]) bits can be used to generate an interrupt upon transition from the
inactive (normal) to the active (alarm) state. If the user’s application requires an indication of the transition from the
active to inactive condition, the host processor should poll the (non-latched) status bits to determine when the
alarm becomes inactive.
8.13 Arbiter/Buffer Manager
The Arbiter manages the transport between the Ethernet and Serial ports. It is responsible for queuing and
dequeuing frames to a single external SDRAM. The arbiter handles requests from the Packet Processor and MAC
to transfer data to and from the SDRAM. For more information of how the Arbiter settings affect QoS, see Section
8.16. For more information on configuring the Arbiter’s interactions with the SDRAM queues, see Section 8.9.3.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 58 of 375
8.14 Flow Control
In some applications, Flow Control may be required to ensure that data queues do not overflow and frames are not
dropped. The device allows for optional IEEE 802.3 Compliant flow control. There are 2 basic mechanisms of flow
control:
In half duplex mode, a jam sequence is sent that causes a collision detection at the far end. The collision
causes the transmitting node to reduce the rate of transmission.
In full duplex mode, flow control is initiated by the receiving node sending a pause frame. The pause frame
contains a time parameter that determines the pause timeout to be used by the transmitting node.
Several conditions can initiate the flow control mechanism:
Flow Control can be initiated by a LAN Queue filling above the Watermark programmed in AR.LQW. Flow
Control for each LAN Queue is independanty enabled in the SU.LQXPC register. Note that the LAN
Queues are external DDR SDRAM buffers used to store data that has arrived on the MII/RMII/GMII
interface(s) and has been processed by the receive MAC.
Flow Control can be initiated by the CIR Policing function. More information on this function can be found
in Section 8.21.
Transmission of a pause frame can be manually initiated by writing a 1 to SU.MACFCR.FCB.
The Pause time value that is transmitted in outgoing Pause frames is user-programmable in the SU.MACFCR
register. Note that Pause control frame transmission must also be enabled with the SU.MACFCR.TFE bit. Pause
frame receipt must be enabled with SU.MACFCR.RFE. Although not commonly used, Unicast Pause frame
reception can be enabled with SU.MACFCR.UP.
The Watermark value programmed into AR.LQW is in units of memory from the top of the queue, thus a larger
value in AR.LQW indicates that more memory will remain available in the queue when flow control is exerted. Note
that in order to use flow control, the minimum LAN queue size is 2 frames (of maximum size) deep and the LAN
queue watermark threshold (AR.LQW) must be set to allow a minimum of 1 frame of maximum size to be received
after the threshold is crossed. If the Watermark is set too close to the top of the queue to allow time for the remote
node to respond, automatic flow control will not be effective.
In some applications, Ethernet flow control can interfere with higher-layer flow control protocols. For example,
TCP/IP flow control depends on lost frames in order to detect when it has exceeded a system’s capabilities. TCP/IP
flow control uses an increasing flow rate until lost frames are detected, at which point a back-off & resend algorithm
is used, based on the number of lost frames until a steady stream is maintained. If no frames are lost, TCP/IP will
continue attempting to increase the flow rate. If TCP/IP flow control is used in conjunction with Ethernet Flow
control, the results may be undesirable for some applications. The system architect should carefully study this
topic to determine if the system in design should use Ethernet flow control or frame discarding. The
DS33X162 family of devices support both flow control and frame discarding.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 59 of 375
8.14.1 Full Duplex Flow control
Automatic flow control is governed by the LAN Queue high watermark in AR.LQW, and is enabled per LAN Queue
in the SU.LQXPC register. This allows the user to enable or disable flow control for each of the four mapped
PCP/DSCP priorities. When the LAN queue threshold is exceeded on which flow control is enabled, the device will
send a pause frame with the timer value programmed in SU.MACFCR.PT[15:0] when in full duplex, or a jamming
signal in half duplex. More information on configuring the queues, see Section 8.9.3. Also see the SU.MACFCR
register definition for recommended flow control settings.
The pause frame causes the distant transmitter to “pause for a time” before starting transmission again. The device
will send a pause frame as the queue has crossed the threshold defined in AR.LQW. The pause control frame is
retransmitted every 16.4us, 164us, or 1.64ms, depending on the settings in SU.MACFCR.PLT. The receive queue
could keep growing if the round trip delay is greater than the Pause time. Pause control will only take care of
temporary congestion it does not take care of systems where the traffic throughput is too high for the queue sizes
selected. If the flow control is not effective the receive queue will eventually overflow. This is indicated in
SU.LIQOS. If the receive queue is overflowed any new frames will not be received until the overflow condition is
corrected..
The user has the option of not enabling automatic flow control. In this case the thresholds and corresponding
interrupt mechanism to send pause frame by writing to the FCB bit in the MAC flow control register SU.MACFCR.
This allows the user to set not only the watermarks but also to decide when to send a pause frame or not based on
watermark crossings.
On the receive side the user has control over whether to respond to the pause frame sent by the distant end
(SU.MACFCR.RFE bit). On the Transmit queue the user has the option of setting high and low thresholds and
corresponding interrupts. There is no automatic flow control mechanism for data received from the Serial
side waiting for transmission over the Ethernet interface during times of heavy Ethernet congestion.
8.14.2 Half Duplex Flow control
Half duplex flow control functions like Full Duplex flow control, but a jamming sequence is used to exert
backpressure on the transmitting node rather than Pause control frames. The receiving node jams the first 4 bytes
of a frame that are received from the MAC in order to cause a collision detection at the distant end. In both
100Mbps and 10Mbps MII/RMII modes, 4 bytes are jammed upon reception of a new frame. Note that the jamming
mechanism does not jam the frame that is being received during the watermark crossing, but will wait to jam the
next frame after the AR.LQW is crossed. If the queue remains above the threshold, received frames will continue
to be jammed. This jam sequence is stopped when the queue falls below the threshold in AR.LQW.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 60 of 375
8.15 Ethernet Interfaces
The Ethernet Interface allows for direct connection to Ethernet PHYs. The interface consists of a dual 10/100Mbps
MII/RMII interface or a single 1000Mbps GMII interface and associated Ethernet MACs. In GMII operation, the
interface contains 23 signals with a reference clock of 125MHz. In dual MII operation, each interface contains of 12
signals and uses a clock reference of 25MHz. In RMII operation, the interface contains 7 signals with a reference
clock of 50MHz. The device can be configured for GMII, MII, or RMII operation with the GL.CR1.P1SPD,
GL.CR1.P2SPD, SU.MACCR.GMIIMIIS bits and the RMII_SEL input pin. In DTE mode of operation, the TX_CLK
and RX_CLK signals are generated by the PHY and are inputs.
The data received from the MII, RMII, or GMII interface(s) is processed by internal IEEE 802.3 compliant Ethernet
MACs. The user can configure a maximum receive frame length beyond which the MAC discards the complete
frame. The maximum frame size can be configured in the SU.MPL register to any value up to 10240 bytes. Sizes
over 2048 bytes are considered “jumbo” frames. For more information on jumbo frame support requirements, see
Table 10-5. The maximum frame length (in bits) is the number specified in SU.MPL multiplied by 8.
The frame length calculation is shown below in Figure 8-8. The frame length includes only destination address,
source address, VLAN tag (2 bytes), type length field, data and CRC32. Note that the calculation used for
maximum frame size results in a different value than the 802.3 Type/Length field shown in the figure.
Figure 8-8. IEEE 802.3 Ethernet Frame
Preamble SFD Destination Adrs Source Address Type /
Length Data CRC32
7 1 6 6 2 46-1500 4
Max Frame Length
The distant end will normally reject the sent frames if jabber timeout, loss of carrier, excessive deferral, late
collisions, excessive collisions, under run, deferred or collision errors occur. Transmission of a frame under any of
these errors will be logged by the MAC management counters. The device provides user the option to not
automatically retransmit the frame if any of the errors have occurred through the MAC’s SU.MACCR.DRTY bit.
Frames received with errors are usually rejected by the device. More information on the Ethernet MAC functions
can be found in Section 8.19.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 61 of 375
Table 8-8. Configuration Recommendations for Maximum Frame Length
Maximum Frame
Length (bytes)
SU.MPL SU.MACCR.WDD SU.MACCR.JD SU.MACCR.JFE
1518 1518 0 0 0
2048 2048 0 0 0
9018 9018 1 1 1 (half-duplex)
0 (full-duplex)
10240 10240 1 1 1 (half-duplex)
0 (full-duplex)
Table 8-9. Selection of MAC Interface Modes for Port 1
Function RMII_SEL Pin DCEDTES Pin GMIIMIIS Bit P1SPD Bit
GMII 0 0 0 Don’t Care
RMII 1 0 1 0 for 10Mbps
1 for 100Mbps
MII (DTE Mode) 0 0 1 0 for 10Mbps
1 for 100Mbps
MII (DCE Mode) 0 1 1 0 for 10Mbps
1 for 100Mbps
Table 8-10. Selection of MAC Interface Modes for Port 2
Function RMII_SEL Pin DCEDTES Pin GMIIMIIS Bit P1SPD Bit
RMII 1 0 1 0 for 10Mbps
1 for 100Mbps
MII (DTE Mode) 0 0 1 0 for 10Mbps
1 for 100Mbps
MII (DCE Mode) 0 1 1 0 for 10Mbps
1 for 100Mbps
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 62 of 375
8.15.1 GMII Mode
GMII interface operates synchronously from the external 125MHz reference, and 23 signals are required. The
following figure shows the GMII architecture. Note that DCE mode is not supported for GMII mode and that GMII is
valid only for full duplex operation.
Figure 8-9. Example Configuration of GMII Interface (DTE Mode Only)
Transmit
Receive
TXD[7:0]
TX_EN1
RX_ERR1
RXD[7:0]
RX_DV1
DS33X/W MAC GMII PHY
RX_CLK1
RX_CRS1
GTX_CLK
TX_ERR1
MDIO
Control
MDC
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 63 of 375
8.15.2 MII Mode
The Ethernet interface can be configured for RMII operation by setting the hardware pin RMIIMIIS low. MII interface
operates synchronously from the external 25MHz reference (REF_CLK). The following figure shows the MII
architecture.
Figure 8-10. Example Configuration as DTE connected to an Ethernet PHY in MII Mode
MAC
RXD[3:0]RXD[3:0]
RX_CLK
RX_CLK
RX_ERRRX_ERR
RX_CRS
RX_CRS
COL_DET COL_DET
Ethernet Phy
TX_EN TX_EN
MDC
MDIO
TXD[3:0] TXD[3:0]
TX_CLK
WAN
DCE
DTE
TX_CLK
MDIO
MDC
RXDV
RXDV
Rx
Rx
Tx
Tx
Arbiter
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 64 of 375
Table 8-11. MII Mode Options
Mode/Speed Functions
10Mbps full duplex DTE Mode with
no flow control
While in full duplex, MII DTE Mode, both the receive and transmit MII
clocks are inputs.
100Mbps full duplex, DTE Mode
with flow control
In full duplex DTE Mode the clocks are expected from the PHY. The flow
control for a full duplex operation is using control frames. If the MAC
receives a pause command the Transmitter is disabled for the time
specified in the pause command. The pause command has a multicast
address 01-80-62-00-00-01. The MAC can also initiate a pause control
frame with SU.MACFCR.FCB. The duration field in the pause control
frame is determined by settings in the MAC Flow control Register
100Mbps full duplex, DTE Mode
with no flow control
100Mbps full duplex DCE Mode with
flow control
In full duplex DCE Mode, the clocks are provided by the device. The flow
control for a full duplex operation is using control frames. If the MAC
receives a pause command the Transmitter is disabled for the time
specified in the pause command. The pause command has a multicast
address 01-80-62-00-00-01. The MAC can also initiate a pause control
frame with SU.MACFCR.FCB. The duration field in the pause control
frame is determined by settings in the MAC Flow control Register
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 65 of 375
8.15.3 DTE and DCE Mode
When in 10/100 mode, the Ethernet MII interface(s) can be configured for DCE or DTE Mode. When configured in
DTE Mode, direct connection can be made to Ethernet PHYs. In DCE mode, the MII interface can be connected to
MII MAC devices other than an Ethernet PHY, such as Ethernet Switch devices. The DTE/DCE connections in MII
mode are shown in the following 2 figures.
In DCE Mode, the transmitter is connected to an external receiver and receiver is connected to an external MAC
transmitter. The selection of DTE or DCE mode is done by the hardware pin DCEDTES. DCE mode is not valid for
GbE (GMII) operation.
Figure 8-11. Example Configuration as a DCE in MII Mode
MAC
TXD[3:0]
RXD[3:0]
TX_CLKRX_CLK
TX_ERRRX_ERR
TX_EN
RX_CRS
COL_DET COL_DET
DTE
DCE
TX_EN RXDV
MDC
MDIO
TXD[3:0] RXD[3:0]
TX_CLK
WAN MAC
RX_CLK
RXDV
RX_CRS
MDIO
MDC
Rx Tx
Tx Rx
Arbiter
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 66 of 375
8.15.4 RMII Mode
The Ethernet interface can be configured for RMII operation by setting the hardware pin RMIIMIIS high. RMII
interface operates synchronously from the external 50MHz reference (REF_CLK). Only 7 signals are required. The
following figure shows the RMII architecture. Note that DCE mode is not supported for RMII mode and RMII is valid
only for full duplex operation.
Figure 8-12. RMII Interface (DTE Mode Only)
Transmit
MAC
Receive
MAC
TXD[1:0]
TX_EN
REF_CLK
RXD[1:0]
CRS_DV
DS33X MAC - RMII PHY RMII to MII
TX_EN
TXD[3:0]
TX_ERR
TX_CLK
CRS
RX_DV
RXD[3:0]
RX_ER
RX_CLK
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 67 of 375
8.16 Quality of Service (QoS) Features
The device contains several features designed to provide Quality of Service (QoS). These features include Virtual
LAN (VLAN) Forwarding and Priority Scheduling/Forwarding supporting both VLAN 802.1p and DSCP. The device
also includes features for Congestion Avoidance and Congestion Management. Information on Congestion
Avoidance using the integrated CIR can be found in Section 8.21. Information on Congestion Management using
Ethernet flow control can be found in Section 8.14.
VLAN Forwarding is used to separate traffic into different streams or combine traffic from multiple sources into a
single stream, while Priority Scheduling is used to prioritize traffic waiting in queue for WAN transmit bandwidth to
become available. Note that Priority Scheduling is different than Priority Forwarding. Priority Forwarding is a
technique used to separate traffic of various priority levels onto physically separate WAN connections. The use of
VLAN Forwarding, Priority Scheduling, and Priority Forwarding is determined by the Forwarding Mode of the
device. More information on the available Forwarding Modes can be found in Section 8.9.
Within the data stream for each WAN Queue group, 802.1p VLAN Priority Coding or DSCP Priority Coding can be
used to assign traffic to 4 different priority queues as discussed in the following sections.
8.16.1 VLAN Forwarding by VID (IEEE 802.1q)
The VLAN ID (VID) is a 12-bit field that is found beginning in the 15th byte of VLAN tagged Ethernet frames. The
format of the IEEE 802.1Q VLAN tagged frame is shown in Figure 8-13. The device uses a 4 kilobyte user-
configured “VLAN Table” to translate VLAN tag information into forwarding, trapping, or discarding decisions. For
more details on VLAN Table programming, see Section 8.16.2.
All frames received on the Ethernet interfaces are inspected for a VLAN ID (LAN-VLAN ID) value. The VLAN table
settings for each of the 4096 LAN-VLAN IDs are used to forward each frame to one of the four WAN groups, to
discard the frame, or to extract (trap) the frame. Only when operating in forwarding modes 3, 4, and 5 (as defined
in Section 8.9), can frames be forwarded to one of the four WAN Groups as assigned in the VLAN table. All 12-bit
LAN-VLAN IDs that are translated to the same WAN Group are considered part of the same LAN-VLAN Group.
Note that LAN-VLAN ID trapping must be assigned to an Ethernet Port with the SU.LPM.LEEPS bit, and enabled
with the SU.LPM.LEVIT bit.
All frames received on the WAN interfaces are inspected for a VLAN ID (WAN-VLAN ID) value. ). The VLAN table
settings for each of the 4096 WAN-VLAN IDs are used to forward each frame to one of the Ethernet ports, to
discard the frame, or to extract (trap) the frame. Only when operating in forwarding mode 5 (as defined in Section
8.9), can frames be forward to one of the Ethernet ports by their VLAN ID value. All 12-bit LAN-VLAN IDs that are
translated to the same Ethernet interface are considered part of the same WAN-VLAN Group. Note that WAN-
VLAN forwarding is only applicable when operating in forwarding mode 5. Also note that WAN-VLAN ID trapping
must be assigned to a specific WAN Group with the SU.WEM.WEDS bits and enabled with the SU.WEM.WEVIT
bit.
The LAN-VLAN configuration, used to specify the actions for VLAN ID values in frames received on the Ethernet
interfaces (LAN-to-WAN direction), may be unrelated to the WAN-VLAN configuration, used to specify the actions
for VLAN ID values for frames received on the WAN interface (WAN-to-LAN direction). Although there may be
VLAN tags in both data stream directions (LAN-to-WAN and WAN-to-LAN), the functionality of the device does not
require a symmetrical VLAN function. The LAN-VLAN forwarding and the WAN-VLAN forwarding may be used
independently of each other.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 68 of 375
8.16.2 Programming the VLAN ID Table
A 4 kilobyte user-configured “VLAN Table” is used to translate VLAN tag information from each received frame into
forwarding, trapping (frame extraction), or discarding decisions. Each address in the table corresponds to a
specific VLAN ID (VID) value from 0 to 4095, and the bit settings at each address relate to actions taken when a
frame containing the corresponding VLAN ID value is detected. The VLAN Table is configured through the
SU.VTC, SU.VTAA, SU.VTWD, and SU.VTRD registers.
Within each address location in the VLAN table, two bits of data determine the actions taken for frames received on
the WAN interfaces with VLAN IDs matching the table address value, and four bits determine actions taken on
frames received on the LAN interfaces with VLAN IDs matching the table address value. The 4K x 2 bit space used
for WAN functions is referred to as the WAN-VLAN table. The 4 K x 4 bit space used for LAN functions is referred
to as the LAN-VLAN table.
The user can also configure a default “No VLAN detected” value in the SU.LNFC register to indicate what should
be done with frames that do not have a VLAN tags. The user may indicate the same forwarding location as one of
the other VLAN Groups, or it can be used to indicate an independent process or location. For example, the user
may indicate to discard untagged frames, while VLAN tags 0 through 4094 are forwarded to the 4 WAN Groups
and VLAN tag 4095 is forwarded to the LAN Extract queue.
To Reset the VLAN Table:
1) Write SU.VTC = 05h to ensure a 0-1 transition on SU.VTC.CI and enable the VLAN Table.
2) Write SU.VTC = 07h.
3) Read SU.VTSA.VTIS until = 1.
To Program the VLAN Table:
1) Write SU.VTAA = 00h in order to begin configuration at VID 00h.
2) 4096 times, write the value of SU.VTWD for the desired action for each VID value.
To Verify the VLAN Table:
1) Write SU.VTAA = 00h in order to begin verification at VID 00h.
2) 4096 times, read the value of SU.VTRD register and verify the value.
The LAN-VLAN ID frame extraction trap must be assigned to an Ethernet Port with the SU.LPM.LEEPS bit, and
enabled with the SU.LPM.LEVIT bit.
The WAN-VLAN ID frame extraction trap must be assigned to a specific WAN Group (Decapsulator) with the
SU.WEM.WEDS bits and enabled with the SU.WEM.WEVIT bit.
In order to enable the VLAN processing functions in each port, the SU.LP1C.LP1ETF[2:1] or
SU.LP2C.LP2ETF[2:1] bits must be properly configured. When the VLAN processing functions are enabled,
incoming frames are inspected for VLAN information. The VLAN protocol ID must match the value programmed in
SU.LQTPID. Frames with alternate VLAN PIDs are processed as “untagged”. In the WAN-to-LAN direction, the
corresponding function is performed in SU.WETPID.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 69 of 375
8.16.3 Priority Coding with VLAN Tags (IEEE 802.1p)
The IEEE 802.1Q VLAN tagging standard allocated room for a priority code that was later defined by the IEEE
802.1p standard. IEEE 802.1p eventually became part of IEEE 802.1D.
With Priority Scheduling or Priority Forwarding enabled, the priority value is inspected as each frame arrives on the
Ethernet Interfaces. For IEEE 802.1p priority coding, the priority is located in the 15th byte of the Ethernet frame.
The format of the IEEE 802.1p VLAN tagged frame is shown in Figure 8-13. A user-programmed Priority Table is
used to translate the 3-bit 802.1p Priority value into one of four Priority Levels for each Ethernet Interface. The
received PCP value is used as the address for the Priority Table lookup operation. The Priority Levels correspond
to four separate queues. In Priority Forwarding (Forwarding Mode 1), the four queues are in separate WAN
Groups. In Priority Scheduling operation, each WAN Group contains a set of four priority queues. These queues
are collectively referred to as LAN Queues in other portions of this document.
The priority mode (802.1p, DSCP, or none) for each Ethernet port can be independently selected using the
SU.LP1C and SU.LP2C registers. See Section 8.16.6 for more information on programming the priority table.
Figure 8-13. IEEE 802.1Q and 802.1p Field Format
Ethernet Byte # Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1
2
3
4
5
6
Destination Address (DA)
7
8
9
10
11
12
Source Address (SA)
13 8 (hex) 1 (hex)
14 0 (hex) 0 (hex)
15 3 Bit PCP Priority CFI 11 4 bits of VLAN ID 8
16 7 8 bits of VLAN ID 0
17 Ethernet Type / Length (MSB)
18 Ethernet Type / Length (LSB)
19+ < Data Unit >
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 70 of 375
8.16.4 Priority Coding with Multiple (Q-in-Q) VLAN Tags
Device operation with multiple VLAN tags is similar to operation with a single VLAN tag. The Ethernet Q-in-Q
format is similar to the case outlined above, except that a second VLAN tag is inserted after the Ethernet SA field.
The format of the VLAN Q-in-Q tagged frame is shown in Figure 8-14. Both VLAN tags include a PCP (User
Priority) value and a VLAN ID. The device only makes forwarding and scheduling decisions using the “outer-most”
VLAN tag located in Ethernet bytes # 13-16, and ignores additional tags. The user can configure an alternate
WAN-VLAN Q-in-Q or VLAN Tag Protocol ID (TPID) that is used instead of the default value of 8100 in the
SU.WETPID register. The user can configure an alternate LAN-VLAN Q-in-Q or VLAN Tag Protocol ID (TPID) that
is used instead of the default value of 8100h in the SU.LQTPID register. Some additional common TPIDs are 9100,
9200 and 88A8. See Section 8.16.6 for more information on programming the priority table.
Figure 8-14. VLAN Q-in-Q Field Format
Ethernet Byte # Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1
2
3
4
5
6
Destination Address (DA)
7
8
9
10
11
12
Source Address (SA)
13 8 (hex) 1 (hex)
14 0 (hex) 0 (hex)
15 3 Bit PCP Priority CFI 11 4 bits of VLAN ID 8
16 7 8 bits of VLAN ID 0
17 8 (hex) 1 (hex)
18 0 (hex) 0 (hex)
19 3 Bit PCP Priority CFI 11 4 bits of VLAN ID 8
20 7 8 bits of VLAN ID 0
21 Ethernet Type / Length (MSB)
22 Ethernet Type / Length (LSB)
23+ < Data Unit >
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 71 of 375
8.16.5 Priority Coding with DSCP
The IETF RFC2474 (Differentiated Services) defines a Layer-3 alternate to 802.1p priority coding, known as
Differentiated Services Code Point (DSCP). DSCP is composed of a 6-bit value located in the second byte of the IP
header. When Priority Scheduling or Priority Forwarding are enabled, the priority value is inspected as each frame
arrives on the Ethernet Interfaces. The format of the DSCP tagged frame is shown in Figure 8-15. The device
supports DSCP priority carried in IPv4 or IPv6 packets. A user-programmed Priority Table is used to translate the
6-bit DSCP Priority into one of four Priority Levels for each Ethernet Interface. The received PCP value is used as
the address for the Priority Table lookup operation. The Priority Levels correspond to four separate queues. In
Priority Forwarding (Forwarding Mode 1), the four queues are in separate WAN Groups. In Priority Scheduling
operation, each WAN Group contains a set of four priority queues. These queues are collectively referred to as
LAN Queues in other portions of this document.
The priority mode (802.1p, DSCP, or none) for each Ethernet port can be independently selected using the
SU.LP1C and SU.LP2C registers. The DSCP function is a simple enable/disable function, with all of the other
parameters (Ethernet Frame Format, and Ethernet Type) being discovered by the device. See Section 8.16.6 for
more information on programming the priority table.
Figure 8-15. Differentiated Services Code Point (DSCP) Header Information
Ethernet Byte # Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1
2
3
4
5
6
Destination Address (DA)
7
8
9
10
11
12
Source Address (SA)
13 Ethernet Type / Length (MSB)
14 Ethernet Type / Length (LSB)
15 IP Version IP TYPE
16 DSCP Priority ECT CE
17+ < IP Header Continues…>
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 72 of 375
8.16.6 Programming the Priority Table
The user-programmable Priority Table is accessed indirectly through the SU.PTC, SU.PTAA, SU.PTWD,
SU.PTRD, and SU.PTSA registers. The device contains a single table, with the MSB of the table address
(SU.PTAA.PTAA) used to distinguish the LAN port in multi-port devices. When a frame is received, the PCP or
DSCP value in the received frame is the address used to look up the user-programmed priority level in the Priority
Table.
The device does not require that the priority mapping be linear or monotonic. Arbitrary assignments are allowed.
Note that while the DSCP/PCP protocol definitions use a higher value to indicate a higher priority, the device uses
a lower value to indicate a higher priority. As an example, for the values PCP = 000b and DSCP = 00000b (as
defined by their protocol definitions as lowest priority) most users will choose to assign the associated priority table
address location (SU.PTAA.PTAA[6:1]=000000b) a value of 11b, indicating the lowest possible priority. Similarly
for the values PCP = 111b and DSCP = 111111b, typically the associated Priority Table address will be assigned a
value of 00b. Example Priority Table configurations for a single port are shown in the tables below.
Table 8-12. Example Priority Table Configuration for DSCP
PTAA[6:1] SU.PTWD/
SU.PTRD PTAA[6:1] SU.PTWD/
SU.PTRD PTAA[6:1] SU.PTWD/
SU.PTRD PTAA[6:1] SU.PTWD/
SU.PTRD
000000 11 010000 10 100000 10 110000 01
000001 11 010001 10 100001 10 110001 01
000010 11 010010 10 100010 10 110010 01
000011 10 010011 10 100011 10 110011 01
000100 10 010100 10 100100 10 110100 01
000101 10 010101 10 100101 10 110101 01
000110 10 010110 10 100110 10 110110 01
000111 10 010111 10 100111 10 110111 01
001000 10 011000 10 101000 10 111000 01
001001 10 011001 10 101001 10 111001 01
001010 10 011010 10 101010 10 111010 01
001011 10 011011 10 101011 10 111011 01
001100 10 011100 10 101100 10 111100 01
001101 10 011101 10 101101 10 111101 01
001110 10 011110 10 101110 10 111110 01
001111 10 011111 10 101111 10 111111 00
* More guidance on priority mapping for legacy compatibility can be found in RFC 2474.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 73 of 375
Table 8-13. Example Priority Table Configuration for PCP
PTAA[6:1] SU.PTWD/
SU.PTRD
000000 11
000001 11
000010 10
000011 10
000100 01
000101 01
000110 01
000111 00
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 74 of 375
8.17 OAM support with Frame Trapping, Extraction, and Insertion
The device has the ability to insert and extract frames from/to the host microprocessor from both the WAN interface
and the LAN interface. There are four user-accessible FIFOs for this purpose: one for WAN insertion, one for WAN
extraction, one for LAN insertion, and one for LAN extraction. Each FIFO has the ability to issue an interrupt when
it is empty (Insertion FIFOs) or has a frame available (Extraction FIFOs). In order for frames to be extracted by the
host microprocessor, they must first be “trapped”. The device has two “traps” for capturing frames for extraction –
the LAN Trap and the WAN Trap. The maximum frame size that may be trapped or inserted is 2048 bytes.
The LAN Trap (when appropriately enabled) inspects each frame received on the Ethernet interface for its Ethernet
Destination Address (DA), VLAN tag, Q-in-Q tag, and Ethernet Type. These parameters help to determine what to
do with each frame. The LAN Trap is logically located between the Ethernet MAC and the circuitry that performs
forwarding to the WAN groups.
The WAN Trap (when appropriately enabled) inspects each frame received on the Serial interface for its Ethernet
Destination Address (DA), VLAN tag, Q-in-Q tag, Ethernet Type, or user-programmable header value. The WAN
Header Trap enables trapping on SLARP, GFP PTI/UPI, GFP CID or Shim Tag. The WAN trap is logically located
after the line decoding functions (bit/byte destuffing, descrambling), and the Decapsulator packet processing
circuitry.
Note that SPI “Burst mode” is not applicable for frame insertion or extraction, due to the indirect access of the
extract and insert queues.
There are 6 Ethernet Frame Formats supported for QoS and OAM Frame Extraction. The supported frame formats
are diagramed in Figure 8-16 and include:
DIX
VLAN tagged DIX
Q-in-Q tagged DIX
802.3 LLC/SNAP
VLAN tagged 802.3 LLC/SNAP
Q-in-Q tagged 802.3 LLC/SNAP
The user is not required to specify or configure an Ethernet frame format because it is normal for LAN traffic to
simultaneously carry multiple different Ethernet formats.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 75 of 375
Figure 8-16. Supported Trapped Ethernet Frame Types
Byte
# DIX VLAN Tagged
DIX
Q-in-Q
Tagged DIX
802.3
LLC/SNAP
VLAN Tagged
802.3
LLC/SNAP
Q-in-Q
Tagged 802.3
LLC/SNAP *
0
1
2
3
4
5
Destination
Address
Destination
Address
Destination
Address
Destination
Address
Destination
Address
Destination
Address
6
7
8
9
10
11
Source
Address
Source
Address
Source
Address
Source
Address
Source
Address
Source
Address
12
13
Ethernet
Type Length
14
15
VLAN
Tag
Q-in-Q
Tag
VLAN
Tag
Q-in-Q
Tag
16
LLC Header
(AA AA 03)
17
Ethernet
Type Length
18
19
VLAN
Tag SNAP OUI
(00 00 00)
VLAN
Tag
20
LLC Header
(AA AA 03)
21
Ethernet
Type
Ethernet
Type Length
22
23
SNAP OUI
(00 00 00)
24
LLC Header
(AA AA 03)
25
Ethernet
Type
26
27
SNAP OUI
(00 00 00)
28
29
Ethernet
Type
* EtherType trapping of this format supported by the LAN trap only.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 76 of 375
8.17.1 Frame Trapping
Frames from the LAN interface can be trapped by VLAN ID, Ethernet Type, Broadcast Address, Management
Multicast Address (01:80:C2:xx:xx:xx), Destination Address, or a range of Destination Addresses. Frames from the
WAN interface can be trapped by VLAN ID, Ethernet Type, Broadcast Address, Management Multicast Address
(01:80:C2:xx:xx:xx), Destination Address, a range of destination addresses, or by a user-programmable header
comparison. LAN trapping is enabled in the SU.LPM register. WAN trapping is enabled in the SU.WEM register.
The LAN Trap can only be user configured to monitor one Ethernet port. The selection of LAN port to be monitored
is done with the SU.LPM.LEEP bit. The WAN Trap can only monitor for WAN Extract conditions on one (of the four
possible) Decapsulator (WAN Group) data streams. The selection of the WAN Group to monitor is done with
SU.WEM.WEDS[1:0]. The maximum frame size that may be trapped is 2Kbytes.
8.17.1.1LAN-VLAN Trapping
When trapping frames received on the LAN interface by VLAN ID, the user configures the VLAN IDs (VIDs) to be
trapped using the LAN-VLAN Table. Trapping is then enabled or disabled with the SU.LPM.LEVIT bit. See Section
8.16 for more information on VLAN configuration. Only one LAN Port can be allowed to forward frames to the LAN
Extract Queue (which of the two ports is determined by user configuration). If VLAN Forwarding is enabled, and the
4-bit value returned from the LAN-VLAN Table indicates “Extract”, but the port that the frame is associated with has
not been configured to forward to the LAN Extract queue, then the “Extract” status returned from the VLAN Table is
ignored. For more details on LAN-VLAN Table programming, see Section 8.16.2.
8.17.1.2LAN Ethernet Type Trapping
When trapping frames received on the LAN interface by Ethernet Type, the user can configure and 2-byte Ethernet
Type Field to be trapped in the SU.LEET register. Trapping is then enabled or disabled with the SU.LPM.LEETT
bit. Ethernet Type trapping enables the capture of ARP, BPDU, and other management traffic.
8.17.1.3LAN Ethernet Destination Address Trapping
When trapping frames received on the LAN interface by Unicast Destination Address, the user programs the
Destination Address for extraction into the SU.LEDAL, SU.LEDAM, and SU.LEDAH registers. By using a mask for
the lower two bytes of the DA in the SU.LEDAX register, all of the addresses within a range can be forwarded to
the LAN Extract queue. Trapping is then enabled or disabled with the SU.LPM.LEDAT bit.
When trapping frames received on the LAN interface by management multicast address (01:80:C2:xx:xx:xx), the
user simply enables extraction with the SU.LPM.LMGMTT bit. All trapped frames will be forwarded to the LAN
extract queue.
When trapping frames received on the LAN interface by broadcast address (FF:FF:FF:FF:FF:FF), the user simply
enables extraction with the SU.LPM.LBAT bit. All trapped frames will be forwarded to the LAN extract queue.
8.17.1.4WAN Ethernet Destination Address Trapping
When trapping frames received on the WAN interface by Unicast Destination Address (DA), the user programs the
Destination Address for extraction into the SU.WEDAL, SU.WEDAM, and SU.WEDAH registers. By using a mask
for the lower two bytes of the DA in the SU.WEDAX register, all of the management addresses within a range can
be forwarded to the WAN Extract queue. Trapping is then enabled or disabled with the SU.WEM.WEDAT bit.
When trapping frames received on the WAN interface by management multicast address (01:80:C2:xx:xx:xx), the
user simply enables extraction with the SU.WEM.WMGMTT bit. All trapped frames will be forwarded to the WAN
extract queue.
When trapping frames received on the WAN interface by broadcast address (FF:FF:FF:FF:FF:FF), the user simply
enables extraction with the SU.WEM.WBAT bit. All trapped frames will be forwarded to the WAN extract queue.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 77 of 375
8.17.1.5WAN-VLAN Trapping
When trapping frames received on the WAN interface by VLAN ID, the user configures the VLAN IDs (VIDs) to be
trapped using the WAN-VLAN Table. Trapping is then enabled or disabled with the SU.WEM.WEVIT bit. See
Section 8.16 for more information on VLAN configuration. Only one WAN Group Decapsulator can be allowed to
forward frames to the WAN Extract Queue at a time (determined by user configuration). If VLAN Trapping is
enabled, and the 4-bit value returned from the WAN-VLAN Table indicates “Extract”, but the port that the frame is
associated with has not been configured to forward to the WAN Extract queue, then the “Extract” status returned
from the WAN-VLAN Table is ignored. For more details on WAN-VLAN Table programming, see Section 8.16.2.
8.17.1.6WAN Ethernet Type Trapping
When trapping frames received on the WAN interface by Ethernet Type, the user can configure and 2-byte
Ethernet Type Field to be trapped in the SU.WEET register. Trapping is then enabled or disabled with the
SU.WEM.WEETT bit. The WAN Ethernet Type trap is valid only with frame formats in which the Ethernet Type
occurs in the first 32 bytes. Thus, the WAN Ethernet Type trap is not valid with the following frame types:
4-byte Encapsulation Header with Q-in-Q & std VLAN & LLC/SNAP (HDLC or GFP-Null)
8-byte Encapsulation Header with Q-in-Q & std VLAN & LLC/SNAP (HDLC or GFP-Linear)
8-byte Encapsulation Header with std VLAN & LLC/SNAP (HDLC or GFP-Linear)
8.17.1.7WAN Header Trapping
Trapping can also be performed on any two consecutive bytes within the first 8 bytes of frames received from the
WAN interface. When trapping frames received on the WAN interface by header, the user configures a 2-byte
value to be trapped in the SU.WEHT register. The offset is configured in the SU.WEHTP register. Trapping is then
enabled or disabled with the SU.WEM.WEHT bit.
8.17.2 Frame Extraction and Frame Insertion
Extraction of trapped frames through the microport is done one byte at a time, with the beginning of the frame
being read first. The device must be configured to properly trap frames as described in Section 8.17.1. The user
may enable an interrupt to alert the host processor that a frame is available for extraction via the GL.MSIER3
interrupt enable register. A latched status register (GL.MLSR3) may also be used as indication that a frame is
available for extraction. When a trapped frame is available, the user must select the correct FIFO with the
GL.MCR1 register. The user must then read the length of the frame from GL.MSR1 or GL.MSR2 in order to know
how many bytes to extract. The user then reads one byte at a time from the FIFO read access register
(GL.MFARR) to extract the entire frame. When the entire frame has been read, the user indicates that the frame
may be discarded from the FIFO with the GL.MFAWR.RD_DN bit.
Steps for Frame Extraction:
1. Read the GL.MSR3 LAN/WAN FIFO Extraction Available Status bit to verify FIFO has a frame to be read.
2. Select the corresponding FIFO via GL.MCR1.
3. Read the size of frame in bytes from GL.MSR1 or GL.MSR2.
4. Read the frame from the GL.MFARR register one byte at a time.
5. Write a 0-to-1 transition to GL.MFAWR.RD_DN.
6. Repeat step 1.
Insertion of a frame through the host microport is done one byte at a time, with the beginning of the frame written
first. The user must first configure the LAN insertion settings and enable insertion via the SU.LIM register, or
configure the WAN insertion settings and enable insertion via the AR.MQC register. The correct FIFO must then be
selected with the GL.MCR1 register. The length of the frame to be inserted must then be written into GL.MCR2 or
GL.MCR3. The user proceeds to write one byte of the frame at a time to the FIFO access register, GL.MFAWR,
beginning with the first byte of the frame. Each write to this address automatically increments the pointer of the
selected FIFO. When the entire frame has been written, the GL.MFAWR.WR_DN bit is used to indicate that the
frame is ready for transmission.
Steps for Frame Insertion:
1. Configure the LAN insertion settings in the SU.LIM register, or WAN insertion settings in AR.MQC.
2. Read the GL.MSR3 LAN/WAN Queue Empty Status bit to verify FIFO is empty.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 78 of 375
3. Select the appropriate FIFO for insertion via GL.MCR1.
4. Write the size of frame in bytes to GL.MCR3 for LAN insertion, GL.MCR2 for WAN insertion.
5. Write the frame to the GL.MFAWR.WPKT[0:7], one byte at a time.
6. Write a 0-to-1 transition to GL.MFAWR.WR_DN.
7. Repeat Step 1.
Frames loaded into the WAN Insertion FIFO should not include the GFP Length and cHEC fields. Inserted frames
should include all other applicable GFP/HDLC header information and a valid HECs. The header information on
inserted frames may be different than the header of normal traffic to allow for a number of management protocols
to be present on the link. The only modifications made by the device to data placed in the WAN Insertion queue are
the addition of the GFP Length/cHEC, the line coding functions of bit/byte stuffing, and X43+1 scrambling, if
enabled.
Frames loaded into the LAN Insertion FIFO should be complete and valid IEEE 802.3 or DIX Ethernet frames. If the
Ethernet MAC has been configured to add a FCS to all frames (SU.LIM.LP1CE or SU.LIM.LP2CE), the inserted
frame should not contain an Ethernet FCS. The frame loaded into the insertion FIFO should not contain a preamble
or start frame delimiter, as these will be automatically added by the MAC. Frames inserted to the LAN do not pass
through a Decapsulator.
8.17.2.1WAN Insert Forwarding
The WAN Insert Queue can be user assigned to be multiplexed with only one LAN Queue Group. The Group
Scheduler for the assigned LAN Queue Group multiplexes the WAN Insert data with the data from the LAN Queue
Group.
8.17.3 OAM by Ethernet Destination Address (DA)
The device can be configured to directly trap broadcast, management multicast (01:80:C2:xx:xx:xx), and unicast
frames by Ethernet Destination Addresses for extraction by a microprocessor. The host microprocessor can be
user-programmed for parsing, interpreting, and responding to OAM messages.
8.17.4 OAM by IP Address
When a node on the network first tries to send a management frame to the device, the transmitting node would
normally broadcast an ARP request for the unknown IP address, asking for the network to resolve the IP address
to a physical MAC address. The device is able to trap ARP request using the Broadcast address trap. The user
software should examine each ARP request, and when appropriate, insert a frame in response to the ARP request
that will associate the device's management MAC address with the desired IP address. The network then transmits
frames with the DA value of the physical MAC address in the ARP response. The device would then trap the follow-
on frames by MAC (DA) address.
8.17.5 OAM by VLAN Tag
The device can be configured to trap frames with any number of user-programmed VLAN IDs in the VLAN table.
The VLAN table is accessed indirectly through the SU.VTC, SU.VTAA, and SU.VTWD registers. The
SU.VTWD.LVDW bit is used to indicate a VLAN ID (VID) value is to be extracted if received on the LAN interface.
The SU.VTWD.WVQFW bit is used to indicate a VLAN ID (VID) value is to be extracted if received on the WAN
interface. Note that VLAN trapping must also be enabled with the SU.WEM or SU.LPM registers.
8.17.6 SNMP Support
The device can be configured to trap unicast frames for extraction by the microprocessor. The host microprocessor
can be user-programmed for parsing, interpreting, and responding to SNMP messages. Hardware counters are
provided for supporting portions of RFC2819 (RMON), and portions of RFC1213 (MIB-II). See Section 8.19.2 for
more information on the MAC Management counters used for this purpose.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 79 of 375
8.18 Bridging and Filtering
The Automatic Learning and Filtering functions for Ethernet Bridging are only applicable in 10/100Mbps Ethernet
applications. The static DA filtering functions available in the MAC may be used for 1000Mbps applications as
described in Section 8.19.3. The high-level features of the Automatic Learning and Filtering functions are shown
below:
Supports up to two 10/100 Ethernet Ports
Self-learning filtering table is “shared” between the two LAN Ports (not 2 independent tables)
Supports a continuous stream of 64-byte frames on both ports
Automatically learns up to 4096 MAC Addresses
Provides automatic Address Aging
When enabled, the Automatic Bridge Filter monitors the LAN input data stream to build a Bridge Filter Table based
on Ethernet Source Addresses (SA). A SA learning function allows the device build a table of source addresses
and their associated interface. If the SA of a received frame is not found in the table, then the current SA is stored
in the Bridge Filter Table. The Bridge Filter Table is then used to determine whether to forward or drop each frame
as it is received. If the Destination Address (DA) of a received frame from the LAN is equal to the value of an SA
that is already stored in the Bridge Filter table, the frame is discarded. If no match is found, then the frame is
forwarded to the WAN Groups.
An aging function is used to determine when a SA entry has aged to the point that it is no longer useful. The user
configures an Aging Period in SU.BFC.BFAP[1-9] that defines how long an SA will be stored in the Bridge table.
After that time period, the entry is removed so that the position may used by another SA value. The Aging Period
can be user configured to any value from 1 second to 300 seconds in 1 second steps (300 seconds is the default
setting).
On devices with two Ethernet Ports, one Bridge Filter Table is shared by the 2 LAN Ports. An SA address that is
learned on LAN Port 1 is treated as though it was also learned on LAN Port 2. This has the effect that each frame
DA received on LAN Port 1 is tested against all SAs learned on LAN Port 1 and LAN Port 2 (the same is true for
frame DAs received on LAN Port 2). If a DA matches a stored SA from either port, the frame will be discarded.
If the LAN Trap determines that a frame matches one of the LAN Extract Trap conditions, the frame is forwarded to
the LAN Extract Queue, regardless of whether the Bridge Filter indicates that frame is to be discarded.
8.18.1 Bridge Filter Table Reset
The Bridge Filter Table Reset function is used to clear all of the Bridge Table entries. This function is automatically
triggered at power-up and can be manually triggered by the user by setting SU.BFC.BFTR to 1. During the Bridge
Filter Table Reset operation, traffic will be processed as normal. The user has the option of disabling the LAN Ports
so that there is no traffic during the Bridge Filter Table Reset process or allowing traffic to continue flowing at the
same time as the Bridge Filter Table Reset process. If the user does not disable traffic, then the table may learn
some new entries before the complete table has been reset. The Bridge Filter Table Reset function takes
approximately 64 ms to complete.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 80 of 375
8.19 Ethernet MAC
Indirect addressing is required to access the Ethernet MAC registers. Writing to the Ethernet MAC registers
requires address and data information to be loaded into multiple registers, and the write operation initiated through
a control bit. Reading from the MAC registers requires address information to be loaded into two registers, the read
operation initiated through a control bit. After the read operation completes, data is read from four registers.
Algorithm for Indirect MAC Write Operation:
1) Read SU.MAC1RWC.MCS and verify that a read/write access is not in progress.
2) Write the address for the access into the SU.MAC1AWL and SU.MAC1AWH registers.
3) Write the data to be written into the SU.MAC1WD0-3 registers.
4) Write SU.MAC1RWC = 0x01.
5) Poll SU.MAC1RWC.MCS until the bit is clear, indicating that the write operation has completed.
Algorithm for Indirect MAC Read Operation:
1) Read SU.MAC1RWC.MCS and verify that a read/write access is not in progress.
2) Write the address for the access into the SU.MAC1RADH and SU.MAC1RADL registers.
3) Write SU.MAC1RWC = 0x03.
4) Poll SU.MAC1RWC.MCS until the bit is clear, indicating that the read operation has completed.
5) Read the data from SU.MAC1RD0-SU.MAC1RD3.
Note that only one operation can be initiated (read or write) at one time. Data cannot be written or read from the
MAC registers until the SU.MAC1RWC.MCS bit has been cleared by the device. The MAC Registers are listed in
the following table.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 81 of 375
Table 8-14. MAC Control Registers
INDIRECT ADDRESS REGISTER REGISTER DESCRIPTION
0000h SU.MACCR MAC CONTROL REGISTER
0004h SU.MACFFR MAC FRAME FILTER REGISTER
0008h SU.MACHTHR MAC HASH TABLE HIGH REGISTER
000Ch SU.MACHTLR MAC HASH TABLE LOW REGISTER
0010h SU.GMIIA MAC MDIO MANAGEMENT ADDRESS REGISTER
0014h SU.GMIID MAC MDIO MANAGEMENT DATA REGISTER
0018h SU.MACFCR MAC FLOW CONTROL REGISTER
001Ch SU.VLANTR MAC VLAN TAG REGISTER
0040h SU.ADDR0H MAC FILTER ADDRESS 0 HIGH
0044h SU.ADDR0L MAC FILTER ADDRESS 0 LOW
0048h SU.ADDR1H MAC FILTER ADDRESS 1 HIGH
004Ch SU.ADDR1L MAC FILTER ADDRESS 1 LOW
0050h SU.ADDR2H MAC FILTER ADDRESS 2 HIGH
0054h SU.ADDR2L MAC FILTER ADDRESS 2 LOW
0058h SU.ADDR3H MAC FILTER ADDRESS 3 HIGH
005Ch SU.ADDR3L MAC FILTER ADDRESS 3 LOW
0060h SU.ADDR4H MAC FILTER ADDRESS 4 HIGH
0064h SU.ADDR4L MAC FILTER ADDRESS 4 LOW
0068h SU.ADDR5H MAC FILTER ADDRESS 5 HIGH
006Ch SU.ADDR5L MAC FILTER ADDRESS 5 LOW
0070h SU.ADDR6H MAC FILTER ADDRESS 6 HIGH
0074h SU.ADDR6L MAC FILTER ADDRESS 6 LOW
0078h SU.ADDR7H MAC FILTER ADDRESS 7 HIGH
007Ch SU.ADDR7L MAC FILTER ADDRESS 7 LOW
0080h SU.ADDR8H MAC FILTER ADDRESS 8 HIGH
0084h SU.ADDR8L MAC FILTER ADDRESS 8 LOW
0088h SU.ADDR9H MAC FILTER ADDRESS 9 HIGH
008Ch SU.ADDR9L MAC FILTER ADDRESS 9 LOW
0090h SU.ADDR10H MAC FILTER ADDRESS 10 HIGH
0094h SU.ADDR10L MAC FILTER ADDRESS 10 LOW
0098h SU.ADDR11H MAC FILTER ADDRESS 11 HIGH
009Ch SU.ADDR11L MAC FILTER ADDRESS 11 LOW
00A0h SU.ADDR12H MAC FILTER ADDRESS 12 HIGH
00A4h SU.ADDR12L MAC FILTER ADDRESS 12 LOW
00A8h SU.ADDR13H MAC FILTER ADDRESS 13 HIGH
00ACh SU.ADDR13L MAC FILTER ADDRESS 13 LOW
00B0h SU.ADDR14H MAC FILTER ADDRESS 14 HIGH
00B4h SU.ADDR14L MAC FILTER ADDRESS 14 LOW
00B8h SU.ADDR15H MAC FILTER ADDRESS 15 HIGH
00BCh SU.ADDR15L MAC FILTER ADDRESS 15 LOW
00C0h SU.PCSCR MAC PCS (CONNECTION) CONTROL REGISTER
1018h SU.MACMCR MAC MISCELLANEOUS CONTROL REGISTER
Table 8-15. MAC Status Registers
INDIRECT ADDRESS REGISTER REGISTER DESCRIPTION
00C4h SU.ANSR MAC AUTO-NEGOTIATION STATUS REGISTER
00D8h SU.LSR MAC MII/RMII/GMII STATUS REGISTER
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 82 of 375
Table 8-16. MAC Counter Registers
INDIRECT ADDRESS REGISTER REGISTER DESCRIPTION
0100h SU.MMCCTRL MAC MANAGEMENT COUNTER CONTROL REGISTER
0104h SU.MMCRSR MAC MANAGEMENT COUNTER RECEIVE STATUS REGISTER
0108h SU.MMCTSR MAC MANAGEMENT COUNTER TRANSMIT STATUS REGISTER
010Ch SU.MMCRIM MAC MANAGEMENT COUNTER RECEIVE INTERRUPT MASK
0110h SU.MMCTIM MAC MANAGEMENT COUNTER TRANSMIT INTERRUPT MASK
0114h SU.TXBC MAC MMC TRANSMIT BYTE COUNTER
0118h SU.TXFC MAC MMC TRANSMIT FRAME COUNTER
011Ch SU.TXGBFC TRANSMIT GOOD BROADCAST FRAMES COUNTER
0120h SU.TXGMFC TRANSMIT GOOD MULTICAST FRAMES COUNTER
0124h SU.TX0_64 TRANSMIT 0-64 BYTE FRAME COUNTER
0128h SU.TX65_127 TRANSMIT 65-127 BYTE FRAMES COUNTER
012Ch SU.TX128_255 TRANSMIT 128-255 BYTE FRAME COUNTER
0130h SU.TX256_511 TRANSMIT 256-511 BYTE FRAMES COUNTER
0134h SU.TX512_1K TRANSMIT 512-1023 BYTE FRAME COUNTER
0138h SU.TX1K_MAX TRANSMIT 1024-MAX BYTE FRAMES COUNTER
013Ch SU.TXUCAST TRANSMIT UNICAST FRAME COUNTER
0140h SU.TXMFC TRANSMIT MULTICAST FRAMES COUNTER
0144h SU.TXBFC TRANSMIT BROADCAST FRAME COUNTER
0148h SU.TXUFE TRANSMIT UNDERFLOW FRAMES COUNTER
014Ch SU.TXSNGLCL TRANSMIT SINGLE COLLISION FRAME COUNTER
0150h SU.TXMLTICL TRANSMIT MULTIPLE COLLISION FRAMES COUNTER
0154h SU.TXDFRD TRANSMIT DEFERRED FRAME COUNTER
0158h SU.TXLTCL TRANSMIT LATE COLLISION FRAMES COUNTER
015Ch SU.TXXCSVCL TRANSMIT EXCESSIVE COLLISION COUNTER
0160h SU.TXCRERR TRANSMIT CARRIER ERROR COUNTER
0164h SU.TXGBC TRANSMIT GOOD BYTE COUNTER
0168h SU.TXGFC TRANSMIT GOOD FRAME COUNTER
016Ch SU.TXXCSVDF TRANSMIT EXCESSIVE DEFERRAL COUNTER
0170h SU.TXPAUSE TRANSMIT PAUSE FRAME COUNTER
0174h SU.TXVLANF TRANSMIT VLAN FRAME COUNTER
0180h SU.RXFC RECEIVE FRAME COUNTER
0184h SU.RXBC RECEIVE BYTE COUNTER
0188h SU.RXGBC RECEIVE GOOD BYTE COUNTER
018Ch SU.RXGBFC RECEIVE GOOD BROADCAST FRAME COUNTER
0190h SU.RXMFC RECEIVE MULTICAST FRAME COUNTER
0194h SU.RXCRC RECEIVE CRC ERROR COUNTER
0198h SU.RXALGN RECEIVE ALIGNMENT ERROR COUNTER
019Ch SU.RXRUNT RECEIVE RUNT ERROR COUNTER
01A0h SU.RXJBBR RECEIVE JABBER ERROR COUNTER
01A4h SU.RXUNDRSZ RECEIVE UNDERSIZE FRAME COUNTER
01A8h SU.RXOVRSZ RECEIVE OVERSIZE FRAME COUNTER
01ACh SU.RX0_64 RECEIVE 0-64 BYTE FRAME COUNTER
01B0h SU.RX65_127 RECEIVE 65-127 BYTE FRAME COUNTER
01B4h SU.RX128_255 RECEIVE 128-255 BYTE FRAME COUNTER
01B8h SU.RX256_511 RECEIVE 256-511 BYTE FRAME COUNTER
01BCh SU.RX512_1K RECEIVE 512-1023 BYTE FRAME COUNTER
01C0h SU.RX1K_MAX RECEIVE 1024-MAX BYTE FRAME COUNTER
01C4h SU.RXUFC RECEIVE UNICAST FRAME COUNTER
01C8h SU.RXLNERR RECEIVE LENGTH ERROR COUNTER
01CCh SU.RXRANGE RECEIVE OUT OF RANGE COUNTER
01D0h SU.RXPAUSE RECEIVE PAUSE FRAME COUNTER
01D4h SU.RXOVFL RECEIVE OVERFLOW COUNTER
01D8h SU.RXVLAN RECEIVE VLAN FRAME COUNTER
01DCh SU.RXWDOG RECEIVE WATCHDOG ERROR COUNTER
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 83 of 375
8.19.1 PHY MII Management Block and MDIO Interface
The MII Management Block allows for the host to control up to 32 PHYs, each with 32 registers. The MII block
communicates with the external PHY using 2-wire serial interface composed of MDC (serial clock) and MDIO for
data. The MDIO data is valid on the rising edge of the MDC clock. The Frame format for the MII Management
Interface is shown Figure 8-17. The read/write control of the MII Management is accomplished through the indirect
SU.GMIIA MII Management Address Register and data is passed through the indirect SU.GMIID Data Register.
These indirect registers are accessed through the MAC Control Registers defined in Table 8-14. The MDC clock is
internally generated and runs at 1.67MHz. Note that the device provides a single MII Management port, and all
control registers for this function are located in MAC 1.
Figure 8-17. MII Management Frame
READ 111...111 01
01
10
01
PHYA[4:0] PHYR[4:0] ZZ
10
ZZZZZZZZZ Z
Z
Preamble Start Opco
de Phy Adrs Phy Reg
Turn
Aroun
d
Data
111...111 PHYA[4:0] PHYR[4:0] PHYD[15:0]
32 bits 2 bits 2 bits 5 bits 5 bits 2 bits 16
bits
Idle
1
Bit
WRITE
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 84 of 375
8.19.2 Ethernet MAC Management Counters for RFC2819 RMON
RFC2819 RMON EtherStatsEntry Support
VARIABE NAME TYPE SUPPORT
etherStatsIndex Integer32 User-defined by port
etherStatsDataSource OBJECT
IDENTIFIER
User-defined
etherStatsDropEvents Counter32
SU.RXOVFL + SU.TXUFE
etherStatsOctets Counter32
SU.RXBC
etherStatsPkts Counter32
SU.RXFC
etherStatsBroadcastPkts Counter32
SU.RXGBFC
etherStatsMulticastPkts Counter32
SU.RXMFC
etherStatsCRCAlignErrors Counter32
SU.RXCRC + SU.RXALGN
etherStatsUndersizePkts Counter32
SU.RXUNDRSZ
etherStatsOversizePkts Counter32
SU.RXOVRSZ
etherStatsFragments Counter32
SU.RXRUNT
etherStatsJabbers Counter32
SU.RXJBBR
etherStatsCollisions Counter32
SU.TXLTCL + (SU.TXXCSVCL*16) +
SU.TXSNGLCL + (SU.TXMLTICL*2)
etherStatsPkts64Octets Counter32
SU.RX0_64
etherStatsPkts65to127Octets Counter32
SU.RX65_127
etherStatsPkts128to255Octets Counter32 SU.RX128_255
etherStatsPkts256to511Octets Counter32 SU.RX256_511
etherStatsPkts512to1023Octets Counter32 SU.RX512_1K
etherStatsPkts1024to1518Octets Counter32 SU.RX1K_MAX
etherStatsOwner OwnerString User-defined
etherStatsStatus EntryStatus User-defined
Note that implementations of the SNMP RMON MIB must also implement the system group of MIB-II and the IF-
MIB.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 85 of 375
8.19.3 Programmable Ethernet Destination Address Filtering
In addition to the automatic learning and filtering features described in Section 8.18, the Ethernet MAC has the
capability to filter frames by MAC Destination Address. This feature is available at all data rates. The user may
program up to 16 destination addresses that may be allowed or disallowed.
The following pseudo code is an example enabling static MAC address filter 0 to allow frames with a DA of
12:34:56:78:9A:BC to pass.
Perform an indirect write to MACCR for a basic configuration:
0x004A = 0x00 ; Point to MACCR
0x004B = 0x00
0x0046 = 0x0C
0x0047 = 0x88
0x0048 = 0x00
0x0049 = 0x00
0x004C = 0x01 ; issue write command
Configure MAC Filter #0 to a value of 12:34:56:78:9A:BC and enable it:
0x004A = 0x40 ; Point to ADDR0H
0x004B = 0x00
0x0046 = 0x9A ; Note the byte order of 9A:BC.
0x0047 = 0xBC
0x0048 = 0x00
0x0049 = 0x80
0x004C = 0x01 ; issue write command
0x004A = 0x44 ; Point to ADDR0L
0x004B = 0x00
0x0046 = 0x12 ; Note the byte order of 12:34:56:78
0x0047 = 0x34
0x0048 = 0x56
0x0049 = 0x78
0x004C = 0x01 ; issue write command
Configure the MAC Filtering in MACFCR:
0x004A = 0x04 ; Point to MACFCR
0x004B = 0x00
0x0046 = 0x00 ; 0x01 will disable filtering
0x0047 = 0x00
0x0048 = 0x00
0x0049 = 0x00 ; 0x80 will disable filtering
0x004C = 0x01 ; issue write command
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 86 of 375
8.20 Ethernet Frame Encapsulation
The figure below depicts the Layer 1 mapping and Layer 2 protocol encapsulation options available:
8.20.1 Transmit Packet Processor (Encapsulator)
The data from each WAN Group is processed by the Transmit Packet Processor (or Encapsulator) before being
transmitted on the Serial interfaces. The Encapsulator performs bit reordering, FCS processing, frame error
insertion, stuffing, frame abort sequence insertion, inter-frame padding, VLAN tag insertion, MPLS tag insertion,
PPP Headers, LAPS Headers, octet removal, and frame scrambling. Each WAN Group’s encapsulation settings
can be independently configured with the PP.EMCR(1-4) registers.
The Encapsulator automatically inserts the inter-frame fill and flag characters based on the selection of
HDLC/cHDLC/LAPS or GFP in PP.EMCR.EPRTSEL. A Line Header Insertion function (in PP.ELHHR and
PP.ELHLR) allows the user to insert Address, Control, and Protocol bytes for HDLC/cHDLC/X.86, or Type and
tHEC bytes for GFP. The Tag 1 Insertion function (in PP.ET1DHR and PP.ET1DLR) allows the user to insert a 4-
byte MPLS tag immediately before the Destination Address (DA). The Tag 2 Insertion function (in PP.ET2DHR and
PP.ET2DLR) allows the user to insert a 4-byte VLAN tag immediately after the Source Address (SA). Any existing
VLAN tags are “pushed” lower in the frame.
HDLC processing can be disabled. Disabling HDLC processing disables FCS processing, frame error insertion,
stuffing, frame abort sequence insertion, and inter-frame fill/padding. Only bit reordering and frame scrambling are
not disabled.
Bit reordering changes the bit order of each byte. If bit reordering is disabled, the outgoing 8-bit data stream
DT[1:8] with DT[1] being the MSB and DT[8] being the LSB is output from the Transmit FIFO with the MSB in
TFD[7] (or 15, 23, or 31) and the LSB in TFD[0] (or 8, 16, or 24) of the transmit FIFO data TFD[7:0] 15:8, 23:16, or
31:24). If bit reordering is enabled, the outgoing 8-bit data stream DT[1:8] is output from the Transmit FIFO with the
MSB in TFD[0] and the LSB in TFD[7] of the transmit FIFO data TFD[7:0]. In bit synchronous mode, DT [1] is the
first bit transmitted. Bit reordering is configured using the PP.EMCR.TBRE bit. Note that bit reordering is not
available in the A1 device revision (GL.IDR.REVn=000).
FCS processing, when enabled in PP.EMCR(1-4), appends a calculated FCS to the frame. The polynomial used
for FCS-16 is x16 + x12 + x5 + 1. The polynomial used for FCS-32 is x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 +
x7 + x5 + x4 + x2 + x + 1. The FCS is inverted after calculation. If packet processing is disabled, FCS processing is
not performed.
Frame error insertion inserts errors into the GFP PLI, data unit, or FCS bytes. A single bit is corrupted in each
errored frame. The location of the corrupted bit is user-programmable. Error insertion is controlled by the PP.EEIR
register.
GFP-F
VCAT
LAPS cHDLC
MAC
IEEE 802.1D Bridge
802.3
Synchronous Links
MPLS / VLAN Tagging
WAN
(PDH Interfaces) LAN
Side
Traffic
Mgmt
HDLC
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 87 of 375
In HDLC/cHDLC/LAPS(X.86) mode, the inter-frame fill is selectable per WAN group with PP.EMCR.EIIS. If packet
processing is disabled, inter-frame padding is not performed. The frame scrambler is a x43 + 1 scrambler that
scrambles the entire frame data stream. Frame scrambling is selectable per WAN group with PP.EMCR.ECFCRD.
To optimize WAN bandwidth in point-to-point applications, the Ethernet header information may be removed from
the datagram prior to encapsulation. The Encapsulator can be configured to remove either 14 or 18 bytes from
each incoming frame using the PP.EMCR.ERE[1:0] bits. Byte removal starts with the DA field. Removing 14 bytes
will remove the DA, SA, and Length/Type fields. Removing 18 bytes will remove the DA, SA, Length/Type, and
VLAN Tag fields. Once all packet processing has been completed, the serial data stream is forwarded.
Note that some devices in the product family have less than four encapsulators. The DS33X11 contains only
Encapsulator #1. The DS33W41 and DS33X42 contain only encapsulators #1 and #3.
8.20.2 Receive Packet Processor (Decapsulator)
The Receive Packet Processor accepts data from the Receive Serial Interface performs frame descrambling, frame
delineation, inter-frame fill filtering, frame abort detection, destuffing, frame size checking, FCS error monitoring,
FCS byte extraction, and bit reordering. Frame delineation determines the frame boundary by identifying a frame
start or end flag. Receive packet processing can be disabled. Disabling packet processing disables frame
delineation, inter-frame fill filtering, frame abort detection, destuffing, frame size checking, FCS error monitoring,
and FCS byte extraction. Only frame descrambling and bit reordering are not disabled. The frame descrambler is a
self-synchronizing x43 + 1 descrambler.
Inter-frame fill filtering removes the inter-frame fill between frames. When a frame end flag is detected, all data is
discarded until a frame start flag is detected. The inter-frame fill can be flags or all 1s. The number of 1s between
flags does not need to be an integer number of bytes, and if at least seven 1s are detected in the first 16 bits after a
flag, all data after the flag is discarded until a start flag is detected.
Frame abort detection searches for a frame abort sequence between the frame start flag and a frame end flag, if an
abort sequence is detected, the frame is marked with an abort indication, the aborted frame count is incremented,
and all subsequent data is discarded until a valid frame start flag is detected.
Destuffing removes the extra data inserted to prevent data from mimicking a HDLC/cHDLC/X.86 flag or an abort
sequence. A start flag is detected, destuffing is performed until an end flag is detected. The start and end flags are
discarded. In bit synchronous mode, bit destuffing is performed. Bit destuffing consists of discarding any '0' that
directly follows five contiguous 1s. After destuffing is completed, the serial bit stream is forwarded.
Frame size validation checks each frame for a programmable maximum size. As the frame data comes in, the total
number of bytes is counted. If the frame length is below the minimum size limit, the frame is marked with an
aborted indication, and the frame size violation count is incremented. If the frame length is above the maximum
size limit, the frame is marked with an aborted indication, the frame size violation count is incremented, and all
frame data is discarded until a frame start is received. The minimum and maximum lengths include the FCS bytes,
and are determined after destuffing has occurred.
FCS error monitoring checks the FCS and aborts errored frames. If an FCS error is detected, the FCS errored
frame count is incremented and the frame is marked with an aborted indication. If an FCS error is not detected, the
receive frame count is incremented. The FCS type (16-bit or 32-bit) is programmable.
FCS byte extraction discards the FCS bytes. If FCS extraction is enabled, the FCS bytes are extracted from the
frame and discarded. If FCS extraction is disabled, the FCS bytes are stored in the receive FIFO with the frame.
Bit reordering changes the bit order of each byte. Normally, the first bit of each byte in the received data stream is
assumed to be the MSB. If bit reordering is enabled, the first bit of each byte in is assumed to be the LSB. Once all
of the packet processing has been completed, the data stream is passed to the WAN Queues. Bit reordering is
configured using the PP.DMCR.RBRE bit. Note that bit reordering is not available in the A1 device revision
(GL.IDR.REVn=000).
The Decapsulator collects 2 statistics; the number of good frames and number of errored frames due any errors.
These statistics are latched bit counters and are cleared when read by the user.
The Decapsulator must be configured to remove the 4-byte encapsulation line header information if it is present.
The 4-byte removal function is selected using the PP.DMCR.DR1E control bit. When enabled, 4 bytes are removed
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 88 of 375
immediately after the cHEC bytes when in GFP mode or after the start flag when in HDLC mode. This bit should be
set to 1 for X.86, cHDLC and GFP transport. This bit should be equal to 0 for HDLC traffic with no headers.
The Decapsulator can be configured to remove a MPLS tag prior to forwarding to the LAN interface. The 4-byte
removal function used for this purpose is enabled using the PP.DMCR.DR2E control bit. When enabled, 4 bytes
are removed after the first remove (DR1E) function. Note that PP.DMCR.DR1E must be properly configured for this
function to operate correctly.
The Decapsulator can be configured to remove a VLAN tag prior to forwarding to the LAN interface. The 4-byte
removal function used for this purpose is enabled using the PP.DMCR.DR3E control bit. When enabled, 12 bytes
are skipped (Ethernet DA/SA) and the following 4 bytes are removed. This function is performed after the
Decapsulator Remove Function 1 and/or Decapsulator Remove Function 2 have been performed. When
Decapsulator Remove Functions 1 and 2 are disabled, 12 bytes are skipped from the beginning of the Ethernet
frame.
To optimize WAN bandwidth in point-to-point applications, Ethernet header information may be removed from the
datagram during WAN transport. The Decapsulator can be configured to replace the missing Ethernet header
information prior to forwarding to the LAN interface, by inserting a 14 or 18 byte values to each incoming frame.
This function is enabled using the PP.DMCR.DAE[1:0] control bits. When enabled, a 14-byte value from the
PP.DA1DR through PP.DA7DR registers or a 18-byte value from the PP.DA1DR through PP.DA9DR registers will
be inserted after the cHEC bytes in GFP mode, or after the HDLC header/flag when in HDLC mode. Once all
packet processing is performed by the Decapsulator, the Ethernet frames are forwarded to the MAC for
transmission on the LAN interface.
Note that some devices in the product family have less than four Decapsulators. The DS33X11 contains only
Decapsulator #1. The DS33W41 and DS33X42 contain only Decapsulators #1 and #3.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 89 of 375
8.20.3 GFP-F Encapsulation and Decapsulation
The GFP-F protocol provides a method for encapsulating Ethernet Frames over point-to-point serial links. The
device expects a frame or multiframe synchronization signal to provide the byte boundary. This is provided by the
RSYNC and TSYNC pins. The receive functional timing is shown Figure 11-13. The transmit functional timing is
shown in Figure 11-9.
GFP-F Encapsulation is selected with the EPRTSEL register bit. However, there are two types of GFP-F: Null and
Linear Extension Mode. The device allows the selection of GFP Linear Extension through a user-configured “GFP
CRC Mode“ bit for each Encapsulator and Decapsulator (PP.EMCR.EGCM and PP.DMCR.DGCM). For each
mode, several additional register settings are required as outlined in the following sections.
In both GFP modes, the Line Header Insertion function (in PP.ELHHR and PP.ELHLR) must be programmed by
the user to insert the required GFP Type and tHEC fields. This structure, which is also known as the GFP Payload
Header, indicates the contents of the encapsulated payload. The Type field consists of sub fields that are used to
indicate the payload type (PTI), Payload FCS Indicator (PFI) Extension Header Identifier (EXI) and User Payload
Identifier (UPI).
Table 8-17. GFP Type/tHEC Field (Payload Header) Definition
Bit #
Frame Byte Number
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
5 & 6 PTI PFI EXI UPI
7 & 8 15 tHEC tHEC 0
The PTI field will normally be programmed to 000b for subscriber traffic. A PTI of 100b may be used for
management traffic in some applications. The PFI bit should match the user configured setting for pFCS in
PP.DMCR.DFCSAD and PP.EMCR.EFCSAD. A PFI value of 1 indicates that the payload includes a pFCS. The
EXI bits should equal 0000b for GFP Null, and 0001b for GFP Linear Extension. The UPI field should be configured
to match the type of traffic being transported. Possible UPI values are shown in the table below.
Table 8-18. GFP UPI Definitions
UPI bits <7:0> GFP Payload Information
0000 0001 Frame-Mapped Ethernet
0000 0010 Frame-Mapped PPP
0000 1000 Frame-Mapped Multiple Access Protocol over SDH (MAPOS)
0000 1101 Frame-Mapped MPLS (Unicast)
0000 1110 Frame-Mapped MPLS (Multicast)
0000 1111 Frame-Mapped IS-IS
0001 0000 Frame-Mapped IPv4
0001 0001 Frame-Mapped IPv6
1111 0000 through 1111 1110 Reserved for proprietary use
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 90 of 375
The final two bytes of the TYPE/tHEC field are used to perform header validation. The tHEC calculation is a CRC-
16 operation in which the two byte PLI is multiplied by X16 and divided (modulo 2) by the polynomial X16+X12+X5+1.
Another common representation for this polynomial is 0x1021. The initialization value for the operation is 0x0000.
The MSB of the PLI is bit 16, and the resulting remainder of the operation is the tHEC. To avoid requiring this
algorithm implementation in the user’s software, some common Type and the corresponding tHEC values are
provided in the table below.
Table 8-19. Example GFP Type + tHEC Values
Configuration GFP Type (hex) tHEC (hex)
Client Data, Includes pFCS, GFP Null, Ethernet 1001 1352
Client Data, No pFCS, GFP Null, Ethernet 0001 1021
Client Data, Includes pFCS, GFP Linear, Ethernet 1101 2063
Client Data, No pFCS, GFP Linear, Ethernet 0101 2310
Management Data, Includes pFCS, GFP Null, Ethernet 9001 08CA
Management Data, No pFCS, GFP Null, Ethernet 8001 0BB9
Management Data, Includes pFCS, GFP Linear, Ethernet 9101 3BFB
Management Data, No pFCS, GFP Linear, Ethernet 8101 3888
When receiving either GFP Null or GFP Linear Extension frames from the WAN, the PP.DMCR.DR1E bit should be
set to 1 in order to remove the incoming GFP Type and tHEC bytes from the data stream.
The ITU-T G.8040 specification requires that when using GFP over a PDH link, the VCAT byte position must not be
used for payload information. The reservation or usage of the VCAT byte position is selected via the
VCAT.TCR3.TNVCGC bit.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 91 of 375
8.20.3.1GFP-F NULL
When configured for GFP Null operation, no additional header information is required. The Encapsulator’s Tag 1
Insertion function (in PP.ET1DHR and PP.ET1DLR) is available to insert a 4-byte MPLS tag immediately before the
Ethernet Destination Address (DA), and the Tag 2 Insertion function (in PP.ET2DHR and PP.ET2DLR) is available
to insert a 4-byte VLAN tag immediately after the Source Address (SA). Any existing VLAN tags are “pushed” lower
in the frame. The resulting encapsulated frame format is shown below. Note that when enabled in this mode, the
pFCS calculation begins with the 9th byte of the frame.
Figure 8-18. GFP-F NULL Encapsulated Frame Format
GFP cHEC
1st Octet of GFP Type
2nd Octet of GFP Type
1st Octet of GFP tHEC
2nd Octet of GFP tHEC
Destination Address (DA)
Source Address (SA)
Length / EtherType
Bytes
2
1
1
1
1
6
6
4
MAC Client Data 46-1500
PAD (optional)
FCS for MAC 4
GFP Payload FCS (optional) 4
MSB LSB
Q-in-Q VLAN TAG (existing/optional)
VLAN TAG (optional)
4
2
GFP Payload Length (PLI) 2
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 92 of 375
8.20.3.2GFP-F Linear Extension
When configured for GFP Linear Extension mode, an additional header is required. The Encapsultor’s Tag 1
Insertion function (in PP.ET1DHR and PP.ET1DLR, enabled with PP.EMCR.ET1E) is used to insert the 4-byte
GFP Extension Header value. If receiving GFP Linear Extension frames from the WAN, the PP.DMCR.DR2E bit
should be set to 1 in order to remove the incoming GFP CID, Spare, and eHEC bytes from the data stream.
Table 8-20. GFP CID/Spare/eHEC (Extension Header) Field Definition
Bit #
Frame Byte Number
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
9 & 10 CID SPARE
11 & 12 15 eHEC eHEC 0
The final two bytes of the Linear Extension Header field are used to perform header validation. The eHEC
calculation is a CRC-16 operation in which the two byte CID (and Spare) value is multiplied by X16 and divided
(modulo 2) by the polynomial X16+X12+X5+1. Another common representation for this polynomial is 0x1021. The
initialization value for the operation is 0x0000. The MSB of the CID is bit 16, and the resulting remainder of the
operation is the eHEC. To avoid requiring this algorithm implementation in the user’s software, several example
CID + Spare values and the corresponding eHEC values are provided in the table below.
Table 8-21. Example CID + Spare + eHEC Values
CID + Spare
(hex)
eHEC (hex)
0000 0000
0100 3331
0200 6662
0400 CCC4
0800 89A9
1000 0373
2000 06E6
4000 0DCC
8000 1B98
FF00 03FF
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 93 of 375
The Encapsulator’s Tag 2 Insertion function (in PP.ET2DHR and PP.ET2DLR) is available to insert a 4-byte VLAN
tag immediately after the Source Address (SA). Any existing VLAN tags are “pushed” lower in the frame. The
resulting encapsulated frame format is shown below. Note that when in this mode, the pFCS calculation begins
with the 13th byte of the frame. The received eHEC value is verified by the Decapsulator. While in Linear mode, if
the eHEC verification fails, the received WAN packet is discarded.
Figure 8-19. GFP-F LINEAR EXTENSION Encapsulated Frame Format
GFP cHEC
1st Octet of GFP Type
2nd Octet of GFP Type
1st Octet of GFP tHEC
2nd Octet of GFP tHEC
Destination Address (DA)
Source Address (SA)
Length / EtherType
Bytes
2
1
1
1
1
6
6
4
MAC Client Data 46-1500
PAD (optional)
FCS for MAC 4
GFP Payload FCS (optional) 4
MSB LSB
Q-in-Q VLAN TAG (existing/optional)
VLAN TAG (optional)
GFP CID, Spare, & eHEC
4
2
4
GFP Payload Length (PLI) 2
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 94 of 375
8.20.4 X.86 Encoding and Decoding
X.86 protocol provides a method for encapsulating Ethernet Frame for eventual transport on a SONET or SDH
network. LAPS provides a byte-synchronous HDLC-like framing structure for encapsulation of Ethernet frames, but
is not as susceptible to dynamic bandwidth expansion as bit-stuffed HDLC. LAPS encapsulated frames can be
used to send data onto a SONET/SDH network. The device expects a byte synchronization signal to provide the
byte boundary for the X.86 receiver. This is provided by the RSYNC pin. The functional timing is shown Figure
11-13. The X.86 transmitter provides a byte boundary indicator with the signal TSYNC. The functional timing is
shown in Figure 11-9.
A Line Header Insertion function (in PP.ELHHR and PP.ELHLR) allows the user to insert Address, Control, and
SAPI bytes. The Tag 1 Insertion function (in PP.ET1DHR and PP.ET1DLR) allows the user to insert a 4-byte MPLS
tag immediately before the Destination Address (DA). The Tag 2 Insertion function (in PP.ET2DHR and
PP.ET2DLR) allows the user to insert a 4-byte VLAN tag immediately after the Source Address (SA). Any existing
VLAN tags are “pushed” lower in the frame.
Figure 8-20. LAPS / X.86 Encapsulated Frame Format
Flag(0x7E)
Address(0x04)
Control(0x03)
1st Octet of SAPI(0xFE)
2nd Octet of SAPI(0x01)
Destination Address (DA)
Source Address (SA)
Length / EtherType
Bytes
1
1
1
1
1
6
6
4
MAC Client Data 46-1500
PAD (optional)
FCS for MAC 4
FCS for LAPS
Flag(0x7E)
4
MSB LSB
Q-in-Q VLAN TAG (existing/optional)
VLAN TAG (optional)
MPLS TAG (optional)
4
2
1
4
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 95 of 375
The device will encode the MAC Frame with X.86 / LAPS encapsulation on a complete serial stream if configured
for X.86 mode in the register PP.EMCR. The device provides the following functions:
32 bit FCS
X43+1 Scrambling/Descrambling
Transparency Processing
Rate Adaptation Removal.
Received frames are aborted if:
If 7d,7E is detected. This is an abort frame sequence in X.86
Invalid FCS is detected
The received frame has less than 6 octets
Control, SAPI and address field are mismatched to the programmed value
Octet 7D and octet other than 5D,5E,7E or DD is detected
When in X.86 mode, the device encapsulates frames with a Start Flag (7Eh), Address, Control and SAPI field,
followed by the frame and a 32-bit FCS. A X43+1 scrambler scrambles the data. Between the Start and Stop flags,
data bytes matching the start/abort flag is replaced with a 2-byte escape sequence. Figure 8-20 shows a frame
Encapsulated in a LAPS Frame. Options for MPLS and VLAN and Q-in-Q information bytes are user configured. In
the receive direction, rate adaptation octets are removed. In the transmit direction, idle code fill is used, and rate
adaptation is not performed. The Encapsulator performs transparency processing or octet stuffing to ensure that
the data does not mimic flags. For transparency processing, 7Eh is translated to 7D 5Eh and 7Dh is translated to
7D 5Dh. Byte stuffing consists of detecting bytes that mimic flag and escape sequence bytes (7Eh and 7Dh), and
replacing the mimic bytes with an escape sequence (7Dh) followed by the mimic byte exclusive 'OR'ed with 20h.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 96 of 375
8.20.5 HDLC Encoding and Decoding
The HDLC protocol provides a simple method for encapsulating Ethernet Frames over point-to-point serial links.
HDLC Encapsulation can be bit or byte synchronous. In byte synchronous mode, byte stuffing is performed. Byte
stuffing consists of detecting bytes that mimic flag and escape sequence bytes (7Eh and 7Dh), and replacing them
with an escape sequence (7Dh) followed by the byte ‘exclusive-OR’ed’ with 20h. In Bit Synchronous HDLC, 5
consecutive ones must always be followed by a 0 to avoid mimicking a start or stop flag. Note that the 5
consecutive ones can straddle any 2 consecutive bytes. HDLC frame Encapsulation of the frame is shown in
Figure 8-21.
A Line Header Insertion function (in PP.ELHHR and PP.ELHLR) allows the user to insert Address, Control, and
Protocol bytes. The Tag 1 Insertion function (in PP.ET1DHR and PP.ET1DLR) allows the user to insert a 4-byte
MPLS tag immediately before the Destination Address (DA). The Tag 2 Insertion function (in PP.ET2DHR and
PP.ET2DLR) allows the user to insert a 4-byte VLAN tag immediately after the Source Address (SA). Any existing
VLAN tags are “pushed” lower in the frame.
The device provides the following HDLC functions.
Insertion of HDLC flags
Performs HDLC bit and byte stuffing
Insertion of Payload FCS (32 bit / 16 bit)
Selectable X43+1 scrambling
Selectable Idle: All Ones or Flag insertion
HDLC Receive Compatibility:
HDLC with no line headers and encapsulated Ethernet Frames.
HDLC with LAPS Headers.
HDLC with Cisco HDLC Headers.
HDLC Encapsulated Ethernet Frames with VLAN Tags .
HDLC Encapsulated Ethernet Frames with MPLS Headers.
Bit or Byte Synchronous Stuffed HDLC
HDLC FCS lengths of 0, 16, or 32 bits.
Interframe fill can be 7Eh or all 1s.
X43+1 scrambled frame.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 97 of 375
Figure 8-21. HDCL Encapsulated Frame Format
Flag(0x7E)
Address (optional)
Control (optional)
1st Octet of Protocol (optional)
2nd Octet of Protocol (optional)
Destination Address (DA)
Source Address (SA)
Length / EtherType
Bytes
1
1
1
1
1
6
6
4
MAC Client Data 46-1500
PAD (optional)
FCS for MAC 4
FCS (optional)
Flag(0x7E)
0 / 2 / 4
MSB LSB
Q-in-Q VLAN TAG (existing/optional)
VLAN TAG (optional)
MPLS TAG (optional)
4
2
1
4
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 98 of 375
8.20.6 cHDLC Encoding And Decoding
The cHDLC protocol provides a simple method for encapsulating Ethernet Frames over point-to-point serial links.
A Line Header Insertion function (in PP.ELHHR and PP.ELHLR) allows the user to insert Address, Control, and
Protocol bytes. The Tag 1 Insertion function (in PP.ET1DHR and PP.ET1DLR) allows the user to insert a 4-byte
MPLS tag immediately before the Destination Address (DA). The Tag 2 Insertion function (in PP.ET2DHR and
PP.ET2DLR) allows the user to insert a 4-byte VLAN tag immediately after the Source Address (SA). Any existing
VLAN tags are “pushed” lower in the frame.
Figure 8-22. cHDLC Encapsulated Frame Format
Flag(0x7E)
Address (0x0F)
Control (0x00)
1st Octet of Protocol
2nd Octet of Protocol
Destination Address (DA)
Source Address (SA)
Length / EtherType
Bytes
1
1
1
1
1
6
6
4
MAC Client Data 46-1500
PAD (optional)
FCS for MAC 4
FCS (optional)
Flag(0x7E)
0 / 2 / 4
MSB LSB
Q-in-Q VLAN TAG (existing/optional)
VLAN TAG (optional)
MPLS TAG (optional)
4
2
1
4
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 99 of 375
8.21 CIR/CBS Controller
The device provides a Committed Information Rate (CIR) / Committed Burst Rate (CBS) provisioning facility. The
CIR/CBS can be used to restrict the transport of received MAC data to a specific rate. The CIR will restrict the data
flow from the Receive MAC to Transmit Packet Processor. Policing parameters are user-defined in the SU.L1PP
and SU.L2PP registers. The data rate increments for CIR/CBS provision that are available to the user are based on
the operational data rate and are approximately: 64kbps from DC to 2Mbps, 2Mbps from 2Mbps to 64Mbps, and
16Mbps from 16Mbps to 416Mbps. The CIR function is based on a time-averaged value of bytes transmitted. When
the CIR is enabled, the average bytes per second of Ethernet traffic forwarded to the serial WAN interfaces is
limited to the configured CIR. The transmit CBS for all CIR settings is selectable using SU.L1PP.CBSS and
SU.L2PP.CBSS.
Some details regarding operation of the CIR are as follows:
The maximum value of CIR cannot effectively exceed the aggregate serial transmit line rate.
If the data rate received from the Ethernet interface is higher than the CIR, the device can be configured to
invoke flow control or to discard frames to reduce the forwarded traffic rate.
CIR function is only available for data received at the Ethernet Interface to be forwarded to WAN. There is
not a CIR function for data arriving from the WAN to be sent to the Ethernet Interface.
The user provides the following configuration parameters:
Parameter Configured settings Description
Off Enables/Disables the CIR/CBS Policing function.
Policing Pause Enabled Enables Pause flow control when CIR is exceeded.
Policing
Policing Discard Enabled Enabled Discarding of frames when CIR is exceeded.
64kbps to 2Mbps Low-Range CIR.
2Mbps to 64Mbps Mid-Range CIR.
Operating
Range
16Mbps to 416Mbps High-Range CIR.
CIR Credit
Threshold 8-bit value
This setting allows approximate incremental steps of:
64kbps each LSB, for the 64kbps to 2Mbps operating range
2Mbps each LSB, for the 2Mbps to 64Mbps operating range
16Mbps each LSB, for the 16Mbps to 416Mbps operating range
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 100 of 375
Table 8-22. Credit Threshold Settings with Resulting Bandwidths
Low-Range CIR Mid-Range CIR High-Range CIR
Credit CIR Credit CIR Credit CIR
Threshold Bandwidth Threshold Bandwidth Threshold Bandwidth
243 64.04E+3 249 2.00E+6 249 16.00E+6
121 128.07E+3 124 4.00E+6 124 32.00E+6
80 192.90E+3 82 6.02E+6 82 48.19E+6
60 256.15E+3 62 7.94E+6 62 63.49E+6
48 318.88E+3 49 10.00E+6 49 80.00E+6
40 381.10E+3 41 11.90E+6 41 95.24E+6
34 446.43E+3 35 13.89E+6 35 111.11E+6
30 504.03E+3 30 16.13E+6 30 129.03E+6
26 578.70E+3 27 17.86E+6 27 142.86E+6
23 651.04E+3 26 18.52E+6 26 148.15E+6
21 710.23E+3 22 21.74E+6 22 173.91E+6
19 781.25E+3 20 23.81E+6 20 190.48E+6
18 822.37E+3 18 26.32E+6 18 210.53E+6
16 919.12E+3 17 27.78E+6 17 222.22E+6
15 976.56E+3 16 29.41E+6 16 235.29E+6
14 1.04E+6 15 31.25E+6 15 250.00E+6
13 1.12E+6 14 33.33E+6 14 266.67E+6
12 1.20E+6 13 35.71E+6 13 285.71E+6
11 1.30E+6 12 38.46E+6 12 307.69E+6
10 1.42E+6 11 41.67E+6 11 333.33E+6
9 1.56E+6 10 45.45E+6 10 363.64E+6
9 1.56E+6 9 50.00E+6 9 400.00E+6
8 1.74E+6 8 55.56E+6
7 1.95E+6 7 62.50E+6
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 101 of 375
9. Applications Information
9.1 Interfacing to Maxim T1/E1 Transceivers
The devices in the DS33X162 product family can be seamlessly connected to Maxim T1/E1 transceivers, without
the need for additional external components. The diagram below depicts the electrical connections between the
devices.
Figure 9-1. Interfacing with T1/E1 Transceivers
Figure 9-2. Example Functional Timing: DS2155 E1 Transmit-Side Boundary Timing
* Note DS2155 TCLK shown only for comparative purposes.
TSER(I)
TCHCLK(O)
TSYNC(O)
MAXIM
T1/E1 Transceiver
RSER(O)
RCHCLK(O)
RSYNC(O)
TDATA(O)
TCLK(I)
TSYNC(I)
DS33X162/X82/X81
/X42/X41/X11/W41
/W11
RDATA(I)
RCLK(I)
RSYNC(I)
LSB MSB LSB MSB LSB MSB
FRAMING BYTE / CHANNEL 0 CHANNEL 1
TCLK
TSER
TSYNC
TCHCLK
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 102 of 375
Figure 9-3. Example Functional Timing: DS2155 T1 Transmit-Side Boundary Timing
* Note DS2155 TCLK shown only for comparative purposes.
Figure 9-4. Example Functional Timing: DS2155 E1 Receive-Side Boundary Timing
* Note DS2155 RCLK shown only for comparative purposes.
Figure 9-5. Example Functional Timing: DS2155 T1 Receive-Side Boundary Timing
* Note DS2155 RCLK shown only for comparative purposes.
When interfacing to a Maxim T1/E1 transceiver as shown, the device should be programmed to invert the RCLK
input for each serial interface (LI.RCR1.RCLKINV = 1).
Because the first gapped transmit clock input edge after the transmit sync pulse is coincident with the start of the
first byte of user data, the transmit sync setup control bits must be configured for a sync pulse that arrives zero
clock cycles early ( LI.TCR.TS_SETUP[1:0] = 00).
LSB X MSB LSB MSB LSB MSB
TIME SLOT 1 TIME SLOT 2
TCLK
TSER
TSYNC
TCHCLK
CHANNEL 32 FRAMING BYTE / CHANNEL 0 CHANNEL 1
RCLK
RSER
RSYNC
LSB MSB
MSB LSB
RCHCLK
TIME SLOT 24 TIME SLOT 1 TIME SLOT 2
RCLK
RSER
RSYNC
LSB MSB
MSB LSB
RCHCLK
F
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 103 of 375
9.2 Interfacing to Maxim T3/E3 Transceivers
The devices in the DS33X162 product family can be seamlessly connected to Maxim T3/E3 transceivers, without
the need for additional external components. The diagram below depicts the electrical connections between the
devices.
Figure 9-6. Interfacing with T3/E3 Transceivers
Figure 9-7. Example Functional Timing: DS3170 DS3 Transmit-Side Boundary Timing
TSER(I)
TGCLK(O)
TSOFO(O)
Dallas
Semiconductor
T3/E3 Transceiver
RSER(O)
RGCLK(O)
RSOFO(O)
TDATA(O)
TCLK(I)
TSYNC(I)
DS33X162/X82/X81
/X42/X41/X11/W41
/W11
RDATA(I)
RCLK(I)
RSYNC(I)
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 104 of 375
Figure 9-8. Example Functional Timing: DS3170 DS3 Receive-Side Boundary Timing
RCLKO or
RCLKI
DS3 RSER
DS3 RDEN
RSOFO
DS3 RGCLK
X1
6 7 8 9 10 11 12 1312345 1415
Because the third gapped transmit clock input edge after the transmit sync pulse is coincident with the start of the
first byte of user data, the transmit sync setup control bits must be configured for a sync pulse that arrives three
clock cycles early ( LI.TCR.TS_SETUP[1:0] = 11).
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 105 of 375
10. Device Registers
Eleven address bits are used address the register space. The register map is shown in Table 10-1. The
addressable range is 000h-7FFh. Register address locations are shared across the product family to preserve
software compatibility. The Serial Interface (Line) Registers are used to configure the serial port and the associated
transport protocol. The Ethernet Interface (Subscriber) registers are used to control and observe each of the
Ethernet ports. The registers associated with the MAC must be configured through indirect register write /read
access due to the architecture of the device.
When writing to a register input values for unused bits and registers (those designated with “–“) should be zero
unless specifically noted otherwise, as these bits and registers are reserved. When a register is read from, the
values of the unused bits and registers should be ignored. A latched status bit is set when an event happens and is
cleared when read.
Note that although most registers are defined as 16-bit registers, the constituent bytes are accessed through the
parallel or SPI interfaces one byte at a time. Individual address locations are defined for each byte. The register
details are provided in the following tables.
Table 10-1. Register Address Map
REGISTER ADDRESS RANGE
Global registers 000h – 01Fh
Microport Block 020h – 03Fh
MAC 1 Port 040h – 05Fh
MAC 2 Port 060h – 07Fh
Common VLAN Table 080h – 09Fh
Transmit LAN 0A0h – 0BFh
Receive LAN 0C0h – 0FFh
Buffer Manager 100h – 1FFh
Packet Processors (Encapsulators) 200h – 2FFh
Packet Processors (Decapsulators) 300h – 3FFh
Transmit VCAT/LCAS 400h – 4FFh
Receive VCAT/LCAS 500h – 5FFh
Serial Ports – Global 600h – 63Fh
Serial Ports – Transmit & Voice 640h – 6FFh
Serial Ports – Receive & Voice 740h – 7FFh
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 106 of 375
10.1 Register Bit Maps
10.1.1 Global Register Bit Map
Table 10-2. Global Register Bit Map
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
GLOBAL REGISTERS
000h WP4 WP3 WP2 WP1 WP0 GBE MP1 MP0
001h GL.IDR REV2 REV1 REV0 SPIS VC2 VC1 VC0 VCAT
002h - - - - - FMC-2 FMC-1 FMC-0
003h GL.CR1 - - P2SPD0 - P1SPD - - -
004h - - - - INTM ENDEL - RST
005h GL.CR2 - - - - - - - -
008h - BUFIS - TSPIS DECIS1 ECIS1 TXLANIS RXLANIS
009h GL.ISR MICIS DECIS4 DECIS3 DECIS2 ECIS4 ECIS3 ECIS2 RVCATIS
00Ah - BUFIE - TSPIE DECIE1 ECIE1 TXLANIE RXLANIE
00Bh GL.IER MICIE DECIE4 DECIE3 DECIE2 ECIE4 ECIE3 ECIE2 RVCATIE
00Ch - - - - - - - -
00Dh GL.MBSR - - - - DLOCK PLOCK - -
MICROPORT REGISTERS
020h - - - - - - FIFO1 FIFO0
021h GL.MCR1 - - - - - - - -
022h WILEN7 WILEN6 WILEN5 WILEN4 WILEN3 WILEN2 WILEN1 WILEN0
023h GL.MCR2 - - - - WILEN11 WILEN10 WILEN9 WILEN8
024h LILEN7 LILEN6 LILEN5 LILEN4 LILEN3 LILEN2 LILEN1 LILEN0
025h GL.MCR3 - - - - LILEN11 LILEN10 LILEN9 LILEN8
026h WELEN7 WELEN6 WELEN5 WELEN4 WELEN3 WELEN2 WELEN1 WELEN0
027h GL.MSR1 - - - - WELEN11 WELEN10 WELEN9 WELEN8
028h LELEN7 LELEN6 LELEN5 LELEN4 LELEN3 LELEN2 LELEN1 LELEN0
029h GL.MSR2 - - - - LELEN11 LELEN10 LELEN9 LELEN8
02Ah - - - - LANEA LANIE WANEA WANIE
02Bh GL.MSR3 - - - - - - - -
02Ch - - - - LANEAL LANIEL WANEAL WANIEL
02Dh GL.MLSR3 - - - - - - - -
02Eh - - - - LANEAIE LANIEIE WANEAIE WANIEIE
02Fh GL.MSIER3 - - - - - - - -
030h WPKT7 WPKT6 WPKT5 WPKT4 WPKT3 WPKT2 WPKT1 WPKT0
031h GL.MFAWR - - - - - - RD_DN WR_DN
032h RPKT7 RPKT6 RPKT5 RPKT4 RPKT3 RPKT2 RPKT1 RPKT0
033h GL.MFARR - - - - - - - -
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 107 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
MAC 1 INTERFACE PORT
040h SU.MAC1RADL MACRA7 MACRA6 MACRA5 MACRA4 MACRA3 MACRA2 MACRA1 MACRA0
041h SU.MAC1RADH MACRA15 MACRA14 MACRA13 MACRA12 MACRA11 MACRA10 MACRA9 MACRA8
042h SU.MAC1RD0 MACRD7 MACRD6 MACRD5 MACRD4 MACRD3 MACRD2 MACRD1 MACRD0
043h SU.MAC1RD1 MACRD15 MACRD14 MACRD13 MACRD12 MACRD11 MACRD10 MACRD9 MACRD8
044h SU.MAC1RD2 MACRD23 MACRD22 MACRD21 MACRD20 MACRD19 MACRD18 MACRD17 MACRD16
045h SU.MAC1RD3 MACRD31 MACRD30 MACRD29 MACRD28 MACRD27 MACRD26 MACRD25 MACRD24
046h SU.MAC1WD0 MACWD7 MACWD6 MACWD5 MACWD4 MACWD3 MACWD2 MACWD1 MACWD0
047h SU.MAC1WD1 MACWD15 MACWD14 MACWD13 MACWD12 MACWD11 MACWD10 MACWD09 MACWD08
048h SU.MAC1WD2 MACWD23 MACWD22 MACWD21 MACWD20 MACWD19 MACWD18 MACWD17 MACWD16
049h SU.MAC1WD3 MACD31 MACD30 MACD29 MACD28 MACD27 MACD26 MACD25 MACD24
04Ah SU.MAC1AWL MACAW7 MACAW6 MACAW5 MACAW4 MACAW3 MACAW2 MACAW1 MACAW0
04Bh SU.MAC1AWH MACAW15 MACAW14 MACAW13 MACAW12 MACAW11 MACAW10 MACAW9 MACAW8
04Ch SU.MAC1RWC - - - - - - MCRW MCS
MAC 2 INTERFACE PORT
060h SU.MAC2RADL MACRA7 MACRA6 MACRA5 MACRA4 MACRA3 MACRA2 MACRA1 MACRA0
061h SU.MAC2RADH MACRA15 MACRA14 MACRA13 MACRA12 MACRA11 MACRA10 MACRA9 MACRA8
062h SU.MAC2RD0 MACRD7 MACRD6 MACRD5 MACRD4 MACRD3 MACRD2 MACRD1 MACRD0
063h SU.MAC2RD1 MACRD15 MACRD14 MACRD13 MACRD12 MACRD11 MACRD10 MACRD9 MACRD8
064h SU.MAC2RD2 MACRD23 MACRD22 MACRD21 MACRD20 MACRD19 MACRD18 MACRD17 MACRD16
065h SU.MAC2RD3 MACRD31 MACRD30 MACRD29 MACRD28 MACRD27 MACRD26 MACRD25 MACRD24
066h SU.MAC2WD0 MACWD7 MACWD6 MACWD5 MACWD4 MACWD3 MACWD2 MACWD1 MACWD0
067h SU.MAC2WD1 MACWD15 MACWD14 MACWD13 MACWD12 MACWD11 MACWD10 MACWD09 MACWD08
068h SU.MAC2WD2 MACWD23 MACWD22 MACWD21 MACWD20 MACWD19 MACWD18 MACWD17 MACWD16
069h SU.MAC2WD3 MACD31 MACD30 MACD29 MACD28 MACD27 MACD26 MACD25 MACD24
06Ah SU.MAC2AWL MACAW7 MACAW6 MACAW5 MACAW4 MACAW3 MACAW2 MACAW1 MACAW0
06Bh SU.MAC2AWH MACAW15 MACAW14 MACAW13 MACAW12 MACAW11 MACAW10 MACAW9 MACAW8
06Ch SU.MAC2RWC - - - - - - MCRW MCS
COMMON VLAN TABLE CONTROL
080h - - - - - CTE CI CAIM
081h SU.VTC - - - - - - - -
082h VTAA8 VTAA7 VTAA6 VTAA5 VTAA4 VTAA3 VTAA2 VTAA1
083h SU.VTAA - - - - VTAA12 VTAA11 VTAA10 VTAA9
084h - - WVEFW WVQFW LVDW LVEFW LVQFW2 LVQFW1
085h SU.VTWD - - - - - - - -
086h - - WVEFR WVQFR LVDR LVEFR LVQFR2 LVQFR1
087h SU.VTRD - - - - - - - -
088h VTSA8 VTSA7 VTSA6 VTSA5 VTSA4 VTSA3 VTSA2 VTSA1
089h SU.VTSA - - - VTIS VTSA12 VTSA11 VTSA10 VTSA9
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 108 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
TRANSMIT LAN AND WAN EXTRACTION
0A0h WNVDF WEFR WEDS2 WEDS1 WEVIT WEETT WEDAT WEHT
0A1h SU.WEM - - - - - - WMGMTT WBAT
0A2h - - - WEHTH WEHTL WEHTP3 WEHTP2 WEHTP1
0A3h SU.WEHTP - - - - - - - -
0A4h WEHT8 WEHT7 WEHT6 WEHT5 WEHT4 WEHT3 WEHT2 WEHT1
0A5h SU.WEHT WEHT16 WEHT15 WEHT14 WEHT13 WEHT12 WEHT11 WEHT10 WEHT9
0A6h WEDAL8 WEDAL7 WEDAL6 WEDAL5 WEDAL4 WEDAL3 WEDAL2 WEDAL1
0A7h SU.WEDAL WEDAL16 WEDAL15 WEDAL14 WEDAL13 WEDAL12 WEDAL11 WEDAL10 WEDAL9
0A8h WEDAM8 WEDAM7 WEDAM6 WEDAM5 WEDAM4 WEDAM3 WEDAM2 WEDAM1
0A9h SU.WEDAM WEDAM16 WEDAM15 WEDAM14 WEDAM13 WEDAM12 WEDAM11 WEDAM10 WEDAM9
0AAh WEDAH8 WEDAH7 WEDAH6 WEDAH5 WEDAH4 WEDAH3 WEDAH2 WEDAH1
0ABh SU.WEDAH WEDAH16 WEDAH15 WEDAH14 WEDAH13 WEDAH12 WEDAH11 WEDAH10 WEDAH9
0ACh WEDAX8 WEDAX7 WEDAX6 WEDAX5 WEDAX4 WEDAX3 WEDAX2 WEDAX1
0ADh SU.WEDAX - - - - - - - -
0AEh WEET8 WEET7 WEET6 WEET5 WEET4 WEET3 WEET2 WEET1
0AFh SU.WEET WEET16 WEET15 WEET14 WEET13 WEET12 WEET11 WEET10 WEET9
0B2h WETPID8 WETPID7 WETPID6 WETPID5 WETPID4 WETPID3 WETPID2 WETPID1
0B3h SU.WETPID WETPID16 WETPID15 WETPID14 WETPID13 WETPID12 WETPID11 WETPID10 WETPID9
0B4h - - - - - - - WEOS
0B5h SU.WOS - - - - - - - -
0B6h - - - LIFR LIIP2 LIIP1 LIP LIE
0B7h SU.LIM - - - - LP2R LP1R LP2CE LP1CE
0B8h - - - - - - - WEOM
0B9h SU.WOM - - - - - - - -
0BAh - LTCC3 LTCC2 LTCC1 LTCC0 LTEXD LTUFE LTDEF
0BBh SU.LP1XS LTED LTJTO LTFF - LTLOC LTNCP LTLC LTEC
0BCh - LTCC3 LTCC2 LTCC1 LTCC0 LTEXD LTUFE LTDEF
0BDh SU.LP2XS LTED LTJTO LTFF - LTLOC LTNCP LTLC LTEC
RECEIVE LAN REGISTERS
0C0h - - - LEEPS LEVIT LEETT LEDAT LPM
0C1h SU.LPM - - - - - - LMGMTT LBAT
0C2h LEDAL7 LEDAL6 LEDAL5 LEDAL4 LEDAL3 LEDAL2 LEDAL1 LEDAL0
0C3h SU.LEDAL LEDAL15 LEDAL14 LEDAL13 LEDAL12 LEDAL11 LEDAL10 LEDAL9 LEDAL8
0C4h LEDAM7 LEDAM6 LEDAM5 LEDAM4 LEDAM3 LEDAM2 LEDAM1 LEDAM0
0C5h SU.LEDAM LEDAM15 LEDAM14 LEDAM13 LEDAM12 LEDAM11 LEDAM10 LEDAM9 LEDAM8
0C6h LEDAH7 LEDAH6 LEDAH5 LEDAH4 LEDAH3 LEDAH2 LEDAH1 LEDAH0
0C7h SU.LEDAH LEDAH15 LEDAH14 LEDAH13 LEDAH12 LEDAH11 LEDAH10 LEDAH9 LEDAH8
0C8h LEDAX7 LEDAX6 LEDAX5 LEDAX4 LEDAX3 LEDAX2 LEDAX1 LEDAX0
0C9h SU.LEDAX - - - - - - - -
0CAh SU.LEET LEET7 LEET6 LEET5 LEET4 LEET3 LEET2 LEET1 LEET0
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 109 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
0CBh LEET15 LEET14 LEET13 LEET12 LEET11 LEET10 LEET9 LEET8
0CCh LP1MIM LP1QOM LP1FR LP1PF2 LP1PF1 LP1ETF2 LP1ETF1 LP1E
0CDh SU.LP1C - - - - - - - -
0CEh LP2MIM LP2QOM LP2FR LP2PF2 LP2PF1 LP2ETF2 LP2ETF1 LP2E
0CFh SU.LP2C - - - - - - - -
0D0h - - LNPDF2 LNPDF1 LNETDF4 LNETDF3 LNETDF2 LNETDF1
0D1h SU.LNFC - - - - - - - -
0D2h LQXPC8 LQXPC7 LQXPC6 LQXPC5 LQXPC4 LQXPC3 LQXPC2 LQXPC1
0D3h SU.LQXPC LQXPC16 LQXPC15 LQXPC14 LQXPC13 LQXPC12 LQXPC11 LQXPC10 LQXPC9
0D4h LQTPID8 LQTPID7 LQTPID6 LQTPID5 LQTPID4 LQTPID3 LQTPID2 LQTPID1
0D5h SU.LQTPID LQTPID16 LQTPID15 LQTPID14 LQTPID13 LQTPID12 LQTPID11 LQTPID10 LQTPID9
0D6h - - - - LP2I LP1I LIQOS2 LIQOS1
0D7h SU.LIQOS - - - - - - - -
0D8h MPL8 MPL7 MPL6 MPL5 MPL4 MPL3 MPL2 MPL1
0D9h SU.MPL - - MPL14 MPL13 MPL12 MPL11 MPL10 MPL9
0DAh L1PCT8 L1PCT7 L1PCT6 L1PCT5 L1PCT4 L1PCT3 L1PCT2 L1PCT1
0DBh SU.L1PP CBSS - - - L1PM2 L1PM1 L1PCR2 L1PCR1
0DCh L2PCT8 L2PCT7 L2PCT6 L2PCT5 L2PCT4 L2PCT3 L2PCT2 L2PCT1
0DDh SU.L2PP CBSS - - - L2PM2 L2PM1 L2PCR2 L2PCR1
0DEh - - - - - - PTE PTAIM
0DFh SU.PTC - - - - - - - -
0E0h - PTPAA PTAA6 PTAA5 PTAA4 PTAA3 PTAA2 PTAA1
0E1h SU.PTAA - - - - - - - -
0E2h - - - - - - LPQFW2 LPQFW1
0E3h SU.PTWD - - - - - - - -
0E4h - - - - - - LPQFR2 LPQFR1
0E5h SU.PTRD - - - - - - - -
0E6h PTIS PTPSA PTSA6 PTSA5 PTSA4 PTSA3 PTSA2 PTSA1
0E7h SU.PTSA - - - - - - - -
0E8h BFAP8 BFAP7 BFAP6 BFAP5 BFAP4 BFAP3 BFAP2 BFAP1
0E9h SU.BFC - - - - - BFTR BFE BFAP9
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 110 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
BUFFER MANAGER (ARBITER) REGISTERS
100h LQ1SA-8 LQ1SA-7 LQ1SA-6 LQ1SA-5 LQ1SA-4 LQ1SA-3 LQ1SA-2 LQ1SA-1
101h AR.LQ1SA - - - - - LQ1QPR LQ1SA-10 LQ1SA-9
102h LQ2SA-8 LQ2SA-7 LQ2SA-6 LQ2SA-5 LQ2SA-4 LQ2SA-3 LQ2SA-2 LQ2SA-1
103h AR.LQ2SA - - - - - LQ2QPR LQ2SA-10 LQ2SA-9
104h LQ3SA-8 LQ3SA-7 LQ3SA-6 LQ3SA-5 LQ3SA-4 LQ3SA-3 LQ3SA-2 LQ3SA-1
105h AR.LQ3SA - - - - - LQ3QPR LQ3SA-10 LQ3SA-9
106h LQ4SA-8 LQ4SA-7 LQ4SA-6 LQ4SA-5 LQ4SA-4 LQ4SA-3 LQ4SA-2 LQ4SA-1
107h AR.LQ4SA - - - - - LQ4QPR LQ4SA-10 LQ4SA-9
108h LQ5SA-8 LQ5SA-7 LQ5SA-6 LQ5SA-5 LQ5SA-4 LQ5SA-3 LQ5SA-2 LQ5SA-1
109h AR.LQ5SA - - - - - LQ5QPR LQ5SA-10 LQ5SA-9
10Ah LQ6SA-8 LQ6SA-7 LQ6SA-6 LQ6SA-5 LQ6SA-4 LQ6SA-3 LQ6SA-2 LQ6SA-1
10Bh AR.LQ6SA - - - - - LQ6QPR LQ6SA-10 LQ6SA-9
10Ch LQ7SA-8 LQ7SA-7 LQ7SA-6 LQ7SA-5 LQ7SA-4 LQ7SA-3 LQ7SA-2 LQ7SA-1
10Dh AR.LQ7SA - - - - - LQ7QPR LQ7SA-10 LQ7SA-9
10Eh LQ8SA-8 LQ8SA-7 LQ8SA-6 LQ8SA-5 LQ8SA-4 LQ8SA-3 LQ8SA-2 LQ8SA-1
10Fh AR.LQ8SA - - - - - LQ8QPR LQ8SA-10 LQ8SA-9
110h LQ9SA-8 LQ9SA-7 LQ9SA-6 LQ9SA-5 LQ9SA-4 LQ9SA-3 LQ9SA-2 LQ9SA-1
111h AR.LQ9SA - - - - - LQ9QPR LQ9SA-10 LQ9SA-9
112h LQ10SA-8 LQ10SA-7 LQ10SA-6 LQ10SA-5 LQ10SA-4 LQ10SA-3 LQ10SA-2 LQ10SA-1
113h AR.LQ10SA - - - - - LQ10QPR
LQ10SA-10 LQ10SA-9
114h LQ11SA-8 LQ11SA-7 LQ11SA-6 LQ11SA-5 LQ11SA-4 LQ11SA-3 LQ11SA-2 LQ11SA-1
115h AR.LQ11SA - - - - - LQ11QPR
LQ11SA-10 LQ11SA-9
116h LQ12SA-8 LQ12SA-7 LQ12SA-6 LQ12SA-5 LQ12SA-4 LQ12SA-3 LQ12SA-2 LQ12SA-1
117h AR.LQ12SA - - - - - LQ12QPR
LQ12SA-10 LQ12SA-9
118h LQ13SA-8 LQ13SA-7 LQ13SA-6 LQ13SA-5 LQ13SA-4 LQ13SA-3 LQ13SA-2 LQ13SA-1
119h AR.LQ13SA - - - - - LQ13QPR
LQ13SA-10 LQ13SA-9
11Ah LQ14SA-8 LQ14SA-7 LQ14SA-6 LQ14SA-5 LQ14SA-4 LQ14SA-3 LQ14SA-2 LQ14SA-1
11Bh AR.LQ14SA - - - - - LQ14QPR
LQ14SA-10 LQ14SA-9
11Ch LQ15SA-8 LQ15SA-7 LQ15SA-6 LQ15SA-5 LQ15SA-4 LQ15SA-3 LQ15SA-2 LQ15SA-1
11Dh AR.LQ15SA - - - - - LQ15QPR
LQ15SA-10 LQ15SA-9
11Eh LQ16SA-8 LQ16SA-7 LQ16SA-6 LQ16SA-5 LQ16SA-4 LQ16SA-3 LQ16SA-2 LQ16SA-1
11Fh AR.LQ16SA - - - - - LQ16QPR
LQ16SA-10 LQ16SA-9
120h LQ1EA-8 LQ1EA-7 LQ1EA-6 LQ1EA-5 LQ1EA-4 LQ1EA-3 LQ1EA-2 LQ1EA-1
121h AR.LQ1EA - - - - - - LQ1EA-10 LQ1EA-9
122h LQ2EA-8 LQ2EA-7 LQ2EA-6 LQ2EA-5 LQ2EA-4 LQ2EA-3 LQ2EA-2 LQ2EA-1
123h AR.LQ2EA - - - - - - LQ2EA-10 LQ2EA-9
124h LQ3EA-8 LQ3EA-7 LQ3EA-6 LQ3EA-5 LQ3EA-4 LQ3EA-3 LQ3EA-2 LQ3EA-1
125h AR.LQ3EA - - - - - - LQ3EA-10 LQ3EA-9
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 111 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
126h LQ4EA-8 LQ4EA-7 LQ4EA-6 LQ4EA-5 LQ4EA-4 LQ4EA-3 LQ4EA-2 LQ4EA-1
127h AR.LQ4EA - - - - - - LQ4EA-10 LQ4EA-9
128h LQ5EA-8 LQ5EA-7 LQ5EA-6 LQ5EA-5 LQ5EA-4 LQ5EA-3 LQ5EA-2 LQ5EA-1
129h AR.LQ5EA - - - - - - LQ5EA-10 LQ5EA-9
12Ah LQ6EA-8 LQ6EA-7 LQ6EA-6 LQ6EA-5 LQ6EA-4 LQ6EA-3 LQ6EA-2 LQ6EA-1
12Bh AR.LQ6EA - - - - - - LQ6EA-10 LQ6EA-9
12Ch LQ7EA-8 LQ7EA-7 LQ7EA-6 LQ7EA-5 LQ7EA-4 LQ7EA-3 LQ7EA-2 LQ7EA-1
12Dh AR.LQ7EA - - - - - - LQ7EA-10 LQ7EA-9
12Eh LQ8EA-8 LQ8EA-7 LQ8EA-6 LQ8EA-5 LQ8EA-4 LQ8EA-3 LQ8EA-2 LQ8EA-1
12Fh AR.LQ8EA - - - - - - LQ8EA-10 LQ8EA-9
130h LQ9EA-8 LQ9EA-7 LQ9EA-6 LQ9EA-5 LQ9EA-4 LQ9EA-3 LQ9EA-2 LQ9EA-1
131h AR.LQ9EA - - - - - - LQ9EA-10 LQ9EA-9
132h LQ10EA-8 LQ10EA-7 LQ10EA-6 LQ10EA-5 LQ10EA-4 LQ10EA-3 LQ10EA-2 LQ10EA-1
133h AR.LQ10EA - - - - - -
LQ10EA-10 LQ10EA-9
134h LQ11EA-8 LQ11EA-7 LQ11EA-6 LQ11EA-5 LQ11EA-4 LQ11EA-3 LQ11EA-2 LQ11EA-1
135h AR.LQ11EA - - - - - -
LQ11EA-10 LQ11EA-9
136h LQ12EA-8 LQ12EA-7 LQ12EA-6 LQ12EA-5 LQ12EA-4 LQ12EA-3 LQ12EA-2 LQ12EA-1
137h AR.LQ12EA - - - - - -
LQ12EA-10 LQ12EA-9
138h LQ13EA-8 LQ13EA-7 LQ13EA-6 LQ13EA-5 LQ13EA-4 LQ13EA-3 LQ13EA-2 LQ13EA-1
139h AR.LQ13EA - - - - - -
LQ13EA-10 LQ13EA-9
13Ah LQ14EA-8 LQ14EA-7 LQ14EA-6 LQ14EA-5 LQ14EA-4 LQ14EA-3 LQ14EA-2 LQ14EA-1
13Bh AR.LQ14EA - - - - - -
LQ14EA-10 LQ14EA-9
13Ch LQ15EA-8 LQ15EA-7 LQ15EA-6 LQ15EA-5 LQ15EA-4 LQ15EA-3 LQ15EA-2 LQ15EA-1
13Dh AR.LQ15EA - - - - - -
LQ15EA-10 LQ15EA-9
13Eh LQ16EA-8 LQ16EA-7 LQ16EA-6 LQ16EA-5 LQ16EA-4 LQ16EA-3 LQ16EA-2 LQ16EA-1
13Fh AR.LQ16EA - - - - - -
LQ16EA-10 LQ16EA-9
140h WQ1SA-8 WQ1SA-7 WQ1SA-6 WQ1SA-5 WQ1SA-4 WQ1SA-3 WQ1SA-2 WQ1SA-1
141h AR.WQ1SA - - - - - WQ1QPR
WQ1SA-10 WQ1SA-9
142h WQ2SA-8 WQ2SA-7 WQ2SA-6 WQ2SA-5 WQ2SA-4 WQ2SA-3 WQ2SA-2 WQ2SA-1
143h AR.WQ2SA - - - - - WQ2QPR
WQ2SA-10 WQ2SA-9
144h WQ3SA-8 WQ3SA-7 WQ3SA-6 WQ3SA-5 WQ3SA-4 WQ3SA-3 WQ3SA-2 WQ3SA-1
145h AR.WQ3SA - - - - - WQ3QPR
WQ3SA-10 WQ3SA-9
146h WQ4SA-8 WQ4SA-7 WQ4SA-6 WQ4SA-5 WQ4SA-4 WQ4SA-3 WQ4SA-2 WQ4SA-1
147h AR.WQ4SA - - - - - WQ4QPR
WQ4SA-10 WQ4SA-9
148h WQ5SA-8 WQ5SA-7 WQ5SA-6 WQ5SA-5 WQ5SA-4 WQ5SA-3 WQ5SA-2 WQ5SA-1
149h AR.WQ5SA - - - - - WQ5QPR
WQ5SA-10 WQ5SA-9
14Ah WQ6SA-8 WQ6SA-7 WQ6SA-6 WQ6SA-5 WQ6SA-4 WQ6SA-3 WQ6SA-2 WQ6SA-1
14Bh AR.WQ6SA - - - - - WQ6QPR
WQ6SA-10 WQ6SA-9
14Ch WQ7SA-8 WQ7SA-7 WQ7SA-6 WQ7SA-5 WQ7SA-4 WQ7SA-3 WQ7SA-2 WQ7SA-1
14Dh AR.WQ7SA - - - - - WQ7QPR
WQ7SA-10 WQ7SA-9
14Eh AR.WQ8SA WQ8SA-8 WQ8SA-7 WQ8SA-6 WQ8SA-5 WQ8SA-4 WQ8SA-3 WQ8SA-2 WQ8SA-1
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 112 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
14Fh - - - - - WQ8QPR
WQ8SA-10 WQ8SA-9
150h WQ9SA-8 WQ9SA-7 WQ9SA-6 WQ9SA-5 WQ9SA-4 WQ9SA-3 WQ9SA-2 WQ9SA-1
151h AR.WQ9SA - - - - - WQ9QPR
WQ9SA-10 WQ9SA-9
152h WQ10SA-8 WQ10SA-7 WQ10SA-6 WQ10SA-5 WQ10SA-4 WQ10SA-3 WQ10SA-2 WQ10SA-1
153h AR.WQ10SA - - - - - WQ10QPR WQ10SA-10 WQ10SA-9
154h WQ11SA-8 WQ11SA-7 WQ11SA-6 WQ11SA-5 WQ11SA-4 WQ11SA-3 WQ11SA-2 WQ11SA-1
155h AR.WQ11SA - - - - - WQ11QPR WQ11SA-10 WQ11SA-9
156h WQ12SA-8 WQ12SA-7 WQ12SA-6 WQ12SA-5 WQ12SA-4 WQ12SA-3 WQ12SA-2 WQ12SA-1
157h AR.WQ12SA - - - - - WQ12QPR WQ12SA-10 WQ12SA-9
158h WQ13SA-8 WQ13SA-7 WQ13SA-6 WQ13SA-5 WQ13SA-4 WQ13SA-3 WQ13SA-2 WQ13SA-1
159h AR.WQ13SA - - - - - WQ13QPR WQ13SA-10 WQ13SA-9
15Ah WQ14SA-8 WQ14SA-7 WQ14SA-6 WQ14SA-5 WQ14SA-4 WQ14SA-3 WQ14SA-2 WQ14SA-1
15Bh AR.WQ14SA - - - - - WQ14QPR WQ14SA-10 WQ14SA-9
15Ch WQ15SA-8 WQ15SA-7 WQ15SA-6 WQ15SA-5 WQ15SA-4 WQ15SA-3 WQ15SA-2 WQ15SA-1
15Dh AR.WQ15SA - - - - - WQ15QPR WQ15SA-10 WQ15SA-9
15Eh WQ16SA-8 WQ16SA-7 WQ16SA-6 WQ16SA-5 WQ16SA-4 WQ16SA-3 WQ16SA-2 WQ16SA-1
15Fh AR.WQ16SA - - - - - WQ16QPR WQ16SA-10 WQ16SA-9
160h WQ1EA-8 WQ1EA-7 WQ1EA-6 WQ1EA-5 WQ1EA-4 WQ1EA-3 WQ1EA-2 WQ1EA-1
161h AR.WQ1EA - - - - - - WQ1EA-10 WQ1EA-9
162h WQ2EA-8 WQ2EA-7 WQ2EA-6 WQ2EA-5 WQ2EA-4 WQ2EA-3 WQ2EA-2 WQ2EA-1
163h AR.WQ2EA - - - - - - WQ2EA-10 WQ2EA-9
164h WQ3EA-8 WQ3EA-7 WQ3EA-6 WQ3EA-5 WQ3EA-4 WQ3EA-3 WQ3EA-2 WQ3EA-1
165h AR.WQ3EA - - - - - - WQ3EA-10 WQ3EA-9
166h WQ4EA-8 WQ4EA-7 WQ4EA-6 WQ4EA-5 WQ4EA-4 WQ4EA-3 WQ4EA-2 WQ4EA-1
167h AR.WQ4EA - - - - - - WQ4EA-10 WQ4EA-9
168h WQ5EA-8 WQ5EA-7 WQ5EA-6 WQ5EA-5 WQ5EA-4 WQ5EA-3 WQ5EA-2 WQ5EA-1
169h AR.WQ5EA - - - - - - WQ5EA-10 WQ5EA-9
16Ah WQ6EA-8 WQ6EA-7 WQ6EA-6 WQ6EA-5 WQ6EA-4 WQ6EA-3 WQ6EA-2 WQ6EA-1
16Bh AR.WQ6EA - - - - - - WQ6EA-10 WQ6EA-9
16Ch WQ7EA-8 WQ7EA-7 WQ7EA-6 WQ7EA-5 WQ7EA-4 WQ7EA-3 WQ7EA-2 WQ7EA-1
16Dh AR.WQ7EA - - - - - - WQ7EA-10 WQ7EA-9
16Eh WQ8EA-8 WQ8EA-7 WQ8EA-6 WQ8EA-5 WQ8EA-4 WQ8EA-3 WQ8EA-2 WQ8EA-1
16Fh AR.WQ8EA - - - - - - WQ8EA-10 WQ8EA-9
170h WQ9EA-8 WQ9EA-7 WQ9EA-6 WQ9EA-5 WQ9EA-4 WQ9EA-3 WQ9EA-2 WQ9EA-1
171h AR.WQ9EA - - - - - - WQ9EA-10 WQ9EA-9
172h WQ10EA-8 WQ10EA-7 WQ10EA-6 WQ10EA-5 WQ10EA-4 WQ10EA-3 WQ10EA-2 WQ10EA-1
173h AR.WQ10EA - - - - - - WQ10EA-10 WQ10EA-9
174h WQ11EA-8 WQ11EA-7 WQ11EA-6 WQ11EA-5 WQ11EA-4 WQ11EA-3 WQ11EA-2 WQ11EA-1
175h AR.WQ11EA - - - - - - WQ11EA-10 WQ11EA-9
176h WQ12EA-8 WQ12EA-7 WQ12EA-6 WQ12EA-5 WQ12EA-4 WQ12EA-3 WQ12EA-2 WQ12EA-1
177h AR.WQ12EA - - - - - - WQ12EA-10 WQ12EA-9
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 113 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
178h WQ13EA-8 WQ13EA-7 WQ13EA-6 WQ13EA-5 WQ13EA-4 WQ13EA-3 WQ13EA-2 WQ13EA-1
179h AR.WQ13EA - - - - - - WQ13EA-10 WQ13EA-9
17Ah WQ14EA-8 WQ14EA-7 WQ14EA-6 WQ14EA-5 WQ14EA-4 WQ14EA-3 WQ14EA-2 WQ14EA-1
17Bh AR.WQ14EA - - - - - - WQ14EA-10 WQ14EA-9
17Ch WQ15EA-8 WQ15EA-7 WQ15EA-6 WQ15EA-5 WQ15EA-4 WQ15EA-3 WQ15EA-2 WQ15EA-1
17Dh AR.WQ15EA - - - - - - WQ15EA-10 WQ15EA-9
17Eh WQ16EA-8 WQ16EA-7 WQ16EA-6 WQ16EA-5 WQ16EA-4 WQ16EA-3 WQ16EA-2 WQ16EA-1
17Fh AR.WQ16EA - - - - - - WQ16EA-10 WQ16EA-9
180h LIQSA-8 LIQSA-7 LIQSA-6 LIQSA-5 LIQSA-4 LIQSA-3 LIQSA-2 LIQSA-1
181h AR.LIQSA - - - - - LIQPR LIQSA-10 LIQSA-9
182h LIQEA-8 LIQEA-7 LIQEA-6 LIQEA-5 LIQEA-4 LIQEA-3 LIQEA-2 LIQEA-1
183h AR.LIQEA - - - - - - LIQEA-10 LIQEA-9
184h LEQSA-8 LEQSA-7 LEQSA-6 LEQSA-5 LEQSA-4 LEQSA-3 LEQSA-2 LEQSA-1
185h AR.LEQSA - - - - - LEQPR LEQSA-10 LEQSA-9
186h LEQEA-8 LEQEA-7 LEQEA-6 LEQEA-5 LEQEA-4 LEQEA-3 LEQEA-2 LEQEA-1
187h AR.LEQEA - - - - - - LEQEA-10 LEQEA-9
188h WIQSA-8 WIQSA-7 WIQSA-6 WIQSA-5 WIQSA-4 WIQSA-3 WIQSA-2 WIQSA-1
189h AR.WIQSA - - - - - WIQPR WIQSA-10 WIQSA-9
18Ah WIQEA-8 WIQEA-7 WIQEA-6 WIQEA-5 WIQEA-4 WIQEA-3 WIQEA-2 WIQEA-1
18Bh AR.WIQEA - - - - - - WIQEA-10 WIQEA-9
18Ch WEQSA-8 WEQSA-7 WEQSA-6 WEQSA-5 WEQSA-4 WEQSA-3 WEQSA-2 WEQSA-1
18Dh AR.WEQSA - - - - - WEQPR WEQSA-10 WEQSA-9
18Eh WEQEA-8 WEQEA-7 WEQEA-6 WEQEA-5 WEQEA-4 WEQEA-3 WEQEA-2 WEQEA-1
18Fh AR.WEQEA - - - - - - WEQEA-10 WEQEA-9
190h LQW-8 LQW-7 LQW-6 LQW-5 LQW-4 LQW-3 LQW-2 LQW-1
191h AR.LQW - - - LQW-13 LQW-12 LQW-11 LQW-10 LQW-9
192h WIRRW2 WIRRW1 WIENC2 WIENC-1 WISPL WIENA WQPD ASQPR
193h AR.MQC - - - - - - FPEPD WQODE
194h LQ4RRW-2 LQ4RRW-1 LQ3RRW-2 LQ3RRW -1 LQ2RRW-2 LQ2RRW-1 LQ1RRW-2 LQ1RRW-1
195h AR.LQSC - - - - - - - LQSM
196h BFTOA-8 BFTOA-7 BFTOA-6 BFTOA-5 BFTOA-4 BFTOA-3 BFTOA-2 BFTOA-1
197h AR.BFTOA - - - - - - BFTOA-10 BFTOA-9
198h LQOS-8 LQOS-7 LQOS-6 LQOS-5 LQOS-4 LQOS-3 LQOS-2 LQOS-1
199h AR.LQOS LQOS-16 LQOS-15 LQOS-14 LQOS-13 LQOS-12 LQOS-11 LQOS-10 LQOS-9
19Ah LQOIM-8 LQOIM-7 LQOIM-6 LQOIM-5 LQOIM-4 LQOIM-3 LQOIM-2 LQOIM-1
19Bh AR.LQOIM LQOIM-16 LQOIM-15 LQOIM-14 LQOIM-13 LQOIM-12 LQOIM-11 LQOIM-10 LQOIM-9
19Ch LQNFS-8 LQNFS-7 LQNFS-6 LQNFS-5 LQNFS-4 LQNFS-3 LQNFS-2 LQNFS-1
19Dh AR.LQNFS LQNFS-16 LQNFS-15 LQNFS-14 LQNFS-13 LQNFS-12 LQNFS-11 LQNFS-10 LQNFS-9
19Eh LQNFIM-8 LQNFIM-7 LQNFIM-6 LQNFIM-5 LQNFIM-4 LQNFIM-3 LQNFIM-2 LQNFIM-1
19Fh AR.LQNFIM LQNFIM-16 LQNFIM-15 LQNFIM-14 LQNFIM-13 LQNFIM-12 LQNFIM-11 LQNFIM-10 LQNFIM-9
1A0h AR.WQOS WQOS-8 WQOS-7 WQOS-6 WQOS-5 WQOS-4 WQOS-3 WQOS-2 WQOS-1
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 114 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
1A1h WQOS-16 WQOS-15 WQOS-14 WQOS-13 WQOS-12 WQOS-11 WQOS-10 WQOS-9
1A2h WQOIM-8 WQOIM-7 WQOIM-6 WQOIM-5 WQOIM-4 WQOIM-3 WQOIM-2 WQOIM-1
1A3h AR.WQOIM WQOIM-16 WQOIM-15 WQOIM-14 WQOIM-13 WQOIM-12 WQOIM-11 WQOIM-10 WQOIM-9
1A4h WQNFS-8 WQNFS-7 WQNFS-6 WQNFS-5 WQNFS-4 WQNFS-3 WQNFS-2 WQNFS-1
1A5h AR.WQNFS WQNFS-16 WQNFS-15 WQNFS-14 WQNFS-13 WQNFS-12 WQNFS-11 WQNFS-10 WQNFS-9
1A6h WQNFIM-8 WQNFIM-7 WQNFIM-6 WQNFIM-5 WQNFIM-4 WQNFIM-3 WQNFIM-2 WQNFIM-1
1A7h AR.WQNFIM WQNFIM-16 WQNFIM-15 WQNFIM-14 WQNFIM-13 WQNFIM-12 WQNFIM-11 WQNFIM-10 WQNFIM-9
1A8h - - - - - - WEQOS LEQOS
1A9h AR.EQOS - - - - - - - -
1AAh - - - - - - WEQOIM LEQOIM
1ABh AR.EQOIM - - - - - - - -
1ACh - - - EQOI WQNFI WQOI LCNFI LQOI
1ADh AR.BMIS - - - - - - - -
Packet Processor 1(Encapsulator 1)
200h EIIS ELHDE ET1E ET2E ERE1 ERE0 TBRE EHCBO
201h PP.EMCR EGCM EPRTSEL EFCSAD ECFCRD EFCS3216S - EFCSB EBBYS
202h ELHD23 ELHD22 ELHD21 ELHD20 ELHD19 ELHD18 ELHD17 ELHD16
203h PP.ELHHR ELHD31 ELHD30 ELHD29 ELHD28 ELHD27 ELHD26 ELHD25 ELHD24
204h ELHD7 ELHD6 ELHD5 ELHD4 ELHD3 ELHD2 ELHD1 ELHD0
205h PP.ELHLR ELHD15 ELHD14 ELHD13 ELHD12 ELHD11 ELHD10 ELHD9 ELHD8
206h ET1D23 ET1D22 ET1D21 ET1D20 ET1D19 ET1D18 ET1D17 ET1D16
207h PP.ET1DHR ET1D31 ET1D30 ET1D29 ET1D28 ET1D27 ET1D26 ET1D25 ET1D24
208h ET1D7 ET1D6 ET1D5 ET1D4 ET1D3 ET1D2 ET1D1 ET1D0
209h PP.ET1DLR ET1D15 ET1D14 ET1D13 ET1D12 ET1D11 ET1D10 ET1D9 ET1D8
20Ah ET2D23 ET2D22 ET2D21 ET2D20 ET2D19 ET2D18 ET2D17 ET2D16
20Bh PP.ET2DHR ET2D31 ET2D30 ET2D29 ET2D28 ET2D27 ET2D26 ET2D25 ET2D24
20Ch ET2D7 ET2D6 ET2D5 ET2D4 ET2D3 ET2D2 ET2D1 ET2D0
20Dh PP.ET2DLR ET2D15 ET2D14 ET2D13 ET2D12 ET2D11 ET2D10 ET2D9 ET2D8
20Eh EEI5 EEI4 EEI3 EEI2 EEI1 EEI0 ESEI -
20Fh PP.EEIR EPLIEIE EDEIE EEFCSEIE EFCFEIE EBDEC1 EBDEC0 EEI7 EEI6
210h EFCNT7 EFCNT6 EFCNT5 EFCNT4 EFCNT3 EFCNT2 EFCNT1 EFCNT0
211h PP.EFCLSR EFCNT15 EFCNT14 EFCNT13 EFCNT12 EFCNT11 EFCNT10 EFCNT9 EFCNT8
21Eh EOPLE EOPSE - FUF FOVF FLOK FF FE
21Fh PP.ESMLS - - - -
SOPLE SOPSE COPLE COPSE
220h EOPLEIE EOPSEIE - FUFIE FOVFIE FLOKIE FFIE FEIE
221h PP.ESMIE - - - -
SOPLEIE SOPSEIE COPLEIE COPSEIE
226h EHFL7 EHFL6 EHFL5 EHFL4 EHFL3 EHFL2 EHFL1 EHFL0
227h PP.EHFL - - - - - - - -
Packet Processor 2(Encapsulator 2)
240h EIIS ELHDE ET1E ET2E ERE1 ERE0 TBRE EHCBO
241h PP.EMCR EGCM EPRTSEL EFCSAD ECFCRD
EFCS16EN - EFCSB EBBYS
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 115 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
242h ELHD23 ELHD22 ELHD21 ELHD20 ELHD19 ELHD18 ELHD17 ELHD16
243h PP.ELHHR ELHD31 ELHD30 ELHD29 ELHD28 ELHD27 ELHD26 ELHD25 ELHD24
244h ELHD7 ELHD6 ELHD5 ELHD4 ELHD3 ELHD2 ELHD1 ELHD0
245h PP.ELHLR ELHD15 ELHD14 ELHD13 ELHD12 ELHD11 ELHD10 ELHD9 ELHD8
246h ET1D23 ET1D22 ET1D21 ET1D20 ET1D19 ET1D18 ET1D17 ET1D16
247h PP.ET1DHR ET1D31 ET1D30 ET1D29 ET1D28 ET1D27 ET1D26 ET1D25 ET1D24
248h ET1D7 ET1D6 ET1D5 ET1D4 ET1D3 ET1D2 ET1D1 ET1D0
249h PP.ET1DLR ET1D15 ET1D14 ET1D13 ET1D12 ET1D11 ET1D10 ET1D9 ET1D8
24Ah ET2D23 ET2D22 ET2D21 ET2D20 ET2D19 ET2D18 ET2D17 ET2D16
24Bh PP.ET2DHR ET2D31 ET2D30 ET2D29 ET2D28 ET2D27 ET2D26 ET2D25 ET2D24
24Ch ET2D7 ET2D6 ET2D5 ET2D4 ET2D3 ET2D2 ET2D1 ET2D0
24Dh PP.ET2DLR ET2D15 ET2D14 ET2D13 ET2D12 ET2D11 ET2D10 ET2D9 ET2D8
24Eh EEI5 EEI4 EEI3 EEI2 EEI1 EEI0 ESEI -
24Fh PP.EEIR EPLIEIE EDEIE EEFCSEIE EFCFEIE EBDEC1 EBDEC0 EEI7 EEI6
250h EFCNT7 EFCNT6 EFCNT5 EFCNT4 EFCNT3 EFCNT2 EFCNT1 EFCNT0
251h PP.EFCLSR EFCNT15 EFCNT14 EFCNT13 EFCNT12 EFCNT11 EFCNT10 EFCNT9 EFCNT8
25Eh EOPLE EOPSE - FUF FOVF FLOK FF FE
25Fh PP.ESMLS - - - -
SOPLE SOPSE COPLE COPSE
260h EOPLEIE EOPSEIE - FUFIE FOVFIE FLOKIE FFIE FEIE
261h PP.ESMIE - - - -
SOPLEIE SOPSEIE COPLEIE COPSEIE
266h EHFL7 EHFL6 EHFL5 EHFL4 EHFL3 EHFL2 EHFL1 EHFL0
267h PP.EHFL - - - - - - - -
Packet Processor 3 (Encapsulator 3)
280h EIIS ELHDE ET1E ET2E ERE1 ERE0 TBRE EHCBO
281h PP.EMCR EGCM EPRTSEL EFCSAD ECFCRD
EFCS16EN - EFCSB EBBYS
282h ELHD23 ELHD22 ELHD21 ELHD20 ELHD19 ELHD18 ELHD17 ELHD16
283h PP.ELHHR ELHD31 ELHD30 ELHD29 ELHD28 ELHD27 ELHD26 ELHD25 ELHD24
284h ELHD7 ELHD6 ELHD5 ELHD4 ELHD3 ELHD2 ELHD1 ELHD0
285h PP.ELHLR ELHD15 ELHD14 ELHD13 ELHD12 ELHD11 ELHD10 ELHD9 ELHD8
286h ET1D23 ET1D22 ET1D21 ET1D20 ET1D19 ET1D18 ET1D17 ET1D16
287h PP.ET1DHR ET1D31 ET1D30 ET1D29 ET1D28 ET1D27 ET1D26 ET1D25 ET1D24
288h ET1D7 ET1D6 ET1D5 ET1D4 ET1D3 ET1D2 ET1D1 ET1D0
289h PP.ET1DLR ET1D15 ET1D14 ET1D13 ET1D12 ET1D11 ET1D10 ET1D9 ET1D8
28Ah ET2D23 ET2D22 ET2D21 ET2D20 ET2D19 ET2D18 ET2D17 ET2D16
28Bh PP.ET2DHR ET2D31 ET2D30 ET2D29 ET2D28 ET2D27 ET2D26 ET2D25 ET2D24
28Ch ET2D7 ET2D6 ET2D5 ET2D4 ET2D3 ET2D2 ET2D1 ET2D0
28Dh PP.ET2DLR ET2D15 ET2D14 ET2D13 ET2D12 ET2D11 ET2D10 ET2D9 ET2D8
28Eh EEI5 EEI4 EEI3 EEI2 EEI1 EEI0 ESEI -
28Fh PP.EEIR EPLIEIE EDEIE EEFCSEIE EFCFEIE EBDEC1 EBDEC0 EEI7 EEI6
290h EFCNT7 EFCNT6 EFCNT5 EFCNT4 EFCNT3 EFCNT2 EFCNT1 EFCNT0
291h PP.EFCLSR EFCNT15 EFCNT14 EFCNT13 EFCNT12 EFCNT11 EFCNT10 EFCNT9 EFCNT8
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 116 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
29Eh EOPLE EOPSE - FUF FOVF FLOK FF FE
29Fh PP.ESMLS - - - -
SOPLE SOPSE COPLE COPSE
2A0h EOPLEIE EOPSEIE - FUFIE FOVFIE FLOKIE FFIE FEIE
2A1h PP.ESMIE - - - -
SOPLEIE SOPSEIE COPLEIE COPSEIE
2A6h EHFL7 EHFL6 EHFL5 EHFL4 EHFL3 EHFL2 EHFL1 EHFL0
2A7h PP.EHFL - - - - - - - -
Packet Processor 4(Encapsulator 4)
2C0h EIIS ELHDE ET1E ET2E ERE1 ERE0 TBRE
EHCBO
2C1h PP.EMCR EGCM EPRTSEL EFCSAD ECFCRD EFCS16EN - EFCSB EBBYS
2C2h ELHD23 ELHD22 ELHD21 ELHD20 ELHD19 ELHD18 ELHD17 ELHD16
2C3h PP.ELHHR ELHD31 ELHD30 ELHD29 ELHD28 ELHD27 ELHD26 ELHD25 ELHD24
2C4h ELHD7 ELHD6 ELHD5 ELHD4 ELHD3 ELHD2 ELHD1 ELHD0
2C5h PP.ELHLR ELHD15 ELHD14 ELHD13 ELHD12 ELHD11 ELHD10 ELHD9 ELHD8
2C6h ET1D23 ET1D22 ET1D21 ET1D20 ET1D19 ET1D18 ET1D17 ET1D16
2C7h PP.ET1DHR ET1D31 ET1D30 ET1D29 ET1D28 ET1D27 ET1D26 ET1D25 ET1D24
2C8h ET1D7 ET1D6 ET1D5 ET1D4 ET1D3 ET1D2 ET1D1 ET1D0
2C9h PP.ET1DLR ET1D15 ET1D14 ET1D13 ET1D12 ET1D11 ET1D10 ET1D9 ET1D8
2CAh ET2D23 ET2D22 ET2D21 ET2D20 ET2D19 ET2D18 ET2D17 ET2D16
2CBh PP.ET2DHR ET2D31 ET2D30 ET2D29 ET2D28 ET2D27 ET2D26 ET2D25 ET2D24
2CCh ET2D7 ET2D6 ET2D5 ET2D4 ET2D3 ET2D2 ET2D1 ET2D0
2CDh PP.ET2DLR ET2D15 ET2D14 ET2D13 ET2D12 ET2D11 ET2D10 ET2D9 ET2D8
2CEh EEI5 EEI4 EEI3 EEI2 EEI1 EEI0 ESEI -
2CFh PP.EEIR EPLIEIE EDEIE EEFCSEIE EFCFEIE EBDEC1 EBDEC0 EEI7 EEI6
2D0h EFCNT7 EFCNT6 EFCNT5 EFCNT4 EFCNT3 EFCNT2 EFCNT1 EFCNT0
2D1h PP.EFCLSR EFCNT15 EFCNT14 EFCNT13 EFCNT12 EFCNT11 EFCNT10 EFCNT9 EFCNT8
2DEh EOPLE EOPSE - FUF FOVF FLOK FF FE
2DFh PP.ESMLS - - - -
SOPLE SOPSE COPLE COPSE
2E0h EOPLEIE EOPSEIE - FUFIE FOVFIE FLOKIE FFIE FEIE
2E1h PP.ESMIE - - - -
SOPLEIE SOPSEIE COPLEIE COPSEIE
2E6h EHFL7 EHFL6 EHFL5 EHFL4 EHFL3 EHFL2 EHFL1 EHFL0
2E7h PP.EHFL - - - - - - - -
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 117 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
Packet Processor 1(Decapsulator 1)
300h DR1E DR2E DR3E DAE1 DAE0 DGSC DHRAE DHCBO
301h PP.DMCR DGCM DPRTSEL DFCSAD DCFCRD
DFCS16EN - DBBS RBRE
302h D1D7D D1D6D D1D5D D1D4D D1D3D D1D2D D1D1D D1D0D
303h PP.DA1DR D1D15D D1D14D D1D13D D1D12D D1D11D D1D10D D1D9D D1D8D
304h D2D7D D2D6D D2D5D D2D4D D2D3D D2D2D D2D1D D2D0D
305h PP.DA2DR D2D15D D2D14D D2D13D D2D12D D2D11D D2D10D D2D9D D2D8D
306h D3D7D D3D6D D3D5D D3D4D D3D3D D3D2D D3D1D D3D0D
307h PP.DA3DR D3D15D D3D14D D3D13D D3D12D D3D11D D3D10D D3D9D D3D8D
308h D4D7D D4D6D D4D5D D4D4D D4D3D D4D2D D4D1D D4D0D
309h PP.DA4DR D4D15D D4D14D D4D13D D4D12D D4D11D D4D10D D4D9D D4D8D
30Ah D5D7D D5D6D D5D5D D5D4D D5D3D D5D2D D5D1D D5D0D
30Bh PP.DA5DR D5D15D D5D14D D5D13D D5D12D D5D11D D5D10D D5D9D D5D8D
30Ch D6D7D D6D6D D6D5D D6D4D D6D3D D6D2D D6D1D D6D0D
30Dh PP.DA6DR D6D15D D6D14D D6D13D D6D12D D6D11D D6D10D D6D9D D6D8D
30Eh D7D7D D7D6D D7D5D D7D4D D7D3D D7D2D D7D1D D7D0D
30Fh PP.DA7DR D7D15D D7D14D D7D13D D7D12D D7D11D D7D10D D7D9D D7D8D
310h D8D7D D8D6D D8D5D D8D4D D8D3D D8D2D D8D1D D8D0D
311h PP.DA8DR D8D15D D8D14D D8D13D D8D12D D8D11D D8D10D D8D9D D8D8D
312h D9D7D D9D6D D9D5D D9D4D D9D3D D9D2D D9D1D D9D0D
313h PP.DA9DR D9D15D D9D14D D9D13D D9D12D D9D11D D9D10D D9D9D D9D8D
314h DFUR DFOVF - - - - - -
315h PP.DMLSR DGSLS DGSLLS DGLCLS DGLCSLS DFFLS - DCHECFLS DTCHECFLS
316h DFURIE DFOVFIE - - - - - -
317h PP.DMLSIE DGSIE DGSLIE DGLCIE DGLCSIE DFFIE - DCHECFIE DTCHECFIE
318h DGPLC7 DGPLC6 DGPLC5 DGPLC4 DGPLC3 DGPLC2 DGPLC1 DGPLC0
319h PP.DGPLC DGPLC15 DGPLC14 DGPLC13 DGPLC12 DGPLC11 DGPLC10 DGPLC9 DGPLC8
31Ah DBPLC7 DBPLC6 DBPLC5 DBPLC4 DBPLC3 DBPLC2 DBPLC1 DBPLC0
31Bh PP.DGBLC DBPLC15 DBPLC14 DBPLC13 DBPLC12 DBPLC11 DBPLC10 DBPLC9 DBPLC8
31Ch - - - - - DGSYNC DGPSYNC DGHUNT
31Dh PP.DSSR - - - - - - - -
31Eh DHSR23 DHSR22 DHSR21 DHSR20 DHSR19 DHSR18 DHSR17 DHSR16
31Fh PP.DHHSR DHSR31 DHSR30 DHSR29 DHSR28 DHSR27 DHSR26 DHSR25 DHSR24
320h DHSR7 DHSR6 DHSR5 DHSR4 DHSR3 DHSR2 DHSR1 DHSR0
321h PP.DHLSR DHSR15 DHSR14 DHSR13 DHSR12 DHSR11 DHSR10 DHSR9 DHSR8
322h - - - DEM DSMRE DEPRE DFSRPWC
323h PP.DFSCR - - - - - - - -
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 118 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
Packet Processor 2 (Decapsulator 2)
340h DR1E DR2E DR3E DAE1 DAE0 DGSC DHRAE DHCBO
341h PP.DMCR DGCM DPRTSEL DFCSAD DCFCRD
DFCS16EN - DBBS RBRE
342h D1D7D D1D6D D1D5D D1D4D D1D3D D1D2D D1D1D D1D0D
343h PP.DA1DR D1D15D D1D14D D1D13D D1D12D D1D11D D1D10D D1D9D D1D8D
344h D2D7D D2D6D D2D5D D2D4D D2D3D D2D2D D2D1D D2D0D
345h PP.DA2DR D2D15D D2D14D D2D13D D2D12D D2D11D D2D10D D2D9D D2D8D
346h D3D7D D3D6D D3D5D D3D4D D3D3D D3D2D D3D1D D3D0D
347h PP.DA3DR D3D15D D3D14D D3D13D D3D12D D3D11D D3D10D D3D9D D3D8D
348h D4D7D D4D6D D4D5D D4D4D D4D3D D4D2D D4D1D D4D0D
349h PP.DA4DR D4D15D D4D14D D4D13D D4D12D D4D11D D4D10D D4D9D D4D8D
34Ah D5D7D D5D6D D5D5D D5D4D D5D3D D5D2D D5D1D D5D0D
34Bh PP.DA5DR D5D15D D5D14D D5D13D D5D12D D5D11D D5D10D D5D9D D5D8D
34Ch D6D7D D6D6D D6D5D D6D4D D6D3D D6D2D D6D1D D6D0D
34Dh PP.DA6DR D6D15D D6D14D D6D13D D6D12D D6D11D D6D10D D6D9D D6D8D
34Eh D7D7D D7D6D D7D5D D7D4D D7D3D D7D2D D7D1D D7D0D
34Fh PP.DA7DR D7D15D D7D14D D7D13D D7D12D D7D11D D7D10D D7D9D D7D8D
350h D8D7D D8D6D D8D5D D8D4D D8D3D D8D2D D8D1D D8D0D
351h PP.DA8DR D8D15D D8D14D D8D13D D8D12D D8D11D D8D10D D8D9D D8D8D
352h D9D7D D9D6D D9D5D D9D4D D9D3D D9D2D D9D1D D9D0D
353h PP.DA9DR D9D15D D9D14D D9D13D D9D12D D9D11D D9D10D D9D9D D9D8D
354h DFUR DFOVF - - - - - -
355h PP.DMLSR DGSLS DGSLLS DGLCLS DGLCSLS DFFLS - DCHECFLS DTCHECFLS
356h DFURIE DFOVFIE - - - - - -
357h PP.DMLSIE DGSIE DGSLIE DGLCIE DGLCSIE DFFIE - DCHECFI
E DTCHECFIE
358h DGPLC7 DGPLC6 DGPLC5 DGPLC4 DGPLC3 DGPLC2 DGPLC1 DGPLC0
359h PP.DGPLC DGPLC15 DGPLC14 DGPLC13 DGPLC12 DGPLC11 DGPLC10 DGPLC9 DGPLC8
35Ah DBPLC7 DBPLC6 DBPLC5 DBPLC4 DBPLC3 DBPLC2 DBPLC1 DBPLC0
35Bh PP.DGBLC DBPLC15 DBPLC14 DBPLC13 DBPLC12 DBPLC11 DBPLC10 DBPLC9 DBPLC8
35Ch - - - - - DGSYNC DGPSYNC DGHUNT
35Dh PP.DSSR - - - - - - - -
35Eh DHSR23 DHSR22 DHSR21 DHSR20 DHSR19 DHSR18 DHSR17 DHSR16
35Fh PP.DHHSR DHSR31 DHSR30 DHSR29 DHSR28 DHSR27 DHSR26 DHSR25 DHSR24
360h DHSR7 DHSR6 DHSR5 DHSR4 DHSR3 DHSR2 DHSR1 DHSR0
361h PP.DHLSR DHSR15 DHSR14 DHSR13 DHSR12 DHSR11 DHSR10 DHSR9 DHSR8
362h - - - - DEM DSMRE DEPRE DFSRPWC
363h PP.DFSCR - - - - - - - -
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 119 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
Packet Processor 3(Decapsulator 3)
380h DR1E DR2E DR3E DAE1 DAE0 DGSC DHRAE DHCBO
381h PP.DMCR DGCM DPRTSEL DFCSAD DCFCRD DFCS16EN - DBBS RBRE
382h D1D7D D1D6D D1D5D D1D4D D1D3D D1D2D D1D1D D1D0D
383h PP.DA1DR D1D15D D1D14D D1D13D D1D12D D1D11D D1D10D D1D9D D1D8D
384h D2D7D D2D6D D2D5D D2D4D D2D3D D2D2D D2D1D D2D0D
385h PP.DA2DR D2D15D D2D14D D2D13D D2D12D D2D11D D2D10D D2D9D D2D8D
386h D3D7D D3D6D D3D5D D3D4D D3D3D D3D2D D3D1D D3D0D
387h PP.DA3DR D3D15D D3D14D D3D13D D3D12D D3D11D D3D10D D3D9D D3D8D
388h D4D7D D4D6D D4D5D D4D4D D4D3D D4D2D D4D1D D4D0D
389h PP.DA4DR D4D15D D4D14D D4D13D D4D12D D4D11D D4D10D D4D9D D4D8D
38Ah D5D7D D5D6D D5D5D D5D4D D5D3D D5D2D D5D1D D5D0D
38Bh PP.DA5DR D5D15D D5D14D D5D13D D5D12D D5D11D D5D10D D5D9D D5D8D
38Ch D6D7D D6D6D D6D5D D6D4D D6D3D D6D2D D6D1D D6D0D
38Dh PP.DA6DR D6D15D D6D14D D6D13D D6D12D D6D11D D6D10D D6D9D D6D8D
38Eh D7D7D D7D6D D7D5D D7D4D D7D3D D7D2D D7D1D D7D0D
38Fh PP.DA7DR D7D15D D7D14D D7D13D D7D12D D7D11D D7D10D D7D9D D7D8D
390h D8D7D D8D6D D8D5D D8D4D D8D3D D8D2D D8D1D D8D0D
391h PP.DA8DR D8D15D D8D14D D8D13D D8D12D D8D11D D8D10D D8D9D D8D8D
392h D9D7D D9D6D D9D5D D9D4D D9D3D D9D2D D9D1D D9D0D
393h PP.DA9DR D9D15D D9D14D D9D13D D9D12D D9D11D D9D10D D9D9D D9D8D
394h DFUR DFOVF - - - - - -
395h PP.DMLSR DGSLS DGSLLS DGLCLS DGLCSLS DFFLS - DCHECFLS DTCHECFLS
396h DFURIE DFOVFIE - - - - - -
397h PP.DMLSIE DGSIE DGSLIE DGLCIE DGLCSIE DFFIE - DCHECFI
E DTCHECFIE
398h DGPLC7 DGPLC6 DGPLC5 DGPLC4 DGPLC3 DGPLC2 DGPLC1 DGPLC0
399h PP.DGPLC DGPLC15 DGPLC14 DGPLC13 DGPLC12 DGPLC11 DGPLC10 DGPLC9 DGPLC8
39Ah DBPLC7 DBPLC6 DBPLC5 DBPLC4 DBPLC3 DBPLC2 DBPLC1 DBPLC0
39Bh PP.DGBLC DBPLC15 DBPLC14 DBPLC13 DBPLC12 DBPLC11 DBPLC10 DBPLC9 DBPLC8
39Ch - - - - - DGSYNC DGPSYNC DGHUNT
39Dh PP.DSSR - - - - - - - -
39Eh DHSR23 DHSR22 DHSR21 DHSR20 DHSR19 DHSR18 DHSR17 DHSR16
39Fh PP.DHHSR DHSR31 DHSR30 DHSR29 DHSR28 DHSR27 DHSR26 DHSR25 DHSR24
3A0h DHSR7 DHSR6 DHSR5 DHSR4 DHSR3 DHSR2 DHSR1 DHSR0
3A1h PP.DHLSR DHSR15 DHSR14 DHSR13 DHSR12 DHSR11 DHSR10 DHSR9 DHSR8
3A2h - - - - DEM DSMRE DEPRE DFSRPWC
3A3h PP.DFSCR - - - - - - - -
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 120 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
Packet Processor 4(Decapsulator 4)
3C0h DR1E DR2E DR3E DAE1 DAE0 DGSC DHRAE DHCBO
3C1h PP.DMCR DGCM DPRTSEL DFCSAD DCFCRD
DFCS16EN - DBBS RBRE
3C2h D1D7D D1D6D D1D5D D1D4D D1D3D D1D2D D1D1D D1D0D
3C3h PP.DA1DR D1D15D D1D14D D1D13D D1D12D D1D11D D1D10D D1D9D D1D8D
3C4h D2D7D D2D6D D2D5D D2D4D D2D3D D2D2D D2D1D D2D0D
3C5h PP.DA2DR D2D15D D2D14D D2D13D D2D12D D2D11D D2D10D D2D9D D2D8D
3C6h D3D7D D3D6D D3D5D D3D4D D3D3D D3D2D D3D1D D3D0D
3C7h PP.DA3DR D3D15D D3D14D D3D13D D3D12D D3D11D D3D10D D3D9D D3D8D
3C8h D4D7D D4D6D D4D5D D4D4D D4D3D D4D2D D4D1D D4D0D
3C9h PP.DA4DR D4D15D D4D14D D4D13D D4D12D D4D11D D4D10D D4D9D D4D8D
3CAh D5D7D D5D6D D5D5D D5D4D D5D3D D5D2D D5D1D D5D0D
3CBh PP.DA5DR D5D15D D5D14D D5D13D D5D12D D5D11D D5D10D D5D9D D5D8D
3CCh D6D7D D6D6D D6D5D D6D4D D6D3D D6D2D D6D1D D6D0D
3CDh PP.DA6DR D6D15D D6D14D D6D13D D6D12D D6D11D D6D10D D6D9D D6D8D
3CEh D7D7D D7D6D D7D5D D7D4D D7D3D D7D2D D7D1D D7D0D
3CFh PP.DA7DR D7D15D D7D14D D7D13D D7D12D D7D11D D7D10D D7D9D D7D8D
3D0h D8D7D D8D6D D8D5D D8D4D D8D3D D8D2D D8D1D D8D0D
3D1h PP.DA8DR D8D15D D8D14D D8D13D D8D12D D8D11D D8D10D D8D9D D8D8D
3D2h D9D7D D9D6D D9D5D D9D4D D9D3D D9D2D D9D1D D9D0D
3D3h PP.DA9DR D9D15D D9D14D D9D13D D9D12D D9D11D D9D10D D9D9D D9D8D
3D4h DFUR DFOVF - - - - - -
3D5h PP.DMLSR DGSLS DGSLLS DGLCLS DGLCSLS DFFLS - DCHECFLS DTCHECFLS
3D6h DFURIE DFOVFIE - - - - - -
3D7h PP.DMLSIE DGSIE DGSLIE DGLCIE DGLCSIE DFFIE - DCHECFI
E DTCHECFIE
3D8h DGPLC7 DGPLC6 DGPLC5 DGPLC4 DGPLC3 DGPLC2 DGPLC1 DGPLC0
3D9h PP.DGPLC DGPLC15 DGPLC14 DGPLC13 DGPLC12 DGPLC11 DGPLC10 DGPLC9 DGPLC8
3DAh DBPLC7 DBPLC6 DBPLC5 DBPLC4 DBPLC3 DBPLC2 DBPLC1 DBPLC0
3DBh PP.DGBLC DBPLC15 DBPLC14 DBPLC13 DBPLC12 DBPLC11 DBPLC10 DBPLC9 DBPLC8
3DCh - - - - - DGSYNC DGPSYNC DGHUNT
3DDh PP.DSSR - - - - - - - -
3DEh DHSR23 DHSR22 DHSR21 DHSR20 DHSR19 DHSR18 DHSR17 DHSR16
3DFh PP.DHHSR DHSR31 DHSR30 DHSR29 DHSR28 DHSR27 DHSR26 DHSR25 DHSR24
3E0h DHSR7 DHSR6 DHSR5 DHSR4 DHSR3 DHSR2 DHSR1 DHSR0
3E1h PP.DHLSR DHSR15 DHSR14 DHSR13 DHSR12 DHSR11 DHSR10 DHSR9 DHSR8
3E2h - - - - DEM DSMRE DEPRE DFSRPWC
3E3h PP.DFSCR - - - - - - - -
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 121 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
VCAT / LCAS TRANSMIT REGISTERS
400h V4FM1 V4FM0 V3FM1 V3FM0 V2FM1 V2FM0 V1FM1 V1FM0
401h VCAT.TCR1 - - - - TGIDBC TGIDM TLOAD TVBLKEN
402h TV2MC3 TV2MC2 TV2MC1 TV2MC0 TV1MC3 TV1MC2 TV1MC1 TV1MC0
403h VCAT.TCR2 TV4MC3 TV4MC2 TV4MC1 TV4MC0 TV3MC3 TV3MC2 TV3MC1 TV3MC0
406h - - - - RSACK4 RSACK3 RSACK2 RSACK1
407h VCAT.TLCR1 - - - - - - - -
408h - - - - ATMSTD4 ATMSTD3 ATMSTD2 ATMSTD1
409h VCAT.TLCR2 - - - - - - - -
40Ah V1MST7 V1MST6 V1MST5 V1MST4 V1MST3 V1MST2 V1MST1 V1MST0
40Bh VCAT.TLCR3 V1MST15 V1MST14 V1MST13 V1MST12 V1MST11 V1MST10 V1MST9 V1MST8
40Ch V2MST7 V2MST6 V2MST5 V2MST4 V2MST3 V2MST2 V2MST1 V2MST0
40Dh VCAT.TLCR4 V2MST15 V2MST14 V2MST13 V2MST12 V2MST11 V2MST10 V2MST9 V2MST8
40Eh V3MST7 V3MST6 V3MST5 V3MST4 V3MST3 V3MST2 V3MST1 V3MST0
40Fh VCAT.TLCR5 V3MST15 V3MST14 V3MST13 V3MST12 V3MST11 V3MST10 V3MST9 V3MST8
410h V4MST7 V4MST6 V4MST5 V4MST4 V4MST3 V4MST2 V4MST1 V4MST0
411h VCAT.TLCR6 V4MST15 V4MST14 V4MST13 V4MST12 V4MST11 V4MST10 V4MST9 V4MST8
420h - - - TNVCGC TVGS2 TVGS1 TVGS0 TPA
421h VCAT.TCR3(1) - - - - TVSQ3 TVSQ2 TVSQ1 TVSQ0
422h - - - TNVCGC TVGS2 TVGS1 TVGS0 TPA
423h VCAT.TCR3(2) - - - - TVSQ3 TVSQ2 TVSQ1 TVSQ0
424h - - - TNVCGC TVGS2 TVGS1 TVGS0 TPA
425h VCAT.TCR3(3) - - - - TVSQ3 TVSQ2 TVSQ1 TVSQ0
426h - - - TNVCGC TVGS2 TVGS1 TVGS0 TPA
427h VCAT.TCR3(4) - - - - TVSQ3 TVSQ2 TVSQ1 TVSQ0
428h - - - TNVCGC TVGS2 TVGS1 TVGS0 TPA
429h VCAT.TCR3(5) - - - - TVSQ3 TVSQ2 TVSQ1 TVSQ0
42Ah - - - TNVCGC TVGS2 TVGS1 TVGS0 TPA
42Bh VCAT.TCR3(6) - - - - TVSQ3 TVSQ2 TVSQ1 TVSQ0
42Ch - - - TNVCGC TVGS2 TVGS1 TVGS0 TPA
42Dh VCAT.TCR3(7) - - - - TVSQ3 TVSQ2 TVSQ1 TVSQ0
42Eh - - - TNVCGC TVGS2 TVGS1 TVGS0 TPA
42Fh VCAT.TCR3(8) - - - - TVSQ3 TVSQ2 TVSQ1 TVSQ0
430h - - - TNVCGC TVGS2 TVGS1 TVGS0 TPA
431h VCAT.TCR3(9) - - - - TVSQ3 TVSQ2 TVSQ1 TVSQ0
432h - - - TNVCGC TVGS2 TVGS1 TVGS0 TPA
433h VCAT.TCR3(10) - - - - TVSQ3 TVSQ2 TVSQ1 TVSQ0
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 122 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
434h - - - TNVCGC TVGS2 TVGS1 TVGS0 TPA
435h VCAT.TCR3(11) - - - - TVSQ3 TVSQ2 TVSQ1 TVSQ0
436h - - - TNVCGC TVGS2 TVGS1 TVGS0 TPA
437h VCAT.TCR3(12) - - - - TVSQ3 TVSQ2 TVSQ1 TVSQ0
438h - - - TNVCGC TVGS2 TVGS1 TVGS0 TPA
439h VCAT.TCR3(13) - - - - TVSQ3 TVSQ2 TVSQ1 TVSQ0
43Ah - - - TNVCGC TVGS2 TVGS1 TVGS0 TPA
43Bh VCAT.TCR3(14) - - - - TVSQ3 TVSQ2 TVSQ1 TVSQ0
43Ch - - - TNVCGC TVGS2 TVGS1 TVGS0 TPA
43Dh VCAT.TCR3(15) - - - - TVSQ3 TVSQ2 TVSQ1 TVSQ0
43Eh - - - TNVCGC TVGS2 TVGS1 TVGS0 TPA
43Fh VCAT.TCR3(16) - - - - TVSQ3 TVSQ2 TVSQ1 TVSQ0
440h - - - - CTRL3 CTRL2 CTRL1 CTRL0
441h VCAT.TLCR8(1) - - - - - - - -
442h - - - - CTRL3 CTRL2 CTRL1 CTRL0
443h VCAT.TLCR8(2) - - - - - - - -
444h - - - - CTRL3 CTRL2 CTRL1 CTRL0
445h VCAT.TLCR8(3) - - - - - - - -
446h - - - - CTRL3 CTRL2 CTRL1 CTRL0
447h VCAT.TLCR8(4) - - - - - - - -
448h - - - - CTRL3 CTRL2 CTRL1 CTRL0
449h VCAT.TLCR8(5) - - - - - - - -
44Ah - - - - CTRL3 CTRL2 CTRL1 CTRL0
44Bh VCAT.TLCR8(6) - - - - - - - -
44Ch - - - - CTRL3 CTRL2 CTRL1 CTRL0
44Dh VCAT.TLCR8(7) - - - - - - - -
44Eh - - - - CTRL3 CTRL2 CTRL1 CTRL0
44Fh VCAT.TLCR8(8) - - - - - - - -
450h - - - - CTRL3 CTRL2 CTRL1 CTRL0
451h VCAT.TLCR8(9) - - - - - - - -
452h - - - - CTRL3 CTRL2 CTRL1 CTRL0
453h VCAT.TLCR8(10) - - - - - - - -
454h - - - - CTRL3 CTRL2 CTRL1 CTRL0
455h VCAT.TLCR8(11) - - - - - - - -
456h - - - - CTRL3 CTRL2 CTRL1 CTRL0
457h VCAT.TLCR8(12) - - - - - - - -
458h - - - - CTRL3 CTRL2 CTRL1 CTRL0
459h VCAT.TLCR8(13) - - - - - - - -
45Ah - - - - CTRL3 CTRL2 CTRL1 CTRL0
45Bh VCAT.TLCR8(14) - - - - - - - -
45Ch VCAT.TLCR8(15) - - - - CTRL3 CTRL2 CTRL1 CTRL0
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 123 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
45Dh - - - - - - - -
45Eh - - - - CTRL3 CTRL2 CTRL1 CTRL0
45Fh VCAT.TLCR8(16) - - - - - - - -
480h TGID7 TGID6 TGID5 TGID4 TGID3 TGID2 TGID1 TGID0
481h VCAT.TCR4(1) TGID15 TGID14 TGID13 TGID12 TGID11 TGID10 TGID9 TGID8
482h TGID7 TGID6 TGID5 TGID4 TGID3 TGID2 TGID1 TGID0
483h VCAT.TCR4(2) TGID15 TGID14 TGID13 TGID12 TGID11 TGID10 TGID9 TGID8
484h TGID7 TGID6 TGID5 TGID4 TGID3 TGID2 TGID1 TGID0
485h VCAT.TCR4(3) TGID15 TGID14 TGID13 TGID12 TGID11 TGID10 TGID9 TGID8
486h TGID7 TGID6 TGID5 TGID4 TGID3 TGID2 TGID1 TGID0
487h VCAT.TCR4(4) TGID15 TGID14 TGID13 TGID12 TGID11 TGID10 TGID9 TGID8
VCAT / LCAS RECEIVE REGISTERS
500h - - SVINTD T3T1WG4 T3T1WG3 T3T1WG2 T3T1WG1 RVBLKEN
501h VCAT.RCR1 - - - RVEN4 RGIDBC RVEN3 RVEN2 RVEN1
502h LE4 LE3 LE2 LE1 REALIGN4 REALIGN3 REALIGN2 REALIGN1
503h VCAT.RCR2 - - - - - - - -
504h RV2MC3 RV2MC2 RV2MC1 RV2MC0 RV1MC3 RV1MC2 RV1MC1 RV1MC0
505h VCAT.RCR3 RV4MC3 RV4MC2 RV4MC1 RV4MC0 RV3MC3 RV3MC2 RV3MC1 RV3MC0
508h PISR8 PISR7 PISR6 PISR5 PISR4 PISR3 PISR2 PISR1
509h VCAT.RISR PISR16 PISR15 PISR14 PISR13 PISR12 PISR11 PISR10 PISR9
50Ah V1MST7 V1MST6 V1MST5 V1MST4 V1MST3 V1MST2 V1MST1 V1MST0
50Bh VCAT.RLSR1 V1MST15 V1MST14 V1MST13 V1MST12 V1MST11 V1MST10 V1MST9 V1MST8
50Ch V2MST7 V2MST6 V2MST5 V2MST4 V2MST3 V2MST2 V2MST1 V2MST0
50Dh VCAT.RLSR2 V2MST15 V2MST14 V2MST13 V2MST12 V2MST11 V2MST10 V2MST9 V2MST8
50Eh V3MST7 V3MST6 V3MST5 V3MST4 V3MST3 V3MST2 V3MST1 V3MST0
50Fh VCAT.RLSR3 V3MST15 V3MST14 V3MST13 V3MST12 V3MST11 V3MST10 V3MST9 V3MST8
510h V4MST7 V4MST6 V4MST5 V4MST4 V4MST3 V4MST2 V4MST1 V4MST0
511h VCAT.RLSR4 V4MST15 V4MST14 V4MST13 V4MST12 V4MST11 V4MST10 V4MST9 V4MST8
512h DDE4 DDE3 DDE2 DDE1
REALIGNL4 REALIGNL3 REALIGNL2 REALIGNL1
513h VCAT.RRLSR - - - - VMSTC4 VMSTC3 VMSTC2 VMSTC1
514h VDDEIE4 VDDEIE3 VDDEIE2 VDDEIE1
REALIGNIE4 REALIGNIE3 REALIGNIE2 REALIGNIE1
515h VCAT.RRSIE - - - - VMSTCIE4 VMSTCIE3 VMSTCIE2 VMSTCIE1
530h RFM - - RNVCGC RVGS2 RVGS1 RVGS0 RPA
531h VCAT.RCR4(1) RFRST - - - - - - -
532h RFM - - RNVCGC RVGS2 RVGS1 RVGS0 RPA
533h VCAT.RCR4(2) RFRST - - - - - - -
534h RFM - - RNVCGC RVGS2 RVGS1 RVGS0 RPA
535h VCAT.RCR4(3) RFRST - - - - - - -
536h RFM - - RNVCGC RVGS2 RVGS1 RVGS0 RPA
537h VCAT.RCR4(4) RFRST - - - - - - -
538h VCAT.RCR4(5) RFM - - RNVCGC RVGS2 RVGS1 RVGS0 RPA
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 124 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
539h RFRST - - - - - - -
53Ah RFM - - RNVCGC RVGS2 RVGS1 RVGS0 RPA
53Bh VCAT.RCR4(6) RFRST - - - - - - -
53Ch RFM - - RNVCGC RVGS2 RVGS1 RVGS0 RPA
53Dh VCAT.RCR4(7) RFRST - - - - - - -
53Eh RFM - - RNVCGC RVGS2 RVGS1 RVGS0 RPA
53Fh VCAT.RCR4(8) RFRST - - - - - - -
540h RFM - - RNVCGC RVGS2 RVGS1 RVGS0 RPA
541h VCAT.RCR4(9) RFRST - - - - - - -
542h RFM - - RNVCGC RVGS2 RVGS1 RVGS0 RPA
543h VCAT.RCR4(10) RFRST - - - - - - -
544h RFM - - RNVCGC RVGS2 RVGS1 RVGS0 RPA
545h VCAT.RCR4(11) RFRST - - - - - - -
546h RFM - - RNVCGC RVGS2 RVGS1 RVGS0 RPA
547h VCAT.RCR4(12) RFRST - - - - - - -
548h RFM - - RNVCGC RVGS2 RVGS1 RVGS0 RPA
549h VCAT.RCR4(13) RFRST - - - - - - -
54Ah RFM - - RNVCGC RVGS2 RVGS1 RVGS0 RPA
54Bh VCAT.RCR4(14) RFRST - - - - - - -
54Ch RFM - - RNVCGC RVGS2 RVGS1 RVGS0 RPA
54Dh VCAT.RCR4(15) RFRST - - - - - - -
54Eh RFM - - RNVCGC RVGS2 RVGS1 RVGS0 RPA
54Fh VCAT.RCR4(16) RFRST - - - - - - -
550h - - - RSACK - - - LOM
551h VCAT.RSR1(1) RVSQ3 RVSQ2 RVSQ1 RVSQ0 CTRL3 CTRL2 CTRL1 CTRL0
552h - - - RSACK - - - LOM
553h VCAT.RSR1(2) RVSQ3 RVSQ2 RVSQ1 RVSQ0 CTRL3 CTRL2 CTRL1 CTRL0
554h - - - RSACK - - - LOM
555h VCAT.RSR1(3) RVSQ3 RVSQ2 RVSQ1 RVSQ0 CTRL3 CTRL2 CTRL1 CTRL0
556h - - - RSACK - - - LOM
557h VCAT.RSR1(4) RVSQ3 RVSQ2 RVSQ1 RVSQ0 CTRL3 CTRL2 CTRL1 CTRL0
558h - - - RSACK - - - LOM
559h VCAT.RSR1(5) RVSQ3 RVSQ2 RVSQ1 RVSQ0 CTRL3 CTRL2 CTRL1 CTRL0
55Ah - - - RSACK - - - LOM
55Bh VCAT.RSR1(6) RVSQ3 RVSQ2 RVSQ1 RVSQ0 CTRL3 CTRL2 CTRL1 CTRL0
55Ch - - - RSACK - - - LOM
55Dh VCAT.RSR1(7) RVSQ3 RVSQ2 RVSQ1 RVSQ0 CTRL3 CTRL2 CTRL1 CTRL0
55Eh - - - RSACK - - - LOM
55Fh VCAT.RSR1(8) RVSQ3 RVSQ2 RVSQ1 RVSQ0 CTRL3 CTRL2 CTRL1 CTRL0
560h - - - RSACK - - - LOM
561h VCAT.RSR1(9) RVSQ3 RVSQ2 RVSQ1 RVSQ0 CTRL3 CTRL2 CTRL1 CTRL0
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 125 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
562h - - - RSACK - - - LOM
563h VCAT.RSR1(10) RVSQ3 RVSQ2 RVSQ1 RVSQ0 CTRL3 CTRL2 CTRL1 CTRL0
564h - - - RSACK - - - LOM
565h VCAT.RSR1(11) RVSQ3 RVSQ2 RVSQ1 RVSQ0 CTRL3 CTRL2 CTRL1 CTRL0
566h - - - RSACK - - - LOM
567h VCAT.RSR1(12) RVSQ3 RVSQ2 RVSQ1 RVSQ0 CTRL3 CTRL2 CTRL1 CTRL0
568h - - - RSACK - - - LOM
569h VCAT.RSR1(13) RVSQ3 RVSQ2 RVSQ1 RVSQ0 CTRL3 CTRL2 CTRL1 CTRL0
56Ah - - - RSACK - - - LOM
56Bh VCAT.RSR1(14) RVSQ3 RVSQ2 RVSQ1 RVSQ0 CTRL3 CTRL2 CTRL1 CTRL0
56Ch - - - RSACK - - - LOM
56Dh VCAT.RSR1(15) RVSQ3 RVSQ2 RVSQ1 RVSQ0 CTRL3 CTRL2 CTRL1 CTRL0
56Eh - - - RSACK - - - LOM
56Fh VCAT.RSR1(16) RVSQ3 RVSQ2 RVSQ1 RVSQ0 CTRL3 CTRL2 CTRL1 CTRL0
570h - - - - CRCE GID SEMF EMF
571h VCAT.RSR2(1) - - - - - - - -
572h - - - - CRCE GID SEMF EMF
573h VCAT.RSR2(2) - - - - - - - -
574h - - - - CRCE GID SEMF EMF
575h VCAT.RSR2(3) - - - - - - - -
576h - - - - CRCE GID SEMF EMF
577h VCAT.RSR2(4) - - - - - - - -
578h - - - - CRCE GID SEMF EMF
579h VCAT.RSR2(5) - - - - - - - -
57Ah - - - - CRCE GID SEMF EMF
57Bh VCAT.RSR2(6) - - - - - - - -
57Ch - - - - CRCE GID SEMF EMF
57Dh VCAT.RSR2(7) - - - - - - - -
57Eh - - - - CRCE GID SEMF EMF
57Fh VCAT.RSR2(8) - - - - - - - -
580h - - - - CRCE GID SEMF EMF
581h VCAT.RSR2(9) - - - - - - - -
582h - - - - CRCE GID SEMF EMF
583h VCAT.RSR2(10) - - - - - - - -
584h - - - - CRCE GID SEMF EMF
585h VCAT.RSR2(11) - - - - - - - -
586h - - - - CRCE GID SEMF EMF
587h VCAT.RSR2(12) - - - - - - - -
588h - - - - CRCE GID SEMF EMF
589h VCAT.RSR2(13) - - - - - - - -
58Ah VCAT.RSR2(14) - - - - CRCE GID SEMF EMF
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 126 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
58Bh - - - - - - - -
58Ch - - - - CRCE GID SEMF EMF
58Dh VCAT.RSR2(15) - - - - - - - -
58Eh - - - - CRCE GID SEMF EMF
58Fh VCAT.RSR2(16) - - - - - - - -
590h - - - RSACKL SQL CTRL - LOML
591h
VCAT.RSLSR(1)
- - - - - - - -
592h - - - RSACKL SQL CTRL - LOML
593h
VCAT.RSLSR(2)
- - - - - - - -
594h - - - RSACKL SQL CTRL - LOML
595h
VCAT.RSLSR(3)
- - - - - - - -
596h - - - RSACKL SQL CTRL - LOML
597h
VCAT.RSLSR(4)
- - - - - - - -
598h - - - RSACKL SQL CTRL - LOML
599h
VCAT.RSLSR(5)
- - - - - - - -
59Ah - - - RSACKL SQL CTRL - LOML
59Bh
VCAT.RSLSR(6)
- - - - - - - -
59Ch - - - RSACKL SQL CTRL - LOML
59Dh
VCAT.RSLSR(7)
- - - - - - - -
59Eh - - - RSACKL SQL CTRL - LOML
59Fh
VCAT.RSLSR(8)
- - - - - - - -
5A0h - - - RSACKL SQL CTRL - LOML
5A1h
VCAT.RSLSR(9)
- - - - - - - -
5A2h - - - RSACKL SQL CTRL - LOML
5A3h
VCAT.RSLSR(10)
- - - - - - - -
5A4h - - - RSACKL SQL CTRL - LOML
5A5h
VCAT.RSLSR(11)
- - - - - - - -
5A6h - - - RSACKL SQL CTRL - LOML
5A7h
VCAT.RSLSR(12)
- - - - - - - -
5A8h - - - RSACKL SQL CTRL - LOML
5A9h
VCAT.RSLSR(13)
- - - - - - - -
5AAh - - - RSACKL SQL CTRL - LOML
5ABh
VCAT.RSLSR(14)
- - - - - - - -
5ACh - - - RSACKL SQL CTRL - LOML
5ADh
VCAT.RSLSR(15)
- - - - - - - -
5AEh - - - RSACKL SQL CTRL - LOML
5AFh
VCAT.RSLSR(16)
- - - - - - - -
5B0h - - - RSACKIE SQIE CTRIE - LOMIE
5B1h VCAT.RSIE(1) - - - - - - - -
5B2h - - - RSACKIE SQIE CTRIE - LOMIE
5B3h VCAT.RSIE(2) - - - - - - - -
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 127 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
5B4h - - - RSACKIE SQIE CTRIE - LOMIE
5B5h VCAT.RSIE(3) - - - - - - - -
5B6h - - - RSACKIE SQIE CTRIE - LOMIE
5B7h VCAT.RSIE(4) - - - - - - - -
5B8h - - - RSACKIE SQIE CTRIE - LOMIE
5B9h VCAT.RSIE(5) - - - - - - - -
5BAh - - - RSACKIE SQIE CTRIE - LOMIE
5BBh VCAT.RSIE(6) - - - - - - - -
5BCh - - - RSACKIE SQIE CTRIE - LOMIE
5BDh VCAT.RSIE(7) - - - - - - - -
5BEh - - - RSACKIE SQIE CTRIE - LOMIE
5BFh VCAT.RSIE(8) - - - - - - - -
5C0h - - - RSACKIE SQIE CTRIE - LOMIE
5C1h VCAT.RSIE(9) - - - - - - - -
5C2h - - - RSACKIE SQIE CTRIE - LOMIE
5C3h VCAT.RSIE(10) - - - - - - - -
5C4h - - - RSACKIE SQIE CTRIE - LOMIE
5C5h VCAT.RSIE(11) - - - - - - - -
5C6h - - - RSACKIE SQIE CTRIE - LOMIE
5C7h VCAT.RSIE(12) - - - - - - - -
5C8h - - - RSACKIE SQIE CTRIE - LOMIE
5C9h VCAT.RSIE(13) - - - - - - - -
5CAh - - - RSACKIE SQIE CTRIE - LOMIE
5CBh VCAT.RSIE(14) - - - - - - - -
5CCh - - - RSACKIE SQIE CTRIE - LOMIE
5CDh VCAT.RSIE(15) - - - - - - - -
5CEh - - - RSACKIE SQIE CTRIE - LOMIE
5CFh VCAT.RSIE(16) - - - - - - - -
5D0h RGID7 RGID6 RGID5 RGID4 RGID3 RGID2 RGID1 RGID0
5D1h VCAT.RSR3(1) RGID15 RGID14 RGID13 RGID12 RGID11 RGID10 RGID9 RGID8
5D2h RGID7 RGID6 RGID5 RGID4 RGID3 RGID2 RGID1 RGID0
5D3h VCAT.RSR3(2) RGID15 RGID14 RGID13 RGID12 RGID11 RGID10 RGID9 RGID8
5D4h RGID7 RGID6 RGID5 RGID4 RGID3 RGID2 RGID1 RGID0
5D5h VCAT.RSR3(3) RGID15 RGID14 RGID13 RGID12 RGID11 RGID10 RGID9 RGID8
5D6h RGID7 RGID6 RGID5 RGID4 RGID3 RGID2 RGID1 RGID0
5D7h VCAT.RSR3(4) RGID15 RGID14 RGID13 RGID12 RGID11 RGID10 RGID9 RGID8
5D8h RGID7 RGID6 RGID5 RGID4 RGID3 RGID2 RGID1 RGID0
5D9h VCAT.RSR3(5) RGID15 RGID14 RGID13 RGID12 RGID11 RGID10 RGID9 RGID8
5DAh RGID7 RGID6 RGID5 RGID4 RGID3 RGID2 RGID1 RGID0
5DBh VCAT.RSR3(6) RGID15 RGID14 RGID13 RGID12 RGID11 RGID10 RGID9 RGID8
5DCh VCAT.RSR3(7) RGID7 RGID6 RGID5 RGID4 RGID3 RGID2 RGID1 RGID0
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 128 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
5DDh RGID15 RGID14 RGID13 RGID12 RGID11 RGID10 RGID9 RGID8
5DEh RGID7 RGID6 RGID5 RGID4 RGID3 RGID2 RGID1 RGID0
5DFh VCAT.RSR3(8) RGID15 RGID14 RGID13 RGID12 RGID11 RGID10 RGID9 RGID8
5E0h RGID7 RGID6 RGID5 RGID4 RGID3 RGID2 RGID1 RGID0
5E1h VCAT.RSR3(9) RGID15 RGID14 RGID13 RGID12 RGID11 RGID10 RGID9 RGID8
5E2h RGID7 RGID6 RGID5 RGID4 RGID3 RGID2 RGID1 RGID0
5E3h VCAT.RSR3(10) RGID15 RGID14 RGID13 RGID12 RGID11 RGID10 RGID9 RGID8
5E4h RGID7 RGID6 RGID5 RGID4 RGID3 RGID2 RGID1 RGID0
5E5h VCAT.RSR3(11) RGID15 RGID14 RGID13 RGID12 RGID11 RGID10 RGID9 RGID8
5E6h RGID7 RGID6 RGID5 RGID4 RGID3 RGID2 RGID1 RGID0
5E7h VCAT.RSR3(12) RGID15 RGID14 RGID13 RGID12 RGID11 RGID10 RGID9 RGID8
5E8h RGID7 RGID6 RGID5 RGID4 RGID3 RGID2 RGID1 RGID0
5E9h VCAT.RSR3(13) RGID15 RGID14 RGID13 RGID12 RGID11 RGID10 RGID9 RGID8
5EAh RGID7 RGID6 RGID5 RGID4 RGID3 RGID2 RGID1 RGID0
5EBh VCAT.RSR3(14) RGID15 RGID14 RGID13 RGID12 RGID11 RGID10 RGID9 RGID8
5ECh RGID7 RGID6 RGID5 RGID4 RGID3 RGID2 RGID1 RGID0
5EDh VCAT.RSR3(15) RGID15 RGID14 RGID13 RGID12 RGID11 RGID10 RGID9 RGID8
5EEh RGID7 RGID6 RGID5 RGID4 RGID3 RGID2 RGID1 RGID0
5EFh VCAT.RSR3(16) RGID15 RGID14 RGID13 RGID12 RGID11 RGID10 RGID9 RGID8
SERIAL INTERFACE GLOBAL
600h LLB8 LLB7 LLB6 LLB5 LLB4 LLB3 LLB2 LLB1
601h LI.LCR1 LLB16 LLB15 LLB14 LLB13 LLB12 LLB11 LLB10 LLB9
602h TLB8 TLB7 TLB6 TLB5 TLB4 TLB3 TLB2 TLB1
603h LI.LCR2 TLB16 TLB15 TLB14 TLB13 TLB12 TLB11 TLB10 TLB9
604h TCLKA8 TCLKA7 TCLKA6 TCLKA5 TCLKA4 TCLKA3 TCLKA2 TCLKA1
605h LI.TCSR - - - TMCLKA4 - - - TMCLKA3
606h - - - - - - - TVCLKA1
607h LI.TVCSR - - - - - - - -
608h RCLKA8 RCLKA7 RCLKA6 RCLKA5 RCLKA4 RCLKA3 RCLKA2 RCLKA1
609h LI.RCSR RCLKA16 RCLKA15 RCLKA14 RCLKA13 RCLKA12 RCLKA11 RCLKA10 RCLKA9
60Ah - - - - - - - RVCLKA1
60Bh LI.RVCSR - - - - - - - -
TRANSMIT SERIAL PER-PORT
640h - - - TCLKINV -
TS_SETUP1 TS_SETUP0 TD_SEL
641h LI.TCR(1) - - - - - - - -
648h - - - TCLKINV -
TS_SETUP1 TS_SETUP0 TD_SEL
649h LI.TCR(2) - - - - - - - -
650h - - - TCLKINV -
TS_SETUP1 TS_SETUP0 TD_SEL
651h LI.TCR(3) - - - - - - - -
658h - - - TCLKINV -
TS_SETUP1 TS_SETUP0 TD_SEL
659h LI.TCR(4) - - - - - - - -
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 129 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
660h - - - TCLKINV -
TS_SETUP1 TS_SETUP0 TD_SEL
661h LI.TCR(5) - - - - - - - -
668h - - - TCLKINV -
TS_SETUP1 TS_SETUP0 TD_SEL
669h LI.TCR(6) - - - - - - - -
670h - - - TCLKINV -
TS_SETUP1 TS_SETUP0 TD_SEL
671h LI.TCR(7) - - - - - - - -
678h - - - TCLKINV -
TS_SETUP1 TS_SETUP0 TD_SEL
679h LI.TCR(8) - - - - - - - -
680h - - - TCLKINV -
TS_SETUP1 TS_SETUP0 -
681h LI.TCR(9) - - - - - - - -
688h - - - TCLKINV -
TS_SETUP1 TS_SETUP0 -
689h LI.TCR(10) - - - - - - - -
690h - - - TCLKINV -
TS_SETUP1 TS_SETUP0 -
691h LI.TCR(11) - - - - - - - -
698h - - - TCLKINV -
TS_SETUP1 TS_SETUP0 -
699h LI.TCR(12) - - - - - - - -
6A0h - - - TCLKINV -
TS_SETUP1 TS_SETUP0 -
6A1h LI.TCR(13) - - - - - - - -
6A8h - - - TCLKINV -
TS_SETUP1 TS_SETUP0 -
6A9h LI.TCR(14) - - - - - - - -
6B0h - - - TCLKINV -
TS_SETUP1 TS_SETUP0 -
6B1h LI.TCR(15) - - - - - - - -
6B8h - - - TCLKINV -
TS_SETUP1 TS_SETUP0 -
6B9h LI.TCR(16) - - - - - - - -
6C0h TVOPF4 TVOPF3 TVOPF2 TVOPF1 TVOPF0 TSYNCC PC TPE
6C1h LI.TVPCR - - - - - - TVFRST TVCLKI
6C2h - - - - - - TVFU TVFO
6C3h LI.TVFSR - - - - - - - -
6C4h - - - - - - TVFUL TVFOL
6C5h LI.TVFLSR - - - - - - - -
6C6h - - - - - - TVFULIE TVFOLIE
6C7h LI.TVFSRIE - - - - - - - -
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 130 of 375
ADDR
Name
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
RECEIVE SERIAL PER-PORT
740h - - - RCLKINV - - RFRST -
741h LI.RCR1(1) - - - - - - - -
748h - - - RCLKINV - - RFRST -
749h LI.RCR1(2) - - - - - - - -
750h - - - RCLKINV - - RFRST -
751h LI.RCR1(3) - - - - - - - -
758h - - - RCLKINV - - RFRST -
759h LI.RCR1(4) - - - - - - - -
760h - - - RCLKINV - - RFRST -
761h LI.RCR1(5) - - - - - - - -
768h - - - RCLKINV - - RFRST -
769h LI.RCR1(6) - - - - - - - -
770h - - - RCLKINV - - RFRST -
771h LI.RCR1(7) - - - - - - - -
778h - - - RCLKINV - - RFRST -
779h LI.RCR1(8) - - - - - - - -
780h - - - RCLKINV - - RFRST -
781h LI.RCR1(9) - - - - - - - -
788h - - - RCLKINV - - RFRST -
789h LI.RCR1(10) - - - - - - - -
790h - - - RCLKINV - - RFRST -
791h LI.RCR1(11) - - - - - - - -
798h - - - RCLKINV - - RFRST -
799h LI.RCR1(12) - - - - - - - -
7A0h - - - RCLKINV - - RFRST -
7A1h LI.RCR1(13) - - - - - - - -
7A8h - - - RCLKINV - - RFRST -
7A9h LI.RCR1(14) - - - - - - - -
7B0h - - - RCLKINV - - RFRST -
7B1h LI.RCR1(15) - - - - - - - -
7B8h - - - RCLKINV - - RFRST -
7B9h LI.RCR1(16) - - - - - - - -
7C0h RVOPF4 RVOPF3 RVOPF2 RVOPF1 RVOPF0 RSYNCC PC RPE
7C1h LI.RVPCR - - - - - - RVFRST RVCLKI
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 131 of 375
10.1.2 MAC Indirect Register Bit Map
Table 10-3. MAC Indirect Register Bit Map
ADDR
NAME
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
0000h SU.MACCR
31:24 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
23:16 WDD JD FBE JFE Reserved Reserved Reserved Reserved
15:8 GMIIMIIS EM DRO LM DM Reserved DRTY APST
7:0 ACST BOLMT1 BOLMT0 DC TE RE Reserved Reserved
0004h SU.MACFFR
31:24 RAF Reserved Reserved Reserved Reserved Reserved Reserved Reserved
23:16 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
15:8 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
7:0 PCF Reserved DBF PAM INVF HFUF HFMF PM
0008h SU.MACHTHR
31:24 HTH[31] HTH[30] HTH[29] HTH[28] HTH[27] HTH[26] HTH[25] HTH[24]
23:16 HTH[23] HTH[22] HTH[21] HTH[20] HTH[19] HTH[18] HTH[17] HTH[16]
15:8 HTH[15] HTH[14] HTH[13] HTH[12] HTH[11] HTH[10] HTH[9] HTH[8]
7:0 HTH[7] HTH[6] HTH[5] HTH[4] HTH[3] HTH[2] HTH[1] HTH[0]
000Ch SU.MACHTLR
31:24 HTL[31] HTL[30] HTL[29] HTL[28] HTL[27] HTL[26] HTL[25] HTL[24]
23:16 HTL[23] HTL[22] HTL[21] HTL[20] HTL[19] HTL[18] HTL[17] HTL[16]
15:8 HTL[15] HTL[14] HTL[13] HTL[12] HTL[11] HTL[10] HTL[9] HTL[8]
7:0 HTL[7] HTL[6] HTL[5] HTL[4] HTL[3] HTL[2] HTL[1] HTL[0]
0010h SU.GMIIA
31:24 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
23:16 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
15:8 PPA[4] PPA[3] PPA[2] PPA[1] PPA[0] GM[4] GM[3] GM[2]
7:0 GM[1] GM[0] Reserved Reserved CR[1] CR[0] GW GB
0014h SU.GMIID
31:24 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
23:16 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
15:8 GD[15] GD[14] GD[13] GD[12] GD[11] GD[10] GD[9] GD[8]
7:0 GD[7] GD[6] GD[5] GD[4] GD[3] GD[2] GD[1] GD[0]
0018h SU.MACFCR
31:24 PT[15] PT[14] PT[13] PT[12] PT[11] PT[10] PT[9] PT[8]
23:16 PT[7] PT[6] PT[5] PT[4] PT[3] PT[2] PT[1] PT[0]
15:8 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
7:0 Reserved Reserved Reserved PLT UP RFE TFE FCB
001Ch SU.VLANTR
31:24 - - - - - - - -
23:16 - - - - - - - -
15:8 VLTID[15] VLTID[14] VLTID[13] VLTID[12] VLTID[11] VLTID[10] VLTID[9] VLTID[8]
7:0 VLTID[7] VLTID[6] VLTID[5] VLTID[4] VLTID[3] VLTID[2] VLTID[1] VLTID[0]
0040h SU.ADDR0H
31:24 MADDR0AE - - - - - - -
23:16 - - - - - - - -
15:8 MADDR0[47] MADDR0[46] MADDR0[45] MADDR0[44] MADDR0[43] MADDR0[42] MADDR0[41] MADDR0[40]
7:0 MADDR0[39] MADDR0[38] MADDR0[37] MADDR0[36] MADDR0[35] MADDR0[34] MADDR0[33] MADDR0[32]
0044h SU.ADDR0L
31:24 MADDR0[31] MADDR0[30] MADDR0[29] MADDR0[28] MADDR0[27] MADDR0[26] MADDR0[25] MADDR0[24]
23:16 MADDR0[23] MADDR0[22] MADDR0[21] MADDR0[20] MADDR0[19] MADDR0[18] MADDR0[17] MADDR0[16]
15:8 MADDR0[15] MADDR0[14] MADDR0[13] MADDR0[12] MADDR0[11] MADDR0[10] MADDR0[9] MADDR0[8]
7:0 MADDR0[7] MADDR0[6] MADDR0[5] MADDR0[4] MADDR0[3] MADDR0[2] MADDR0[1] MADDR0[0]
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 132 of 375
ADDR
NAME
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
0048h SU.ADDR1H
31:24 MADDR1AE - - - - - - -
23:16 - - - - - - - -
15:8 MADDR1[47] MADDR1[46] MADDR1[45] MADDR1[44] MADDR1[43] MADDR1[42] MADDR1[41] MADDR1[40]
7:0 MADDR1[39] MADDR1[38] MADDR1[37] MADDR1[36] MADDR1[35] MADDR1[34] MADDR1[33] MADDR1[32]
004Ch SU.ADDR1L
31:24 MADDR1[31] MADDR1[30] MADDR1[29] MADDR1[28] MADDR1[27] MADDR1[26] MADDR1[25] MADDR1[24]
23:16 MADDR1[23] MADDR1[22] MADDR1[21] MADDR1[20] MADDR1[19] MADDR1[18] MADDR1[17] MADDR1[16]
15:8 MADDR1[15] MADDR1[14] MADDR1[13] MADDR1[12] MADDR1[11] MADDR1[10] MADDR1[9] MADDR1[8]
7:0 MADDR1[7] MADDR1[6] MADDR1[5] MADDR1[4] MADDR1[3] MADDR1[2] MADDR1[1] MADDR1[0]
0050h SU.ADDR2H
31:24 MADDR2AE - - - - - - -
23:16 - - - - - - - -
15:8 MADDR2[47] MADDR2[46] MADDR2[45] MADDR2[44] MADDR2[43] MADDR2[42] MADDR2[41] MADDR2[40]
7:0 MADDR2[39] MADDR2[38] MADDR2[37] MADDR2[36] MADDR2[35] MADDR2[34] MADDR2[33] MADDR2[32]
0054h SU.ADDR2L
31:24 MADDR2[31] MADDR2[30] MADDR2[29] MADDR2[28] MADDR2[27] MADDR2[26] MADDR2[25] MADDR2[24]
23:16 MADDR2[23] MADDR2[22] MADDR2[21] MADDR2[20] MADDR2[19] MADDR2[18] MADDR2[17] MADDR2[16]
15:8 MADDR2[15] MADDR2[14] MADDR2[13] MADDR2[12] MADDR2[11] MADDR2[10] MADDR2[9] MADDR2[8]
7:0 MADDR2[7] MADDR2[6] MADDR2[5] MADDR2[4] MADDR2[3] MADDR2[2] MADDR2[1] MADDR2[0]
0058h SU.ADDR3H
31:24 MADDR3AE - - - - - - -
23:16 - - - - - - - -
15:8 MADDR3[47] MADDR3[46] MADDR3[45] MADDR3[44] MADDR3[43] MADDR3[42] MADDR3[41] MADDR3[40]
7:0 MADDR3[39] MADDR3[38] MADDR3[37] MADDR3[36] MADDR3[35] MADDR3[34] MADDR3[33] MADDR3[32]
005Ch SU.ADDR3L
31:24 MADDR3[31] MADDR3[30] MADDR3[29] MADDR3[28] MADDR3[27] MADDR3[26] MADDR3[25] MADDR3[24]
23:16 MADDR3[23] MADDR3[22] MADDR3[21] MADDR3[20] MADDR3[19] MADDR3[18] MADDR3[17] MADDR3[16]
15:8 MADDR3[15] MADDR3[14] MADDR3[13] MADDR3[12] MADDR3[11] MADDR3[10] MADDR3[9] MADDR3[8]
7:0 MADDR3[7] MADDR3[6] MADDR3[5] MADDR3[4] MADDR3[3] MADDR3[2] MADDR3[1] MADDR3[0]
0060h SU.ADDR4H
31:24 MADDR4AE - - - - - - -
23:16 - - - - - - - -
15:8 MADDR4[47] MADDR4[46] MADDR4[45] MADDR4[44] MADDR4[43] MADDR4[42] MADDR4[41] MADDR4[40]
7:0 MADDR4[39] MADDR4[38] MADDR4[37] MADDR4[36] MADDR4[35] MADDR4[34] MADDR4[33] MADDR4[32]
0064h SU.ADDR4L
31:24 MADDR4[31] MADDR4[30] MADDR4[29] MADDR4[28] MADDR4[27] MADDR4[26] MADDR4[25] MADDR4[24]
23:16 MADDR4[23] MADDR4[22] MADDR4[21] MADDR4[20] MADDR4[19] MADDR4[18] MADDR4[17] MADDR4[16]
15:8 MADDR4[15] MADDR4[14] MADDR4[13] MADDR4[12] MADDR4[11] MADDR4[10] MADDR4[9] MADDR4[8]
7:0 MADDR4[7] MADDR4[6] MADDR4[5] MADDR4[4] MADDR4[3] MADDR4[2] MADDR4[1] MADDR4[0]
0068h SU.ADDR5H
31:24 MADDR5AE - - - - - - -
23:16 - - - - - - - -
15:8 MADDR5[47] MADDR5[46] MADDR5[45] MADDR5[44] MADDR5[43] MADDR5[42] MADDR5[41] MADDR5[40]
7:0 MADDR5[39] MADDR5[38] MADDR5[37] MADDR5[36] MADDR5[35] MADDR5[34] MADDR5[33] MADDR5[32]
006Ch SU.ADDR5L
31:24 MADDR5[31] MADDR5[30] MADDR5[29] MADDR5[28] MADDR5[27] MADDR5[26] MADDR5[25] MADDR5[24]
23:16 MADDR5[23] MADDR5[22] MADDR5[21] MADDR5[20] MADDR5[19] MADDR5[18] MADDR5[17] MADDR5[16]
15:8 MADDR5[15] MADDR5[14] MADDR5[13] MADDR5[12] MADDR5[11] MADDR5[10] MADDR5[9] MADDR5[8]
7:0 MADDR5[7] MADDR5[6] MADDR5[5] MADDR5[4] MADDR5[3] MADDR5[2] MADDR5[1] MADDR5[0]
0070h SU.ADDR6H
31:24 MADDR6AE - - - - - - -
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 133 of 375
ADDR
NAME
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
23:16 - - - - - - - -
15:8 MADDR6[47] MADDR6[46] MADDR6[45] MADDR6[44] MADDR6[43] MADDR6[42] MADDR6[41] MADDR6[40]
7:0 MADDR6[39] MADDR6[38] MADDR6[37] MADDR6[36] MADDR6[35] MADDR6[34] MADDR6[33] MADDR6[32]
0074h SU.ADDR6L
31:24 MADDR6[31] MADDR6[30] MADDR6[29] MADDR6[28] MADDR6[27] MADDR6[26] MADDR6[25] MADDR6[24]
23:16 MADDR6[23] MADDR6[22] MADDR6[21] MADDR6[20] MADDR6[19] MADDR6[18] MADDR6[17] MADDR6[16]
15:8 MADDR6[15] MADDR6[14] MADDR6[13] MADDR6[12] MADDR6[11] MADDR6[10] MADDR6[9] MADDR6[8]
7:0 MADDR6[7] MADDR6[6] MADDR6[5] MADDR6[4] MADDR6[3] MADDR6[2] MADDR6[1] MADDR6[0]
0078h SU.ADDR7H
31:24 MADDR7AE - - - - - - -
23:16 - - - - - - - -
15:8 MADDR7[47] MADDR7[46] MADDR7[45] MADDR7[44] MADDR7[43] MADDR7[42] MADDR7[41] MADDR7[40]
7:0 MADDR7[39] MADDR7[38] MADDR7[37] MADDR7[36] MADDR7[35] MADDR7[34] MADDR7[33] MADDR7[32]
007Ch SU.ADDR7L
31:24 MADDR7[31] MADDR7[30] MADDR7[29] MADDR7[28] MADDR7[27] MADDR7[26] MADDR7[25] MADDR7[24]
23:16 MADDR7[23] MADDR7[22] MADDR7[21] MADDR7[20] MADDR7[19] MADDR7[18] MADDR7[17] MADDR7[16]
15:8 MADDR7[15] MADDR7[14] MADDR7[13] MADDR7[12] MADDR7[11] MADDR7[10] MADDR7[9] MADDR7[8]
7:0 MADDR7[7] MADDR7[6] MADDR7[5] MADDR7[4] MADDR7[3] MADDR7[2] MADDR7[1] MADDR7[0]
0080h SU.ADDR8H
31:24 MADDR8AE - - - - - - -
23:16 - - - - - - - -
15:8 MADDR8[47] MADDR8[46] MADDR8[45] MADDR8[44] MADDR8[43] MADDR8[42] MADDR8[41] MADDR8[40]
7:0 MADDR8[39] MADDR8[38] MADDR8[37] MADDR8[36] MADDR8[35] MADDR8[34] MADDR8[33] MADDR8[32]
0084h SU.ADDR8L
31:24 MADDR8[31] MADDR8[30] MADDR8[29] MADDR8[28] MADDR8[27] MADDR8[26] MADDR8[25] MADDR8[24]
23:16 MADDR8[23] MADDR8[22] MADDR8[21] MADDR8[20] MADDR8[19] MADDR8[18] MADDR8[17] MADDR8[16]
15:8 MADDR8[15] MADDR8[14] MADDR8[13] MADDR8[12] MADDR8[11] MADDR8[10] MADDR8[9] MADDR8[8]
7:0 MADDR8[7] MADDR8[6] MADDR8[5] MADDR8[4] MADDR8[3] MADDR8[2] MADDR8[1] MADDR8[0]
0088h SU.ADDR9H
31:24 MADDR9AE - - - - - - -
23:16 - - - - - - - -
15:8 MADDR9[47] MADDR9[46] MADDR9[45] MADDR9[44] MADDR9[43] MADDR9[42] MADDR9[41] MADDR9[40]
7:0 MADDR9[39] MADDR9[38] MADDR9[37] MADDR9[36] MADDR9[35] MADDR9[34] MADDR9[33] MADDR9[32]
008Ch SU.ADDR9L
31:24 MADDR9[31] MADDR9[30] MADDR9[29] MADDR9[28] MADDR9[27] MADDR9[26] MADDR9[25] MADDR9[24]
23:16 MADDR9[23] MADDR9[22] MADDR9[21] MADDR9[20] MADDR9[19] MADDR9[18] MADDR9[17] MADDR9[16]
15:8 MADDR9[15] MADDR9[14] MADDR9[13] MADDR9[12] MADDR9[11] MADDR9[10] MADDR9[9] MADDR9[8]
7:0 MADDR9[7] MADDR9[6] MADDR9[5] MADDR9[4] MADDR9[3] MADDR9[2] MADDR9[1] MADDR9[0]
0090h SU.ADDR10H
31:24 MADDR10AE - - - - - - -
23:16 - - - - - - - -
15:8 MADDR10[47] MADDR10[46] MADDR10[45] MADDR10[44] MADDR10[43] MADDR10[42] MADDR10[41] MADDR10[40]
7:0 MADDR10[39] MADDR10[38] MADDR10[37] MADDR10[36] MADDR10[35] MADDR10[34] MADDR10[33] MADDR10[32]
0094h SU.ADDR10L
31:24 MADDR10[31] MADDR10[30] MADDR10[29] MADDR10[28] MADDR10[27] MADDR10[26] MADDR10[25] MADDR10[24]
23:16 MADDR10[23] MADDR10[22] MADDR10[21] MADDR10[20] MADDR10[19] MADDR10[18] MADDR10[17] MADDR10[16]
15:8 MADDR10[15] MADDR10[14] MADDR10[13] MADDR10[12] MADDR10[11] MADDR10[10] MADDR10[9] MADDR10[8]
7:0 MADDR10[7] MADDR10[6] MADDR10[5] MADDR10[4] MADDR10[3] MADDR10[2] MADDR10[1] MADDR10[0]
0098h SU.ADDR11H
31:24 MADDR11AE - - - - - - -
23:16 - - - - - - - -
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 134 of 375
ADDR
NAME
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
15:8 MADDR11[47] MADDR11[46] MADDR11[45] MADDR11[44] MADDR11[43] MADDR11[42] MADDR11[41] MADDR11[40]
7:0 MADDR11[39] MADDR11[38] MADDR11[37] MADDR11[36] MADDR11[35] MADDR11[34] MADDR11[33] MADDR11[32]
009Ch SU.ADDR11L
31:24 MADDR11[31] MADDR11[30] MADDR11[29] MADDR11[28] MADDR11[27] MADDR11[26] MADDR11[25] MADDR11[24]
23:16 MADDR11[23] MADDR11[22] MADDR11[21] MADDR11[20] MADDR11[19] MADDR11[18] MADDR11[17] MADDR11[16]
15:8 MADDR11[15] MADDR11[14] MADDR11[13] MADDR11[12] MADDR11[11] MADDR11[10] MADDR11[9] MADDR11[8]
7:0 MADDR11[7] MADDR11[6] MADDR11[5] MADDR11[4] MADDR11[3] MADDR11[2] MADDR11[1] MADDR11[0]
00A0h SU.ADDR12H
31:24 MADDR12AE - - - - - - -
23:16 - - - - - - - -
15:8 MADDR12[47] MADDR12[46] MADDR12[45] MADDR12[44] MADDR12[43] MADDR12[42] MADDR12[41] MADDR12[40]
7:0 MADDR12[39] MADDR12[38] MADDR12[37] MADDR12[36] MADDR12[35] MADDR12[34] MADDR12[33] MADDR12[32]
00A4h SU.ADDR12L
31:24 MADDR12[31] MADDR12[30] MADDR12[29] MADDR12[28] MADDR12[27] MADDR12[26] MADDR12[25] MADDR12[24]
23:16 MADDR12[23] MADDR12[22] MADDR12[21] MADDR12[20] MADDR12[19] MADDR12[18] MADDR12[17] MADDR12[16]
15:8 MADDR12[15] MADDR12[14] MADDR12[13] MADDR12[12] MADDR12[11] MADDR12[10] MADDR12[9] MADDR12[8]
7:0 MADDR12[7] MADDR12[6] MADDR12[5] MADDR12[4] MADDR12[3] MADDR12[2] MADDR12[1] MADDR12[0]
00A8h SU.ADDR13H
31:24 MADDR13AE - - - - - - -
23:16 - - - - - - - -
15:8 MADDR13[47] MADDR13[46] MADDR13[45] MADDR13[44] MADDR13[43] MADDR13[42] MADDR13[41] MADDR13[40]
7:0 MADDR13[39] MADDR13[38] MADDR13[37] MADDR13[36] MADDR13[35] MADDR13[34] MADDR13[33] MADDR13[32]
00ACh SU.ADDR13L
31:24 MADDR13[31] MADDR13[30] MADDR13[29] MADDR13[28] MADDR13[27] MADDR13[26] MADDR13[25] MADDR13[24]
23:16 MADDR13[23] MADDR13[22] MADDR13[21] MADDR13[20] MADDR13[19] MADDR13[18] MADDR13[17] MADDR13[16]
15:8 MADDR13[15] MADDR13[14] MADDR13[13] MADDR13[12] MADDR13[11] MADDR13[10] MADDR13[9] MADDR13[8]
7:0 MADDR13[7] MADDR13[6] MADDR13[5] MADDR13[4] MADDR13[3] MADDR13[2] MADDR13[1] MADDR13[0]
00B0h SU.ADDR14H
31:24 MADDR14AE - - - - - - -
23:16 - - - - - - - -
15:8 MADDR14[47] MADDR14[46] MADDR14[45] MADDR14[44] MADDR14[43] MADDR14[42] MADDR14[41] MADDR14[40]
7:0 MADDR14[39] MADDR14[38] MADDR14[37] MADDR14[36] MADDR14[35] MADDR14[34] MADDR14[33] MADDR14[32]
00B4h SU.ADDR14L
31:24 MADDR14[31] MADDR14[30] MADDR14[29] MADDR14[28] MADDR14[27] MADDR14[26] MADDR14[25] MADDR14[24]
23:16 MADDR14[23] MADDR14[22] MADDR14[21] MADDR14[20] MADDR14[19] MADDR14[18] MADDR14[17] MADDR14[16]
15:8 MADDR14[15] MADDR14[14] MADDR14[13] MADDR14[12] MADDR14[11] MADDR14[10] MADDR14[9] MADDR14[8]
7:0 MADDR14[7] MADDR14[6] MADDR14[5] MADDR14[4] MADDR14[3] MADDR14[2] MADDR14[1] MADDR14[0]
00B8h SU.ADDR15H
31:24 MADDR15AE - - - - - - -
23:16 - - - - - - - -
15:8 MADDR15[47] MADDR15[46] MADDR15[45] MADDR15[44] MADDR15[43] MADDR15[42] MADDR15[41] MADDR15[40]
7:0 MADDR15[39] MADDR15[38] MADDR15[37] MADDR15[36] MADDR15[35] MADDR15[34] MADDR15[33] MADDR15[32]
00BCh SU.ADDR15L
31:24 MADDR15[31] MADDR15[30] MADDR15[29] MADDR15[28] MADDR15[27] MADDR15[26] MADDR15[25] MADDR15[24]
23:16 MADDR15[23] MADDR15[22] MADDR15[21] MADDR15[20] MADDR15[19] MADDR15[18] MADDR15[17] MADDR15[16]
15:8 MADDR15[15] MADDR15[14] MADDR15[13] MADDR15[12] MADDR15[11] MADDR15[10] MADDR15[9] MADDR15[8]
7:0 MADDR15[7] MADDR15[6] MADDR15[5] MADDR15[4] MADDR15[3] MADDR15[2] MADDR15[1] MADDR15[0]
00C0h SU.PCSCR
31:24 - - - - - - - -
23:16 - - - - - - LR ECD
15:8 - ELE ANE - - - RAN -
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 135 of 375
ADDR
NAME
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
7:0 - - - - - - - -
00C4h SU.ANSR
31:24 - - - - - - - -
23:16 - - - - - - - -
15:8 - - - - - - - ES
7:0 - - ANC - ANA LS - -
00D8h SU.LSR
31:24 - - - - - - - -
23:16 - - - - - - - -
15:8 - - - - - - - -
7:0 - - - - LINKUP LNKSPD[1] LNKSPD[0] LINKM
0100h SU.MMCCTRL
31:24 - - - - - - - -
23:16 - - - - - - - -
15:8 - - - - - - - -
7:0 - - - - - ROR CSR CRST
0104h SU.MMCRSR
31:24 - - - - - - - -
23:16 RXWDOG RXVLAN RXOVFL RXPAUSE RXRANGE RXLNERR RXUCAST RX1K_MAX
15:8 RX512_1K RX256_511 RX128_255 RX65_127 RX0_64 RXOVRSZ RXUNRSZ RXJBBR
7:0 RXRUNT RXALGN RXCRC RXMFC RXGBFC RXBCG RXBCGB RXFC
0108h SU.MMCTSR
31:24 - - - - - - - TXVLAN
23:16 TXPAUSE TXXCSVDF TXFCNT TXBCNT TXCERR TXXCSVCL TXLTCL TXDFRD
15:8 TXMLTICL TXSNGLCL TXUFE TXBFC TXMFC TXUCAST TX1K_MAX TX512_1K
7:0 TX256_511 TX128_255 TX65_127 TX0_64 TXGMFC TXGBFC TXFC TXBC
010Ch SU.MMCRIM
31:24 - - - - - - - -
23:16 RXWDOG RXVLAN RXOVFL RXPAUSE RXRANGE RXLNERR RXUCAST RX1K_MAX
15:8 RX512_1K RX256_511 RX128_255 RX65_127 RX0_64 RXOVRSZ RXUNRSZ RXJBBR
7:0 RXRUNT RXALGN RXCRC RXMFC RXGBFC RXBCG RXBCGB RXFC
0110h SU.MMCTIM
31:24 - - - - - - - TXVLAN
23:16 TXPAUSE TXXCSVDF TXFCNT TXBCNT TXCERR TXXCSVCL TXLTCL TXDFRD
15:8 TXMLTICL TXSNGLCL TXUFE TXBFC TXMFC TXUCAST TX1K_MAX TX512_1K
7:0 TX256_511 TX128_255 TX65_127 TX0_64 TXGMFC TXGBFC TXFC TXBC
0114h SU.TXBC
31:24 TXBC[31] TXBC[30] TXBC[29] TXBC[28] TXBC[27] TXBC[26] TXBC[25] TXBC[24]
23:16 TXBC[23] TXBC[22] TXBC[21] TXBC[20] TXBC[19] TXBC[18] TXBC[17] TXBC[16]
15:8 TXBC[15] TXBC[14] TXBC[13] TXBC[12] TXBC[11] TXBC[10] TXBC[9] TXBC[8]
7:0 TXBC[7] TXBC[6] TXBC[5] TXBC[4] TXBC[3] TXBC[2] TXBC[1] TXBC[0]
0118h SU.TXFC
31:24 TXFC[31] TXFC[30] TXFC[29] TXFC[28] TXFC[27] TXFC[26] TXFC[25] TXFC[24]
23:16 TXFC[23] TXFC[22] TXFC[21] TXFC[20] TXFC[19] TXFC[18] TXFC[17] TXFC[16]
15:8 TXFC[15] TXFC[14] TXFC[13] TXFC[12] TXFC[11] TXFC[10] TXFC[9] TXFC[8]
7:0 TXFC[7] TXFC[6] TXFC[5] TXFC[4] TXFC[3] TXFC[2] TXFC[1] TXFC[0]
011Ch SU.TXGBFC
31:24 TXGBFC[31] TXGBFC[30] TXGBFC[29] TXGBFC[28] TXGBFC[27] TXGBFC[26] TXGBFC[25] TXGBFC[24]
23:16 TXGBFC[23] TXGBFC[22] TXGBFC[21] TXGBFC[20] TXGBFC[19] TXGBFC[18] TXGBFC[17] TXGBFC[16]
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 136 of 375
ADDR
NAME
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
15:8 TXGBFC[15] TXGBFC[14] TXGBFC[13] TXGBFC[12] TXGBFC[11] TXGBFC[10] TXGBFC[9] TXGBFC[8]
7:0 TXGBFC[7] TXGBFC[6] TXGBFC[5] TXGBFC[4] TXGBFC[3] TXGBFC[2] TXGBFC[1] TXGBFC[0]
0120h SU.TXGMFC
31:24 TXGMFC[31] TXGMFC[30] TXGMFC[29] TXGMFC[28] TXGMFC[27] TXGMFC[26] TXGMFC[25] TXGMFC[24]
23:16 TXGMFC[23] TXGMFC[22] TXGMFC[21] TXGMFC[20] TXGMFC[19] TXGMFC[18] TXGMFC[17] TXGMFC[16]
15:8 TXGMFC[15] TXGMFC[14] TXGMFC[13] TXGMFC[12] TXGMFC[11] TXGMFC[10] TXGMFC[9] TXGMFC[8]
7:0 TXGMFC[7] TXGMFC[6] TXGMFC[5] TXGMFC[4] TXGMFC[3] TXGMFC[2] TXGMFC[1] TXGMFC[0]
0124h SU.TX0_64
31:24 TX0_64[31] TX0_64[30] TX0_64[29] TX0_64[28] TX0_64[27] TX0_64[26] TX0_64[25] TX0_64[24]
23:16 TX0_64[23] TX0_64[22] TX0_64[21] TX0_64[20] TX0_64[19] TX0_64[18] TX0_64[17] TX0_64[16]
15:8 TX0_64[15] TX0_64[14] TX0_64[13] TX0_64[12] TX0_64[11] TX0_64[10] TX0_64[9] TX0_64[8]
7:0 TX0_64[7] TX0_64[6] TX0_64[5] TX0_64[4] TX0_64[3] TX0_64[2] TX0_64[1] TX0_64[0]
0128h SU.TX65_127
31:24 TX65_127[31] TX65_127[30] TX65_127[29] TX65_127[28] TX65_127[27] TX65_127[26] TX65_127[25] TX65_127[24]
23:16 TX65_127[23] TX65_127[22] TX65_127[21] TX65_127[20] TX65_127[19] TX65_127[18] TX65_127[17] TX65_127[16]
15:8 TX65_127[15] TX65_127[14] TX65_127[13] TX65_127[12] TX65_127[11] TX65_127[10] TX65_127[9] TX65_127[8]
7:0 TX65_127[7] TX65_127[6] TX65_127[5] TX65_127[4] TX65_127[3] TX65_127[2] TX65_127[1] TX65_127[0]
012Ch SU.TX128_255
31:24 TX128_255[31] TX128_255[30] TX128_255[29] TX128_255[28] TX128_255[27] TX128_255[26] TX128_255[25] TX128_255[24]
23:16 TX128_255[23] TX128_255[22] TX128_255[21] TX128_255[20] TX128_255[19] TX128_255[18] TX128_255[17] TX128_255[16]
15:8 TX128_255[15] TX128_255[14] TX128_255[13] TX128_255[12] TX128_255[11] TX128_255[10] TX128_255[9] TX128_255[8]
7:0 TX128_255[7] TX128_255[6] TX128_255[5] TX128_255[4] TX128_255[3] TX128_255[2] TX128_255[1] TX128_255[0]
0130h SU.TX256_511
31:24 TX256_511[31] TX256_511[30] TX256_511[29] TX256_511[28] TX256_511[27] TX256_511[26] TX256_511[25] TX256_511[24]
23:16 TX256_511[23] TX256_511[22] TX256_511[21] TX256_511[20] TX256_511[19] TX256_511[18] TX256_511[17] TX256_511[16]
15:8 TX256_511[15] TX256_511[14] TX256_511[13] TX256_511[12] TX256_511[11] TX256_511[10] TX256_511[9] TX256_511[8]
7:0 TX256_511[7] TX256_511[6] TX256_511[5] TX256_511[4] TX256_511[3] TX256_511[2] TX256_511[1] TX256_511[0]
0134h SU.TX512_1K
31:24 TX512_1K[31] TX512_1K[30] TX512_1K[29] TX512_1K[28] TX512_1K[27] TX512_1K[26] TX512_1K[25] TX512_1K[24]
23:16 TX512_1K[23] TX512_1K[22] TX512_1K[21] TX512_1K[20] TX512_1K[19] TX512_1K[18] TX512_1K[17] TX512_1K[16]
15:8 TX512_1K[15] TX512_1K[14] TX512_1K[13] TX512_1K[12] TX512_1K[11] TX512_1K[10] TX512_1K[9] TX512_1K[8]
7:0 TX512_1K[7] TX512_1K[6] TX512_1K[5] TX512_1K[4] TX512_1K[3] TX512_1K[2] TX512_1K[1] TX512_1K[0]
0138h SU.TX1K_MAX
31:24 TX1K_MAX[31] TX1K_MAX[30] TX1K_MAX[29] TX1K_MAX[28] TX1K_MAX[27] TX1K_MAX[26] TX1K_MAX[25] TX1K_MAX[24]
23:16 TX1K_MAX[23] TX1K_MAX[22] TX1K_MAX[21] TX1K_MAX[20] TX1K_MAX[19] TX1K_MAX[18] TX1K_MAX[17] TX1K_MAX[16]
15:8 TX1K_MAX[15] TX1K_MAX[14] TX1K_MAX[13] TX1K_MAX[12] TX1K_MAX[11] TX1K_MAX[10] TX1K_MAX[9] TX1K_MAX[8]
7:0 TX1K_MAX[7] TX1K_MAX[6] TX1K_MAX[5] TX1K_MAX[4] TX1K_MAX[3] TX1K_MAX[2] TX1K_MAX[1] TX1K_MAX[0]
013Ch SU.TXUCAST
31:24 TXUCAST[31] TXUCAST[30] TXUCAST[29] TXUCAST[28] TXUCAST[27] TXUCAST[26] TXUCAST[25] TXUCAST[24]
23:16 TXUCAST[23] TXUCAST[22] TXUCAST[21] TXUCAST[20] TXUCAST[19] TXUCAST[18] TXUCAST[17] TXUCAST[16]
15:8 TXUCAST[15] TXUCAST[14] TXUCAST[13] TXUCAST[12] TXUCAST[11] TXUCAST[10] TXUCAST[9] TXUCAST[8]
7:0 TXUCAST[7] TXUCAST[6] TXUCAST[5] TXUCAST[4] TXUCAST[3] TXUCAST[2] TXUCAST[1] TXUCAST[0]
0140h SU.TXMFC
31:24 TXMFC[31] TXMFC[30] TXMFC[29] TXMFC[28] TXMFC[27] TXMFC[26] TXMFC[25] TXMFC[24]
23:16 TXMFC[23] TXMFC[22] TXMFC[21] TXMFC[20] TXMFC[19] TXMFC[18] TXMFC[17] TXMFC[16]
15:8 TXMFC[15] TXMFC[14] TXMFC[13] TXMFC[12] TXMFC[11] TXMFC[10] TXMFC[9] TXMFC[8]
7:0 TXMFC[7] TXMFC[6] TXMFC[5] TXMFC[4] TXMFC[3] TXMFC[2] TXMFC[1] TXMFC[0]
0144h SU.TXBFC
31:24 TXBFC[31] TXBFC[30] TXBFC[29] TXBFC[28] TXBFC[27] TXBFC[26] TXBFC[25] TXBFC[24]
23:16 TXBFC[23] TXBFC[22] TXBFC[21] TXBFC[20] TXBFC[19] TXBFC[18] TXBFC[17] TXBFC[16]
15:8 TXBFC[15] TXBFC[14] TXBFC[13] TXBFC[12] TXBFC[11] TXBFC[10] TXBFC[9] TXBFC[8]
7:0 TXBFC[7] TXBFC[6] TXBFC[5] TXBFC[4] TXBFC[3] TXBFC[2] TXBFC[1] TXBFC[0]
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 137 of 375
ADDR
NAME
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
0148h SU.TXUFE
31:24 TXUFE[31] TXUFE[30] TXUFE[29] TXUFE[28] TXUFE[27] TXUFE[26] TXUFE[25] TXUFE[24]
23:16 TXUFE[23] TXUFE[22] TXUFE[21] TXUFE[20] TXUFE[19] TXUFE[18] TXUFE[17] TXUFE[16]
15:8 TXUFE[15] TXUFE[14] TXUFE[13] TXUFE[12] TXUFE[11] TXUFE[10] TXUFE[9] TXUFE[8]
7:0 TXUFE[7] TXUFE[6] TXUFE[5] TXUFE[4] TXUFE[3] TXUFE[2] TXUFE[1] TXUFE[0]
014Ch SU.TXSNGLCL
31:24 TXSNGLCL[31] TXSNGLCL[30] TXSNGLCL[29] TXSNGLCL[28] TXSNGLCL[27] TXSNGLCL[26] TXSNGLCL[25] TXSNGLCL[24]
23:16 TXSNGLCL[23] TXSNGLCL[22] TXSNGLCL[21] TXSNGLCL[20] TXSNGLCL[19] TXSNGLCL[18] TXSNGLCL[17] TXSNGLCL[16]
15:8 TXSNGLCL[15] TXSNGLCL[14] TXSNGLCL[13] TXSNGLCL[12] TXSNGLCL[11] TXSNGLCL[10] TXSNGLCL[9] TXSNGLCL[8]
7:0 TXSNGLCL[7] TXSNGLCL[6] TXSNGLCL[5] TXSNGLCL[4] TXSNGLCL[3] TXSNGLCL[2] TXSNGLCL[1] TXSNGLCL[0]
0150h SU.TXMLTICL
31:24 TXMLTICL[31] TXMLTICL[30] TXMLTICL[29] TXMLTICL[28] TXMLTICL[27] TXMLTICL[26] TXMLTICL[25] TXMLTICL[24]
23:16 TXMLTICL[23] TXMLTICL[22] TXMLTICL[21] TXMLTICL[20] TXMLTICL[19] TXMLTICL[18] TXMLTICL[17] TXMLTICL[16]
15:8 TXMLTICL[15] TXMLTICL[14] TXMLTICL[13] TXMLTICL[12] TXMLTICL[11] TXMLTICL[10] TXMLTICL[9] TXMLTICL[8]
7:0 TXMLTICL[7] TXMLTICL[6] TXMLTICL[5] TXMLTICL[4] TXMLTICL[3] TXMLTICL[2] TXMLTICL[1] TXMLTICL[0]
0154h SU.TXDFRD
31:24 TXDFRD[31] TXDFRD[30] TXDFRD[29] TXDFRD[28] TXDFRD[27] TXDFRD[26] TXDFRD[25] TXDFRD[24]
23:16 TXDFRD[23] TXDFRD[22] TXDFRD[21] TXDFRD[20] TXDFRD[19] TXDFRD[18] TXDFRD[17] TXDFRD[16]
15:8 TXDFRD[15] TXDFRD[14] TXDFRD[13] TXDFRD[12] TXDFRD[11] TXDFRD[10] TXDFRD[9] TXDFRD[8]
7:0 TXDFRD[7] TXDFRD[6] TXDFRD[5] TXDFRD[4] TXDFRD[3] TXDFRD[2] TXDFRD[1] TXDFRD[0]
0158h SU.TXLTCL
31:24 TXLTCL[31] TXLTCL[30] TXLTCL[29] TXLTCL[28] TXLTCL[27] TXLTCL[26] TXLTCL[25] TXLTCL[24]
23:16 TXLTCL[23] TXLTCL[22] TXLTCL[21] TXLTCL[20] TXLTCL[19] TXLTCL[18] TXLTCL[17] TXLTCL[16]
15:8 TXLTCL[15] TXLTCL[14] TXLTCL[13] TXLTCL[12] TXLTCL[11] TXLTCL[10] TXLTCL[9] TXLTCL[8]
7:0 TXLTCL[7] TXLTCL[6] TXLTCL[5] TXLTCL[4] TXLTCL[3] TXLTCL[2] TXLTCL[1] TXLTCL[0]
015Ch SU.TXXCSVCL
31:24 TXXCSVCL[31] TXXCSVCL[30] TXXCSVCL[29] TXXCSVCL[28] TXXCSVCL[27] TXXCSVCL[26] TXXCSVCL[25] TXXCSVCL[24]
23:16 TXXCSVCL[23] TXXCSVCL[22] TXXCSVCL[21] TXXCSVCL[20] TXXCSVCL[19] TXXCSVCL[18] TXXCSVCL[17] TXXCSVCL[16]
15:8 TXXCSVCL[15] TXXCSVCL[14] TXXCSVCL[13] TXXCSVCL[12] TXXCSVCL[11] TXXCSVCL[10] TXXCSVCL[9] TXXCSVCL[8]
7:0 TXXCSVCL[7] TXXCSVCL[6] TXXCSVCL[5] TXXCSVCL[4] TXXCSVCL[3] TXXCSVCL[2] TXXCSVCL[1] TXXCSVCL[0]
0160h SU.TXCRERR
31:24 TXCRERR[31] TXCRERR[30] TXCRERR[29] TXCRERR[28] TXCRERR[27] TXCRERR[26] TXCRERR[25] TXCRERR[24]
23:16 TXCRERR[23] TXCRERR[22] TXCRERR[21] TXCRERR[20] TXCRERR[19] TXCRERR[18] TXCRERR[17] TXCRERR[16]
15:8 TXCRERR[15] TXCRERR[14] TXCRERR[13] TXCRERR[12] TXCRERR[11] TXCRERR[10] TXCRERR[9] TXCRERR[8]
7:0 TXCRERR[7] TXCRERR[6] TXCRERR[5] TXCRERR[4] TXCRERR[3] TXCRERR[2] TXCRERR[1] TXCRERR[0]
0164h SU.TXGBC
31:24 TXGBC[31] TXGBC[30] TXGBC[29] TXGBC[28] TXGBC[27] TXGBC[26] TXGBC[25] TXGBC[24]
23:16 TXGBC[23] TXGBC[22] TXGBC[21] TXGBC[20] TXGBC[19] TXGBC[18] TXGBC[17] TXGBC[16]
15:8 TXGBC[15] TXGBC[14] TXGBC[13] TXGBC[12] TXGBC[11] TXGBC[10] TXGBC[9] TXGBC[8]
7:0 TXGBC[7] TXGBC[6] TXGBC[5] TXGBC[4] TXGBC[3] TXGBC[2] TXGBC[1] TXGBC[0]
0168h SU.TXGFC
31:24 TXGFC[31] TXGFC[30] TXGFC[29] TXGFC[28] TXGFC[27] TXGFC[26] TXGFC[25] TXGFC[24]
23:16 TXGFC[23] TXGFC[22] TXGFC[21] TXGFC[20] TXGFC[19] TXGFC[18] TXGFC[17] TXGFC[16]
15:8 TXGFC[15] TXGFC[14] TXGFC[13] TXGFC[12] TXGFC[11] TXGFC[10] TXGFC[9] TXGFC[8]
7:0 TXGFC[7] TXGFC[6] TXGFC[5] TXGFC[4] TXGFC[3] TXGFC[2] TXGFC[1] TXGFC[0]
016Ch SU.TXXCSVDF
31:24 TXXCSVDF[31] TXXCSVDF[30] TXXCSVDF[29] TXXCSVDF[28] TXXCSVDF[27] TXXCSVDF[26] TXXCSVDF[25] TXXCSVDF[24]
23:16 TXXCSVDF[23] TXXCSVDF[22] TXXCSVDF[21] TXXCSVDF[20] TXXCSVDF[19] TXXCSVDF[18] TXXCSVDF[17] TXXCSVDF[16]
15:8 TXXCSVDF[15] TXXCSVDF[14] TXXCSVDF[13] TXXCSVDF[12] TXXCSVDF[11] TXXCSVDF[10] TXXCSVDF[9] TXXCSVDF[8]
7:0 TXXCSVDF[7] TXXCSVDF[6] TXXCSVDF[5] TXXCSVDF[4] TXXCSVDF[3] TXXCSVDF[2] TXXCSVDF[1] TXXCSVDF[0]
0170h SU.TXPAUSE
31:24 TXPAUSE[31] TXPAUSE[30] TXPAUSE[29] TXPAUSE[28] TXPAUSE[27] TXPAUSE[26] TXPAUSE[25] TXPAUSE[24]
23:16 TXPAUSE[23] TXPAUSE[22] TXPAUSE[21] TXPAUSE[20] TXPAUSE[19] TXPAUSE[18] TXPAUSE[17] TXPAUSE[16]
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 138 of 375
ADDR
NAME
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
15:8 TXPAUSE[15] TXPAUSE[14] TXPAUSE[13] TXPAUSE[12] TXPAUSE[11] TXPAUSE[10] TXPAUSE[9] TXPAUSE[8]
7:0 TXPAUSE[7] TXPAUSE[6] TXPAUSE[5] TXPAUSE[4] TXPAUSE[3] TXPAUSE[2] TXPAUSE[1] TXPAUSE[0]
0174h SU.TXVLANF
31:24 TXVLANF[31] TXVLANF[30] TXVLANF[29] TXVLANF[28] TXVLANF[27] TXVLANF[26] TXVLANF[25] TXVLANF[24]
23:16 TXVLANF[23] TXVLANF[22] TXVLANF[21] TXVLANF[20] TXVLANF[19] TXVLANF[18] TXVLANF[17] TXVLANF[16]
15:8 TXVLANF[15] TXVLANF[14] TXVLANF[13] TXVLANF[12] TXVLANF[11] TXVLANF[10] TXVLANF[9] TXVLANF[8]
7:0 TXVLANF[7] TXVLANF[6] TXVLANF[5] TXVLANF[4] TXVLANF[3] TXVLANF[2] TXVLANF[1] TXVLANF[0]
0178h RESERVED
31:24 - - - - - - - -
23:16 - - - - - - - -
15:8 - - - - - - - -
7:0 - - - - - - - -
017Ch RESERVED
31:24 - - - - - - - -
23:16 - - - - - - - -
15:8 - - - - - - - -
7:0 - - - - - - - -
0180h SU.RXFC
31:24 RXFC[31] RXFC[30] RXFC[29] RXFC[28] RXFC[27] RXFC[26] RXFC[25] RXFC[24]
23:16 RXFC[23] RXFC[22] RXFC[21] RXFC[20] RXFC[19] RXFC[18] RXFC[17] RXFC[16]
15:8 RXFC[15] RXFC[14] RXFC[13] RXFC[12] RXFC[11] RXFC[10] RXFC[9] RXFC[8]
7:0 RXFC[7] RXFC[6] RXFC[5] RXFC[4] RXFC[3] RXFC[2] RXFC[1] RXFC[0]
0184h SU.RXBC
31:24 RXBC[31] RXBC[30] RXBC[29] RXBC[28] RXBC[27] RXBC[26] RXBC[25] RXBC[24]
23:16 RXBC[23] RXBC[22] RXBC[21] RXBC[20] RXBC[19] RXBC[18] RXBC[17] RXBC[16]
15:8 RXBC[15] RXBC[14] RXBC[13] RXBC[12] RXBC[11] RXBC[10] RXBC[9] RXBC[8]
7:0 RXBC[7] RXBC[6] RXBC[5] RXBC[4] RXBC[3] RXBC[2] RXBC[1] RXBC[0]
0188h SU.RXGBC
31:24 RXGBC[31] RXGBC[30] RXGBC[29] RXGBC[28] RXGBC[27] RXGBC[26] RXGBC[25] RXGBC[24]
23:16 RXGBC[23] RXGBC[22] RXGBC[21] RXGBC[20] RXGBC[19] RXGBC[18] RXGBC[17] RXGBC[16]
15:8 RXGBC[15] RXGBC[14] RXGBC[13] RXGBC[12] RXGBC[11] RXGBC[10] RXGBC[9] RXGBC[8]
7:0 RXGBC[7] RXGBC[6] RXGBC[5] RXGBC[4] RXGBC[3] RXGBC[2] RXGBC[1] RXGBC[0]
018Ch SU.RXGBFC
31:24 RXGBFC[31] RXGBFC[30] RXGBFC[29] RXGBFC[28] RXGBFC[27] RXGBFC[26] RXGBFC[25] RXGBFC[24]
23:16 RXGBFC[23] RXGBFC[22] RXGBFC[21] RXGBFC[20] RXGBFC[19] RXGBFC[18] RXGBFC[17] RXGBFC[16]
15:8 RXGBFC[15] RXGBFC[14] RXGBFC[13] RXGBFC[12] RXGBFC[11] RXGBFC[10] RXGBFC[9] RXGBFC[8]
7:0 RXGBFC[7] RXGBFC[6] RXGBFC[5] RXGBFC[4] RXGBFC[3] RXGBFC[2] RXGBFC[1] RXGBFC[0]
0190h SU.RXMFC
31:24 RXMFC[31] RXMFC[30] RXMFC[29] RXMFC[28] RXMFC[27] RXMFC[26] RXMFC[25] RXMFC[24]
23:16 RXMFC[23] RXMFC[22] RXMFC[21] RXMFC[20] RXMFC[19] RXMFC[18] RXMFC[17] RXMFC[16]
15:8 RXMFC[15] RXMFC[14] RXMFC[13] RXMFC[12] RXMFC[11] RXMFC[10] RXMFC[9] RXMFC[8]
7:0 RXMFC[7] RXMFC[6] RXMFC[5] RXMFC[4] RXMFC[3] RXMFC[2] RXMFC[1] RXMFC[0]
0194h SU.RXCRC
31:24 RXCRC[31] RXCRC[30] RXCRC[29] RXCRC[28] RXCRC[27] RXCRC[26] RXCRC[25] RXCRC[24]
23:16 RXCRC[23] RXCRC[22] RXCRC[21] RXCRC[20] RXCRC[19] RXCRC[18] RXCRC[17] RXCRC[16]
15:8 RXCRC[15] RXCRC[14] RXCRC[13] RXCRC[12] RXCRC[11] RXCRC[10] RXCRC[9] RXCRC[8]
7:0 RXCRC[7] RXCRC[6] RXCRC[5] RXCRC[4] RXCRC[3] RXCRC[2] RXCRC[1] RXCRC[0]
0198h SU.RXALGN
31:24 RXALGN[31] RXALGN[30] RXALGN[29] RXALGN[28] RXALGN[27] RXALGN[26] RXALGN[25] RXALGN[24]
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 139 of 375
ADDR
NAME
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
23:16 RXALGN[23] RXALGN[22] RXALGN[21] RXALGN[20] RXALGN[19] RXALGN[18] RXALGN[17] RXALGN[16]
15:8 RXALGN[15] RXALGN[14] RXALGN[13] RXALGN[12] RXALGN[11] RXALGN[10] RXALGN[9] RXALGN[8]
7:0 RXALGN[7] RXALGN[6] RXALGN[5] RXALGN[4] RXALGN[3] RXALGN[2] RXALGN[1] RXALGN[0]
019Ch SU.RXRUNT
31:24 RXRUNT[31
]
RXRUNT[30
]
RXRUNT[29
]
RXRUNT[28
]
RXRUNT[27
]
RXRUNT[26
]
RXRUNT[25
]
RXRUNT[24
]
23:16 RXRUNT[23
]
RXRUNT[22
]
RXRUNT[21
]
RXRUNT[20
]
RXRUNT[19
]
RXRUNT[18
]
RXRUNT[17
]
RXRUNT[16
]
15:8 RXRUNT[15
]
RXRUNT[14
]
RXRUNT[13
]
RXRUNT[12
]
RXRUNT[11
]
RXRUNT[10
] RXRUNT[9] RXRUNT[8]
7:0 RXRUNT[7] RXRUNT[6] RXRUNT[5] RXRUNT[4] RXRUNT[3] RXRUNT[2] RXRUNT[1] RXRUNT[0]
01A0h SU.RXJBBR
31:24 RXJBBR[31] RXJBBR[30] RXJBBR[29] RXJBBR[28] RXJBBR[27] RXJBBR[26] RXJBBR[25] RXJBBR[24]
23:16 RXJBBR[23] RXJBBR[22] RXJBBR[21] RXJBBR[20] RXJBBR[19] RXJBBR[18] RXJBBR[17] RXJBBR[16]
15:8 RXJBBR[15] RXJBBR[14] RXJBBR[13] RXJBBR[12] RXJBBR[11] RXJBBR[10] RXJBBR[9] RXJBBR[8]
7:0 RXJBBR[7] RXJBBR[6] RXJBBR[5] RXJBBR[4] RXJBBR[3] RXJBBR[2] RXJBBR[1] RXJBBR[0]
01A4h SU.RXUNDRSZ
31:24 RXUNDRSZ[31] RXUNDRSZ[30] RXUNDRSZ[29] RXUNDRSZ[28] RXUNDRSZ[27] RXUNDRSZ[26] RXUNDRSZ[25] RXUNDRSZ[24]
23:16 RXUNDRSZ[23] RXUNDRSZ[22] RXUNDRSZ[21] RXUNDRSZ[20] RXUNDRSZ[19] RXUNDRSZ[18] RXUNDRSZ[17] RXUNDRSZ[16]
15:8 RXUNDRSZ[15] RXUNDRSZ[14] RXUNDRSZ[13] RXUNDRSZ[12] RXUNDRSZ[11] RXUNDRSZ[10] RXUNDRSZ[9] RXUNDRSZ[8]
7:0 RXUNDRSZ[7] RXUNDRSZ[6] RXUNDRSZ[5] RXUNDRSZ[4] RXUNDRSZ[3] RXUNDRSZ[2] RXUNDRSZ[1] RXUNDRSZ[0]
01A8h SU.RXOVRSZ
31:24 RXOVRSZ[31] RXOVRSZ[30] RXOVRSZ[29] RXOVRSZ[28] RXOVRSZ[27] RXOVRSZ[26] RXOVRSZ[25] RXOVRSZ[24]
23:16 RXOVRSZ[23] RXOVRSZ[22] RXOVRSZ[21] RXOVRSZ[20] RXOVRSZ[19] RXOVRSZ[18] RXOVRSZ[17] RXOVRSZ[16]
15:8 RXOVRSZ[15] RXOVRSZ[14] RXOVRSZ[13] RXOVRSZ[12] RXOVRSZ[11] RXOVRSZ[10] RXOVRSZ[9] RXOVRSZ[8]
7:0 RXOVRSZ[7] RXOVRSZ[6] RXOVRSZ[5] RXOVRSZ[4] RXOVRSZ[3] RXOVRSZ[2] RXOVRSZ[1] RXOVRSZ[0]
01ACh SU.RX0_64
31:24 RX0_64[31] RX0_64[30] RX0_64[29] RX0_64[28] RX0_64[27] RX0_64[26] RX0_64[25] RX0_64[24]
23:16 RX0_64[23] RX0_64[22] RX0_64[21] RX0_64[20] RX0_64[19] RX0_64[18] RX0_64[17] RX0_64[16]
15:8 RX0_64[15] RX0_64[14] RX0_64[13] RX0_64[12] RX0_64[11] RX0_64[10] RX0_64[9] RX0_64[8]
7:0 RX0_64[7] RX0_64[6] RX0_64[5] RX0_64[4] RX0_64[3] RX0_64[2] RX0_64[1] RX0_64[0]
01B0h SU.RX65_127
31:24 RX65_127[31] RX65_127[30] RX65_127[29] RX65_127[28] RX65_127[27] RX65_127[26] RX65_127[25] RX65_127[24]
23:16 RX65_127[23] RX65_127[22] RX65_127[21] RX65_127[20] RX65_127[19] RX65_127[18] RX65_127[17] RX65_127[16]
15:8 RX65_127[15] RX65_127[14] RX65_127[13] RX65_127[12] RX65_127[11] RX65_127[10] RX65_127[9] RX65_127[8]
7:0 RX65_127[7] RX65_127[6] RX65_127[5] RX65_127[4] RX65_127[3] RX65_127[2] RX65_127[1] RX65_127[0]
01B4h SU.RX128_255
31:24 RX128_255[31] RX128_255[30] RX128_255[29] RX128_255[28] RX128_255[27] RX128_255[26] RX128_255[25] RX128_255[24]
23:16 RX128_255[23] RX128_255[22] RX128_255[21] RX128_255[20] RX128_255[19] RX128_255[18] RX128_255[17] RX128_255[16]
15:8 RX128_255[15] RX128_255[14] RX128_255[13] RX128_255[12] RX128_255[11] RX128_255[10] RX128_255[9] RX128_255[8]
7:0 RX128_255[7] RX128_255[6] RX128_255[5] RX128_255[4] RX128_255[3] RX128_255[2] RX128_255[1] RX128_255[0]
01B8h SU.RX256_511
31:24 RX256_511[31] RX256_511[30] RX256_511[29] RX256_511[28] RX256_511[27] RX256_511[26] RX256_511[25] RX256_511[24]
23:16 RX256_511[23] RX256_511[22] RX256_511[21] RX256_511[20] RX256_511[19] RX256_511[18] RX256_511[17] RX256_511[16]
15:8 RX256_511[15] RX256_511[14] RX256_511[13] RX256_511[12] RX256_511[11] RX256_511[10] RX256_511[9] RX256_511[8]
7:0 RX256_511[7] RX256_511[6] RX256_511[5] RX256_511[4] RX256_511[3] RX256_511[2] RX256_511[1] RX256_511[0]
01BCh SU.RX512_1K
31:24 RX512_1K[31] RX512_1K[30] RX512_1K[29] RX512_1K[28] RX512_1K[27] RX512_1K[26] RX512_1K[25] RX512_1K[24]
23:16 RX512_1K[23] RX512_1K[22] RX512_1K[21] RX512_1K[20] RX512_1K[19] RX512_1K[18] RX512_1K[17] RX512_1K[16]
15:8 RX512_1K[15] RX512_1K[14] RX512_1K[13] RX512_1K[12] RX512_1K[11] RX512_1K[10] RX512_1K[9] RX512_1K[8]
7:0 RX512_1K[7] RX512_1K[6] RX512_1K[5] RX512_1K[4] RX512_1K[3] RX512_1K[2] RX512_1K[1] RX512_1K[0]
01C0h SU.RX1K_MAX
31:24 RX1K_MAX[31] RX1K_MAX[30] RX1K_MAX[29] RX1K_MAX[28] RX1K_MAX[27] RX1K_MAX[26] RX1K_MAX[25] RX1K_MAX[24]
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 140 of 375
ADDR
NAME
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
23:16 RX1K_MAX[23] RX1K_MAX[22] RX1K_MAX[21] RX1K_MAX[20] RX1K_MAX[19] RX1K_MAX[18] RX1K_MAX[17] RX1K_MAX[16]
15:8 RX1K_MAX[15] RX1K_MAX[14] RX1K_MAX[13] RX1K_MAX[12] RX1K_MAX[11] RX1K_MAX[10] RX1K_MAX[9] RX1K_MAX[8]
7:0 RX1K_MAX[7] RX1K_MAX[6] RX1K_MAX[5] RX1K_MAX[4] RX1K_MAX[3] RX1K_MAX[2] RX1K_MAX[1] RX1K_MAX[0]
01C4h SU.RXUFC
31:24 RXUFC[31] RXUFC[30] RXUFC[29] RXUFC[28] RXUFC[27] RXUFC[26] RXUFC[25] RXUFC[24]
23:16 RXUFC[23] RXUFC[22] RXUFC[21] RXUFC[20] RXUFC[19] RXUFC[18] RXUFC[17] RXUFC[16]
15:8 RXUFC[15] RXUFC[14] RXUFC[13] RXUFC[12] RXUFC[11] RXUFC[10] RXUFC[9] RXUFC[8]
7:0 RXUFC[7] RXUFC[6] RXUFC[5] RXUFC[4] RXUFC[3] RXUFC[2] RXUFC[1] RXUFC[0]
01C8h SU.RXLNERR
31:24 RXLNERR[31] RXLNERR[30] RXLNERR[29] RXLNERR[28] RXLNERR[27] RXLNERR[26] RXLNERR[25] RXLNERR[24]
23:16 RXLNERR[23] RXLNERR[22] RXLNERR[21] RXLNERR[20] RXLNERR[19] RXLNERR[18] RXLNERR[17] RXLNERR[16]
15:8 RXLNERR[15] RXLNERR[14] RXLNERR[13] RXLNERR[12] RXLNERR[11] RXLNERR[10] RXLNERR[9] RXLNERR[8]
7:0 RXLNERR[7] RXLNERR[6] RXLNERR[5] RXLNERR[4] RXLNERR[3] RXLNERR[2] RXLNERR[1] RXLNERR[0]
01CCh SU.RXRANGE
31:24 RXRANGE[31] RXRANGE[30] RXRANGE[29] RXRANGE[28] RXRANGE[27] RXRANGE[26] RXRANGE[25] RXRANGE[24]
23:16 RXRANGE[23] RXRANGE[22] RXRANGE[21] RXRANGE[20] RXRANGE[19] RXRANGE[18] RXRANGE[17] RXRANGE[16]
15:8 RXRANGE[15] RXRANGE[14] RXRANGE[13] RXRANGE[12] RXRANGE[11] RXRANGE[10] RXRANGE[9] RXRANGE[8]
7:0 RXRANGE[7] RXRANGE[6] RXRANGE[5] RXRANGE[4] RXRANGE[3] RXRANGE[2] RXRANGE[1] RXRANGE[0]
01D0h SU.RXPAUSE
31:24 RXPAUSE[31] RXPAUSE[30] RXPAUSE[29] RXPAUSE[28] RXPAUSE[27] RXPAUSE[26] RXPAUSE[25] RXPAUSE[24]
23:16 RXPAUSE[23] RXPAUSE[22] RXPAUSE[21] RXPAUSE[20] RXPAUSE[19] RXPAUSE[18] RXPAUSE[17] RXPAUSE[16]
15:8 RXPAUSE[15] RXPAUSE[14] RXPAUSE[13] RXPAUSE[12] RXPAUSE[11] RXPAUSE[10] RXPAUSE[9] RXPAUSE[8]
7:0 RXPAUSE[7] RXPAUSE[6] RXPAUSE[5] RXPAUSE[4] RXPAUSE[3] RXPAUSE[2] RXPAUSE[1] RXPAUSE[0]
01D4h SU.RXOVFL
31:24 RXOVFL[31] RXOVFL[30] RXOVFL[29] RXOVFL[28] RXOVFL[27] RXOVFL[26] RXOVFL[25] RXOVFL[24]
23:16 RXOVFL[23] RXOVFL[22] RXOVFL[21] RXOVFL[20] RXOVFL[19] RXOVFL[18] RXOVFL[17] RXOVFL[16]
15:8 RXOVFL[15] RXOVFL[14] RXOVFL[13] RXOVFL[12] RXOVFL[11] RXOVFL[10] RXOVFL[9] RXOVFL[8]
7:0 RXOVFL[7] RXOVFL[6] RXOVFL[5] RXOVFL[4] RXOVFL[3] RXOVFL[2] RXOVFL[1] RXOVFL[0]
01D8h SU.RXVLAN
31:24 RXVLAN[31] RXVLAN[30] RXVLAN[29] RXVLAN[28] RXVLAN[27] RXVLAN[26] RXVLAN[25] RXVLAN[24]
23:16 RXVLAN[23] RXVLAN[22] RXVLAN[21] RXVLAN[20] RXVLAN[19] RXVLAN[18] RXVLAN[17] RXVLAN[16]
15:8 RXVLAN[15] RXVLAN[14] RXVLAN[13] RXVLAN[12] RXVLAN[11] RXVLAN[10] RXVLAN[9] RXVLAN[8]
7:0 RXVLAN[7] RXVLAN[6] RXVLAN[5] RXVLAN[4] RXVLAN[3] RXVLAN[2] RXVLAN[1] RXVLAN[0]
01DCh SU.RXWDOG
31:24 RXWDOG[31] RXWDOG[30] RXWDOG[29] RXWDOG[28] RXWDOG[27] RXWDOG[26] RXWDOG[25] RXWDOG[24]
23:16 RXWDOG[23] RXWDOG[22] RXWDOG[21] RXWDOG[20] RXWDOG[19] RXWDOG[18] RXWDOG[17] RXWDOG[16]
15:8 RXWDOG[15] RXWDOG[14] RXWDOG[13] RXWDOG[12] RXWDOG[11] RXWDOG[10] RXWDOG[9] RXWDOG[8]
7:0 RXWDOG[7] RXWDOG[6] RXWDOG[5] RXWDOG[4] RXWDOG[3] RXWDOG[2] RXWDOG[1] RXWDOG[0]
1018h SU.MACMCR
31:24 - - - - - - - -
23:16 - - - FTF - - - -
15:8 - - - - - - - -
7:0 - - - - - - - -
Note that the addresses in the table above are the indirect addresses that must be provided to the SU.MAC1AWH and SU.MAC1AWL. All
unused and reserved locations must be initialized to zero for proper operation unless specifically noted otherwise.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 141 of 375
10.2 Global Register Definitions
Note that although most registers are defined as 16-bit registers, the constituent bytes are accessed
through the parallel or SPI interfaces one byte at a time. Individual address locations are defined for each
byte.
Register Name: GL.IDR
Register Description: Global ID Register
Register Address: 000h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
001h: REV2 REV1 REV0 SPIS VC2 VC1 VC0 VCAT
Default 0 - - - - - 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
000h: WP4 WP3 WP2 WP1 WP0 GBE MP1 MP0
Default - - - - - 0 - -
Bits 13-15: Revision Number (REV[2:0]) Contains a sequential number that is related to, but not equal to, the
device revision on the top brand. Silicon revision numbering begins at 000.
Bit 12: SPI Slave (SPIS) If this bit is set to 1, the device only supports a SPI Slave microprocessor port.
Bits 9-11: Voice Channels (VC[2:0]) This contains the number of voice channels supported.
Bit 8: VCAT (VCAT) If this bit is set to 1, the device has VCAT functionality.
Bits 3-7: Serial WAN Ports (WP[4:0]) These bits contain the number of WAN ports in the device.
Bit 3: Gigabit Ethernet Support (GBE) If this bit is set, the device support GbE.
Bits 0-1: Ethernet LAN Ports (MP[1:0]) These bits contain the number of MAC ports in the device.
Table 10-4. Default GL.IDR Values
Device SPIS VC[2:0] VCAT WP[4:0] GBE MP[1:0]
DS33X162 0 000 1 10000 1 10
DS33X161 0 000 1 10000 1 01
DS33X82 0 000 1 01000 1 10
DS33X81 0 000 1 01000 1 01
DS33X42 0 000 1 00100 1 10
DS33X41 0 000 1 00100 1 01
DS33W41 0 001 1 00100 1 01
DS33X11 1 000 1* 00001 1 01
DS33W11 0 001 1* 00001 1 01
*Note, the single-port DS33X11 and DS33W11 devices support reservation of the VCAT overhead byte position as
required by ITU-T G.8040, not the actual concatenation of WAN links.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 142 of 375
Register Name: GL.CR1
Register Description: Global Control Register 1
Register Address: 002h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
003h: - - P2SPD - P1SPD - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
002h: - - - - - FMC-2 FMC-1 FMC-0
Default 0 0 0 0 0 0 0 0
Bit 13: LAN Port 2 Speed Selection (P2SPD)
0 = 10Mbps operation
1 = 100Mbps
Bit 11: LAN Port 1 Speed Selection (P1SPD)
0 = 10Mbps operation
1 = 100Mbps operation
This bit setting is only applicable to MII and RMII modes.
Bits 0-2: Forwarding Mode Control (FMC[2:0])
000 = Reserved
001 = Forwarding mode 1. Single Ethernet Port with Priority Forwarding. In this mode, Ethernet frames
are segregated into up to four priority levels and forwarded to separate WAN data streams.
010 = Forwarding mode 2. Per-Ethernet-Port Forwarding with Priority Scheduling. In this mode, frames
from each Ethernet port are forwarded to their own group of four priority queues, generating two
separate WAN data streams with priority scheduled traffic.
011 = Forwarding mode 3. Single Ethernet Port with VLAN Forwarding and Priority Scheduling. In this
mode, Ethernet frames are forwarded by VLAN tag (VID) into up to four groups of four priority
queues (WAN Groups) each. Each WAN Group forms a separate WAN data stream with priority
scheduled traffic.
100 = Forwarding mode 4. Per-Ethernet-Port Forwarding, with VLAN Forwarding and Priority
Scheduling within each VLAN group. In this mode, Ethernet frames from each Ethernet port are
forwarded separately, by VLAN tag, into two sets of four priority queues (WAN Groups) each. The
two WAN Groups form separate WAN data streams with priority scheduled traffic.
101 = Forwarding mode 5. Full VLAN Forwarding in both the LAN-to-WAN and WAN-to-LAN
directions. In this mode, Ethernet frames from both ports can be forwarded by VLAN tag to two
shared WAN groups. Within each WAN group, there are two sets of four priority queues. The two
sets of priority queues are serviced with a round-robin algorithm. Frames received from the WAN
side can be forwarded by VLAN tag to either Ethernet port. The LAN-to-WAN and WAN-to-LAN
mappings are independent and can be configured separately.
110 = Reserved.
111 = Reserved.
In all forwarding modes, VCAT/LCAS can be used to aggregate multiple physical serial ports for each WAN
Group’s data stream, except on devices that do not support VCAT/LCAS.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 143 of 375
Register Name: GL.CR2
Register Description: Global Control Register 2
Register Address: 004h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
005h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
004h: - - - - INTM ENDEL - RST
Default 0 0 0 0 0 0 0 0
Bit 3: Interrupt Mode (INTM) When this bit is set to 1, the inactive state of the INT pin will be high-impedance.
When this bit is equal to 0, the inactive state of the INT pin will be a driven logic high.
Bit 2: Encap/Decap Loopback (ENDEL) When this bit is set to 1, the WAN-side output data from Encapsulator #1
is looped back to the WAN input of Decapsulator #1.
Bit 0: Global Reset (RST) When this bit is set, all of the internal data path, status, and control registers (except the
RST bit), on all ports, will be reset to the default state. This bit must remain set to 1 for a minimum of 100ns to
initiate the reset operation. The bit should be cleared to 0 for normal operation to resume. Note that setting this bit
does not tri-state output pins. When using a revision A1 (GL.IDR.REVn=000) device in SPI mode, the individual
block reset bits or the hardware reset pin should be used instead of this bit.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 144 of 375
Register Name: GL.ISR
Register Description: Global Interrupt Status Register
Register Address: 008h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
009h: MICIS DECIS4 DECIS3 DECIS2 ECIS4 ECIS3 ECIS2 RVCATIS
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
008h: - BUFIS - TSPIS DECIS1 ECIS1 TXLANIS RXLANIS
Default 0 0 0 0 0 0 0 0
Bit 15: Microprocessor Interrupt Status (MICIS) This bit is set if the Microport has an active, enabled interrupt
condition. Normally, this condition is caused by the presence of a trapped frame for extraction and processing.
Bit 14: Decapsulation Interrupt Status 4 (DECIS4) This bit is set if Decapsulator 4 has an active, enabled
interrupt condition.
Bit 13: Decapsulation Interrupt Status 3 (DECIS3) This bit is set if Decapsulator 3 has an active, enabled
interrupt condition.
Bit 12: Decapsulation Interrupt Status 2 (DECIS2) This bit is set if Decapsulator 2 has an active, enabled
interrupt condition.
Bit 11: Encapsulation Interrupt Status 4 (ECIS4) This bit is set if Encapsulator 4 has an active, enabled interrupt
condition.
Bit 10: Encapsulation Interrupt Status 3 (ECIS3) This bit is set if Encapsulator 3 has an active, enabled interrupt
condition.
Bit 9: Encapsulation Interrupt Status 2 (ECIS2) This bit is set if Encapsulator 2 has an active, enabled interrupt
condition.
Bit 8: Receive VCAT Interrupt Status (RVCATIS) This bit is set if the receive VCAT has an active, enabled
interrupt condition.
Bit 6: Buffer Manager (Arbiter) Interrupt Status (BUFIS) This bit is set if the buffer manager has an active,
enabled interrupt condition.
Bit 4: Transmit WAN Serial Port Interrupt Status (TSPIS) This bit is set if the transmit serial WAN port has an
active, enabled interrupt condition.
Bit 3: Decapsulation Interrupt Status 1 (DECIS1) This bit is set if Decapsulator 1 has an active, enabled interrupt
condition.
Bit 2: Encapsulation Interrupt Status 1 (ECIS1) This bit is set if Encapsulator 1 has an active, enabled interrupt
condition.
Bit 1: Transmit LAN Interrupt Status (TXLANIS) This bit is set if a transmit Ethernet LAN port has an active,
enabled interrupt condition.
Bit 0: Receive LAN and Bridge Filter Interrupt Status (RXLANIS) This bit is set if either of the receive Ethernet
LAN MAC(s) or the LAN Queue Overflows have an active, enabled interrupt condition.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 145 of 375
Register Name: GL.IER
Register Description: Global Interrupt Enable Register
Register Address: 00Ah
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
00Bh: MICIE DECIE4 DECIE3 DECIE2 ECIE4 ECIE3 ECIE2 RVCATIE
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
00Ah: - BUFIE - TSPIE DECIE1 ECIE1 TXLANIE RXLANIE
Default 0 0 0 0 0 0 0 0
Bit 15: Microport Interrupt Enable (MICIE) When this bit is set to 1, MICIS will generate an interrupt.
Bit 14: Decapsulation Interrupt Enable 4 (DECIE4) When this bit is set to 1, DECIS4 will generate an interrupt.
Bit 13: Decapsulation Interrupt Enable 3 (DECIE3) When this bit is set to 1, DECIS3 will generate an interrupt.
Bit 12: Decapsulation Interrupt Enable 2 (DECIE2) When this bit is set to 1, DECIS2 will generate an interrupt.
Bit 11: Encapsulation Interrupt Enable 4 (ECIE4) When this bit is set to 1, ECIS4 will generate an interrupt.
Bit 10: Encapsulation Interrupt Enable 3 (ECIE3) When this bit is set to 1, ECIS3 will generate an interrupt.
Bit 9: Encapsulation Interrupt Enable 2 (ECIE2) When this bit is set to 1, ECIS2 will generate an interrupt.
Bit 8: Receive VCAT Interrupt Enable (RVCATIE) When this bit is set to 1, RVCATIS will generate an interrupt.
Bit 6: Buffer Manager (Arbiter) Interrupt Enable (BUFIE) When this bit is set to 1, BUFIS will generate an
interrupt.
Bit 4: Transmit WAN Serial Port Interrupt Enable (TSPIE) When this bit is set to 1, TSPIS will generate an
interrupt.
Bit 3: Decapsulation Interrupt Enable 1 (DECIE1) When this bit is set to 1, DECIS1 will generate an interrupt.
Bit 2: Encapsulation Interrupt Enable 1 (ECIE1) When this bit is set to 1, ECIS1 will generate an interrupt.
Bit 1: Transmit LAN Interrupt Enable (TXLANIE) When this bit is set to 1, TXLANIS will generate an interrupt.
Bit 0: Receive LAN and Bridge Filter Interrupt Enable (RXLANIE) When this bit is set to 1, RXLANIS will
generate an interrupt.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 146 of 375
Register Name: GL.MBSR
Register Description: Global PLL Status Register
Register Address: 00Ch
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
00Dh: - - - -
DLOCK PLOCK - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
00Ch: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 11: DPLL Lock (DLOCK) This bit is set to 1 if the DPLL has achieved lock.
Bit 10: PLL Lock (PLOCK) This bit is set to 1 if PLL has achieved lock.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 147 of 375
10.2.1 Microport Registers
Register Name: GL.MCR1
Register Description: Microport Control Register 1
Register Address: 020h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
021h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
020h: - - - - - - FIFO1 FIFO0
Default 0 0 0 0 0 0 0 0
Bits 0-1: FIFO[1:0] FIFO Selection These bits select which FIFO will be accessed for reading or writing.
00 = WAN Insertion FIFO
01 = WAN Extraction FIFO
10 = LAN Insertion FIFO
11 = LAN Extraction FIFO
Register Name: GL.MCR2
Register Description: Microport Control Register 2
Register Address: 022h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
023h: - - - - WILEN11 WILEN10 WILEN9 WILEN8
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
022h: WILEN7 WILEN6 WILEN5 WILEN4 WILEN3 WILEN2 WILEN1 WILEN0
Default 0 0 0 0 0 0 0 0
Bits 0-11: WAN Insertion Frame Length (WILEN[11:0]) These bits determine the number of bytes of the frame to
be written to FIFO selected (Insertion FIFOs only). Maximum size frame is 2048 bytes.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 148 of 375
Register Name: GL.MCR3
Register Description: Microport Control Register 3
Register Address: 024h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
025h: - - - - LILEN11 LILEN10 LILEN9 LILEN8
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
024h: LILEN7 LILEN6 LILEN5 LILEN4 LILEN3 LILEN2 LILEN1 LILEN0
Default 0 0 0 0 0 0 0 0
Bits 0-11: LAN Insertion Frame Length (LILEN[11:0])These bits determine the number of bytes of the frame to
be written to FIFO selected (Insertion FIFOs only). Maximum size frame is 2048 bytes.
Register Name: GL.MSR1
Register Description: Microport Status Register 1
Register Address: 026h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
027h: - - - - WELEN11 WELEN10 WELEN9 WELEN8
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
026h: WELEN7 WELEN6 WELEN5 WELEN4 WELEN3 WELEN2 WELEN1 WELEN0
Default 0 0 0 0 0 0 0 0
Bits 0-11: WAN Extraction Frame Length (WELEN[11:0]) These bits report the size of the frame in bytes
available in the WAN Extraction FIFO. Maximum size frame is 2048 bytes. This value is updated when a complete
frame is received in the WAN Extraction FIFO.
Register Name: GL.MSR2
Register Description: Microport Status Register 2
Register Address: 028h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
029h: - - - - LILEN11 LELEN10 LELEN9 LELEN8
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
028h: LELEN7 LELEN6 LELEN5 LELEN4 LELEN3 LELEN2 LELEN1 LELEN0
Default 0 0 0 0 0 0 0 0
Bits 0-11: LAN Extraction Frame Length (LELEN[11:0]) These bits report the size of the frame in bytes available
in the LAN Extraction FIFO. Maximum size frame is 2048 bytes. This value is updated when a complete frame is
received in the LAN Extraction FIFO.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 149 of 375
Register Name: GL.MSR3
Register Description: Microport Status Register 3
Register Address: 02Ah
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
02Bh: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
02Ah: - - - - LANEA LANIE WANEA WANIE
Default 0 0 0 0 0 0 0 0
Bit 3: LAN Extraction Available (LANEA) Set when the LAN Extraction FIFO has a frame available to read.
Clears when the first byte is read from the FIFO.
Bit 2: LAN Insertion Queue Empty (LANIE) Set when the LAN Insertion FIFO is empty.
Bit 1: WAN Extraction Available (WANEA) Set when the WAN Extraction FIFO has a frame available to read.
Clears when the first byte is read from the FIFO
Bit 0: WAN Insertion Queue Empty (WANIE) Set when the WAN Insertion FIFO is empty.
Register Name: GL.MLSR3
Register Description: Microport Latched Status Register 3
Register Address: 02Ch
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
02Dh: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
02Ch: - - - - LANEAL LANIEL WANEAL WANIEL
Default 0 0 0 0 0 0 0 0
Bit 3: LAN Extraction Available - Latched (LANEAL) Set when the LAN Extraction FIFO has a frame available to
read. Clears when the first byte is read from the FIFO.
Bit 2: LAN Insertion Empty - Latched (LANIEL) Set when the LAN Insertion FIFO is empty.
Bit 1: WAN Extraction Available - Latched (WANEAL) Set when the WAN Extraction FIFO has a frame available
to read. Clears when the first byte is read from the FIFO.
Bit 0: WAN Insertion Empty - Latched (WANIEL) Set when the WAN Insertion FIFO is empty.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 150 of 375
Register Name: GL.MSIER3
Register Description: Microport Status Interrupt Enable Register 3
Register Address: 02Eh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
02Fh: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
02Eh: - - - - LANEAIE LANIEIE WANEAIE WANIEIE
Default 0 0 0 0 0 0 0 0
Bit 3: LAN Extraction Available Interrupt Enable (LANEAIE) This bit enables LANEAL to cause an interrupt.
0 = interrupt disabled
1 = interrupt enabled
Bit 2: LAN Insertion Empty Interrupt Enable (LANIEIE) This bit enables an interrupt if the LANIEL bit is set.
0 = interrupt disabled
1 = interrupt enabled
Bit 1: WAN Extraction Available Interrupt Enable (WANEAIE) This bit enables WANEAL to cause an interrupt.
0 = interrupt disabled
1 = interrupt enabled
Bit 0: WAN Insertion Empty Interrupt Enable (WANIEIE) This bit enables an interrupt if the WANIEL bit is set.
0 = interrupt disabled
1 = interrupt enabled
Register Name: GL.MFAWR
Register Description: Microport FIFO Access Write Register
Register Address: 030h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
031h: - - - - - - RD_DN WR_DN
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
030h: WPKT7 WPKT6 WPKT5 WPKT4 WPKT3 WPKT2 WPKT1 WPKT0
Default 0 0 0 0 0 0 0 0
Bit 9: Read Byte (RD_DN) A zero-to-one transition is required after the last byte of the frame has been read from
the MFAWR Register. This signals the associated FIFO (WAN Extract or LAN Extract) to reset its pointers.
Bit 8: Write Byte (WR_DN) A zero-to-one transition is required after the last byte of the frame has been written to
MFAWR Register. This transition signals that the frame is ready to be transferred.
Bits 0-7: Packet Write Byte (WPKT[7:0]) If an Insertion FIFO is selected, this register inserts a byte of frame data
into the FIFO selected by MCR2. The beginning of the frame to be transmitted is written first. Each write
automatically increments the FIFO pointer. If an Extraction FIFO is selected, this register reports a byte of frame
data from the FIFO selected by MCR2. The beginning of the frame to be transmitted is read first. Each read
automatically increments the FIFO pointer.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 151 of 375
Register Name: GL.MFARR
Register Description: Microport FIFO Access Read Register
Register Address: 032h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
033h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
032h: RPKT7 RPKT6 RPKT5 RPKT4 RPKT3 RPKT2 RPKT1 RPKT0
Default 0 0 0 0 0 0 0 0
Bits 0-7: Packet Read Byte (RPKT[7:0]) If an Extraction FIFO is selected, this register reports a byte of frame
data from the FIFO selected by MCR1. The beginning of the frame to be transmitted is read first. Each read
automatically increments the FIFO pointer.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 152 of 375
10.2.2 MAC 1 Interface Access Registers
Register Name: SU.MAC1RADL
Register Description: MAC 1 Read Address Low Register
Register Address: 040h
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
040h: MACRA7 MACRA6 MACRA5 MACRA4 MACRA3 MACRA2 MACRA1 MACRA0
Default 0 0 0 0 0 0 0 0
Bits 0 – 7: MAC Read Address (MACRA0-7) - Low byte of the MAC address. Used only for read operations.
Register Name: SU.MAC1RADH
Register Description: MAC 1 Read Address High Register
Register Address: 041h
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
041h: MACRA15 MACRA14 MACRA13 MACRA12 MACRA11 MACRA10 MACRA9 MACRA8
Default 0 0 0 0 0 0 0 0
Bits 0 – 7: MAC Read Address (MACRA8-15) - High byte of the MAC address. Used only for read operations.
Register Name: SU.MAC1RD0
Register Description: MAC 1 Read Data Byte 0
Register Address: 042h
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
042h: MACRD7 MACRD6 MACRD5 MACRD4 MACRD3 MACRD2 MACRD1 MACRD0
Default 0 0 0 0 0 0 0 0
Bits 0 – 7: MAC Read Data 0 (MACRD0-7): One of four bytes of data read from the MAC. Valid after a read
command has been issued and the SU.MAC1RWC.MCS bit is zero.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 153 of 375
Register Name: SU.MAC1RD1
Register Description: MAC 1 Read Data Byte 1
Register Address: 043h
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
043h: MACRD15 MACRD14 MACRD13 MACRD12 MACRD11 MACRD10 MACRD9 MACRD8
Default 0 0 0 0 0 0 0 0
Bits 0 - 7: MAC Read Data 1 (MACRD8-15) - One of four bytes of data read from the MAC. Valid after a read
command has been issued and the SU.MAC1RWC.MCS bit is zero.
Register Name: SU.MAC1RD2
Register Description: MAC 1 Read Data Byte 2
Register Address: 044h
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
044h: MACRD23 MACRD22 MACRD21 MACRD20 MACRD19 MACRD18 MACRD17 MACRD16
Default 0 0 0 0 0 0 0 0
Bits 0 – 7: MAC Read Data 2 (MACRD16-23) - One of four bytes of data read from the MAC. Valid after a read
command has been issued and the SU.MAC1RWC.MCS bit is zero.
Register Name: SU.MAC1RD3
Register Description: MAC 1 Read Data Byte 3
Register Address: 045h
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
045h: MACRD31 MACRD30 MACRD29 MACRD28 MACRD27 MACRD26 MACRD25 MACRD24
Default 0 0 0 0 0 0 0 0
Bits 0 – 7: MAC Read Data 3 (MACRD24-31) - One of four bytes of data read from the MAC. Valid after a read
command has been issued and the SU.MAC1RWC.MCS bit is zero.
Register Name: SU.MAC1WD0
Register Description: MAC 1 Write Data Byte 0
Register Address: 046h
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
046h: MACWD7 MACWD6 MACWD5 MACWD4 MACWD3 MACWD2 MACWD1 MACWD0
Default 0 0 0 0 0 0 0 0
Bits 0 – 7: MAC Write Data 0 (MACWD0-7) - One of four bytes of data to be written to the MAC. Data has been
written after a write command has been issued and the SU.MAC1RWC.MCS bit is zero.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 154 of 375
Register Name: SU.MAC1WD1
Register Description: MAC 1 Write Data Byte 1
Register Address: 047h
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
047h: MACWD15 MACWD14 MACWD13 MACWD12 MACWD11 MACWD10 MACWD09 MACWD08
Default 0 0 0 0 0 0 0 0
Bits 0 – 7: MAC Write Data 1 (MACWD8-15) - One of four bytes of data to be written to the MAC. Data has been
written after a write command has been issued and the SU.MAC1RWC.MCS bit is zero.
Register Name: SU.MAC1WD2
Register Description: MAC 1 Write Data Byte 2
Register Address: 048h
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
048h: MACWD23 MACWD22 MACWD21 MACWD20 MACWD19 MACWD18 MACWD17 MACWD16
Default 0 0 0 0 0 0 0 0
Bits 0 - 7: MAC Write Data 2 (MACWD16-23) - One of four bytes of data to be written to the MAC. Data has been
written after a write command has been issued and the SU.MAC1RWC.MCS bit is zero.
Register Name: SU.MAC1WD3
Register Description: MAC 1 Write Data Byte 3
Register Address: 049h
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
049h: MACD31 MACD30 MACD29 MACD28 MACD27 MACD26 MACD25 MACD24
Default 0 0 0 0 0 0 0 0
Bits 0 – 7: MAC Write Data 3 (MACD24-31) - One of four bytes of data to be written to the MAC. Data has been
written after a write command has been issued and the SU.MAC1RWC.MCS bit is zero.
Register Name: SU.MAC1AWL
Register Description: MAC 1 Address Write Low
Register Address: 04Ah
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
04Ah: MACAW7 MACAW6 MACAW5 MACAW4 MACAW3 MACAW2 MACAW1 MACAW0
Default 0 0 0 0 0 0 0 0
Bits 0 -7: MAC Write Address (MACAW0-7) - Low byte of the MAC address. Used only for write operations.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 155 of 375
Register Name: SU.MAC1AWH
Register Description: MAC 1 Address Write High
Register Address: 04Bh
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
04Bh: MACAW15 MACAW14 MACAW13 MACAW12 MACAW11 MACAW10 MACAW9 MACAW8
Default 0 0 0 0 0 0 0 0
Bits 0 – 7: MAC Write Address (MACAW8-15) - High byte of the MAC address. Used only for write operations.
Register Name: SU.MAC1RWC
Register Description: MAC 1 Read Write Command Status
Register Address: 04Ch
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
04Ch: - - - - - - MCRW MCS
Default 0 0 0 0 0 0 0 0
Bit 1: MAC Command RW – If this bit is written to 1, a read is performed from the MAC. If this bit is written to 0, a
write operation is performed. Address information for write operations must be located in SU.MAC1AWH and
SU.MAC1AWL. Address information for read operations must be located in SU.MAC1RADH and SU.MAC1RADL.
The user must also write a 1 to the MCS bit, and the device will clear MCS when the operation is complete.
Bit 0: MAC Command Status – Setting MCS in conjunction with MCRW will initiate a read or write to the MAC
registers. Upon completion of the read or write this bit is cleared. Once a read or write command has been initiated
the host must poll this bit to see when the operation is complete.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 156 of 375
10.2.3 MAC 2 Interface Access Registers
Register Name: SU.MAC2RADL
Register Description: MAC 2 Read Address Low Register
Register Address: 060h
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
060h: MACRA7 MACRA6 MACRA5 MACRA4 MACRA3 MACRA2 MACRA1 MACRA0
Default 0 0 0 0 0 0 0 0
Bits 0 – 7: MAC Read Address (MACRA0-7) - Low byte of the MAC address. Used only for read operations.
Register Name: SU.MAC2RADH
Register Description: MAC 2 Read Address High Register
Register Address: 061h
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
061h: MACRA15 MACRA14 MACRA13 MACRA12 MACRA11 MACRA10 MACRA9 MACRA8
Default 0 0 0 0 0 0 0 0
Bits 0 – 7: MAC Read Address (MACRA8-15) - High byte of the MAC address. Used only for read operations.
Register Name: SU.MAC2RD0
Register Description: MAC 2 Read Data Byte 0
Register Address: 062h
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
062h: MACRD7 MACRD6 MACRD5 MACRD4 MACRD3 MACRD2 MACRD1 MACRD0
Default 0 0 0 0 0 0 0 0
Bits 0 – 7: MAC Read Data 0 (MACRD0-7): One of four bytes of data read from the MAC. Valid after a read
command has been issued and the SU.MAC1RWC.MCS bit is zero.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 157 of 375
Register Name: SU.MAC2RD1
Register Description: MAC 2 Read Data Byte 1
Register Address: 063h
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
063h: MACRD15 MACRD14 MACRD13 MACRD12 MACRD11 MACRD10 MACRD9 MACRD8
Default 0 0 0 0 0 0 0 0
Bits 0 - 7: MAC Read Data 1 (MACRD8-15) - One of four bytes of data read from the MAC. Valid after a read
command has been issued and the SU.MAC1RWC.MCS bit is zero.
Register Name: SU.MAC2RD2
Register Description: MAC 2 Read Data Byte 2
Register Address: 064h
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
064h: MACRD23 MACRD22 MACRD21 MACRD20 MACRD19 MACRD18 MACRD17 MACRD16
Default 0 0 0 0 0 0 0 0
Bits 0 – 7: MAC Read Data 2 (MACRD16-23) - One of four bytes of data read from the MAC. Valid after a read
command has been issued and the SU.MAC1RWC.MCS bit is zero.
Register Name: SU.MAC2RD3
Register Description: MAC 2 Read Data Byte 3
Register Address: 065h
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
065h: MACRD31 MACRD30 MACRD29 MACRD28 MACRD27 MACRD26 MACRD25 MACRD24
Default 0 0 0 0 0 0 0 0
Bits 0 – 7: MAC Read Data 3 (MACRD24-31) - One of four bytes of data read from the MAC. Valid after a read
command has been issued and the SU.MAC1RWC.MCS bit is zero.
Register Name: SU.MAC2WD0
Register Description: MAC 2 Write Data Byte 0
Register Address: 066h
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
066h: MACWD7 MACWD6 MACWD5 MACWD4 MACWD3 MACWD2 MACWD1 MACWD0
Default 0 0 0 0 0 0 0 0
Bits 0 – 7: MAC Write Data 0 (MACWD0-7) - One of four bytes of data to be written to the MAC. Data has been
written after a write command has been issued and the SU.MAC1RWC.MCS bit is zero.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 158 of 375
Register Name: SU.MAC2WD1
Register Description: MAC 2 Write Data Byte 1
Register Address: 067h
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
067h: MACWD15 MACWD14 MACWD13 MACWD12 MACWD11 MACWD10 MACWD09 MACWD08
Default 0 0 0 0 0 0 0 0
Bits 0 – 7: MAC Write Data 1 (MACWD8-15) - One of four bytes of data to be written to the MAC. Data has been
written after a write command has been issued and the SU.MAC1RWC.MCS bit is zero.
Register Name: SU.MAC2WD2
Register Description: MAC 2 Write Data Byte 2
Register Address: 068h
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
068h: MACWD23 MACWD22 MACWD21 MACWD20 MACWD19 MACWD18 MACWD17 MACWD16
Default 0 0 0 0 0 0 0 0
Bits 0 - 7: MAC Write Data 2 (MACWD16-23) - One of four bytes of data to be written to the MAC. Data has been
written after a write command has been issued and the SU.MAC1RWC.MCS bit is zero.
Register Name: SU.MAC2WD3
Register Description: MAC 2 Write Data Byte 3
Register Address: 069h
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
069h: MACD31 MACD30 MACD29 MACD28 MACD27 MACD26 MACD25 MACD24
Default 0 0 0 0 0 0 0 0
Bits 0 – 7: MAC Write Data 3 (MACD24-31) - One of four bytes of data to be written to the MAC. Data has been
written after a write command has been issued and the SU.MAC1RWC.MCS bit is zero.
Register Name: SU.MAC2AWL
Register Description: MAC 2 Address Write Low
Register Address: 06Ah
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
06Ah: MACAW7 MACAW6 MACAW5 MACAW4 MACAW3 MACAW2 MACAW1 MACAW0
Default 0 0 0 0 0 0 0 0
Bits 0 -7: MAC Write Address (MACAW0-7) - Low byte of the MAC address. Used only for write operations.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 159 of 375
Register Name: SU.MAC2AWH
Register Description: MAC 2 Address Write High
Register Address: 06Bh
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
06Bh: MACAW15 MACAW14 MACAW13 MACAW12 MACAW11 MACAW10 MACAW9 MACAW8
Default 0 0 0 0 0 0 0 0
Bits 0 – 7: MAC Write Address (MACAW8-15) - High byte of the MAC address. Used only for write operations.
Register Name: SU.MAC2RWC
Register Description: MAC 2 Read Write Command Status
Register Address: 06Ch
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
06Ch: - - - - - - MCRW MCS
Default 0 0 0 0 0 0 0 0
Bit 1: MAC Command RW – If this bit is written to 1, a read is performed from the MAC. If this bit is written to 0, a
write operation is performed. Address information for write operations must be located in SU.MAC1AWH and
SU.MAC1AWL. Address information for read operations must be located in SU.MAC1RADH and SU.MAC1RADL.
The user must also write a 1 to the MCS bit, and the device will clear MCS when the operation is complete.
Bit 0: MAC Command Status – Setting MCS in conjunction with MCRW will initiate a read or write to the MAC
registers. Upon completion of the read or write this bit is cleared. Once a read or write command has been initiated
the host must poll this bit to see when the operation is complete.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 160 of 375
10.2.4 VLAN Control Registers
Register Name: SU.VTC
Register Description: VLAN Table Control
Register Address: 080h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
081h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
080h: - - - - - CTE CI CAIM
Default 0 0 0 0 0 0 0 0
This register is used to control the VLAN Table. The Initialization function resets all of the 4096 entries in the VLAN
Table to their default value.
Bit 2: Control Table Enable (CTE) When equal to zero, the VLAN Table is fully enabled. When set to 1, the VLAN
Table is only enabled as required by the LAN Extract (LAN-VLAN Trap), WAN Extract (WAN-VLAN Trap), or
microprocessor operations.
Bit 1: Control Initialization (CI). A transition from zero to one starts the VLAN Table initialization by resetting all
VLAN table addresses to their default values. A device reset will also trigger a VLAN Table initialization.
Bit 0: Control Auto Increment Mode (CAIM). When set to 1, the VLAN Table Address in SU.VTAA is
automatically incremented with each read or write of the SU.VTWD or SU.VTRD registers.
Register Name: SU.VTAA
Register Description: VLAN Table Access Address
Register Address: 082h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
083h: - - - - VTAA12 VTAA11 VTAA10 VTAA9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
082h: VTAA8 VTAA7 VTAA6 VTAA5 VTAA4 VTAA3 VTAA2 VTAA1
Default 0 0 0 0 0 0 0 0
The data that is stored at the specified VLAN Table address is automatically loaded into the read register for this
configuration register address. This is true whether the user is performing a read or write function. The user may
choose to read the data (for the read operation) or disregard the data (for the write operation).
Bits 0-11: VLAN Table Access Address (VTAA [12:1]). This register provides the VLAN Table Address for a uP
Read or Write operation.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 161 of 375
Register Name: SU.VTWD
Register Description: VLAN Table Write Data
Register Address: 084h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
085h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
084h: - - WVEFW WVQFW LVDW LVEFW LVQFW2 LVQFW1
Default 0 0 0 0 0 0 0 0
Whenever a write is performed to this configuration register address the data is stored in the VLAN Table at the
address specified by the SU.VTAA register (i.e. the VTAA value must be provided in advance of the VTWD data).
VLAN Forwarding, Extracting (Trapping), or Discarding. Each address (SU.VTAA) in the VLAN table
corresponds to a specific VLAN ID (VID) value from 0 to 4095, and the bit settings at each address relate to
actions taken when a frame containing the corresponding VLAN ID value is detected. These values are used to
translate VLAN tag information from each received frame into forwarding, trapping (frame extraction), or discarding
decisions. The user may configure any or all of the 4096 VLAN IDs values in the VLAN table. The data written to
this register is stored in the VLAN Table at the specified VLAN Table Address.
Bit 5: WAN-VLAN Extract Forwarding (WAN-VLAN Trap) (WVEFW)
0 = Do nothing.
1 = Trap frames received from the WAN with this VID and place them in the WAN Extract Queue.
Bit 4: WAN-VLAN Queue Forwarding (WVQFW; Only valid in Forwarding Mode 5)
0 = Forward frames received from the WAN with this VID value to Ethernet Port 1
1 = Forward frames received from the WAN with this VID value to Ethernet Port 2
Bit 3: LAN-VLAN Discard (LVDW)
0 = Do nothing.
1 = Discard frames received from the LAN with this VID
Bit 2: LAN-VLAN Extract Forwarding (LAN-VLAN Trap) (LVEFW)
0 = Do not forward this frame to the LAN Extract Queue
1 = Forward this frame to the LAN Extract Queue
Bits 0-1: LAN-VLAN Queue Forwarding (LVQFW [2:1])
00 = Forward frames with a VID value equal to this table address to LAN Queue Group 1
01 = Forward frames with a VID value equal to this table address to LAN Queue Group 2
10 = Forward frames with a VID value equal to this table address to LAN Queue Group 3
11 = Forward frames with a VID value equal to this table address to LAN Queue Group 4
NOTE:
LAN Extract forwarding takes precedence over LAN Queue forwarding.
LAN Discard takes precedence over LAN Extract forwarding (trapping).
WAN Extract forwarding (trapping) takes precedence over WAN Queue forwarding.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 162 of 375
Register Name: SU.VTRD
Register Description: VLAN Table Read Data
Register Address: 086h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
087h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
086h: - - WVEFR WVQFR LVDR LVEFR LVQFR2 LVQFR1
Default 0 0 0 0 0 0 0 0
Whenever a read operation is performed on this configuration register, the data stored in the VLAN Table at the
address specified by the SU.VTAA register is read. The VTAA value must be initialized prior to the read operation.
VLAN Forwarding. These values determine whether to forward a frame to an extract or forwarding queue or (in
the LAN to WAN direction) whether to discard the frame, There are 4096 VLAN IDs. The user may configure any
number of these 4096 VLAN IDs. The data in this register provides the read data that was retrieved from a VLAN
Table Read operation.
Bit 5: WAN-VLAN Extract Forwarding (WAN-VLAN Trap) (WVEFR)
0 = Do nothing.
1 = Trap frames received from the WAN with this VID and place them in the WAN Extract Queue.
Bit 4: WAN-VLAN Queue Forwarding (WVQFR; Only valid in Forwarding Mode 5)
0 = Forward frames received from the WAN with this VID value to Ethernet Port 1
1 = Forward frames received from the WAN with this VID value to Ethernet Port 2
Bit 3: LAN-VLAN Discard (LVDR)
0 = Do nothing.
1 = Discard frames received from the LAN with this VID
Bit 2: LAN-VLAN Extract Forwarding (LAN-VLAN Trap) (LVEFR)
0 = Do not forward this frame to the LAN Extract Queue
1 = Forward this frame to the LAN Extract Queue
Bits 0-1: LAN-VLAN Queue Forwarding (LVQFR[2:1])
00 = Forward frames with a VID value equal to this table address to LAN Queue Group 1
01 = Forward frames with a VID value equal to this table address to LAN Queue Group 2
10 = Forward frames with a VID value equal to this table address to LAN Queue Group 3
11 = Forward frames with a VID value equal to this table address to LAN Queue Group 4
NOTE:
LAN Extract forwarding takes precedence over LAN Queue forwarding.
LAN Discard takes precedence over LAN Extract forwarding (trapping).
WAN Extract forwarding (trapping) takes precedence over WAN Queue forwarding.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 163 of 375
Register Name: SU.VTSA
Register Description: VLAN Table Shadow Address
Register Address: 088h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
089h: - - - VTIS VTSA12 VTSA11 VTSA10 VTSA9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
088h: VTSA8 VTSA7 VTSA6 VTSA5 VTSA4 VTSA3 VTSA2 VTSA1
Default 0 0 0 0 0 0 0 0
Bit 12: VLAN Table Initialization Status (VTIS): This bit is set to 1 when the VLAN Table initialization has been
completed. Occurs upon reset.
Bits 0-11: VLAN Table Shadow Address (VTSA [12:1]) This register interfaces directly to the VLAN Table
memory block to provide the selected VLAN Table Address that is to be used for each VLAN Table operation (LAN
Trap, WAN Trap or uP Read/Write). When SU.VTC.CAIM = 1, the Shadow Address automatically increments for
each Read and/or Write VLAN Table Access.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 164 of 375
10.3 Ethernet Interface Registers
The Ethernet Interface registers are used to configure GMII/MII/RMII bus operation and establish the MAC
parameters as required by the user. The MAC Registers cannot be addressed directly from the Processor port. The
registers below are used to perform indirect read or write operations to the MAC registers. The MAC Status
Registers are shown in Table 10-3. Accessing the MAC Registers is described in Section 8.19.
10.3.1 WAN Extraction and Transmit LAN registers
Register Name: SU.WEM
Register Description: WAN Extract Modes and Ethernet Tag Settings
Register Address: 0A0h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0A1h: - - - - - - WMGMTT WBAT
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0A0h: WNVDF WEFR WEDS2 WEDS1 WEVIT WEETT WEDAT WEHT
Default 0 0 0 0 0 0 0 0
WAN Extract Modes. This register determines which set of WAN Trap modes have been enabled. The WAN Trap
modes can be unrelated to the LAN Trap modes in the opposite direction. Any combination of these Traps can be
enabled. If any enabled Trap Modes overlap so that the WAN Trap indicates that a frame should be forwarded to
an Ethernet Port and to the WAN Extract, the frame is to be only forwarded to the WAN Extract (e.g. the user might
have configured the WAN Trap to forward the frame’s VLAN ID to Ethernet Port 1, but the frame’s DA might also
indicate that the frame is to be sent to the WAN Extract). WAN VLAN/Q-in-Q Forwarding is enabled through the
Forwarding Mode (not through these registers). The default setting is all Modes disabled.
Bit 9: WAN Extract Management Address Trap (WMGMTT)
0 = WAN Extract Management Address Trap is disabled.
1 = WAN Extract Management Address Trap is enabled. All Ethernet frames with an Ethernet Destination
Address (DA) = 01:80:C2:xx:xx:xx, where “x” is “don’t care,” are forwarded to the WAN extract queue.
Bit 8: WAN Extract Broadcast Address Trap (WBAT)
0 = WAN Extract Broadcast Address Trap is disabled.
1 = WAN Extract Broadcast Address Trap is enabled. All Ethernet frames with an Ethernet Destination
Address (DA) = FF:FF:FF:FF:FF:FF are forwarded to the WAN extract queue.
Bit 7: WAN “No VLAN/Q-in-Q” Detected Forwarding (WNVDF).
0 = When the 13th and 14th bytes in the frame do not equate to the value in WETPID, then the frame is to be
forwarded to Ethernet Interface 1.
1 = When the 13th and 14th bytes in the frame do not equate to the value in WETPID, then the frame is to be
forwarded to Ethernet Interface 2.
To configure the X162 for VLAN or Q-in-Q, WAN to LAN forwarding, the Forwarding Mode must be set to 5, and
the WETPID register must be configured (or use the configuration register default values).
Bit 6: WAN Extract FIFO Reset (WEFR)
0 = Normal – no reset.
1 = One-time, momentary reset of the WAN Extract FIFO.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 165 of 375
Bits 4-5: WAN Extract Decap Source (WEDS[2:1])
00 = WAN Extract is to be performed on the data stream from Decapsulator 1 (WAN Group 1).
01 = WAN Extract is to be performed on the data stream from Decapsulator 2 (WAN Group 2).
10 = WAN Extract is to be performed on the data stream from Decapsulator 3 (WAN Group 3).
11 = WAN Extract is to be performed on the data stream from Decapsulator 4 (WAN Group 4).
Note that not all decapsulators are available in all Forwarding Modes. The user should consult the forwarding
diagrams in Section 8.9.1 for the available decapsulators for the configured Forwarding Mode.
Bit 3: WAN Extract VLAN ID Trap (WEVIT)
0 = WAN Extract VLAN ID Trap is disabled.
1 = WAN Extract VLAN ID Trap is enabled. (See Section 8.16.2 for VLAN table programming details.)
Note: Invalid if the WAN Extract Decapsulator (selected by WEDS) has been configured to add an Ethernet Header
(in PP.DMCR.DAE[1:0]). Adding an Ethernet header implies that there is no VLAN ID to Trap.
Bit 2: WAN Extract Ethernet Type Trap (WEETT)
0 = WAN Extract Ethernet Type Trap is disabled.
1 = WAN Extract Ethernet Type Trap is enabled.
Note: Invalid if the WAN Extract Decapsulator (selected by WEDS) has been configured to add an Ethernet Header
(in PP.DMCR.DAE[1:0]). Adding an Ethernet header implies that there is no Ethernet Type field to Trap. Note that
WAN Extract Ethernet Type trapping is not available for frame formats in which the Ethernet Type field is more than
32 bytes into the frame. Thus, Ethernet Type trapping is not applicable on WAN frames in the LLC/SNAP frame
format with 4/8 byte frame headers plus dual VLAN Tags.
Bit 1: WAN Extract Destination Address Trap (WEDAT)
0 = WAN Extract Destination Address Trap is disabled.
1 = WAN Extract Destination Address Trap is enabled.
Note: Invalid if the WAN Extract Decapsulator (selected by WEDS) has been configured to add an Ethernet Header
(in PP.DMCR.DAE[1:0]). Adding an Ethernet header implies that there is no Ethernet DA to Trap.
Bit 0: WAN Extract Header Trap (WEHT)
0 = WAN Extract Header Trap is disabled.
1 = WAN Extract Header Trap is enabled.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 166 of 375
Register Name: SU.WEHTP
Register Description: WAN Extract Header Trap Position
Register Address: 0A2h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0A3h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0A2h: - - - WEHTH WEHTL WEHTP3 WEHTP2 WEHTP1
Default 0 0 0 0 0 0 0 0
Bit 4: WAN Extract Header Trap High Byte (WEHTH). This value indicates whether the most significant byte of
the WEHT is to be used when performing the WAN Extract Header Trap
0 = Most significant byte is masked.
1 = Most significant byte is tested (not masked).
Bit 3: WAN Extract Header Trap Low Byte (WEHTL). This value indicates whether the least significant byte of
the WEHT is to be used when performing the WAN Extract Header Trap
0 = Least significant byte is masked.
1 = Least significant byte is tested (not masked).
Bits 0-2: WAN Header Extract Trap Position (WEHTP[3:1]) This value indicates the beginning byte position
within the WAN frame, for where the WAN Header Extract Trap is to be tested. Only binary values 0-6 are valid. A
value “0” indicates that the test is to begin on the first byte of the frame. The WAN Header Trap enables trapping
on SLARP, GFP PTI/UPI, GFP CID or Shim Tag.
Example SU.WEHTP Settings
Bytes
tested WEHTH WEHTL WEHTP-3 WEHTP-2 WEHTP-1 WEHT
GFP – PTI
Management 1 1 0 0 0 0
100x
xxxxb
GFP Linear -CID 1 1 0 1 0 0 xxh
cHDLC SLARP 2 1 1 0 1 0 80 35h
GFP Null
Extension with
Tag-1 (Shim;
MPLS-like)
2 1 1 1 0 0 xx xxh
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 167 of 375
Register Name: SU.WEHT
Register Description: WAN Extract Header Trap
Register Address: 0A4h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0A5h: WEHT16 WEHT15 WEHT14 WEHT13 WEHT12 WEHT11 WEHT10 WEHT9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0A4h: WEHT8 WEHT7 WEHT6 WEHT5 WEHT4 WEHT3 WEHT2 WEHT1
Default 0 0 0 0 0 0 0 0
Bits 0-15: WAN Header Trap (WEHT [16:1]) This value provides the first and second bytes of the WAN
Header Extract Trap (least significant bytes of the Trap Header). Any binary value is possible. The least significant
of these two bytes is in bit positions 0 – 7.
Register Name: SU.WEDAL
Register Description: WAN Extract Destination Address Low
Register Address: 0A6h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0A7h: WEDAL16 WEDAL15 WEDAL14 WEDAL13 WEDAL12 WEDAL11 WEDAL10 WEDAL9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0A6h: WEDAL8 WEDAL7 WEDAL6 WEDAL5 WEDAL4 WEDAL3 WEDAL2 WEDAL1
Default 0 0 0 0 0 0 0 0
Bits 0-15: WAN Extract Destination Address Low (WEDAL [16:1]) This value provides the first and second
bytes of the WAN Extract Destination Address (least significant bytes of the address). This value in combination
with WEDAM and WEDAH make up the WAN Extract Destination Address. Any binary value is possible. The least
significant of these two bytes is in bit positions 0 – 7. The byte position of the DA within the WAN frame is derived
from the Decap, which knows whether 0, 4 or 8 WAN Header bytes will be removed.
Register Name: SU.WEDAM
Register Description: WAN Extract Destination Address Middle
Register Address: 0A8h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0A9h: WEDAM16 WEDAM15 WEDAM14 WEDAM13 WEDAM12 WEDAM11 WEDAM10 WEDAM9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0A8h: WEDAM8 WEDAM7 WEDAM6 WEDAM5 WEDAM4 WEDAM3 WEDAM2 WEDAM1
Default 0 0 0 0 0 0 0 0
Bits 0-15: WAN Extract Destination Address Mid (WEDAM [16:1]) This value provides the third and fourth
bytes of the WAN Extract Destination Address. This value in combination with WEDAL and WEDAH make up the
WAN Extract Destination Address. Any binary value is possible. The least significant of these two bytes is in bit
positions 0 – 7.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 168 of 375
Register Name: SU.WEDAH
Register Description: WAN Extract Destination Address High
Register Address: 0AAh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0ABh: WEDAH16 WEDAH15 WEDAH14 WEDAH13 WEDAH12 WEDAH11 WEDAH10 WEDAH9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0AAh: WEDAH8 WEDAH7 WEDAH6 WEDAH5 WEDAH4 WEDAH3 WEDAH2 WEDAH1
Default 0 0 0 0 0 0 0 0
Bits 0-15: WAN Extract Destination Address High (WEDAH [16:1]) This value provides the fifth and sixth
bytes of the WAN Extract Destination Address. This value in combination with WEDAL and WEDAM make up the
WAN Extract Destination Address. Any binary value is possible. The least significant of these two bytes is in bit
positions 0 – 7.
Register Name: SU.WEDAX
Register Description: WAN Extract Destination Address Mask
Register Address: 0ACh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0ADh: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0ACh: WEDAX8 WEDAX7 WEDAX6 WEDAX5 WEDAX4 WEDAX3 WEDAX2 WEDAX1
Default 0 0 0 0 0 0 0 0
Bits 0-7: WAN Extract Destination Address Mask (WEDAX [8:1]) This value provides a Mask for the Least
Significant byte of the WAN Extract Destination Address (bits 0 - 7 of WEDA0). This mask allows the device to Trap
on multiple DAs (e.g. Bridge Group Address 01-80-C2-00-00-00, Slow Protocols 01-80-C2-00-00-01 and Bridge
Management 01-80-C2-00-00-10). The default setting is all bit positions = 0.
0 = bit mask disabled.
1 = bit mask enabled (this bit of the WAN Extract Destination Address is “don’t care”).
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 169 of 375
Register Name: SU.WEET
Register Description: WAN Extract Ethernet Type
Register Address: 0AEh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0AFh: WEET16 WEET15 WEET14 WEET13 WEET12 WEET11 WEET10 WEET9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0AEh: WEET8 WEET7 WEET6 WEET5 WEET4 WEET3 WEET2 WEET1
Default 0 0 0 0 0 0 0 0
Bits 0-15: WAN Extract Ethernet Type (WEET [16:1]). This value defines the 2-byte Ethernet Protocol Type
that the WAN Trap is to monitor for. Bits 0 to 7 are used to define the least significant byte. One example setting is
08-06 (hex) for Ethernet Type = ARP. Note that WAN Extract Ethernet Type trapping is not available for frame
formats in which the Ethernet Type field is more than 32 bytes into the frame. Thus, Ethernet Type trapping is not
applicable on WAN frames in the LLC/SNAP frame format with 4/8 byte frame headers plus dual VLAN Tags.
Register Name: SU.WETPID
Register Description: WAN Ethernet Tag Protocol ID
Register Address: 0B2h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0B3h: WETPID16 WETPID15 WETPID14 WETPID13 WETPID12 WETPID11 WETPID10 WETPID9
Default 1 0 0 0 0 0 0 1
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0B2h: WETPID8 WETPID7 WETPID6 WETPID5 WETPID4 WETPID3 WETPID2 WETPID1
Default 0 0 0 0 0 0 0 0
WAN Ethernet Tag Protocol ID (WETPID [16:1]). This register specifies the Ethernet Tag Protocol ID that is used
to denote WAN-VLAN frames. Four example settings are 8100 (standard), 9100 and 9200 (Juniper and Foundry)
and 88A8 (Extreme). Only applicable in Forwarding Mode 5.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 170 of 375
Register Name: SU.WOS
Register Description: WAN Overflow Status
Register Address: 0B4h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0B5h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0B4h: - - - - - - - WEOS
Default 0 0 0 0 0 0 0 0
Bit 0: WAN Extract Overflow Status
0 = no overflow events have occurred since the last read.
1 = 1 or more overflow events have occurred since the last read.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 171 of 375
Register Name: SU.LIM
Register Description: LAN Interface Mode
Register Address: 0B6h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0B7h: - - - - LP2R LP1R LP2CE LP1CE
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0B6h: - - - LIFR LIIP2 LIIP1 LIP LIE
Default 0 0 0 0 0 0 0 0
Bit 11: LAN Port #2 - SRAM Queue Reset (LP2R)
0 = Normal operation.
1 = One-time, momentary reset of all SRAM Queue pointers associated with LAN Transmit Port 2.
Bit 10: LAN Port #1 - SRAM Queue Reset (LP1R)
0 = Normal operation.
1 = One-time, momentary reset of all SRAM Queue pointers associated with LAN Transmit Port 1.
To insure proper reset function, the associated MAC Transmit must be disabled before a reset. This must be done
to ensure that the Transmit MAC is not in the middle of transmitting a frame when the queue is reset. Activating
LP1R does not affect traffic on Port 2 and activating LP2R does not affect traffic on Port 1.
Bit 9: LAN Port 2 CRC Enable (LP2CE)
0 = The transmit MAC will not add an Ethernet FCS (CRC) to frames before transmission.
1 = The transmit MAC adds an Ethernet FCS (CRC) to all frames before transmission.
Bit 8: LAN Port 1 CRC Enable (LP1CE)
0 = The transmit MAC will not add an Ethernet FCS (CRC) to frames before transmission.
1 = The transmit MAC adds an Ethernet FCS (CRC) to all frames before transmission.
Bit 4: LAN Insert FIFO Reset (LIFR)
0 = Normal – no reset.
1 = One-time, momentary reset of the LAN Insert FIFO.
Bit 2-3: LAN Insert Insertion Point (LIIP[2:1])
00 = LAN Insert data is multiplexed with data from Decapsulator #1.
01 = LAN Insert data is multiplexed with data from Decapsulator #2.
10 = LAN Insert data is multiplexed with data from Decapsulator #3.
11 = LAN Insert data is multiplexed with data from Decapsulator #4.
If the LAN Insert is assigned to a Decapsulator that is not enabled (because of the Forwarding mode setting or
because there are no enabled WAN ports associated with that Decapsulator) then the LAN Insert has exclusive
use of that LAN Transmit Queue. For MPL > 2048, if the LAN Insert is enabled (LIE = 1), LIIP must equal 00. In
Forwarding Modes 2 and 5, only LIIP = 00 and 10 are valid. In all other cases, the recommended value is LIIP = 01
for insertion to LAN Port 1, or LIIP = 10 for insertion to LAN Port 2.
Bit 1: LAN Insert Priority (LIP)
0 = LAN Insert frames are lower priority than frames from the associated Decapsulator.
1 = LAN Insert frames are higher priority than frames from the associated Decapsulator.
Bit 0: LAN Insert Enable (LIE)
0 = LAN Insertion is disabled.
1 = LAN Insertion is enabled.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 172 of 375
Register Name: SU.WOM
Register Description: WAN Overflow Mask
Register Address: 0B8h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0B9h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0B8h: - - - - - - - WEOM
Default 0 0 0 0 0 0 0 0
Bit 0: WAN Extract Overflow Interrupt Mask
0 = WEOS will cause interrupts.
1 = WEOS will not cause interrupts.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 173 of 375
Register Name: SU.LP1XS
Register Description: LAN Port 1 Transmit Status
Register Address: 0BAh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0BBh: LTED LTJTO LTFF - LTLOC LTNCP LTLC LTEC
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0BAh: - LTCC3 LTCC2 LTCC1 LTCC0 LTEXD LTUFE LTDEF
Default 0 0 0 0 0 0 0 0
NOTE: This is a real-time status register. Usefulness is limited to single frame transmissions for system
debugging. Most applications will be better served by monitoring the MAC Management Counter (MMC)
registers rather than polling these bits.
Bit 15: LAN Transmit Error Detected (LTED) This real-time status bit is set to 1 when the transmit MAC
encounters an error during a transmission attempt. Indicates Jaber Timeout, Frame Flushed, Loss of Carrier, No
Carrier, Late Collision, Excessive Collisions, or Excessive Deferral.
Bit 14: LAN Transmit Jabber Timeout (LTJTO) This real-time status bit is set to 1 when the transmit MAC
encounters an error during a transmission due to Jaber Timeout.
Bit 13: LAN Transmit Frame Flushed (LTFF) This real-time status bit is set to 1 when the transmit MAC
encounters an error during a transmission due to the frame being flushed by a software reset.
Bit 11: LAN Transmit Loss of Carrier (LTLOC) This real-time status bit is set to 1 when the transmit MAC
encounters an error during a transmission due to Loss of Carrier.
Bit 10: LAN Transmit No Carrier Present (LTNCP) This real-time status bit is set to 1 when the transmit MAC
encounters an error during a transmission due to the lack of a Carrier.
Bit 9: LAN Transmit Late Collision (LTLC) This real-time status bit is set to 1 when the transmit MAC encounters
an error during a transmission due to a Late Collision.
Bit 8: LAN Transmit Excessive Collisions (LTEC) This real-time status bit is set to 1 when the transmit MAC
encounters an error during a transmission due to Excessive (>16) Collisions.
Bits 3-6: LAN Transmit Collision Count (LTCC[3:0]) These real-time status bits indicate the number collisions
encountered while attempting to transmit the current frame.
Bit 2: LAN Transmit Excessive Deferral (LTEXD) This real-time status bit is set to 1 when the transmit MAC
encounters an error during a transmission due to Excessive Deferral.
Bit 1: LAN Transmit Underflow Error (LTUFE) This real-time status bit is set to 1 when the transmit MAC
encounters an error during a transmission due to data underflow.
Bit 0: LAN Transmit Deferred (LTDEF) This real-time status bit is set to 1 when the transmit MAC is deferring
transmission due to carrier availability. Only valid in half-duplex mode.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 174 of 375
Register Name: SU.LP2XS
Register Description: LAN Port 2 Transmit Status
Register Address: 0BCh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0BDh: LTED LTJTO LTFF - LTLOC LTNCP LTLC LTEC
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0BCh: - LTCC3 LTCC2 LTCC1 LTCC0 LTEXD LTUFE LTDEF
Default 0 0 0 0 0 0 0 0
NOTE: This is a real-time status register. Usefulness is limited to single frame transmissions for system
debugging. Most applications will be better served by monitoring the MAC Management Counter (MMC)
registers rather than polling these bits.
Bit 15: LAN Transmit Error Detected (LTED) This real-time status bit is set to 1 when the transmit MAC
encounters an error during a transmission attempt. Indicates Jaber Timeout, Frame Flushed, Loss of Carrier, No
Carrier, Late Collision, Excessive Collisions, or Excessive Deferral.
Bit 14: LAN Transmit Jabber Timeout (LTJTO) This real-time status bit is set to 1 when the transmit MAC
encounters an error during a transmission due to Jaber Timeout.
Bit 13: LAN Transmit Frame Flushed (LTFF) This real-time status bit is set to 1 when the transmit MAC
encounters an error during a transmission due to the frame being flushed by a software reset.
Bit 11: LAN Transmit Loss of Carrier (LTLOC) This real-time status bit is set to 1 when the transmit MAC
encounters an error during a transmission due to Loss of Carrier.
Bit 10: LAN Transmit No Carrier Present (LTNCP) This real-time status bit is set to 1 when the transmit MAC
encounters an error during a transmission due to the lack of a Carrier.
Bit 9: LAN Transmit Late Collision (LTLC) This real-time status bit is set to 1 when the transmit MAC encounters
an error during a transmission due to a Late Collision.
Bit 8: LAN Transmit Excessive Collisions (LTEC) This real-time status bit is set to 1 when the transmit MAC
encounters an error during a transmission due to Excessive (>16) Collisions.
Bits 3-6: LAN Transmit Collision Count (LTCC[3:0]) These real-time status bits indicate the number collisions
encountered while attempting to transmit the current frame.
Bit 2: LAN Transmit Excessive Deferral (LTEXD) This real-time status bit is set to 1 when the transmit MAC
encounters an error during a transmission due to Excessive Deferral.
Bit 1: LAN Transmit Underflow Error (LTUFE) This real-time status bit is set to 1 when the transmit MAC
encounters an error during a transmission due to data underflow.
Bit 0: LAN Transmit Deferred (LTDEF) This real-time status bit is set to 1 when the transmit MAC is deferring
transmission due to carrier availability. Only valid in half-duplex mode.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 175 of 375
10.3.2 Receive LAN Register Definitions
Register Name: SU.LPM
Register Description: LAN Port Modes
Register Address: 0C0h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0C1h: - - - - - - LMGMTT LBAT
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0C0h: - - - LEEPS LEVIT LEETT LEDAT LPM
Default 0 0 0 0 0 0 0 0
This register determines which set of LAN Trap modes have been enabled and whether the device is being used in
a single or dual LAN Port application. The LAN Trap modes can be unrelated to the WAN Trap modes in the
opposite direction. Any combination of these Traps can be enabled. If any enabled Trap Modes overlap so that the
LAN Trap indicates that a frame should be forwarded to a LAN Queue and to the LAN Extract, the frame is to be
only forwarded to the LAN Extract (e.g. the user might have configured the LAN Trap to forward the frame’s VLAN
ID to LAN Queue 1, but the frame’s DA might also indicate that the frame is to be sent to the LAN Extract). LAN
VLAN/Q-in-Q Forwarding is enabled through the device’s Forwarding Mode (Common Control Registers; not
through these registers).
Bit 9: LAN Extract Management Address Trap (LMGMTT)
0 = LAN Extract Management Address Trap is disabled
1 = LAN Extract Management Address Trap is enabled. All Ethernet frames with an Ethernet Destination
Address (DA) = 01:80:C2:xx:xx:xx, where “x” is “don’t care”, are forwarded to the LAN extract queue.
Bit 8: LAN Extract Broadcast Address Trap (LBAT)
0 = LAN Extract Broadcast Address Trap is disabled
1 = LAN Extract Broadcast Address Trap is enabled. All Ethernet frames with an Ethernet Destination
Address (DA) = FF:FF:FF:FF:FF:FF are forwarded to the LAN extract queue.
Bit 4: LAN Extract LAN Port Source (LEEPS)
0 = LAN Extract is to be performed on the data stream from LAN Port 1.
1 = LAN Extract is to be performed on the data stream from LAN Port 2. This option is only valid on
devices that contain two Ethernet Ports, in Forwarding Modes 2, 4, and 5.
Bit 3: LAN Extract VLAN ID Trap (LEVIT)
0 = LAN Extract VLAN ID Trap is disabled
1 = LAN Extract VLAN ID Trap is enabled (See Section 8.16.2 for VLAN table programming details.)
Bit 2: LAN Extract Ethernet Type Trap (LEETT)
0 = LAN Extract Ethernet Type Trap is disabled
1 = LAN Extract Ethernet Type Trap is enabled
Bit 1: LAN Extract Destination Address Trap (LEDAT)
0 = LAN Extract Destination Address Trap is disabled
1 = LAN Extract Destination Address Trap is enabled
Bit 0: LAN Port Mode (LPM).
0 = Single Port Applications using Port 1 (required for GbE applications)
1 = Dual Port Applications (GbE GMII operation not allowed)
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 176 of 375
Register Name: SU.LEDAL
Register Description: LAN Extract Destination Address Low
Register Address: 0C2h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0C3h: LEDAL15 LEDAL14 LEDAL13 LEDAL12 LEDAL11 LEDAL10 LEDAL9 LEDAL8
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0C2h: LEDAL7 LEDAL6 LEDAL5 LEDAL4 LEDAL3 LEDAL2 LEDAL1 LEDAL0
Default 0 0 0 0 0 0 0 0
Bits 0-15: LAN Extract Destination Address Low (LEDAL[16:1]). This value provides the first and second
bytes of the LAN Extract Destination Address (least significant bytes of the address). This value in combination with
LEDAM and LEDAH make up the LAN Extract Destination Address. Any binary value is possible. The least
significant of these two bytes is in bit positions 0-7.
Register Name: SU.LEDAM
Register Description: LAN Extract Destination Address Middle
Register Address: 0C4h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0C5h: LEDAM15 LEDAM14 LEDAM13 LEDAM12 LEDAM11 LEDAM10 LEDAM9 LEDAM8
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0C4h: LEDAM7 LEDAM6 LEDAM5 LEDAM4 LEDAM3 LEDAM2 LEDAM1 LEDAM0
Default 0 0 0 0 0 0 0 0
Bits 0-15: LAN Extract Destination Address Middle (LEDAM[16:1]). This value provides the third and fourth
bytes of the LAN Extract Destination Address. This value in combination with LEDAL and LEDAH make up the LAN
Extract Destination Address. Any binary value is possible. The least significant of these two bytes is in bit positions
0-7.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 177 of 375
Register Name: SU.LEDAH
Register Description: LAN Extract Destination Address High
Register Address: 0C6h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0C7h: LEDAH15 LEDAH14 LEDAH13 LEDAH12 LEDAH11 LEDAH10 LEDAH9 LEDAH8
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0C6h: LEDAH7 LEDAH6 LEDAH5 LEDAH4 LEDAH3 LEDAH2 LEDAH1 LEDAH0
Default 0 0 0 0 0 0 0 0
Bits 0-15: LAN Extract Destination Address High (LEDAH[16:1]) This value provides the fifth and sixth
bytes of the LAN Extract Destination Address. This value in combination with LEDAL and LEDAM make up the
LAN Extract Destination Address. Any binary value is possible. The least significant of these two bytes is in bit
positions 0-7.
Register Name: SU.LEDAX
Register Description: LAN Extract Destination Address Mask
Register Address: 0C8h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0C9h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0C8h: LEDAX7 LEDAX6 LEDAX5 LEDAX4 LEDAX3 LEDAX2 LEDAX1 LEDAX0
Default 0 0 0 0 0 0 0 0
Bits 0-7: LAN Extract Destination Address Mask (LEDAX [8:1]). This value provides a Mask for the Least
Significant byte of the LAN Extract Destination Address (bits 0 - 7 of LEDA0). This mask allows the device to Trap
on multiple DAs (e.g. Bridge Group Address 01-80-C2-00-00-00, Slow Protocols 01-80-C2-00-00-01 and Bridge
Management 01-80-C2-00-00-10).
0 = bit mask disabled
1 = bit mask enabled (this bit of the LAN Extract Destination Address is “does not care”)
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 178 of 375
Register Name: SU.LEET
Register Description: LAN Extract Ethernet Type
Register Address: 0CAh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0CBh: LEET15 LEET14 LEET13 LEET12 LEET11 LEET10 LEET9 LEET8
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0CAh: LEET7 LEET6 LEET5 LEET4 LEET3 LEET2 LEET1 LEET0
Default 0 0 0 0 0 0 0 0
Bits 0-15: LAN Extract Ethernet Type (LEET[16:1]). This value defines the 2-byte Ethernet Protocol Type
that the LAN Trap is to monitor for. Bits 0 to 7 are used to define the least significant byte. One example setting is
08-06 (hex) for Ethernet Type = ARP.
Register Name: SU.LP1C
Register Description: LAN Port 1 Control
Register Address: 0CCh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0CDh: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0CCh: LP1MIM LP1QOM LP1FR LP1PF2 LP1PF1 LP1ETF2 LP1ETF1 LP1E
Default 0 0 0 0 0 0 0 0
Bit 7: LAN Port 1 MAC Interrupt Mask control (LP1MIM)
0 = Interrupt is disabled so that LAN Port 1 MAC cannot generate an interrupt.
1 = Interrupt is enabled so that LAN Port 1 MAC can generate an interrupt.
Bit 6: LAN Port 1 Queue Overflow Mask (LP1QOM)
0 = SU.LIQOS.LIQOS1 will not generate an interrupt.
1 = SU.LIQOS.LIQOS1 will generate an interrupt.
Bit 5: LAN Port 1 FIFO Reset (LP1FR)
0 = Normal operation.
1 = Reset the LAN 1 receive FIFO. The MAC Receiver should be disabled during FIFO reset.
Bits 3-4: LAN Port 1 Priority Forwarding (LP1PF[2:1])
00 = Priority Forwarding/Scheduling Disabled
01 = DSCP (DiffServ) Priority Forwarding/Scheduling Enabled
10 = 802.1Q (VLAN Tag PCP) Priority Forwarding/Scheduling Enabled
11 = Reserved
Bit 1-2: LAN Port 1 Ethernet VLAN Tag Function Enable(LP1ETF[2:1]). The Ethernet VLAN Tag functions
are not required to be enabled for Priority Scheduling (LP1PF = 01/10).
00 = LAN Ethernet VLAN Tag Functions Disabled
01 = LAN Ethernet VLAN Tag Extract, Forwarding/Scheduling, Discarding Functions Enabled
10 = Reserved
11 = Reserved
Bit 0: LAN Port 1 Enable (LP1E)
0 = Disabled
1 = Enabled
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 179 of 375
Register Name: SU.LP2C
Register Description: LAN Port 2 Control
Register Address: 0CEh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0CFh: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0CEh: LP2MIM LP2QOM LP2FR LP2PF2 LP2PF1 LP2ETF2 LP2ETF1 LP2E
Default 0 0 0 0 0 0 0 0
Bit 7: LAN Port 2 MAC Interrupt Mask control (LP2MIM)
0 = Interrupt is disabled so that LAN Port 2 MAC cannot generate an interrupt.
1 = Interrupt is enabled so that LAN Port 2 MAC can generate an interrupt.
Bit 6: LAN Port 2 Queue Overflow Mask (LP2QOM)
0 = SU.LIQOS.LIQOS2 will not generate an interrupt.
1 = SU.LIQOS.LIQOS2 will generate an interrupt.
Bit 5: LAN Port 2 FIFO Reset (LP2FR)
0 = Normal operation.
1 = Reset the LAN 2 receive FIFO. The MAC Receiver should be disabled during FIFO reset.
Bit 4-3: LAN Port 2 Priority Forwarding/Scheduling (LP2PF[2:1]).
00 = Priority Forwarding/Scheduling Disabled
01 = DSCP (DiffServ) Priority Forwarding/Scheduling Enabled
10 = 802.1Q (VLAN Tag PCP) Priority Forwarding/Scheduling Enabled
11 = Reserved
Bit 2-1: LAN Port 2 Ethernet VLAN Tag Function Enable (LP2ETF[2:1]). The Ethernet VLAN Tag functions
are not required to be enabled for Priority Scheduling (LP1PF = 01/10).
00 = LAN Ethernet VLAN Tag Functions Disabled
01 = LAN Ethernet VLAN Tag Extract, Forwarding/Scheduling, Discarding Functions Enabled
10 = Reserved
11 = Reserved
Bit 0: LAN Port 2 Enable (LP2E).
0 = Disabled
1 = Enabled
The L2PE = 1 (Enabled) is only valid when LPM = 1 (Dual Port) and when in Forwarding Modes 2, 4, or 5.
Otherwise, the device should be configured to L2PE =0 (Disabled).
When LAN Port 2 Priority Forwarding or Priority Scheduling has been enabled, the user must also configure the
Priority Table and No Priority Detected registers.
When LAN Port 2 Ethernet Tag Forwarding has been enabled, the user must also configure the Ethernet Tag Table
and No Ethernet Tag Detected registers.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 180 of 375
Register Name: SU.LNFC
Register Description: LAN No-Match Forwarding Control
Register Address: 0D0h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0D1h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0D0h: - - LNPDF2 LNPDF1 LNETDF4 LNETDF3 LNETDF2 LNETDF1
Default 0 0 0 0 0 0 0 0
Bit 4-5: LAN No Priority Tag Detected Forwarding (LNPDF[2:1]). Enabled for each port with SU.LP1C.LP1PF
or SU.LP2C.LP2PF. Controls how frames are handled when the received frame does not contain DSCP, does not
contain a VLAN Tag, or the 13th and 14th bytes of the frame do not match the value in SU.LQTPID. The same
action is applied to both Ethernet ports.
00 = Forward to LAN Priority Queue 1
01 = Forward to LAN Priority Queue 2
10 = Forward to LAN Priority Queue 3
11 = Forward to LAN Priority Queue 4
Bit 0-3: LAN No VLAN Tag Detected Forwarding (LNVDF[4:1]). Enabled for each port with SU.LP1C.LP1ETF or
SU.LP2C.LP2ETF. Controls how frames are handled when the received frame does not contain a VLAN tag or the
13th and 14th bytes of the frame do no match the value in SU.LQTPID. The same action is applied to both Ethernet
ports.
0000 = Forward to WAN Group 1
0001 = Forward to WAN Group 2
0010 = Forward to WAN Group 3
0011 = Forward to WAN Group 4
01xx = Forward this frame to the LAN Extract Queue
1xxx = Discard this frame
Register Name: SU.LQXPC
Register Description: LAN Queue Watermark Transmit Pause Control
Register Address: 0D2h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0D3h: LQXPC16 LQXPC15 LQXPC14 LQXPC13 LQXPC12 LQXPC11 LQXPC10 LQXPC9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0D2h: LQXPC8 LQXPC7 LQXPC6 LQXPC5 LQXPC4 LQXPC3 LQXPC2 LQXPC1
Default 0 0 0 0 0 0 0 0
Bits 0-15: LAN Queue Watermark Xmt Pause Control (LQXPC [16-1]) One bit is provided for each of the 16
LAN Queues. When set to one, a pause frame will be transmitted when the associated queue has exceeded the
watermark defined in AR.LQW.
0 = LAN Queue Watermark Xmt Pause Control Disabled
1 = LAN Queue Watermark Xmt Pause Control Enabled
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 181 of 375
Register Name: SU.LQTPID
Register Description: LAN Q-in-Q and VLAN Tag Protocol ID
Register Address: 0D4h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0D5h: LQTPID16 LQTPID15 LQTPID14 LQTPID13 LQTPID12 LQTPID11 LQTPID10 LQTPID9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0D4h: LQTPID8 LQTPID7 LQTPID6 LQTPID5 LQTPID4 LQTPID3 LQTPID2 LQTPID1
Default 0 0 0 0 0 0 0 0
Bits 0-15: LAN Q-in-Q Tag Protocol ID (LQTPID [16:1]) This register specifies the Ethernet Tag Protocol ID that
is used to denote LAN-VLAN and Q-in-Q frames. Four example settings are 8100 (standard), 9100 and 9200
(Juniper and Foundry) and 88A8 (Extreme). The default setting is for 8100.
Register Name: SU.LIQOS
Register Description: LAN Port and LAN Queue Overflow Status
Register Address: 0D6h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0D7h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0D6h: - - - - LP2I LP1I LIQOS2 LIQOS1
Default 0 0 0 0 0 0 0 0
Bit 3: LAN Port 2 Interrupt Status (LP2I):
0 = No active interrupt condition on LAN Port 2.
1 = Active interrupt condition on LAN Port 2. Reset following a read of this register.
Bit 2: LAN Port 1 Interrupt Status (LP1I):
0 = No active interrupt condition on LAN Port 1.
1 = Active interrupt condition on LAN Port 1. Reset following a read of this register.
Bit 1: LAN Input Queue Overflow Status - LAN Port 2 (LIQOS2):
0 = no overflow events have occurred since the last read
1 = 1 or more overflow events have occurred since the last read
Bit 0: LAN Input Queue Overflow Status - LAN Port 1 (LIQOS1):
0 = no overflow events have occurred since the last read
1 = 1 or more overflow events have occurred since the last read
The LAN Queue Overflow Status register bits are set when a frame has been discarded due to Transmit LAN
Queue overflow and are reset following a read of this register.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 182 of 375
Register Name: SU.MPL
Register Description: LAN Maximum Packet Length
Register Address: 0D8h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0D9h: - - MPL14 MPL13 MPL12 MPL11 MPL10 MPL9
Default 0 0 0 0 0 1 0 1
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0D8h: MPL8 MPL7 MPL6 MPL5 MPL4 MPL3 MPL2 MPL1
Default 1 1 1 1 1 1 1 1
Bits 0-13: Maximum Packet Length (MPL [14:1]) Maximum frame length, in bytes. The receive MAC discards
Ethernet frame received from the LAN interface that have a frame length greater than the user configured MPL
value. This value is applied to both Ethernet ports. If the device has been configured to discard the Ethernet FCS
then the byte count up to the FCS is used. If the FCS is retained, then the count includes 4 bytes for the FCS. The
maximum valid value for this register is 10240 bytes. Note that frames between 9018 and 10240 bytes may be
counted as “giant frames” by the MAC.
Table 10-5. Valid Conditions for MPL > 2048
Description Register / Bit Jumbo Frames
Supported When Comments
Forwarding Mode GL.CR1.FMC = 001 Forwarding mode 2 only.
Priority
Scheduling AR.LQSC.LQSM = 0 Only no priority or strict priority scheduling
supported.
LAN Port Mode SU.LPM.LPM = 0 For dual port devices, Single Port Mode
must be used.
LAN Port 2
Enable SU.LP2C.LP2E = 0 For dual port devices, port 2 must be
disabled.
Port 1 Policing SU.L1PP.L1PM[2:1] = 00 Port policing must be disabled.
Bridge Filter SU.BFC.BFE = 0 Bridge filter must be disabled.
LAN Insert SU.LIM.LIIP[2:1] = 00 If LAN Insert is enabled.
LAN Extract SU.LPM.LEEPS = 0 If LAN Extract is enabled (LPM enables).
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 183 of 375
Register Name: SU.L1PP
Register Description: LAN 1 Policing Parameters
Register Address: 0DAh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0DBh: CBSS - - - L1PM2 L1PM1 L1PCR2 L1PCR1
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0DAh: L1PCT8 L1PCT7 L1PCT6 L1PCT5 L1PCT4 L1PCT3 L1PCT2 L1PCT1
Default 0 0 0 0 0 0 0 0
LAN 1 Policing Parameters . This register determines the Policing function setting for Ethernet port 1. The
Policing function is used to control the rate at which frames are forwarded to Serial Interfaces. The Policing function
can be configured to send Explicit Back Pressure Flow Control to the Ethernet Sending equipment (Ethernet Pause
Control) or can be used to enable a frame discarding mechanism that restrict the rate at which frame are accepted.
Bit 15: Committed Burst Size Selection (CBSS) This bit function is not available in device revision A1
(GL.IDR.REVn = 000).
0 = Default condition. CBS is 4096 bytes.
1 = CBS is 12288 bytes. Only valid in Policing Discard mode.
Bits 10-11: LAN 1 Policing Mode (L1PM[2:1])
00 = Policing Disabled
01 = Policing Pause Enabled
10 = Policing Discard Enabled
11 = Reserved
Bits 8-9: LAN 1 Policing Credit Range (L1PCR[2:1])
00 = Low Credit Range for CIR = 64kbps to 2Mbps
01 = Mid Credit Range for CIR = 2Mbps to 16Mbps
10 = High Credit Range for CIR = 16Mbps to 416Mbps
11 = Reserved
Bits 0-7: LAN 1 Policing Credit Threshold (L1PCT[8:1]). This register specifies the Credit Threshold setting of
the Policing function. Only values between 8 to 255 are supported.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 184 of 375
Register Name: SU.L2PP
Register Description: LAN 2 Policing Parameters
Register Address: 0DCh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0DDh: CBSS - - - L2PM2 L2PM1 L2PCR2 L2PCR1
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0DCh: L2PCT8 L2PCT7 L2PCT6 L2PCT5 L2PCT4 L2PCT3 L2PCT2 L2PCT1
Default 0 0 0 0 0 0 0 0
LAN 2 Policing Parameters. This register determines the Policing function setting for Ethernet port 2. The Policing
function is used to control the rate at which frames are forwarded to Serial Interfaces. The Policing function can be
configured to send Explicit Back Pressure Flow Control to the Ethernet Sending equipment (Ethernet Pause
Control) or can be used to enable a frame discarding mechanism that restrict the rate at which frame are accepted.
Bit 15: Committed Burst Size Selection (CBSS) This bit function is not available in device revision A1
(GL.IDR.REVn=000).
0 = Default condition. CBS is 4096 bytes.
1 = CBS is 12288 bytes. Only valid in Policing Discard mode.
Bits 10-11: LAN 2 Policing Mode (L2PM[2:1])
00 = Policing Disabled
01 = Policing Pause Enabled
10 = Policing Discard Enabled
11 = Reserved
Bits 8-9: LAN 2 Policing Credit Range (L2PCR[2:1])
00 = Low Credit Range for CIR = 64kbps to 2Mbps
01 = Mid Credit Range for CIR = 2Mbps to 16Mbps
10 = High Credit Range for CIR = 16Mbps to 416Mbps
11 = Reserved
Bits 0-7: LAN 2 Policing Credit Threshold (L2PCT[8:1]). This register specifies the Credit Threshold setting of
the Policing function. Only values between 8 to 255 are supported.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 185 of 375
Register Name: SU.PTC
Register Description: Priority Table Control
Register Address: 0DEh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0DFh: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0DEh: - - - - - - PTE PTAIM
Default 0 0 0 0 0 0 0 0
Priority Table Control This register is used to initialize and specify the operating mode of the Priority Table. The
Initialization function causes each entry of the Priority Table to be populated with the Priority Table Write Data
default value. The configuration of this table is similar to that of the VLAN Table. However, although this table
provides an automated self-init at power-up, it does not allow the user to request a new initialization ”at will”.
Bit 1: Priority Table Enable (PTE) When equal to zero, the Priority Table is enabled. When set to 1, the Priority
Table does not affect the forwarding of frames.
Bit 0: Priority Table Auto Increment Mode (PTAIM) When set, the Priority Table Address in SU.PTAA is
automatically with each read or write of the SU.PTWD or SU.PTRD registers.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 186 of 375
Register Name: SU.PTAA
Register Description: Priority Table Access Address
Register Address: 0E0h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0E1h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0E0h: - PTPAA PTAA6 PTAA5 PTAA4 PTAA3 PTAA2 PTAA1
Default 0 0 0 0 0 0 0 0
Bit 6: Priority Table Port Access Address (PTPAA). This bit is an extension of the PTAA[6:1] bits, but is used to
divide between Priority lookups for Ethernet (LAN) Port 1 (PTPAA = 0) and Ethernet (LAN) Port 2 (PTPAA = 1). Not
valid for devices with only one Ethernet port.
Bits 0-5: Priority Table Access Address (PTAA [6:1]). These bits provide the Priority Table Address for a uP
Read or Write operation. The address into the priority table is used to resolve VLAN 802.1p PCP and DSCP to the
four priority levels. When using PCP priority mode, only addresses PTAA[3:1] are used. The priority mode for each
Ethernet port can be independently selected using the SU.LP1C and SU.LP2C registers.
Register Name: SU.PTWD
Register Description: Priority Table Write Data
Register Address: 0E2h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0E3h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0E2h: - - - - - - LPQFW2 LPQFW1
Default 0 0 0 0 0 0 0 0
Bits 0-1: LAN Priority Queue Forwarding (LPQFW[2:1])
00 = Map the value of this table entry’s address (PCP or DSCP) to Priority Level 1
01 = Map the value of this table entry’s address (PCP or DSCP) to Priority Level 2
10 = Map the value of this table entry’s address (PCP or DSCP) to Priority Level 3
11 = Map the value of this table entry’s address (PCP or DSCP) to Priority Level 4
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 187 of 375
Register Name: SU.PTRD
Register Description: Priority Table Read Data
Register Address: 0E4h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0E5h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0E4h: - - - - - - LPQFR2 LPQFR1
Default 0 0 0 0 0 0 0 0
Bits 0-1: LAN Priority Queue Forwarding (LPQFR[2:1])
00 = The value of this table entry’s address (PCP or DSCP) is mapped to Priority Level 1
01 = The value of this table entry’s address (PCP or DSCP) is mapped to Priority Level 2
10 = The value of this table entry’s address (PCP or DSCP) is mapped to Priority Level 3
11 = The value of this table entry’s address (PCP or DSCP) is mapped to Priority Level 4
Note that LAN-VLAN Discarding and LAN Extraction takes precedence over Priority Forwarding.
Register Name: SU.PTSA
Register Description: Priority Table Shadow Address
Register Address: 0E6h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0E7h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0E6h: PTIS PTPSA PTSA6 PTSA5 PTSA4 PTSA3 PTSA2 PTSA1
Default 0 0 0 0 0 0 0 0
Bit 7: Priority Table Initialization Status (PTIS): This bit is set when the Priority Table initialization has been
completed.
Bit 6: Priority Table Port Shadow Address (PTSAA). This bit is an extension of the PTSA [6:1] bits, but is used
to divide between Priority lookups for LAN Port 1 (PTSAA = 0) and LAN Port 2 (PTSAA = 1).
Bits 0-5: Priority Table Shadow Address (PTSA [6:1]). This register interfaces directly to the Priority Table
memory block to provide the selected Priority Table Address that is to be used for each Priority Table operation
(LAN Trap, WAN Trap or uP Read/Write). When PTAIM = 1, the Shadow Address automatically increments for
each updated Read and/or Write Priority Table Access Address.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 188 of 375
10.3.3 Bridge Filter Registers
Register Name: SU.BFC
Register Description: Bridge Filter Control
Register Address: 0E8h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0E9h: - - - - -
BFTR BFE BFAP9
Default 0 0 0 0 0 0 0
1
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0E8h: BFAP8 BFAP7 BFAP6 BFAP5 BFAP4 BFAP3 BFAP2 BFAP1
Default 0 0 1 0 1 1 0 0
Bit 10: Bridge Filter Table Reset (BFTR). When the user configures this bit to BFTR = 1, the Bridge Filter
automatically steps through each of the 4096 Bridge Filter Table addresses, aging all Table entries so that the table
is reset (one-time event each time the user writes BFTR = 1).
0 = No Bridge Filter Table Reset
1 = One-time Bridge Filter Table Reset
Bit 9: Automatic Bridge Filter Enable (BFE)
0 = Automatic Bridging and Filtering disabled for all Ethernet ports.
1 = Automatic Bridging and Filtering enabled for all Ethernet ports.
Bits 8-0: Bridge Filter Aging Period (BFAP[1-9]). These bits provide the binary coded value for the Aging Period.
The valid equivalent decimal values for this variable are 1 to 300. Values larger than 300 will not increase the aging
period above 300 seconds. The default is set to 300 sec.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 189 of 375
10.4 Arbiter Registers
The Arbiter manages the transport between the Ethernet port and the Serial Interface. It is responsible for queuing
and dequeuing data to an external SDRAM. The arbiter handles requests from the HDLC and MAC to transfer data
to/from the SDRAM.
10.4.1 Arbiter Register Bit Descriptions
Register Name: AR.LQ1SA
Register Description: LAN Queue 1 Start Address
Register Address: 100h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
101h: - - - - - LQ1QPR LQ1SA-10 LQ1SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
100h: LQ1SA-8 LQ1SA-7 LQ1SA-6 LQ1SA-5 LQ1SA-4 LQ1SA-3 LQ1SA-2 LQ1SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: LAN Queue 1 Queue Pointer Reset
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: LAN Queue 1 Start Address [10-1] This register specifies the Start Address for the LAN Queue 1. The
value specifies the most significant 10 bits of the SDRAM absolute address.
Register Name: AR.LQ2SA
Register Description: LAN Queue 2 Start Address
Register Address: 102h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
103h: - - - - - LQ2QPR LQ2SA-10 LQ2SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
102h: LQ2SA-8 LQ2SA-7 LQ2SA-6 LQ2SA-5 LQ2SA-4 LQ2SA-3 LQ2SA-2 LQ2SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: LAN Queue 2 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: LAN Queue 2 Start Address [10-1] This register specifies the Start Address for the LAN Queue 2. The
value specifies the most significant 10 bits of the SDRAM absolute address.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 190 of 375
Register Name: AR.LQ3SA
Register Description: LAN Queue 3 Start Address
Register Address: 104h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
105h: - - - - - LQ3QPR LQ3SA-10 LQ3SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
104h: LQ3SA-8 LQ3SA-7 LQ3SA-6 LQ3SA-5 LQ3SA-4 LQ3SA-3 LQ3SA-2 LQ3SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: LAN Queue 3 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: LAN Queue 3 Start Address [10-1] This register specifies the Start Address for the LAN Queue 3. The
value specifies the most significant 10 bits of the SDRAM absolute address.
Register Name: AR.LQ4SA
Register Description: LAN Queue 4 Start Address
Register Address: 106h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
107h: - - - - - LQ4QPR LQ4SA-10 LQ4SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
106h: LQ4SA-8 LQ4SA-7 LQ4SA-6 LQ4SA-5 LQ4SA-4 LQ4SA-3 LQ4SA-2 LQ4SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: LAN Queue 4 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: LAN Queue 4 Start Address [10-1] This register specifies the Start Address for the LAN Queue 4. The
value specifies the most significant 10 bits of the SDRAM absolute address.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 191 of 375
Register Name: AR.LQ5SA
Register Description: LAN Queue 5 Start Address
Register Address: 108h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
109h: - - - - - LQ5QPR LQ5SA-10 LQ5SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
108h: LQ5SA-8 LQ5SA-7 LQ5SA-6 LQ5SA-5 LQ5SA-4 LQ5SA-3 LQ5SA-2 LQ5SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: LAN Queue 5 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: LAN Queue 5 Start Address [10-1] This register specifies the Start Address for the LAN Queue 5. The
value specifies the most significant 10 bits of the SDRAM absolute address.
Register Name: AR.LQ6SA
Register Description: LAN Queue 6 Start Address
Register Address: 10Ah
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
10Bh: - - - - - LQ6QPR LQ6SA-10 LQ6SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
10Ah: LQ6SA-8 LQ6SA-7 LQ6SA-6 LQ6SA-5 LQ6SA-4 LQ6SA-3 LQ6SA-2 LQ6SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: LAN Queue 6 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: LAN Queue 6 Start Address [10-1] This register specifies the Start Address for the LAN Queue 6. The
value specifies the most significant 10 bits of the SDRAM absolute address.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 192 of 375
Register Name: AR.LQ7SA
Register Description: LAN Queue 7 Start Address
Register Address: 10Ch
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
10Dh: - - - - - LQ7QPR LQ7SA-10 LQ7SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
10Ch: LQ7SA-8 LQ7SA-7 LQ7SA-6 LQ7SA-5 LQ7SA-4 LQ7SA-3 LQ7SA-2 LQ7SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: LAN Queue 7 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: LAN Queue 7 Start Address [10-1] This register specifies the Start Address for the LAN Queue 7. The
value specifies the most significant 10 bits of the SDRAM absolute address.
Register Name: AR.LQ8SA
Register Description: LAN Queue 8 Start Address
Register Address: 10Eh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
10Fh: - - - - - LQ8QPR LQ8SA-10 LQ8SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
10Eh: LQ8SA-8 LQ8SA-7 LQ8SA-6 LQ8SA-5 LQ8SA-4 LQ8SA-3 LQ8SA-2 LQ8SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: LAN Queue 8 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: LAN Queue 8 Start Address [10-1]. This register specifies the Start Address for the LAN Queue 8. The
value specifies the most significant 10 bits of the SDRAM absolute address.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 193 of 375
Register Name: AR.LQ9SA
Register Description: LAN Queue 9 Start Address
Register Address: 110h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
111h: - - - - - LQ9QPR LQ9SA-10 LQ9SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
110h: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Default 0 0 0 0 0 0 0 0
Bit 10: LAN Queue 9 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: LAN Queue 9 Start Address [10-1]. This register specifies the Start Address for the LAN Queue 9. The
value specifies the most significant 10 bits of the SDRAM absolute address.
Register Name: AR.LQ10SA
Register Description: LAN Queue 10 Start Address
Register Address: 112h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
113h: - - - - - LQ10QPR LQ10SA-10 LQ10SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
112h: LQ10SA-8 LQ10SA-7 LQ10SA-6 LQ10SA-5 LQ10SA-4 LQ10SA-3 LQ10SA-2 LQ10SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: LAN Queue 10 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: LAN Queue 10 Start Address [10-1] This register specifies the Start Address for the LAN Queue 10.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 194 of 375
Register Name: AR.LQ11SA
Register Description: LAN Queue 11 Start Address
Register Address: 114h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
115h: - - - - - LQ11QPR LQ11SA-10 LQ11SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
114h: LQ11SA-8 LQ11SA-7 LQ11SA-6 LQ11SA-5 LQ11SA-4 LQ11SA-3 LQ11SA-2 LQ11SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: LAN Queue 11 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: LAN Queue 11 Start Address [10-1]. This register specifies the Start Address for the LAN Queue 11.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
Register Name: AR.LQ12SA
Register Description: LAN Queue 12 Start Address
Register Address: 116h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
117h: - - - - - LQ12QPR LQ12SA-10 LQ12SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
116h: LQ12SA-8 LQ12SA-7 LQ12SA-6 LQ12SA-5 LQ12SA-4 LQ12SA-3 LQ12SA-2 LQ12SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: LAN Queue 12 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: LAN Queue 12 Start Address [10-1] This register specifies the Start Address for the LAN Queue 12.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 195 of 375
Register Name: AR.LQ13SA
Register Description: LAN Queue 13 Start Address
Register Address: 118h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
119h: - - - - - LQ13QPR LQ13SA-10 LQ13SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
118h: LQ13SA-8 LQ13SA-7 LQ13SA-6 LQ13SA-5 LQ13SA-4 LQ13SA-3 LQ13SA-2 LQ13SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: LAN Queue 13 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: LAN Queue 13 Start Address [10-1] This register specifies the Start Address for the LAN Queue 13.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
Register Name: AR.LQ14SA
Register Description: LAN Queue 14 Start Address
Register Address: 11Ah
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
11Bh: - - - - - LQ14QPR LQ14SA-10 LQ14SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
11Ah: LQ14SA-8 LQ14SA-7 LQ14SA-6 LQ14SA-5 LQ14SA-4 LQ14SA-3 LQ14SA-2 LQ14SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: LAN Queue 14 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: LAN Queue 14 Start Address [10-1] This register specifies the Start Address for the LAN Queue 14.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 196 of 375
Register Name: AR.LQ15SA
Register Description: LAN Queue 15 Start Address
Register Address: 11Ch
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
11Dh: - - - - - LQ15QPR LQ15SA-10 LQ15SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
11Ch: LQ15SA-8 LQ15SA-7 LQ15SA-6 LQ15SA-5 LQ15SA-4 LQ15SA-3 LQ15SA-2 LQ15SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: LAN Queue 15 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: LAN Queue 15 Start Address [10-1]. This register specifies the Start Address for the LAN Queue 15.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
Register Name: AR.LQ16SA
Register Description: LAN Queue 16 Start Address
Register Address: 11Eh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
11Fh: - - - - - LQ16QPR LQ16SA-10 LQ16SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
11Eh: LQ16SA-8 LQ16SA-7 LQ16SA-6 LQ16SA-5 LQ16SA-4 LQ16SA-3 LQ16SA-2 LQ16SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: LAN Queue 16 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: LAN Queue 16 Start Address [10-1]. This register specifies the Start Address for the LAN Queue 16.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 197 of 375
Register Name: AR.LQ1EA
Register Description: LAN Queue 1 End Address
Register Address: 120h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
121h: - - - - - - LQ1EA-10 LQ1EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
120h: LQ1EA-8 LQ1EA-7 LQ1EA-6 LQ1EA-5 LQ1EA-4 LQ1EA-3 LQ1EA-2 LQ1EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: LAN Queue 1 End Address [10-1] This register specifies the End Address for the LAN Queue 1. The
value specifies the most significant 10 bits of the SDRAM absolute address.
Register Name: AR.LQ2EA
Register Description: LAN Queue 2 End Address
Register Address: 122h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
123h: - - - - - - LQ2EA-10 LQ2EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
122h: LQ2EA-8 LQ2EA-7 LQ2EA-6 LQ2EA-5 LQ2EA-4 LQ2EA-3 LQ2EA-2 LQ2EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: LAN Queue 2 End Address [10-1] This register specifies the End Address for the LAN Queue 2. The
value specifies the most significant 10 bits of the SDRAM absolute address.
Register Name: AR.LQ3EA
Register Description: LAN Queue 3 End Address
Register Address: 124h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
125h: - - - - - - LQ3EA-10 LQ3EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
124h: LQ3EA-8 LQ3EA-7 LQ3EA-6 LQ3EA-5 LQ3EA-4 LQ3EA-3 LQ3EA-2 LQ3EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: LAN Queue 3 End Address [10-1]. This register specifies the End Address for the LAN Queue 3. The
value specifies the most significant 10 bits of the SDRAM absolute address.
Register Name: AR.LQ4EA
Register Description: LAN Queue 4 End Address
Register Address: 126h
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 198 of 375
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
127h: - - - - - - LQ4EA-10 LQ4EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
126h: LQ4EA-8 LQ4EA-7 LQ4EA-6 LQ4EA-5 LQ4EA-4 LQ4EA-3 LQ4EA-2 LQ4EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: LAN Queue 4 End Address [10-1] This register specifies the End Address for the LAN Queue 4. The
value specifies the most significant 10 bits of the SDRAM absolute address.
Register Name: AR.LQ5EA
Register Description: LAN Queue 5 End Address
Register Address: 128h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
129h: - - - - - - LQ5EA-10 LQ5EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
128h: LQ5EA-8 LQ5EA-7 LQ5EA-6 LQ5EA-5 LQ5EA-4 LQ5EA-3 LQ5EA-2 LQ5EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: LAN Queue 5 End Address [10-1] This register specifies the End Address for the LAN Queue 5. The
value specifies the most significant 10 bits of the SDRAM absolute address.
Register Name: AR.LQ6EA
Register Description: LAN Queue 6 End Address
Register Address: 12Ah
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
12Bh: - - - - - - LQ6EA-10 LQ6EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
12Ah: LQ6EA-8 LQ6EA-7 LQ6EA-6 LQ6EA-5 LQ6EA-4 LQ6EA-3 LQ6EA-2 LQ6EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: LAN Queue 6 End Address [10-1] This register specifies the End Address for the LAN Queue 6. The
value specifies the most significant 10 bits of the SDRAM absolute address.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 199 of 375
Register Name: AR.LQ7EA
Register Description: LAN Queue 7 End Address
Register Address: 12Ch
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
12Dh: - - - - - - LQ7EA-10 LQ7EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
12Ch: LQ7EA-8 LQ7EA-7 LQ7EA-6 LQ7EA-5 LQ7EA-4 LQ7EA-3 LQ7EA-2 LQ7EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: LAN Queue 7 End Address [10-1] This register specifies the End Address for the LAN Queue 7. The
value specifies the most significant 10 bits of the SDRAM absolute address.
Register Name: AR.LQ8EA
Register Description: LAN Queue 8 End Address
Register Address: 12Eh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
12Fh: - - - - - - LQ8EA-10 LQ8EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
12Eh: LQ8EA-8 LQ8EA-7 LQ8EA-6 LQ8EA-5 LQ8EA-4 LQ8EA-3 LQ8EA-2 LQ8EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: LAN Queue 8 End Address [10-1] This register specifies the End Address for the LAN Queue 8. The
value specifies the most significant 10 bits of the SDRAM absolute address.
Register Name: AR.LQ9EA
Register Description: LAN Queue 9 End Address
Register Address: 130h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
131h: - - - - - - LQ9EA-10 LQ9EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
130h: LQ9EA-8 LQ9EA-7 LQ9EA-6 LQ9EA-5 LQ9EA-4 LQ9EA-3 LQ9EA-2 LQ9EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: LAN Queue 9 End Address [10-1] This register specifies the End Address for the LAN Queue 9. The
value specifies the most significant 10 bits of the SDRAM absolute address.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 200 of 375
Register Name: AR.LQ10EA
Register Description: LAN Queue 10 End Address
Register Address: 132h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
133h: - - - - - - LQ10EA-10 LQ10EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
132h: LQ10EA-8 LQ10EA-7 LQ10EA-6 LQ10EA-5 LQ10EA-4 LQ10EA-3 LQ10EA-2 LQ10EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: LAN Queue 10 End Address [10-1]. This register specifies the End Address for the LAN Queue 10. The
value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
Register Name: AR.LQ11EA
Register Description: LAN Queue 11 End Address
Register Address: 134h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
135h: - - - - - - LQ11EA-10 LQ11EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
134h: LQ11EA-8 LQ11EA-7 LQ11EA-6 LQ11EA-5 LQ11EA-4 LQ11EA-3 LQ11EA-2 LQ11EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: LAN Queue 11 End Address [10-1] This register specifies the End Address for the LAN Queue 11. The
value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
Register Name: AR.LQ12EA
Register Description: LAN Queue 12 End Address
Register Address: 136h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
137h: - - - - - - LQ12EA-10 LQ12EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
136h: LQ12EA-8 LQ12EA-7 LQ12EA-6 LQ12EA-5 LQ12EA-4 LQ12EA-3 LQ12EA-2 LQ12EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: LAN Queue 12 End Address [10-1] This register specifies the End Address for the LAN Queue 12. The
value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 201 of 375
Register Name: AR.LQ13EA
Register Description: LAN Queue 13 End Address
Register Address: 138h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
139h: - - - - - - LQ13EA-10 LQ13EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
138h: LQ13EA-8 LQ13EA-7 LQ13EA-6 LQ13EA-5 LQ13EA-4 LQ13EA-3 LQ13EA-2 LQ13EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: LAN Queue 13 End Address [10-1] This register specifies the End Address for the LAN Queue 13. The
value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
Register Name: AR.LQ14EA
Register Description: LAN Queue 14 End Address
Register Address: 13Ah
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
13Bh: - - - - - - LQ14EA-10 LQ14EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
13Ah: LQ14EA-8 LQ14EA-7 LQ14EA-6 LQ14EA-5 LQ14EA-4 LQ14EA-3 LQ14EA-2 LQ14EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: LAN Queue 14 End Address [10-1] This register specifies the End Address for the LAN Queue 14. The
value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
Register Name: AR.LQ15EA
Register Description: LAN Queue 15 End Address
Register Address: 13Ch
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
13Dh: - - - - - - LQ15EA-10 LQ15EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
13Ch: LQ15EA-8 LQ15EA-7 LQ15EA-6 LQ15EA-5 LQ15EA-4 LQ15EA-3 LQ15EA-2 LQ15EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: LAN Queue 15 End Address [10-1] This register specifies the End Address for the LAN Queue 15. The
value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 202 of 375
Register Name: AR.LQ16EA
Register Description: LAN Queue 16 End Address
Register Address: 13Eh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
13Fh: - - - - - - LQ16EA-10 LQ16EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
13Eh: LQ16EA-8 LQ16EA-7 LQ16EA-6 LQ16EA-5 LQ16EA-4 LQ16EA-3 LQ16EA-2 LQ16EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: LAN Queue 16 End Address [10-1]. This register specifies the End Address for the LAN Queue 16. The
value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
Register Name: AR.WQ1SA
Register Description: WAN Queue 1 Start Address
Register Address: 140h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
141h: - - - - - WQ1QPR WQ1SA-10 WQ1SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
140h: WQ1SA-8 WQ1SA-7 WQ1SA-6 WQ1SA-5 WQ1SA-4 WQ1SA-3 WQ1SA-2 WQ1SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: WAN Queue 1 Queue Pointer Reset
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: WAN Queue 1 Start Address [10-1] This register specifies the Start Address for the WAN Queue 1.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 203 of 375
Register Name: AR.WQ2SA
Register Description: WAN Queue 2 Start Address
Register Address: 142h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
143h: - - - - - WQ2QPR WQ2SA-10 WQ2SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
142h: WQ2SA-8 WQ2SA-7 WQ2SA-6 WQ2SA-5 WQ2SA-4 WQ2SA-3 WQ2SA-2 WQ2SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: WAN Queue 2 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: WAN Queue 2 Start Address [10-1] This register specifies the Start Address for the WAN Queue 2.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
Register Name: AR.WQ3SA
Register Description: WAN Queue 3 Start Address
Register Address: 144h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
145h: - - - - - WQ3QPR WQ3SA-10 WQ3SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
144h: WQ3SA-8 WQ3SA-7 WQ3SA-6 WQ3SA-5 WQ3SA-4 WQ3SA-3 WQ3SA-2 WQ3SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: WAN Queue 3 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: WAN Queue 3 Start Address [10-1]. This register specifies the Start Address for the WAN Queue 3.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 204 of 375
Register Name: AR.WQ4SA
Register Description: WAN Queue 4 Start Address
Register Address: 146h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
147h: - - - - - WQ4QPR WQ4SA-10 WQ4SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
146h: WQ4SA-8 WQ4SA-7 WQ4SA-6 WQ4SA-5 WQ4SA-4 WQ4SA-3 WQ4SA-2 WQ4SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: WAN Queue 4 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: WAN Queue 4 Start Address [10-1] This register specifies the Start Address for the WAN Queue 4.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
Register Name: AR.WQ5SA
Register Description: WAN Queue 5 Start Address
Register Address: 148h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
149h: - - - - - WQ5QPR WQ5SA-10 WQ5SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
148h: WQ5SA-8 WQ5SA-7 WQ5SA-6 WQ5SA-5 WQ5SA-4 WQ5SA-3 WQ5SA-2 WQ5SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: WAN Queue 5 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: WAN Queue 5 Start Address [10-1] This register specifies the Start Address for the WAN Queue 5.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 205 of 375
Register Name: AR.WQ6SA
Register Description: WAN Queue 6 Start Address
Register Address: 14Ah
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
14Bh: - - - - - WQ6QPR WQ6SA-10 WQ6SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
14Ah: WQ6SA-8 WQ6SA-7 WQ6SA-6 WQ6SA-5 WQ6SA-4 WQ6SA-3 WQ6SA-2 WQ6SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: WAN Queue 6 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: WAN Queue 6 Start Address [10-1] This register specifies the Start Address for the WAN Queue 6.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
Register Name: AR.WQ7SA
Register Description: WAN Queue 7 Start Address
Register Address: 14Ch
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
14Dh: - - - - - WQ7QPR WQ7SA-10 WQ7SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
14Ch: WQ7SA-8 WQ7SA-7 WQ7SA-6 WQ7SA-5 WQ7SA-4 WQ7SA-3 WQ7SA-2 WQ7SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: WAN Queue 7 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: WAN Queue 7 Start Address [10-1] This register specifies the Start Address for the WAN Queue 7.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 206 of 375
Register Name: AR.WQ8SA
Register Description: WAN Queue 8 Start Address
Register Address: 14Eh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
14Fh: - - - - - WQ8QPR WQ8SA-10 WQ8SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
14Eh: WQ8SA-8 WQ8SA-7 WQ8SA-6 WQ8SA-5 WQ8SA-4 WQ8SA-3 WQ8SA-2 WQ8SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: WAN Queue 8 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: WAN Queue 8 Start Address [10-1]. This register specifies the Start Address for the WAN Queue 8.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
Register Name: AR.WQ9SA
Register Description: WAN Queue 9 Start Address
Register Address: 150h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
151h: - - - - - WQ9QPR WQ9SA-10 WQ9SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
150h: WQ9SA-8 WQ9SA-7 WQ9SA-6 WQ9SA-5 WQ9SA-4 WQ9SA-3 WQ9SA-2 WQ9SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: WAN Queue 9 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: WAN Queue 9 Start Address [10-1] This register specifies the Start Address for the WAN Queue 9.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 207 of 375
Register Name: AR.WQ10SA
Register Description: WAN Queue 10 Start Address
Register Address: 152h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
153h: - - - - - WQ10QPR WQ10SA-10 WQ10SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
152h: WQ10SA-8 WQ10SA-7 WQ10SA-6 WQ10SA-5 WQ10SA-4 WQ10SA-3 WQ10SA-2 WQ10SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: WAN Queue 10 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: WAN Queue 10 Start Address [10-1]. This register specifies the Start Address for the WAN Queue 10.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
Register Name: AR.WQ11SA
Register Description: WAN Queue 1 1Start Address
Register Address: 154h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
155h: - - - - - WQ11QPR WQ11SA-10 WQ11SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
154h: WQ11SA-8 WQ11SA-7 WQ11SA-6 WQ11SA-5 WQ11SA-4 WQ11SA-3 WQ11SA-2 WQ11SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: WAN Queue 11 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: WAN Queue 11 Start Address [10-1] This register specifies the Start Address for the WAN Queue 11.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 208 of 375
Register Name: AR.WQ12SA
Register Description: WAN Queue 12 Start Address
Register Address: 156h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
157h: - - - - - WQ12QPR WQ12SA-10 WQ12SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
156h: WQ12SA-8 WQ12SA-7 WQ12SA-6 WQ12SA-5 WQ12SA-4 WQ12SA-3 WQ12SA-2 WQ12SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: WAN Queue 12 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: WAN Queue 12 Start Address [10-1]. This register specifies the Start Address for the WAN Queue 12.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
Register Name: AR.WQ13SA
Register Description: WAN Queue 13 Start Address
Register Address: 158h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
159h: - - - - - WQ13QPR WQ13SA-10 WQ13SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
158h: WQ13SA-8 WQ13SA-7 WQ13SA-6 WQ13SA-5 WQ13SA-4 WQ13SA-3 WQ13SA-2 WQ13SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: WAN Queue 13 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: WAN Queue 13 Start Address [10-1] This register specifies the Start Address for the WAN Queue 13.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 209 of 375
Register Name: AR.WQ14SA
Register Description: WAN Queue 14 Start Address
Register Address: 15Ah
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
15Bh: - - - - - WQ14QPR WQ14SA-10 WQ14SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
15Ah: WQ14SA-8 WQ14SA-7 WQ14SA-6 WQ14SA-5 WQ14SA-4 WQ14SA-3 WQ14SA-2 WQ14SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: WAN Queue 14 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: WAN Queue 14 Start Address [10-1] This register specifies the Start Address for the WAN Queue 14.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
Register Name: AR.WQ15SA
Register Description: WAN Queue 15 Start Address
Register Address: 15Ch
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
15Dh: - - - - - WQ15QPR WQ15SA-10 WQ15SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
15Ch: WQ15SA-8 WQ15SA-7 WQ15SA-6 WQ15SA-5 WQ15SA-4 WQ15SA-3 WQ15SA-2 WQ15SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: WAN Queue 15 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: WAN Queue 15 Start Address [10-1] This register specifies the Start Address for the WAN Queue 15.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 210 of 375
Register Name: AR.WQ16SA
Register Description: WAN Queue 16 Start Address
Register Address: 15Eh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
15Fh: - - - - - WQ16QPR WQ16SA-10 WQ16SA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
15Eh: WQ16SA-8 WQ16SA-7 WQ16SA-6 WQ16SA-5 WQ16SA-4 WQ16SA-3 WQ16SA-2 WQ16SA-1
Default 0 0 0 0 0 0 0 0
Bit 10: WAN Queue 16 Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: WAN Queue 16 Start Address [10-1] This register specifies the Start Address for the WAN Queue 16.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
Register Name: AR.WQ1EA
Register Description: WAN Queue 1 End Address
Register Address: 160h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
161h: - - - - - -
WQ1EA-10 WQ1EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
160h: WQ1EA-8 WQ1EA-7 WQ1EA-6 WQ1EA-5 WQ1EA-4 WQ1EA-3 WQ1EA-2 WQ1EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: WAN Queue 1 End Address [10-1] This register specifies the End Address for the WAN Queue 1. The
value specifies the most significant 10 bits of the SDRAM absolute address.
Register Name: AR.WQ2EA
Register Description: WAN Queue 2 End Address
Register Address: 162h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
163h: - - - - - - WQ2EA-10 WQ2EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
162h: WQ2EA-8 WQ2EA-7 WQ2EA-6 WQ2EA-5 WQ2EA-4 WQ2EA-3 WQ2EA-2 WQ2EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: WAN Queue 2 End Address [10-1] This register specifies the End Address for the WAN Queue 2. The
value specifies the most significant 10 bits of the SDRAM absolute address.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 211 of 375
Register Name: AR.WQ3EA
Register Description: WAN Queue 3 End Address
Register Address: 164h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
165h: - - - - - - WQ3EA-10 WQ3EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
164h: WQ3EA-8 WQ3EA-7 WQ3EA-6 WQ3EA-5 WQ3EA-4 WQ3EA-3 WQ3EA-2 WQ3EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: WAN Queue 3 End Address [10-1] This register specifies the End Address for the WAN Queue 3. The
value specifies the most significant 10 bits of the SDRAM absolute address.
Register Name: AR.WQ4EA
Register Description: WAN Queue 4 End Address
Register Address: 166h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
167h: - - - - - - WQ4EA-10 WQ4EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
166h: WQ4EA-8 WQ4EA-7 WQ4EA-6 WQ4EA-5 WQ4EA-4 WQ4EA-3 WQ4EA-2 WQ4EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: WAN Queue 4 End Address [10-1] This register specifies the End Address for the WAN Queue 4. The
value specifies the most significant 10 bits of the SDRAM absolute address.
Register Name: AR.WQ5EA
Register Description: WAN Queue 5 End Address
Register Address: 168h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
169h: - - - - - - WQ5EA-10 WQ5EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
168h: WQ5EA-8 WQ5EA-7 WQ5EA-6 WQ5EA-5 WQ5EA-4 WQ5EA-3 WQ5EA-2 WQ5EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: WAN Queue 5 End Address [10-1] This register specifies the End Address for the WAN Queue 5. The
value specifies the most significant 10 bits of the SDRAM absolute address.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 212 of 375
Register Name: AR.WQ6EA
Register Description: WAN Queue 6 End Address
Register Address: 16Ah
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
16Bh: - - - - - - WQ6EA-10 WQ6EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
16Ah: WQ6EA-8 WQ6EA-7 WQ6EA-6 WQ6EA-5 WQ6EA-4 WQ6EA-3 WQ6EA-2 WQ6EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: WAN Queue 6 End Address [10-1] This register specifies the End Address for the WAN Queue 6. The
value specifies the most significant 10 bits of the SDRAM absolute address.
Register Name: AR.WQ7EA
Register Description: WAN Queue 7 End Address
Register Address: 16Ch
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
16Dh: - - - - - - WQ7EA-10 WQ7EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
16Ch: WQ7EA-8 WQ7EA-7 WQ7EA-6 WQ7EA-5 WQ7EA-4 WQ7EA-3 WQ7EA-2 WQ7EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: WAN Queue 7 End Address [10-1] This register specifies the End Address for the WAN Queue 7. The
value specifies the most significant 10 bits of the SDRAM absolute address.
Register Name: AR.WQ8EA
Register Description: WAN Queue 8 End Address
Register Address: 16Eh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
16Fh: - - - - - - WQ8EA-10 WQ8EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
16Eh: WQ8EA-8 WQ8EA-7 WQ8EA-6 WQ8EA-5 WQ8EA-4 WQ8EA-3 WQ8EA-2 WQ8EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: WAN Queue 8 End Address [10-1] This register specifies the End Address for the WAN Queue 8. The
value specifies the most significant 10 bits of the SDRAM absolute address.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 213 of 375
Register Name: AR.WQ9EA
Register Description: WAN Queue 9 End Address
Register Address: 170h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
171h: - - - - - - WQ9EA-10 WQ9EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
170h: WQ9EA-8 WQ9EA-7 WQ9EA-6 WQ9EA-5 WQ9EA-4 WQ9EA-3 WQ9EA-2 WQ9EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: WAN Queue 9 End Address [10-1] This register specifies the End Address for the WAN Queue 9. The
value specifies the most significant 10 bits of the SDRAM absolute address.
Register Name: AR.WQ10EA
Register Description: WAN Queue 10 End Address
Register Address: 172h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
173h: - - - - - - WQ10EA-10 WQ10EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
172h: WQ10EA-8 WQ10EA-7 WQ10EA-6 WQ10EA-5 WQ10EA-4 WQ10EA-3 WQ10EA-2 WQ10EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: WAN Queue 10 End Address [10-1] This register specifies the End Address for the WAN Queue 10.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
Register Name: AR.WQ11EA
Register Description: WAN Queue 11 End Address
Register Address: 174h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
175h: - - - - - - WQ11EA-10 WQ11EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
174h: WQ11EA-8 WQ11EA-7 WQ11EA-6 WQ11EA-5 WQ11EA-4 WQ11EA-3 WQ11EA-2 WQ11EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: WAN Queue 11 End Address [10-1] This register specifies the End Address for the WAN Queue 11.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 214 of 375
Register Name: AR.WQ12EA
Register Description: WAN Queue 12 End Address
Register Address: 176h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
177h: - - - - - - WQ12EA-10 WQ12EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
176h: WQ12EA-8 WQ12EA-7 WQ12EA-6 WQ12EA-5 WQ12EA-4 WQ12EA-3 WQ12EA-2 WQ12EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: WAN Queue 12 End Address [10-1]. This register specifies the End Address for the WAN Queue 12.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
Register Name: AR.WQ13EA
Register Description: WAN Queue 13 End Address
Register Address: 178h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
179h: - - - - - - WQ13EA-10 WQ13EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
178h: WQ13EA-8 WQ13EA-7 WQ13EA-6 WQ13EA-5 WQ13EA-4 WQ13EA-3 WQ13EA-2 WQ13EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: WAN Queue 13 End Address [10-1] This register specifies the End Address for the WAN Queue 13.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
Register Name: AR.WQ14EA
Register Description: WAN Queue 14 End Address
Register Address: 17Ah
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
17Bh: - - - - - - WQ14EA-10 WQ14EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
17Ah: WQ14EA-8 WQ14EA-7 WQ14EA-6 WQ14EA-5 WQ14EA-4 WQ14EA-3 WQ14EA-2 WQ14EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: WAN Queue 14 End Address [10-1] This register specifies the End Address for the WAN Queue 14.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 215 of 375
Register Name: AR.WQ15EA
Register Description: WAN Queue 15 End Address
Register Address: 17Ch
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
17Dh: - - - - - - WQ15EA-10 WQ15EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
17Ch: WQ15EA-8 WQ15EA-7 WQ15EA-6 WQ15EA-5 WQ15EA-4 WQ15EA-3 WQ15EA-2 WQ15EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: WAN Queue 15 End Address [10-1] This register specifies the End Address for the WAN Queue 15.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
Register Name: AR.WQ16EA
Register Description: WAN Queue 16 End Address
Register Address: 17Eh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
17Fh: - - - - - - WQ16EA-10 WQ16EA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
17Eh: WQ16EA-8 WQ16EA-7 WQ16EA-6 WQ16EA-5 WQ16EA-4 WQ16EA-3 WQ16EA-2 WQ16EA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: WAN Queue 16 End Address [10-1] This register specifies the End Address for the WAN Queue 16.
The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity of 32,768
bytes per LSB.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 216 of 375
Register Name: AR.LIQSA
Register Description: LAN Insert Queue Start Address
Register Address: 180h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
181h: - - - - - LIQPR LIQSA-10 LIQSA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
180h: LIQSA-8 LIQSA-7 LIQSA-6 LIQSA-5 LIQSA-4 LIQSA-3 LIQSA-2 LIQSA-1
Default 0 0 0 0 0 0 0 0
Bit 10: LAN Insert Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: LAN Insert Queue Start Address [10-1] This register specifies the Start Address for the LAN Insert
Queue. The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity
of 32,768 bytes per LSB.
Register Name: AR.LIQEA
Register Description: LAN Insert Queue End Address
Register Address: 182h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
183h: - - - - - - LIQEA-10 LIQEA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
182h: LIQEA-8 LIQEA-7 LIQEA-6 LIQEA-5 LIQEA-4 LIQEA-3 LIQEA-2 LIQEA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: LAN Insert Queue End Address [10-1] This register specifies the End Address for the LAN Insert
Queue. The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity
of 32,768 bytes per LSB.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 217 of 375
Register Name: AR.LEQSA
Register Description: LAN Extract Queue Start Address
Register Address: 184h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
185h: - - - - - LEQPR LEQSA-10 LEQSA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
184h: LEQSA-8 LEQSA-7 LEQSA-6 LEQSA-5 LEQSA-4 LEQSA-3 LEQSA-2 LEQSA-1
Default 0 0 0 0 0 0 0 0
Bit 10: LAN Extract Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: LAN Extract Queue Start Address [10-1] This register specifies the Start Address for the LAN Extract
Queue. The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity
of 32,768 bytes per LSB.
Register Name: AR.LEQEA
Register Description: LAN Extract Queue End Address
Register Address: 186h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
187h: - - - - - - LEQEA-10 LEQEA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
186h: LEQEA-8 LEQEA-7 LEQEA-6 LEQEA-5 LEQEA-4 LEQEA-3 LEQEA-2 LEQEA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: LAN Extract Queue End Address [10-1]. This register specifies the End Address for the LAN Extract
Queue. The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity
of 32,768 bytes per LSB.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 218 of 375
Register Name: AR.WIQSA
Register Description: WAN Insert Queue Start Address
Register Address: 188h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
189h: - - - - - WIQPR WIQSA-10 WIQSA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
188h: WIQSA-8 WIQSA-7 WIQSA-6 WIQSA-5 WIQSA-4 WIQSA-3 WIQSA-2 WIQSA-1
Default 0 0 0 0 0 0 0 0
Bit 10: WAN Insert Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 0-9: WAN Insert Queue Start Address [10-1] This register specifies the Start Address for the WAN Insert
Queue. The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity
of 32,768 bytes per LSB.
Register Name: AR.WIQEA
Register Description: WAN Insert Queue End Address
Register Address: 18Ah
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
18Bh: - - - - - - WIQEA-10 WIQEA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
18Ah: WIQEA-8 WIQEA-7 WIQEA-6 WIQEA-5 WIQEA-4 WIQEA-3 WIQEA-2 WIQEA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: WAN Insert Queue End Address [10-1] This register specifies the End Address for the WAN Insert
Queue. The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity
of 32,768 bytes per LSB.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 219 of 375
Register Name: AR.WEQSA
Register Description: WAN Extract Queue Start Address
Register Address: 18Ch
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
18Dh: - - - - - WEQPR WEQSA-10 WEQSA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
18Ch: WEQSA-8 WEQSA-7 WEQSA-6 WEQSA-5 WEQSA-4 WEQSA-3 WEQSA-2 WEQSA-1
Default 0 0 0 0 0 0 0 0
Bit 10: WAN Extract Queue Pointer Reset.
0 = No reset of the Queue Pointers (the user may be re-configuring to the same value)
1 = Momentary Reset of Queue Pointers (user is not required to change value to “0” to conclude reset)
Bits 9-0: WAN Extract Queue Start Address [10-1] This register specifies the Start Address for the WAN Extract
Queue. The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity
of 32,768 bytes per LSB.
Register Name: AR.WEQEA
Register Description: WAN Extract Queue End Address
Register Address: 18Eh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
18Fh: - - - - - - WEQEA-10 WEQEA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
18Eh: WEQEA-8 WEQEA-7 WEQEA-6 WEQEA-5 WEQEA-4 WEQEA-3 WEQEA-2 WEQEA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: WAN Extract Queue End Address [10-1] This register specifies the End Address for the WAN Extract
Queue. The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a granularity
of 32,768 bytes per LSB.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 220 of 375
Register Name: AR.LQW
Register Description: LAN Queue Watermark
Register Address: 190h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
191h: - - - LQW-13 LQW-12 LQW-11 LQW-10 LQW-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
190h: LQW-8 LQW-7 LQW-6 LQW-5 LQW-4 LQW-3 LQW-2 LQW-1
Default 0 0 0 0 0 0 0 0
Bits 0-12: LAN Queue Watermark [LQW 13-1] This register specifies the Watermark Threshold that is used to
trigger a LAN Pause control frame. One value is used for all 16 queues (each queue is independently enabled and
tested). The value from this register is multiplied by 64 to determine the minimum number of bytes available in each
DDR SDRAM LAN Queue after Flow Control (or LAN Queue Watermark Interrupt) is triggered. The maximum valid
value is decimal 8191, which designates that a minimum of 8191 x 64 bytes = 524,224 bytes can be stored after
the watermark is reached. The lowest valid setting is decimal 3, or a minimum of 192 bytes available when flow
control is triggered.
The purpose of the LQW setting is to prevent data loss due to queue overflow. The LQW setting is independent of
the CIR Policing function that monitors the rate at which data is received irrespective of the fill level of the queue.
For applications with maximum packet Length < 2049 and with a short Ethernet PHY transmission distance (< 25
meters) it is recommended that the LQW be set to a minimum value of 57.
For applications that include a long Ethernet PHY transmission distance the LQW setting can be increased. For
GbE applications the LQW value can be increased by 1 for each additional 88 meters (up to LQW = 8191 or
715km). For 100Mbps each incremental step will support 880 meters (at 100Mbps there is less/slower data on the
transmission line). For 10Mbps each incremental step will support 8,800 meters. It is recommended that the user
verify the LQW setting in long Ethernet transmission line applications.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 221 of 375
Register Name: AR.MQC
Register Description: Miscellaneous Queue Control
Register Address: 192h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
193h: - - - - - - FPEPD WQODE
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
192h: WIRRW2 WIRRW1 WIENC2 WIENC1 WISPL WIENA WQPD ASQPR
Default 0 0 0 0 0 0 0 0
Bit 9: Fractional Packet Error Purge Disable (FPEPD)
0 = Fractional Frame Error Purge Enabled.
1 = Fractional Frame Error Purge Disabled.
Bit 8: WAN Queue Overflow Discard Enable (WQODE) Setting used for all 16 WAN Queues.
0 = Overflow Discard Enabled.
1 = Overflow Discard Disabled.
This setting is used for all 16 WAN Queues. When WQODE = 0 and an overflow condition occurs on a WAN
queue, that entire queue is discarded. This bit setting is independent of the Preemptive Discard (WQPD).
Bits 6-7: WAN Insert Round Robin Weight (WIRRW[2:1])
00: Round Robin Weight = 1.
01: Round Robin Weight = 2.
10: Round Robin Weight = 4.
11: Round Robin Weight = 8.
Only valid in Forwarding Mode 2, when LQSM = 1 (Weighted Round Robin Scheduling).
Bits 4-5: WAN Insert Encapsulator (WIENC[2:1])
00 = multiplexed with data from Encapsulator #1 (WAN Group1).
01 = multiplexed with data from Encapsulator #2 (WAN Group 2).
10 = multiplexed with data from Encapsulator #3 (WAN Group 3).
11 = multiplexed with data from Encapsulator #4 (WAN Group 4).
Bit 3: WAN Insert Strict Priority Level (WISPL])
For LQSM = 0 (Strict Priority Scheduling; the LQSM bit is defined in the LQSC register below)
0: WAN Insert using priority level 1.5; Inserted frames scheduled ahead of levels 2, 3, 4.
1: WAN Insert using priority level 3.5; Inserted frames scheduled ahead of level 4.
Note: Only valid when using Strict Priority Scheduling (LQSM = 0).
Bit 2: WAN Insert Enable (WIENA).
0 = WAN Insertion is disabled.
1 = WAN Insertion is enabled.
Bit 1: WAN Queue Preemptive Discard (WQPD).
0 = Disabled.
1 = Enabled. Frames are discarded when the WAN queue high threshold is exceeded.
Bit 0: All SDRAM Queue Pointer Reset. (ASQPR)
0 = Normal operation.
1 = Momentary Reset of all WAN, LAN, Insert and Extract Queue Pointers.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 222 of 375
Register Name: AR.LQSC
Register Description: LAN Queue Scheduling Control
Register Address: 194h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
195h: - - - - - - - LQSM
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
194h: LQ4RRW-2 LQ4RRW-1 LQ3RRW-2 LQ3RRW -1 LQ2RRW-2 LQ2RRW-1 LQ1RRW-2 LQ1RRW-1
Default 0 0 0 0 0 0 0 0
Bit 8: LAN Queue Scheduling Mode (LQSM)
0 = Strict Priority scheduling between LAN Queues within the same LAN Queue Group (enabled for all 4
LAN Queue Groups) and the WAN Insert Channel
1 = Weighted Round Robin (WRR) Scheduling between LAN Queues within LAN Queue Group #1
and with the WAN Insert Channel. When LQSM = 1, the other 3 LAN Queue Groups (12 LAN Queues)
are not allowed. WRR Scheduling mode is only available in Forwarding Mode 2, with a single LAN
Port enabled.
Bit 6-7: LAN Queue 4 Round Robin Weighting (LQ4RRW [2:1])
00: Round Robin Weight = 1
01: Round Robin Weight = 2
10: Round Robin Weight = 4
11: Round Robin Weight = 8
Bit 4-5: LAN Queue 3 Round Robin Weighting (LQ3RRW [2:1])
00: Round Robin Weight = 1
01: Round Robin Weight = 2
10: Round Robin Weight = 4
11: Round Robin Weight = 8
Bit 2-3: LAN Queue 2 Round Robin Weighting (LQ2RRW [2:1])
00: Round Robin Weight = 1
01: Round Robin Weight = 2
10: Round Robin Weight = 4
11: Round Robin Weight = 8
Bit 0-1: LAN Queue 1 Round Robin Weighting (LQ1RRW [2:1])
00: Round Robin Weight = 1
01: Round Robin Weight = 2
10: Round Robin Weight = 4
11: Round Robin Weight = 8
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 223 of 375
Register Name: AR.BFTOA
Register Description: Bridge Filter Table Offset Address
Register Address: 196h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
197h: - - - - - - BFTOA-10 BFTOA-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
196h: BFTOA-8 BFTOA-7 BFTOA-6 BFTOA-5 BFTOA-4 BFTOA-3 BFTOA-2 BFTOA-1
Default 0 0 0 0 0 0 0 0
Bits 0-9: Bridge Filter Table Offset Address (BFTOA[10-1]) This register specifies the Offset Address for the
Bridge Table. The value specifies the most significant 10 bits of the SDRAM absolute address, resulting in a
granularity of 32,768 bytes per LSB.
Register Name: AR.LQOS
Register Description: LAN Queue Overflow Status
Register Address: 198h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
199h: LQOS-16 LQOS-15 LQOS-14 LQOS-13 LQOS-12 LQOS-11 LQOS-10 LQOS-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
198h: LQOS-8 LQOS-7 LQOS-6 LQOS-5 LQOS-4 LQOS-3 LQOS-2 LQOS-1
Default 0 0 0 0 0 0 0 0
Bits 0-15: LAN Queue Overflow Status (LQOS[16-1]) This register indicates whether an overflow condition has
occurred on any of the LAN Queues since the last read of this register (one status bit per LAN Queue). This
register is reset each time it is read.
0 = No overflow condition detected
1 = At least one overflow condition detected since last read
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 224 of 375
Register Name: AR.LQOIM
Register Description: LAN Queue Overflow Interrupt Mask
Register Address: 19Ah
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
19Bh: LQOIM-16 LQOIM-15 LQOIM-14 LQOIM-13 LQOIM-12 LQOIM-11 LQOIM-10 LQOIM-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
19Ah: LQOIM-8 LQOIM-7 LQOIM-6 LQOIM-5 LQOIM-4 LQOIM-3 LQOIM-2 LQOIM-1
Default 0 0 0 0 0 0 0 0
Bits 0-15: LAN Queue Overflow Interrupt Mask (LQOIM[16-1]) This register provides an interrupt bit mask to
filter out unwanted interrupts.
0 = Bit mask disabled
1 = Bit mask enabled
Register Name: AR.LQNFS
Register Description: LAN Queue Near Full Status
Register Address: 19Ch
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
19Dh: LQNFS-16 LQNFS-15 LQNFS-14 LQNFS-13 LQNFS-12 LQNFS-11 LQNFS-10 LQNFS-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
19Ch: LQNFS-8 LQNFS-7 LQNFS-6 LQNFS-5 LQNFS-4 LQNFS-3 LQNFS-2 LQNFS-1
Default 0 0 0 0 0 0 0 0
Bits 0-15: LAN Queue Near Full Status (LQNFS[16-1]) This register indicates whether any of the LAN Queues
have exceeded the LAN Queue Watermark defined in AR.LQW since the last read of this register (one status bit
per LAN Queue). This register is reset each time it is read.
0 = No Near Full condition detected
1 = At least one Near Full condition detected since last read
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 225 of 375
Register Name: AR.LQNFIM
Register Description: LAN Queue Near Full Interrupt Mask
Register Address: 19Eh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
19Fh: LQNFIM-16 LQNFIM-15 LQNFIM-14 LQNFIM-13 LQNFIM-12 LQNFIM-11 LQNFIM-10 LQNFIM-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
19Eh: LQNFIM-8 LQNFIM-7 LQNFIM-6 LQNFIM-5 LQNFIM-4 LQNFIM-3 LQNFIM-2 LQNFIM-1
Default 0 0 0 0 0 0 0 0
Bits 0-15: LAN Queue Near Full Interrupt Mask (LQNFIM[16-1]) This register provides an interrupt bit mask to
filter out unwanted interrupts.
0 = Bit mask disabled
1 = Bit mask enabled
Register Name: AR.WQOS
Register Description: WAN Queue Overflow Status
Register Address: 1A0h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
1A1h: WQOS-16 WQOS-15 WQOS-14 WQOS-13 WQOS-12 WQOS-11 WQOS-10 WQOS-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1A0h: WQOS-8 WQOS-7 WQOS-6 WQOS-5 WQOS-4 WQOS-3 WQOS-2 WQOS-1
Default 0 0 0 0 0 0 0 0
Bits 0-15: WAN Queue Overflow Status (WQOS[16-1]) This register indicates whether an overflow condition has
occurred on any of the WAN Queues since the last read of this register (one status bit per WAN Queue). This
register is reset each time it is read.
0 = No overflow condition detected
1 = At least one overflow condition detected since last read
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 226 of 375
Register Name: AR.WQOIM
Register Description: WAN Queue Overflow Interrupt Mask
Register Address: 1A2h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
1A3h: WQOIM-16 WQOIM-15 WQOIM-14 WQOIM-13 WQOIM-12 WQOIM-11 WQOIM-10 WQOIM-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1A2h: WQOIM-8 WQOIM-7 WQOIM-6 WQOIM-5 WQOIM-4 WQOIM-3 WQOIM-2 WQOIM-1
Default 0 0 0 0 0 0 0 0
Bits 0-15: WAN Queue Overflow Interrupt Mask (WQOIM[16-1]) This register provides an interrupt bit mask to
filter out unwanted interrupts.
0 = Bit mask disabled
1 = Bit mask enabled
Register Name: AR.WQNFS
Register Description: WAN Queue Near Full Status
Register Address: 1A4h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
1A5h: WQNFS-16 WQNFS-15 WQNFS-14 WQNFS-13 WQNFS-12 WQNFS-11 WQNFS-10 WQNFS-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1A4h: WQNFS-8 WQNFS-7 WQNFS-6 WQNFS-5 WQNFS-4 WQNFS-3 WQNFS-2 WQNFS-1
Default 0 0 0 0 0 0 0 0
Bits 0-15: WAN Queue Near Full Status (WQNFS[16-1]) This register indicates whether an impending overflow
condition has occurred on a WAN Queue, and the device initiated the discarding of incoming frames on a WAN
interface. This condition can occur if the transmit LAN interface is disabled, if the MAC has received excessive
pause flow control frames and completely filled the buffers for the transmit LAN while responding to the pause
requests, or if operating in half duplex mode with heavy LAN network congestion. This register is cleared each time
it is read.
0 = Normal operation
1 = At least one “Near Full” condition detected since last read, frames may have been discarded.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 227 of 375
Register Name: AR.WQNFIM
Register Description: WAN Queue Near Full Interrupt Mask
Register Address: 1A6h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
1A7h: WQNFIM-16 WQNFIM-15 WQNFIM-14 WQNFIM-13 WQNFIM-12 WQNFIM-11 WQNFIM-10 WQNFIM-9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1A6h: WQNFIM-8 WQNFIM-7 WQNFIM-6 WQNFIM-5 WQNFIM-4 WQNFIM-3 WQNFIM-2 WQNFIM-1
Default 0 0 0 0 0 0 0 0
Bits 0-15: WAN Queue Near Full Interrupt Mask (WQNFIM[16-1]) This register provides an interrupt bit mask to
filter interrupts based on the status conditions in the AR.WQNFS register.
0 = Bit mask disabled
1 = Bit mask enabled
Register Name: AR.EQOS
Register Description: Extract Queue Overflow Status
Register Address: 1A8h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
1A9h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1A8h: - - - - - - WEQOS LEQOS
Default 0 0 0 0 0 0 0 0
Bit 1: WAN Extract Queue Overflow Status [WEQOS] This bit indicates whether an overflow condition has
occurred on the LAN Extract Queue since the last read of this register. This register is reset each time it is read.
0 = No Overflow condition detected
1 = At least one Overflow condition detected since last read
Bit 0: LAN Extract Queue Overflow Status [LEQOS] This bit indicates whether an overflow condition has
occurred on the LAN Extract Queue since the last read of this register. This register is reset each time it is read.
0 = No Overflow condition detected
1 = At least one Overflow condition detected since last read
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 228 of 375
Register Name: AR.EQOIM
Register Description: Extract Queue Overflow Interrupt Mask
Register Address: 1AAh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
1ABh: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1AAh: - - - - - - WEQOIM LEQOIM
Default 0 0 0 0 0 0 0 0
Bit 1: WAN Extract Queue Overflow Interrupt Mask [WEQOIM] This bit provides an interrupt bit mask to filter
out unwanted interrupts.
0 = Bit mask disabled
1 = Bit mask enabled
Bit 0: LAN Extract Queue Overflow Interrupt Mask [LEQOIM] This bit provides an interrupt bit mask to filter
out unwanted interrupts.
0 = Bit mask disabled
1 = Bit mask enabled
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 229 of 375
Register Name: AR.BMIS
Register Description: Buffer Manager(Arbiter) Interrupt Status
Register Address: 1ACh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
1ADh: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1ACh: - - - EQOI WQNFI WQOI LCNFI LQOI
Default 0 0 0 0 0 0 0 0
Bit 4: Extract Queue Overflow Interrupt [EQOI] This bit provides an indication of whether this is an active
interrupt. This bit should not be latched, but should provide a logical OR of the Extract Queue Overflow Status
register bits (any “1” generates an interrupt).
0 = No active Interrupt
1 = Active Interrupt
Bit 3: WAN Queue Near Full Interrupt [WQNFI] This bit provides an indication of whether this is an active
interrupt. This bit should not be latched, but should provide a logical OR of the WAN Queue Near Full Status
register bits (any “1” generates an interrupt).
0 = No active Interrupt
1 = Active Interrupt
Bit 2: WAN Queue Overflow Interrupt [WQOI] This bit provides an indication of whether this is an active
interrupt. This bit should not be latched, but should provide a logical OR of the WAN Queue Overflow Status
register bits (any “1” generates an interrupt).
0 = No active Interrupt
1 = Active Interrupt
Bit 1: LAN Queue Near Full Interrupt [LQNFI] This bit provides an indication of whether this is an active
interrupt. This bit should not be latched, but should provide a logical OR of the LAN Queue Near Full Status
register bits (any “1” generates an interrupt).
0 = No active Interrupt
1 = Active Interrupt
Bit 0: LAN Queue Overflow Interrupt [LQOI] This bit provides an indication of whether this is an active
interrupt. This bit should not be latched, but should provide a logical OR of the LAN Queue Overflow Status register
bits (any “1” generates an interrupt).
0 = No active Interrupt
1 = Active Interrupt
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 230 of 375
10.5 Packet Processor (Encapsulator) Registers
Note that some devices in the product family have less than four encapsulators. The DS33X11 contains only
Encapsulator #1. The DS33W41 and DS33X42 devices contain only encapsulators #1 and #3.
Register Name: PP.EMCR
Register Description: Encapsulator Master Control Register
Register Address: 200h (+ 040h x (n-1), WAN Group Encapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
201h: EGCM EPRTSEL EFCSAD ECFCRD
EFCS16EN - EFCSB EBBYS
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
200h: EIIS ELHDE ET1E ET2E ERE1 ERE0 TBRE EHCBO
Default 0 0 0 0 0 0 0 0
Bit 15: Encapsulator GFP CRC Mode(EGCM)
0= GFP Null. Encapsulator pFCS calculation begins with the 9th byte after the start of the frame.
1= GFP Linear. Encapsulator pFCS calculation begins with the 13th byte after the start of the frame.
Bit 14: Encapsulator Protocol Selection (EPRTSEL)
0= GFP
1= HDLC/cHDLC/LAPS(X.86)
Bit 13: Encapsulator Frame Check Sequence Append Disable (EFCSAD) When set to 1, frames will not have a
HDLC/GFP FCS appended prior to transmission. When equal to 0, the encapsulation FCS will be appended.
Bit 12: Encapsulator Scrambler Disable (ECFCRD) When set to 1, encapsulation X43+1 scrambling is disabled.
Bit 11: Encapsulator 16-bit FCS Enable (EFCS16EN) – When set to 1, the HDLC Encapsulation uses a 16-bit
FCS. When equal to 0, a 32 bit FCS is appended. This bit only applies when EFCSAD = 0.
Bit 9: Encapsulator Ethernet FCS Bypass (EFCSB) When set to 1, the Ethernet FCS is forwarded exactly as
received. When equal to 0, the Ethernet FCS is removed prior to encapsulation.
Bit 8: Encapsulator Bit Byte Synchronous (EBBYS) When set to 1, the Encapsulator performs Byte Stuffing.
When equal to 0, the Encapsulator performs Bit Stuffing. When in GFP mode (EPRTSEL = 0), this bit should be set
to 1. Bit-stuffed HDLC is not valid for multi-member VCGs.
Bit 7: Encapsulator Interframe Idle Selection (EIIS) When set to 1, the Encapsulator Idle sequence is 0xFF.
When equal to 0, the Encapsulator Idle sequence is 0x7E. This bit only applies when EPRTSEL = 1.
Bit 6: Encapsulator Line Header Enable (ELHDE) When set to 1, the Encapsulator will insert the values in
PP.ELHHR and PP.ELHLR as a 4-byte Line Header. The header is appended after the PLI+CHEC field in GFP
mode, and after the start flag in HDLC mode.
Bit 5: Encapsulator Tag 1 Enable (ET1E) When set to 1, the Encapsulator will insert the values in PP.ET1DHR
and PP.ET1DLR as a 4-byte tag immediately before the DA field.
Bit 4: Encapsulator Tag 2 Enable (ET2E) When set to 1, the Encapsulator will insert the values in PP.ET2DHR
and PP.ET2DLR as a 4-byte tag immediately after the SA field.
Bits 2-3: Encapsulator Remove Enable (ERE[1:0])
00 = Normal operation.
01 = 18 bytes are removed from the frame prior to encapsulation, starting with the DA field.
10 = 14 bytes are removed from the frame prior to encapsulation, starting with the DA field.
11 = Reserved.
Bit 1: Transmit Bit Reorder (TBRE) Controls the endian order of HDLC transmission. This bit function is not
available in device revision A1 (GL.IDR.REVn=000).
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 231 of 375
0 = HDLC payload will be transmitted MSB-first. Default operation.
1 = HDLC payload will be transmitted LSB-first.
Bit 0: Encapsulator HDLC CRC Bit Reorder (EHCBO) Controls the endian order of the HDLC CRC calculation.
This bit function is not available in device revision A1 (GL.IDR.REVn=000).
0 = HDLC CRC will be calculated MSB-first. Default operation.
1 = HDLC CRC will be calculated LSB-first.
Register Name: PP.ELHHR
Register Description: Encapsulator Line Header High Data Register
Register Address: 202h (+ 040h x (n-1), WAN Group Encapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
203h: ELHD31 ELHD30 ELHD29 ELHD28 ELHD27 ELHD26 ELHD25 ELHD24
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
202h: ELHD23 ELHD22 ELHD21 ELHD20 ELHD19 ELHD18 ELHD17 ELHD16
Default 0 0 0 0 0 0 0 0
Bits 0-15: Encapsulator Line Header Data (ELHD[31:16]) These 2 bytes provide the most significant bytes of the
Line Header, when enabled with ELHDE. ELDH[31:25] is inserted first, followed by ELHD[23:16].
Register Name: PP.ELHLR
Register Description: Encapsulator Line Header Low Data Register
Register Address: 204h (+ 040h x (n-1), WAN Group Encapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
205h: ELHD15 ELHD14 ELHD13 ELHD12 ELHD11 ELHD10 ELHD9 ELHD8
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
204h: ELHD7 ELHD6 ELHD5 ELHD4 ELHD3 ELHD2 ELHD1 ELHD0
Default 0 0 0 0 0 0 0 0
Bits 0-15: Encapsulator Line Header Data (ELHD[15:0]) These 2 bytes provide the least significant bytes of the
Line Header, when enabled with ELHDE. ELDH[15:8] is inserted first, followed by ELHD[7:0].
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 232 of 375
Register Name: PP.ET1DHR
Register Description: Encapsulator Tag 1 Data High Register
Register Address: 206h (+ 040h x (n-1), WAN Group Encapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
207h: ET1D31 ET1D30 ET1D29 ET1D28 ET1D27 ET1D26 ET1D25 ET1D24
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
206h: ET1D23 ET1D22 ET1D21 ET1D20 ET1D19 ET1D18 ET1D17 ET1D16
Default 0 0 0 0 0 0 0 0
Bits 0-15: Encapsulator Tag 1 Data (ET1D[31:16]) These 2 bytes provide the most significant bytes of Tag 1,
when enabled with ET1E. ET1D[31:25] is inserted first, followed by ET1D[23:16].
Register Name: PP.ET1DLR
Register Description: Encapsulator Tag 1 Data Low Register
Register Address: 208h (+ 040h x (n-1), WAN Group Encapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
209h: ET1D15 ET1D14 ET1D13 ET1D12 ET1D11 ET1D10 ET1D9 ET1D8
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
208h: ET1D7 ET1D6 ET1D5 ET1D4 ET1D3 ET1D2 ET1D1 ET1D0
Default 0 0 0 0 0 0 0 0
Bits 0-15: Encapsulator Tag 1 Data (ET1D[15:0]) These 2 bytes provide the least significant bytes of Tag 1,
when enabled with ET1E. ET1D[15:8] is inserted first, followed by ET1D[7:0].
Register Name: PP.ET2DHR
Register Description: Encapsulator Tag 2 Data High Register
Register Address: 20Ah (+ 040h x (n-1), WAN Group Encapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
20Bh: ET2D31 ET2D30 ET2D29 ET2D28 ET2D27 ET2D26 ET2D25 ET2D24
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
20Ah: ET2D23 ET2D22 ET2D21 ET2D20 ET2D19 ET2D18 ET2D17 ET2D16
Default 0 0 0 0 0 0 0 0
Bits 0-15: Encapsulator Tag 2 Data (ET2D[31:16]) These 2 bytes provide the most significant bytes of Tag 2,
when enabled with ET2E. ET2D[31:25] is inserted first, followed by ET2D[23:16].
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 233 of 375
Register Name: PP.ET2DLR
Register Description: Encapsulator Tag 2 Data Low Register
Register Address: 20Ch (+ 040h x (n-1), WAN Group Encapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
20Dh: ET2D15 ET2D14 ET2D13 ET2D12 ET2D11 ET2D10 ET2D9 ET2D8
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
20Ch: ET2D7 ET2D6 ET2D5 ET2D4 ET2D3 ET2D2 ET2D1 ET2D0
Default 0 0 0 0 0 0 0 0
Bits 0-15: Encapsulator Tag 2 Data (ET2D[15:0]) These 2 bytes provide the least significant bytes of Tag 2,
when enabled with ET2E. ET2D[15:8] is inserted first, followed by ET2D[7:0].
Register Name: PP.EEIR
Register Description: Encapsulator Error Insertion Register
Register Address: 20Eh (+ 040h x (n-1), WAN Group Encapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
20Fh: EPLIEIE EDEIE EEFCSEIE EFCFEIE EBDEC1 EBDEC0 EEI7 EEI6
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
20Eh: EEI5 EEI4 EEI3 EEI2 EEI1 EEI0 ESEI -
Default 0 0 0 0 0 0 0 0
Bit 15: Encapsulator PLI Error Insert Enable (EPLIEIE) When set to 1, a single-bit error insertion is enabled for
the PLI field. This includes the 2 PLI Header bits and the corresponding CHEC.
Bit 14: Encapsulator Data Error Insert Enable (EDEIE) When set to 1, a single-bit error insertion is enabled for
the data field. Errors can only be inserted in the first byte of the payload data. Hence the EBD bit setting has no
effect for inserting payload errors.
Bit 13: Encapsulator Ethernet FCS Error Insert Enable (EFCSEIE) When set to 1, a single-bit error insertion is
enabled for the Ethernet FCS field.
Bit 12: Encapsulator FCS Error Insert Enable (EPLIEIE) When set to 1, a single-bit error insertion is enabled for
the encapsulation FCS field.
Bits 10-11: Encapsulator Byte Decode (EBD[1:0]) These bits determine which of the 4 bytes need error insertion
for the PLI, Ethernet FCS, and Encapsulation FCS fields. These bits have no effect on data error insertion.
Bits 2-9: Encapsulator Error Insert (EIE[7:0]) These 8 bits determine the bit location of the error insertion in the
selected field. Only one error is inserted for each transition of ESEI.
Bit 1: Encapsulator Single Error Insert (ESEI) Changing this bit from a 0 to a 1 causes a single error insertion.
For a second error insertion, the user must first clear this bit.
Register Name: PP.EFCLSR
Register Description: Encapsulator Frame Count Latched Status Register
Register Address: 210h (+ 040h x (n-1), WAN Group Encapsulator n=1 to 4)
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 234 of 375
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
211h: EFCNT15 EFCNT14 EFCNT13 EFCNT12 EFCNT11 EFCNT10 EFCNT9 EFCNT8
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
210h: EFCNT7 EFCNT6 EFCNT5 EFCNT4 EFCNT3 EFCNT2 EFCNT1 EFCNT0
Default 0 0 0 0 0 0 0 0
Bits 0-15: Encapsulator Frame Count (EFCNT[15:0]) This counter provides the number of frames that have
been encapsulated. The counter is reset upon being read by the microprocessor.
Register Name: PP.ESMLS
Register Description: Encapsulator State Machine Latched Status
Register Address: 21Eh (+ 040h x (n-1), WAN Group Encapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
21Fh: - - - -
SOPLE SOPSE COPLE COPSE
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
21Eh: EOPLE EOPSE - FUF FOVF FLOK FF FE
Default 0 0 0 0 0 0 0 0
Bit 11: (SOPLE) This bit is set upon detection of an internal error.
Bit 10: (SOPSE) This bit is set upon detection of an internal error.
Bit 9: (COPLE) This bit is set upon detection of an internal error.
Bit 8: (COPSE) This bit is set upon detection of an internal error.
Bit 7: (EOPLE) This bit is set upon detection of an internal error.
Bit 6: (EOPSE) This bit is set upon detection of an internal error.
Bit 4: (FUF) This bit is set if the encapsulator FIFO has underflowed.
Bit 3: (FOVF) This bit is set if the encapsulator FIFO has overflowed.
Bit 2: (FLOK) This bit is set if the encapsulator FIFO is ok to accept more data. Cleared on read.
Bit 1: (FF) This bit is set if the encapsulator FIFO is full. Cleared on read.
Bit 0: (FE) This bit is set if the encapsulator FIFO is empty. Cleared on read.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 235 of 375
Register Name: PP.ESMIE
Register Description: Encapsulator State Machine Interrupt Enable
Register Address: 220h (+ 040h x (n-1), WAN Group Encapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
221h: - - - -
SOPLEIE SOPSEIE COPLEIE COPSEIE
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
220h: EOPLEIE EOPSEIE - FUFIE FOVFIE FLOKIE FFIE FEIE
Default 0 0 0 0 0 0 0 0
Bit 11: (SOPLEIE) This bit enables an interrupt on the SOPLE condition.
Bit 10: (SOPSEIE) This bit enables an interrupt on the SOPSE condition.
Bit 9: (COPLEIE) This bit enables an interrupt on the COPLE condition.
Bit 8: (COPSEIE) This bit enables an interrupt on the COPSE condition.
Bit 7: (EOPLEIE) This bit enables an interrupt on the EOPLE condition.
Bit 6: (EOPSEIE) This bit enables an interrupt on the EOPSE condition.
Bit 4: (FUFIE) This bit enables an interrupt on the FUF condition.
Bit 3: (FOVFIE) This bit enables an interrupt on the FOVF condition.
Bit 2: (FLOKIE) This bit enables an interrupt on the FLOK condition.
Bit 1: (FFIE) This bit enables an interrupt on the FF condition.
Bit 0: (FEIE) This bit enables an interrupt on the FE condition.
Register Name: PP.EHFL
Register Description: Encapsulator HDLC Fill Length
Register Address: 226h (+ 040h x (n-1), WAN Group Encapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
227h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
226h: EHFL7 EHFL6 EHFL5 EHFL4 EHFL3 EHFL2 EHFL1 EHFL0
Default 0 0 0 0 0 0 0 0
Bits 0-15: Encapsulator HDLC Fill Length (EHFL[7:0]) Used to set the minimum number of HDLC Fill flags to be
inserted after the end of each frame. Only valid when HDLC encapsulation is used.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 236 of 375
10.6 Decapsulator Registers
Register Name: PP.DMCR
Register Description: Decapsulator Master Control Register
Register Address: 300h (+ 040h x (n-1), WAN Group Decapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
301h: DGCM DPRTSEL DFCSAD DCFCRD DFCS16EN - DBBS RBRE
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
300h: DR1E DR2E DR3E DAE1 DAE0 DGSC DHRAE DHCBO
Default 0 0 0 0 0 0 0 0
Bit 15: Decapsulator GFP CRC Mode (DGCM)
0=GFP Null. Decapsulator does not verify the eHEC value.
1=GFP Linear. Decapsulator verifies the eHEC value and discards failing frames.
Bit 14: Decapsulator Protocol Selection (DPRTSEL)
Selects between GFP and HDLC based forms of encapsulation. Additionally, when transitioning HDLC between
byte and bit modes of operation, this byte is used to reset the HDLC circuitry. In order to initiate a reset the HDLC
circuitry during bit/byte stuffing mode changes, this bit must be set to zero briefly, then set back to 1.
0=GFP Based.
1=HDLC Based.
Bit 13: Decapsulator Frame Check Sequence Append Disable (DFCSAD)– When equal to 0, the incoming
frame’s encapsulation (HDLC/GFP) CRC (FCS) will be validated and removed. When set to 1, the decapsulated
frame will not be expected to contain an encapsulation CRC and no bytes will be removed.
Bit 12: Decapsulator Scrambler Disable (DCFCRD) When set to 1, the X43+1 descrambler is turned off.
Bit 11: Decapsulator 16-bit FCS Enable (DFCS16EN) When set to 1 the decapsulated frame must contain a 16-
bit FCS. When equal to zero, a 32-bit FCS is expected. This bit is relevant if DFCSAD is reset.
Bit 9: Decapsulator Bit Byte Synchronous(DBBS) When set to 1, the Decapsulator expects byte-stuffed HDLC.
When equal to zero, the Decapsulator expects bit-stuffed HDLC. When in GFP mode (DPRTSEL = 0), this bit
should be set to 1. After changing this bit, the HDLC circuitry should be reset using the PP.DMCR.DPRTSEL bit.
Bit-stuffed HDLC is not valid for multi-member VCGs (WAN Groups).
Bit 8: Receive Bit Reorder (RBRE) Controls the endian order of HDLC reception. This bit function is not available
in device revision A1 (GL.IDR.REVn=000).
0 = HDLC payload will be received MSB-first. Default operation.
1 = HDLC payload will be received LSB-first.
Bit 7: Decapsulator Remove Function 1 Enable (DR1E) When set to 1, 4 bytes are removed immediately after
the cHEC bytes (for GFP) or start of HDLC flag (for HDLC). This bit should be set to 1 for X.86, Cisco HDLC and
GFP transport. This bit should be reset to 0 for HDLC traffic with no headers.
Bit 6: Decapsulator Remove Function 2 Enable (DR2E) When set to 1, 4 bytes are removed after the first
remove function. This function should always be used in conjunction with Decapsulator Remove Function 1.
Bit 5: Decapsulator Remove Function 3 Enable (DR3E) When set to 1, 12 bytes are skipped and then 4 bytes
are removed. The 12 bytes are skipped after either Decapsulator Remove Function 1 and/or Decapsulator Remove
Function 2 have been performed (when enabled). When Decapsulator Remove Functions 1 and 2 are disabled, 12
bytes are skipped from the beginning of the frame.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 237 of 375
Bits 3-4: Decapsulator Add Enable (DAE[1:0]) Controls the insertion of additional bytes by the decapsulator.
00 = Normal operation.
01 = The 18 byte value from the PP.DA1DR through PP.DA9DR registers will be inserted after the
cHEC bytes in GFP mode, or after the HDLC header/flag when in HDLC mode.
10 = The 14 byte value from the PP.DA1DR through PP.DA7DR registers will be inserted after the
cHEC bytes in GFP mode, or after the HDLC header/flag when in HDLC mode.
11 = Reserved.
Bit 2: Decapsulator GFP Synchronization Control (DGSC) When set, “triple synchronization” is selected. Three
consecutive PLIs and respective cHEC must be correct to enter the Synchronization State. If equal to zero, two
consecutive correct PLIs and cHECs are required. Only applicable to GFP Mode.
Bit 1: Decapsulator HDLC Rate Adaptation (DHRAE)
0= Disabled. Default for non-X.86 (LAPS) modes.
1= Enabled. “7D DD” sequence removed from data stream. For use in X.86 (LAPS) mode.
Bit 0: Decapsulator HDLC CRC Bit Order (DHCBO) Controls the endian order of the HDLC CRC calculation.
This bit function is not available in device revision A1 (GL.IDR.REVn=000).
0 = HDLC CRC will be calculated MSB-first. Default operation.
1 = HDLC CRC will be calculated LSB-first.
Register Name: PP.DA1DR
Register Description: Decapsulator Add 1 Data Register
Register Address: 302h (+ 040h x (n-1), WAN Group Decapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
303h D1D15D D1D14D D1D13D D1D12D D1D11D D1D10D D1D9D D1D8D
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
302h D1D7D D1D6D D1D5D D1D4D D1D3D D1D2D D1D1D D1D0D
Default 0 0 0 0 0 0 0 0
Bits 0-15: Decapsulator 1 Data High (D1D [15:0]) These 2 bytes provide the data if the addition is enabled with
PP.DMCR.DAE[1:0].
Register Name: PP.DA2DR
Register Description: Decapsulator Add 2 Data Register
Register Address: 304h (+ 040h x (n-1), WAN Group Decapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
305h: D2D15D D2D14D D2D13D D2D12D D2D11D D2D10D D2D9D D2D8D
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
304h: D2D7D D2D6D D2D5D D2D4D D2D3D D2D2D D2D1D D2D0D
Default 0 0 0 0 0 0 0 0
Bits 0-15: Decapsulator 2 Data (D2D [15:0]) These 2 bytes provide the data if the addition is enabled with
PP.DMCR.DAE[1:0].
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 238 of 375
Register Name: PP.DA3DR
Register Description: Decapsulator Add 3 Data Register
Register Address: 306h (+ 040h x (n-1), WAN Group Decapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
307h: D3D15D D3D14D D3D13D D3D12D D3D11D D3D10D D3D9D D3D8D
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
306h: D3D7D D3D6D D3D5D D3D4D D3D3D D3D2D D3D1D D3D0D
Default 0 0 0 0 0 0 0 0
Bits 0-15: Decapsulator 3 Data (D3D [15:0]) These 2 bytes provide the data if the addition is enabled with
PP.DMCR.DAE[1:0].
Register Name: PP.DA4DR
Register Description: Decapsulator Add 4 Data Register
Register Address: 308h (+ 040h x (n-1), WAN Group Decapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
309h: D4D15D D4D14D D4D13D D4D12D D4D11D D4D10D D4D9D D4D8D
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
308h: D4D7D D4D6D D4D5D D4D4D D4D3D D4D2D D4D1D D4D0D
Default 0 0 0 0 0 0 0 0
Bits 0-15: Decapsulator 4 Data (D4D [15:0]) These 2 bytes provide the data if the addition is enabled with
PP.DMCR.DAE[1:0].
Register Name: PP.DA5DR
Register Description: Decapsulator Add 5 Data Register
Register Address: 30Ah (+ 040h x (n-1), WAN Group Decapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
30Bh: D5D15D D5D14D D5D13D D5D12D D5D11D D5D10D D5D9D D5D8D
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
30Ah: D5D7D D5D6D D5D5D D5D4D D5D3D D5D2D D5D1D D5D0D
Default 0 0 0 0 0 0 0 0
Bits 0-15: Decapsulator 5 Data (D5D [15:0]) These 2 bytes provide the data if the addition is enabled with
PP.DMCR.DAE[1:0].
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 239 of 375
Register Name: PP.DA6DR
Register Description: Decapsulator Add 6 Data Register
Register Address: 30Ch (+ 040h x (n-1), WAN Group Decapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
30Dh: D6D15D D6D14D D6D13D D6D12D D6D11D D6D10D D6D9D D6D8D
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
30Ch: D6D7D D6D6D D6D5D D6D4D D6D3D D6D2D D6D1D D6D0D
Default 0 0 0 0 0 0 0 0
Bits 0-15: Decapsulator 6 Data (D6D [15:0]) These 2 bytes provide the data if the addition is enabled with
PP.DMCR.DAE[1:0].
Register Name: PP.DA7DR
Register Description: Decapsulator Add 7 Data Register
Register Address: 30Eh (+ 040h x (n-1), WAN Group Decapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
30Fh: D7D15D D7D14D D7D13D D7D12D D7D11D D7D10D D7D9D D7D8D
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
30Eh: D7D7D D7D6D D7D5D D7D4D D7D3D D7D2D D7D1D D7D0D
Default 0 0 0 0 0 0 0 0
Bits 0-15: Decapsulator 7 Data High (D7D [15:0]) These 2 bytes provide the data if the addition is enabled
PP.DMCR.DAE[1:0].
Register Name: PP.DA8DR
Register Description: Decapsulator Add 8 Data Register
Register Address: 310h (+ 040h x (n-1), WAN Group Decapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
311h: D8D15D D8D14D D8D13D D8D12D D8D11D D8D10D D8D9D D8D8D
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
310h: D8D7D D8D6D D8D5D D8D4D D8D3D D8D2D D8D1D D8D0D
Default 0 0 0 0 0 0 0 0
Bits 0-15: Decapsulator 8 Data (D8D [15:0]) These 2 bytes provide the data if the addition is enabled with
PP.DMCR.DAE[1:0].
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 240 of 375
Register Name: PP.DA9DR
Register Description: Decapsulator Add 9 Data Register
Register Address: 312h (+ 040h x (n-1), WAN Group Decapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
313h: D9D15D D9D14D D9D13D D9D12D D9D11D D9D10D D9D9D D9D8D
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
312h: D9D7D D9D6D D9D5D D9D4D D9D3D D9D2D D9D1D D9D0D
Default 0 0 0 0 0 0 0 0
Bits 0-15: Decapsulator 9 Data High (D9D [15:0]) These 2 bytes provide the data if the addition is enabled with
PP.DMCR.DAE[1:0].
Register Name: PP.DMLSR
Register Description: Decapsulator Master Latched Status Register
Register Address: 314h (+ 040h x (n-1), WAN Group Decapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
315h: DGSLS DGSLLS DGLCLS DGLCSLS DFFLS - DCHECFLS DTCHECFLS
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
314h: DFUR DFOVF - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 15: Decapsulator GFP Sync Latched Status (DGSLS) When Set the GFP has achieved Synchronization
Latched Status. This bit is cleared upon a read.
Bit 14: Decapsulator GFP Sync Loss Latched Status (DGSLLS) When Set indicates that the GFP has lost
synchronization. This bit is cleared upon a read.
Bit 13: Decapsulator GFP Loss of Client Signal Latched Status (DGLCLS) When Set indicates that the GFP
Loss of Client Signal Management Frame has arrived. This bit is cleared upon a read.
Bit 12: Decapsulator GFP Loss of Client Synchronization Latched Status (DGLCSLS) When Set indicates that
the GFP Loss of Client Synchronization Management Frame has arrived. This bit is cleared upon a read.
Bit 11: Decapsulator FCS Fail Latched Status (DFFLS) When set indicates that the FCS has failed. This bit is
cleared upon a read.
Bit 9: Decapsulator Extension Header eHEC Fail Latched Status (DCHECFLS) When set indicates that the
Extension HEC has failed. This bit is cleared upon a read.
Bit 8: Decapsulator Type HEC Fail Latched Status (DTCHECFLS) When set indicates Type HEC has failed.
Bit 7: Decapsulator FIFO Under run Latched Status (DFUR) When set indicates that the FIFO has under run.
Bit 6: Decapsulator FIFO Overflow Latched Status (DFOVF) When set indicates that the FIFO has overflowed.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 241 of 375
Register Name: PP.DMLSIE
Register Description: Decapsulator Master Latched Status Interrupt Enable
Register Address: 316h (+ 040h x (n-1), WAN Group Decapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
317h: DGSIE DGSLIE DGLCIE DGLCSIE DFFIE - DCHECFIE DTCHECFIE
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
316h: DFURIE DFOVFIE - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 15: Decapsulator GFP Sync Interrupt Enable (DGSIE)
Bit 14: Decapsulator GFP Sync Loss Interrupt Enable (DGSLIE)
Bit 13: Decapsulator GFP Loss of Client Signal Interrupt Enable (DGLCIE)
Bit 12: Decapsulator GFP Loss of Client Synchronization Interrupt Enable (DGLCSIE)
Bit 11: Decapsulator FCS Fail Interrupt Enable (DFFIE)
Bit 9: Decapsulator Extension Header eHEC Fail Interrupt Enable (DCHECFIE)
Bit 8: Decapsulator Type HEC Fail Interrupt Enable (DTCHECFIE)
Bit 7: Decapsulator FIFO Under Run Interrupt Enable (DFURIE)
Bit 6: Decapsulator FIFO Overflow Interrupt Enable (DFOVFIE)
Register Name: PP.DGPLC
Register Description: Decapsulator Good Packet Latched Counter
Register Address: 318h (+ 040h x (n-1), WAN Group Decapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
319h: DGPLC15 DGPLC14 DGPLC13 DGPLC12 DGPLC11 DGPLC10 DGPLC9 DGPLC8
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
318h: DGPLC7 DGPLC6 DGPLC5 DGPLC4 DGPLC3 DGPLC2 DGPLC1 DGPLC0
Default 0 0 0 0 0 0 0 0
Bit 15-0/ Decapsulator Good Packet Low Latched Counter(DGPLC 15:0) – This bits provide the low word of the
good Frame Counter. This counter is cleared upon a read.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 242 of 375
Register Name: PP.DGBLC
Register Description: Decapsulator Bad Packet Latched Counter
Register Address: 31Ah (+ 040h x (n-1), WAN Group Decapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
31Bh: DBPLC15 DBPLC14 DBPLC13 DBPLC12 DBPLC11 DBPLC10 DBPLC9 DBPLC8
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
31Ah: DBPLC7 DBPLC6 DBPLC5 DBPLC4 DBPLC3 DBPLC2 DBPLC1 DBPLC0
Default 0 0 0 0 0 0 0 0
Bit 8-15: Decapsulator Bad Packet Latched Counter(DBPLC 7:0) These bits provide the bad frame counter
latched value. The counter is cleared upon a read. The following are counted: Aborts, Runt, FCS Errors, Type
CHEC failures.
Register Name: PP.DSSR
Register Description: Decapsulator Synchronization Status Register
Register Address: 31Ch (+ 040h x (n-1), WAN Group Decapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
31Dh: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
31Ch: - - - - - DGSYNC DGPSYNC DGHUNT
Default 0 0 0 0 0 0 0 0
Bit 2: Decapsulator GFP Sync Status (DGSYNC) This bit is set when GFP is Synchronized. This bit can be read
after the transition of DFSRWPC.
Bit 1: Decapsulator GFP Pre Sync Status (DGPSYNC) This bit is set when GFP Synchronization Machine is in
the Pre-Synchronized state. This bit can be read after the transition of DFSRWPC.
Bit 0: Decapsulator GFP Hunt Status (DHUNT) This bit is set when GFP Synchronization Machine is in the Hunt
state. This bit can be read after the transition of DFSRWPC.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 243 of 375
Register Name: PP.DHHSR
Register Description: Decapsulator Header High Status Register
Register Address: 31Eh (+ 040h x (n-1), WAN Group Decapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
31Fh: DHSR31 DHSR30 DHSR29 DHSR28 DHSR27 DHSR26 DHSR25 DHSR24
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
31Eh: DHSR23 DHSR22 DHSR21 DHSR20 DHSR19 DHSR18 DHSR17 DHSR16
Default 0 0 0 0 0 0 0 0
Bit 15-0: Decapsulator Header High Status (DHSR31:16) – These bits provide the high word of the Header
Bytes that have been received. These are the first 2 bytes after the HDLC start flag and The first 2 bytes after the
GFP PLI and GFP cHEC.
Register Name: PP.DHLSR
Register Description: Decapsulator Header Low Status Register
Register Address: 320h (+ 040h x (n-1), WAN Group Decapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
321h: DHSR15 DHSR14 DHSR13 DHSR12 DHSR11 DHSR10 DHSR9 DHSR8
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
320h: DHSR7 DHSR6 DHSR5 DHSR4 DHSR3 DHSR2 DHSR1 DHSR0
Default 0 0 0 0 0 0 0 0
Bit 15-0: Decapsulator Header Low Status (DHSR15:0) – These bits provide the low word of the Header Bytes
that have been received. These are the bytes 3 and 4 after the HDLC start flag and bytes 3 and 4 after the GFP
PLI and GFP cHEC.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 244 of 375
Register Name: PP.DFSCR
Register Description: Decapsulator FIFO Control Register
Register Address: 322h (+ 040h x (n-1), WAN Group Decapsulator n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
323h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
322h: - - - - DEM DSMRE DFPRE DFSRWPC
Default 0 0 0 0 0 0 0 0
Note – bit definitions below not symmetric Decap/Encap:
Bit 3: Decapsulator Error Mode (DEM) When set to 1, errored frames are forwarded. Normally they are
discarded. This bit function was located in DMCR bit 0 in device revision A1 (GL.IDR.REVn=000).
Bit 2: Decapsulator State Machine Reset (DSMRE) If this bit is set and DFSRWPC transitions, The
Decapsulator State Machine will be reset.
Bit 1: Decapsulator FIFO Pointer reset Enable (DFPRE) - Setting this bit to a 1 will enable the FIFO to be reset.
The FIFO Read and Write pointer will be reset if DFSRWPC transitions and this bit is set.
Bit 0: Decapsulator FIFO and State Read, Write, and PMU Control (DFSRWPC)- A 0 to 1 transition enables the
FIFO Read and Write Addresses, Status Registers to be read by the processor. The user must wait 4 system
clocks before the reads can be done. This bit is used to control resetting of the FIFO Read and Write Pointers and
the Decapsulator State Machine. This bit is also used as a PMU update for all decapsulator latched counters.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 245 of 375
10.7 VCAT/LCAS Registers
10.7.1 Transmit VCAT Registers
Note: Some registers are on a per-WAN-port basis.
Register Name: VCAT.TCR1
Register Description: VCAT Transmit Control Register 1
Register Address: 400h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
401h: - - - -
TGIDBC TGIDM TLOAD TVBLKEN
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
400h: V4FM1 V4FM0 V3FM1 V3FM0 V2FM1 V2FM0 V1FM1 V1FM0
Default 0 0 0 0 0 0 0 0
Bit 11: Transmit GID Bit Convention (TGIDBC) Controls all 4 VCGs. This bit is only used when TGIDM = 1
0 = bit 15 of the TGIDx register is transmitted first.
1 = bit 0 of TGIDx register is transmitted first.
Bit 10: Transmit GID Mode (TGIDM) Controls all 4 VCGs.
0 = PRBS (215 – 1) pattern.
1 = User configured value. The first bit inserted will be when MFI2 = XXXX_0000.
Bit 9: Transmit Configuration Change Load (TLOAD). When all WAN transmit ports have been configured with
the correct SQ assignments, CTRL commands, member count (TCR1.VnMC[3:0]), VCG assignments, and LCAS
Enable (LE[4:1]), a 0-to-1 transition on this bit will load the new configuration on the next VCAT Start of Frame
(SOF). This register will update all VCGs.
Bit 8: Transmit VCAT Block Enable (TVBLKEN) Data path Reset/Disable.
0 = VCAT Block is disabled; data path is disabled
1 = VCAT Block is enabled; data path is enabled
Note: This bit must be set even in Non-VCG modes
Bits 6-7: VCG4 Frame Mode Control (V4FM[1:0])
00 = VCG4 configured for T1
01 = VCG4 configured for E1
10 = VCG4 configured for C-bit DS3 (MUST be mapped to Ports 1 to 8 only)
11 = VCG4 configured for E3 G.832 (MUST be mapped to Ports 1 to 8 only)
Bits 4-5: VCG3 Frame Mode Control (V3FM[1:0])
00 = VCG3 configured for T1
01 = VCG3 configured for E1
10 = VCG3 configured for C-bit DS3 (MUST be mapped to Ports 1 to 8 only)
11 = VCG3 configured for E3 G.832 (MUST be mapped to Ports 1 to 8 only)
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 246 of 375
Bits 2-3: VCG2 Frame Mode Control (V2FM[1:0])
00 = VCG2 configured for T1
01 = VCG2 configured for E1
10 = VCG2 configured for C-bit DS3 (MUST be mapped to Ports 1 to 8 only)
11 = VCG2 configured for E3 G.832 (MUST be mapped to Ports 1 to 8 only)
Bits 0-1: VCG1 Frame Mode Control (V1FM[1:0])
00 = VCG1 configured for T1
01 = VCG1 configured for E1
10 = VCG1 configured for C-bit DS3 (MUST be mapped to Ports 1 to 8 only)
11 = VCG1 configured for E3 G.832 (MUST be mapped to Ports 1 to 8 only)
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 247 of 375
Register Name: VCAT.TCR2
Register Description: VCAT Transmit Control Register 2
Register Address: 402h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
403h: TV4MC3 TV4MC2 TV4MC1 TV4MC0 TV3MC3 TV3MC2 TV3MC1 TV3MC0
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
402h: TV2MC3 TV2MC2 TV2MC1 TV2MC0 TV1MC3 TV1MC2 TV1MC1 TV1MC0
Default 0 0 0 0 0 0 0 0
Bits 12-15: Transmit VCG4 Member Count (TV4MC[3:0]) These bits indicate to the device the number of
members assigned to VCG4
0000 = 1 Member
0001 = 2 Members
0010 = 3 members
…..
1111 = 16 members
Bits 8-11: Transmit VCG3 Member Count (TV3MC[3:0]) These bits indicate to the device the number of
members assigned to VCG3
0000 = 1 Member
0001 = 2 Members
0010 = 3 members
…..
1111 = 16 members
Bits 4-7: Transmit VCG2 Member Count (TV2MC[3:0]) These bits indicate to the device the number of members
assigned to VCG2
0000 = 1 Member
0001 = 2 Members
0010 = 3 members
…..
1111 = 16 members
Bits 0-3: Transmit VCG1 Member Count (TV1MC[3:0]) These bits indicate to the device the number of members
assigned to VCG1
0000 = 1 Member
0001 = 2 Members
0010 = 3 members
…..
1111 = 16 members
Note: If more than one member is assigned to a WAN group, VCAT must be enabled for that group. Updates to this
register take effect after VCGCR.TLOAD transitions.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 248 of 375
Register Name: VCAT.TLCR1
Register Description: VCAT Transmit LCAS Control Register 1
Register Address: 406h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
407h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
406h: - - - - RSACK4 RSACK3 RSACK2 RSACK1
Default 0 0 0 0 0 0 0 0
Bits 0-3: VCGn ReSequence Acknowledge (RSACK[4:1]).
0 = No change
1 = Invert RS-Ack bit
Register Name: VCAT.TLCR2
Register Description: VCAT Transmit LCAS Control Register 2
Register Address: 408h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
409h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
408h: - - - - ATMSTD4 ATMSTD3 ATMSTD2 ATMSTD1
Default 0 0 0 0 0 0 0 0
Bits 0-3: Automatic Transmit MST Disable (ATMSTD[4:1])
0 = RLCAS automatic inserts Transmit MST values for VCGn
1 = Disable RLCAS control of Transmit MST for VCGn
Register Name: VCAT.TLCR3
Register Description: VCAT Transmit LCAS Control Register 3
Register Address: 40Ah
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
40Bh: V1MST15 V1MST14 V1MST13 V1MST12 V1MST11 V1MST10 V1MST9 V1MST8
Default 1 1 1 1 1 1 1 1
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
40Ah: V1MST7 V1MST6 V1MST5 V1MST4 V1MST3 V1MST2 V1MST1 V1MST0
Default 1 1 1 1 1 1 1 1
Bits 0-15: VCG 1 MST Manual Control (V1MST[15:0])
0 = Member n sends MST = OK
1 = Member n sends MST = FAIL
Note: Default upon power-up is SET. These bits latched on SOF if VCAT.TLCR1.ATMSTD1=1.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 249 of 375
Register Name: VCAT.TLCR4
Register Description: VCAT Transmit LCAS Control Register 4
Register Address: 40Ch
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
40Dh: V2MST15 V2MST14 V2MST13 V2MST12 V2MST11 V2MST10 V2MST9 V2MST8
Default 1 1 1 1 1 1 1 1
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
40Ch: V2MST7 V2MST6 V2MST5 V2MST4 V2MST3 V2MST2 V2MST1 V2MST0
Default 1 1 1 1 1 1 1 1
Bits 0-15: VCG 2 MST Manual Control (V2MST[15:0])
0 = Member n sends MST = OK
1 = Member n sends MST = FAIL
Note: Default upon power-up is SET. These bits latched on SOF if VCAT.TLCR1.ATMSTD2=1.
Register Name: VCAT.TLCR5
Register Description: VCAT Transmit LCAS Control Register 5
Register Address: 40Eh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
40Fh: V3MST15 V3MST14 V3MST13 V3MST12 V3MST11 V3MST10 V3MST9 V3MST8
Default 1 1 1 1 1 1 1 1
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
40Eh: V3MST7 V3MST6 V3MST5 V3MST4 V3MST3 V3MST2 V3MST1 V3MST0
Default 1 1 1 1 1 1 1 1
Bits 15 to 0: VCG 3 MST Manual Control (V3MST[15:0])
0 = Member n sends MST = OK
1 = Member n sends MST = FAIL
Note: Default upon power-up is SET. These bits latched on SOF if VCAT.TLCR1.ATMSTD3=1.
Register Name: VCAT.TLCR6
Register Description: VCAT Transmit LCAS Control Register 6
Register Address: 410h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
411h: V4MST15 V4MST14 V4MST13 V4MST12 V4MST11 V4MST10 V4MST9 V4MST8
Default 1 1 1 1 1 1 1 1
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
410h: V4MST7 V4MST6 V4MST5 V4MST4 V4MST3 V4MST2 V4MST1 V4MST0
Default 1 1 1 1 1 1 1 1
Bits 0-15: VCG 4 MST Manual Control (V4MST[15:0])
0 = Member n sends MST = OK
1 = Member n sends MST = FAIL
Note: Default upon power-up is SET. These bits latched on SOF if VCAT.TLCR1.ATMSTD4=1.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 250 of 375
Register Name: VCAT.TCR3
Register Description: VCAT Transmit Control Register 3
Register Address: 420h (+ 002h x (n-1), Physical WAN Port n=1 to 16)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
421h: - - - - TVSQ3 TVSQ2 TVSQ1 TVSQ0
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
420h: - - - TNVCGC TVGS2 TVGS1 TVGS0 TPA
Default 0 0 0 0 0 0 0 0
Bits 8-11: Transmit VCAT Sequence Mapping (TVSQ[3:0]) These four bits are a BCD number that is used in the
“SQ” field of the VCAT MFI on that port. When LCAS is enabled, the internal LCAS engine controls the transmit
sequence number and reading these bits provides the current assigned sequence number for a given port. The
user should take care to not overwrite these bits when LCAS is enabled. When LCAS is not enabled, the user
can write a value to specifically assign a port’s sequence in a VCG. Note that in T3/E3 operation, only sequence
numbers 0-7 are valid.
Bit 4: Transmit Non-VCG Control (TNVCGC)
0 = The VCAT byte position is not used for payload data. Required when placing GFP encapsulated
Ethernet over PDH for compliance with ITU-T G.8040.
1 = The VCAT byte position is used for payload data. Only valid when the port is not configured as a
member of a VCAT group.
Bits 1-3: Transmit Port n VCAT Group Selection (TVGS[2:0])
TVGS[2:0] Transmit WAN Group and VCAT Selection
000 VCAT disabled for WAN Port, WAN Group 1
001 VCAT enabled for WAN Port, WAN Group 1 (VCG1)
010 VCAT disabled for WAN Port, WAN Group 2
011 VCAT enabled for WAN Port, WAN Group 2 (VCG2)
100 VCAT disabled for WAN Port, WAN Group 3
101 VCAT enabled for WAN Port, WAN Group 3 (VCG3)
110 VCAT disabled for WAN Port, WAN Group 4
111 VCAT enabled for WAN Port, WAN Group 4 (VCG4)
Note: Only one port may be assigned to a Non-VCG.
Bit 0: Transmit Port n Assign (TPA)
0 = Port n is Unused.
1 = Port n is assigned to a WAN Group or VCG.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 251 of 375
Register Name: VCAT.TLCR8
Register Description: VCAT Transmit LCAS Control Register 8
Register Address: 440h (+ 002h x (n-1), Physical WAN Port n=1 to 16)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
441h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
440h: - - - - CTRL3 CTRL2 CTRL1 CTRL0
Default 0 0 0 0 0 0 0 0
Bits 0-3: Port n Control Code (CTRL[3:0]).
CTRL[3:0] Control Word
0000 FIXED
0001 ADD
0010 NORM
0011 EOS
0101 IDLE
1111 DNU
Register Name: VCAT.TCR4
Register Description: VCAT Transmit Control Register 4
Register Address: 470h (+ 002h x (n-1), WAN Group n=1 to 4)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
471h: TGID15 TGID14 TGID13 TGID12 TGID11 TGID10 TGID9 TGID8
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
470h: TGID7 TGID6 TGID5 TGID4 TGID3 TGID2 TGID1 TGID0
Default 0 0 0 0 0 0 0 0
Bits 12-15: Transmit GID Value (TGID[15:0]) These bits contain a user-programmed value to be transmitted
through the VCAT GID. One value is used for all members of each WAN Group. Only used when
VCAT.TCR1.TGIDM = 1.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 252 of 375
10.7.2 VCAT Receive Register Description
Note: Some registers are on a per-WAN-port basis.
Register Name: VCAT.RCR1
Register Description: VCAT Receive Control Register 1
Register Address: 500h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
501h: - - - RVEN4 RGIDBC RVEN3 RVEN2 RVEN1
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
500h: - - SVINTD T3T1WG4 T3T1WG3 T3T1WG2 T3T1WG1 RVBLKEN
Default 0 0 0 0 0 0 0 0
Bit 12: Receive VCAT and Data Path Enable for VCG 4 (RVEN4) Data path reset and enable. This bit function is
not available in device revision A1 (GL.IDR.REVn=000).
0 = VCAT Block is disabled and held in reset; data path is disabled for receive WAN Group #4
1 = VCAT Block is enabled; data path is enabled for receive WAN Group #4
Note: This bit must be set to enable the data path, even when operating in Non-VCG modes
Bit 11: Receive GID Bit Convention (RGIDBC) Controls all 4 VCGs. This bit is only used when TGIDM = 1
0 = bit 15 of the RGIDx register is received first.
1 = bit 0 of RGIDx register is received first.
Bit 10: Receive VCAT and Data Path Enable for VCG 3 (RVEN3) Data path Reset disable. This bit function is not
available in device revision A1 (GL.IDR.REVn=000).
0 = VCAT Block is disabled and held in reset; data path is disabled for receive WAN Group #3
1 = VCAT Block is enabled; data path is enabled for receive WAN Group #3
Note: This bit must be set to enable the data path, even when operating in Non-VCG modes
Bit 9: Receive VCAT and Data Path Enable for VCG 2 (RVEN2) Data path Reset disable. This bit function is not
available in device revision A1 (GL.IDR.REVn=000).
0 = VCAT Block is disabled and held in reset; data path is disabled for receive WAN Group #2
1 = VCAT Block is enabled; data path is enabled for receive WAN Group #2
Note: This bit must be set to enable the data path, even when operating in Non-VCG modes
Bit 8: Receive VCAT and Data Path Enable for VCG 1 (RVEN1) Data path Reset disable. This bit function is not
available in device revision A1 (GL.IDR.REVn=000).
0 = VCAT Block is disabled and held in reset; data path is disabled for receive WAN Group #1
1 = VCAT Block is enabled; data path is enabled for receive WAN Group #1
Note: This bit must be set to enable the data path, even when operating in Non-VCG modes
Bit 5: Sequence Value Integration Disable (SVINTD) Integration of sequence values applies to non-LCAS
operation only.
0 = Sequence value integrated is enabled.
1 = Sequence value integration is disabled.
Bit 4: T3/E3 or T1/E1 Selection for WAN Group 4 (T3T1WG4)
0 = device configured for T1/E1 VCGs
1 = device configured for T3/E3 VCGs (MUST be Ports 1 to 8 only)
Bit 3: T3/E3 or T1/E1 Selection for WAN Group 3 (T3T1WG3)
0 = device configured for T1/E1 VCGs
1 = device configured for T3/E3 VCGs (MUST be Ports 1 to 8 only)
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 253 of 375
Bit 2: T3/E3 or T1/E1 Selection for WAN Group 2 (T3T1WG2)
0 = device configured for T1/E1 VCGs
1 = device configured for T3/E3 VCGs (MUST be Ports 1 to 8 only)
Bit 1: T3/E3 or T1/E1 Selection for WAN Group 1 (T3T1WG1)
0 = device configured for T1/E1 VCGs
1 = device configured for T3/E3 VCGs (MUST be Ports 1 to 8 only)
Bit 0: Receive VCAT Block Enable (RVBLKEN) Data path Reset disable.
0 = VCAT Block is disabled; data path is disabled
1 = VCAT Block is enabled; data path is enabled
Note: This bit must be set even in Non-VCG modes
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 254 of 375
Register Name: VCAT.RCR2
Register Description: VCAT Receive Control Register 2
Register Address: 502h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
503h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
502h: LE4 LE3 LE2 LE1 REALIGN4 REALIGN3 REALIGN2 REALIGN1
Default 0 0 0 0 0 0 0 0
Bit 7: LCAS Enable VCG4 (LE4).
0 = VCG 4 is not enabled for LCAS
1 = VCG 4 is enabled for LCAS
Bit 6: LCAS Enable VCG 3 (LE3).
0 = VCG 3 is not enabled for LCAS
1 = VCG 3 is enabled for LCAS
Bit 5: LCAS Enable VCG 2 (LE2).
0 = VCG 2 is not enabled for LCAS
1 = VCG 2 is enabled for LCAS
Bit 4: LCAS Enable VCG 1 (LE1).
0 = VCG 1 is not enabled for LCAS
1 = VCG 1 is enabled for LCAS
Bits 0-3: Manual Re-alignment of VCAT Members for VCGn (REALIGN[4:1]) A 0-to-1 transition of
this bit causes the Re-alignment state machine for VCGn to restart.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 255 of 375
Register Name: VCAT.RCR3
Register Description: VCAT Receive Control Register 3
Register Address: 504h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
505h: RV4MC3 RV4MC2 RV4MC1 RV4MC0 RV3MC3 RV3MC2 RV3MC1 RV3MC0
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
504h: RV2MC3 RV2MC2 RV2MC1 RV2MC0 RV1MC3 RV1MC2 RV1MC1 RV1MC0
Default 0 0 0 0 0 0 0 0
Bits 12-15: Receive VCG4 Member Count (RV4MC[3:0]) These bits indicate to the device the number of
members assigned to VCG4.
0000 = 1 Member
0001 = 2 Members
0010 = 3 members
…..
1111 = 16 members
Note: This count represents all members of a VCG, active or not.
Bits 8-11: Receive VCG3 Member Count (RV3MC[3:0]) These bits indicate to the device the number of members
assigned to VCG3.
0000 = 1 Member
0001 = 2 Members
0010 = 3 members
…..
1111 = 16 members
Note: This count represents all members of a VCG, active or not.
Bits 4-7: Receive VCG2 Member Count (RV2MC[3:0]) These bits indicate to the device the number of members
assigned to VCG2.
0000 = 1 Member
0001 = 2 Members
0010 = 3 members
…..
1111 = 16 members
Note: This count represents all members of a VCG, active or not.
Bits 0-3: Receive VCG1 Member Count (RV1MC[3:0]) These bits indicate to the device the number of members
assigned to VCG1.
0000 = 1 Member
0001 = 2 Members
0010 = 3 members
…..
1111 = 16 members
Note: This count represents all members of a VCG, active or not.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 256 of 375
Register Name: VCAT.RISR
Register Description: VCAT Receive Interrupt Status Register
Register Address: 508h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
509h: PISR16 PISR15 PISR14 PISR13 PISR12 PISR11 PISR10 PISR9
Default 1 1 1 1 1 1 1 1
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
508h: PISR8 PISR7 PISR6 PISR5 PISR4 PISR3 PISR2 PISR1
Default 1 1 1 1 1 1 1 1
Bits 0-15: VCAT Port Interrupt Status (PISR[16:1]) This bit is set when the corresponding serial port’s Receive
Serial Status Latched Register (VCAT.RSLSR[1-16]) has one or more bits set and its corresponding Interrupt
Enable bit is also set.
Register Name: VCAT.RLSR1
Register Description: VCAT Receive LCAS Status Register 1
Register Address: 50Ah
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
50Bh: V1MST15 V1MST14 V1MST13 V1MST12 V1MST11 V1MST10 V1MST9 V1MST8
Default 1 1 1 1 1 1 1 1
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
50Ah: V1MST7 V1MST6 V1MST5 V1MST4 V1MST3 V1MST2 V1MST1 V1MST0
Default 1 1 1 1 1 1 1 1
Bits 0-15: V1MST[15:0] VCG1 MST Status
0 = Member n receives MST = OK
1 = Member n receives MST = OK
Note: on reset, this register will be set to all ones
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 257 of 375
Register Name: VCAT.RLSR2
Register Description: VCAT Receive LCAS Status Register 2
Register Address: 50Ch
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
50Dh: V2MST15 V2MST14 V2MST13 V2MST12 V2MST11 V2MST10 V2MST9 V2MST8
Default 1 1 1 1 1 1 1 1
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
50Ch: V2MST7 V2MST6 V2MST5 V2MST4 V2MST3 V2MST2 V2MST1 V2MST0
Default 1 1 1 1 1 1 1 1
Bits 0-15: V2MST[15:0] VCG2 MST Status
0 = Member n receives MST = OK
1 = Member n receives MST = OK
Note: on reset, this register will be set to all ones
Register Name: VCAT.RLSR3
Register Description: VCAT Receive LCAS Status Register 3
Register Address: 50Eh
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
50Fh: V3MST15 V3MST14 V3MST13 V3MST12 V3MST11 V3MST10 V3MST9 V3MST8
Default 1 1 1 1 1 1 1 1
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
50Eh: V3MST7 V3MST6 V3MST5 V3MST4 V3MST3 V3MST2 V3MST1 V3MST0
Default 1 1 1 1 1 1 1 1
Bits 0-15: V3MST[15:0] VCG3 MST Status
0 = Member n receives MST = OK
1 = Member n receives MST = OK
Note: on reset, this register will be set to all ones
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 258 of 375
Register Name: VCAT.RLSR4
Register Description: VCAT Receive LCAS Status Register 4
Register Address: 510h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
511h: V4MST15 V4MST14 V4MST13 V4MST12 V4MST11 V4MST10 V4MST9 V4MST8
Default 1 1 1 1 1 1 1 1
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
510h: V4MST7 V4MST6 V4MST5 V4MST4 V4MST3 V4MST2 V4MST1 V4MST0
Default 1 1 1 1 1 1 1 1
Bits 0-15: V4MST[15:0] VCG4 MST Status
0 = Member n sends MST = OK
1 = Member n sends MST = FAIL
Note: Default upon power-up is all ones. These bits latched on SOF if VCAT.TLCR1.ATMSTD4=1.
Register Name: VCAT.RRLSR
Register Description: VCAT Receive Realign Latched Status Register
Register Address: 512h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
513h: - - - - VMSTC4 VMSTC3 VMSTC2 VMSTC1
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
512h: DDE4 DDE3 DDE2 DDE1 REALIGNL4 REALIGNL3 REALIGNL2 REALIGNL1
Default 0 0 0 0 0 0 0 0
Bits 8-11: MST Change on VCGn (VMSTC[4:1] This bit is set when any of the 16 MST bits associated with VCGn
have changed value.
Bits 4-7: Differential Delay Exceeded on VCGn This bit is set when the delay between members of the
corresponding VCG has exceeded the tolerance. When set, WAN traffic from the VCG will not be forwarded to the
LAN port.
Bits 0-3: Receive Re-Alignment of VCGn (REALIGNL[4:1]) This bit is set when the corresponding realignment
state machine completes successfully.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 259 of 375
Register Name: VCAT.RRSIE
Register Description: VCAT Receive Realign Status Interrupt Enable
Register Address: 514h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
515h: - - - - VMSTCIE4 VMSTCIE3 VMSTCIE2 VMSTCIE1
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
514h: DDEIE4 DDEIE3 DDEIE2 DDEIE1 REALIGNIE4 REALIGNIE3 REALIGNIE2 REALIGNIE1
Default 0 0 0 0 0 0 0 0
Bit 11: VCG4 MSTC Change Interrupt Enable (VMSTCIE4) This bit enables an interrupt if VMSTC4 is set.
Bit 10: VCG3 MSTC Change Interrupt Enable (VMSTCIE3) This bit enables an interrupt if VMSTC3 is set.
Bit 9: VCG2 MSTC Change Interrupt Enable (VMSTCIE2) This bit enables an interrupt if VMSTC2 is set.
Bit 8: VCG1 MSTC Change Interrupt Enable (VMSTCIE1) This bit enables an interrupt if VMSTC1 is set.
Bit 7: VCG4 Differential Delay Exceeded Interrupt Enable (DDEIE4). This bit enables an interrupt for DDE4.
Bit 6: VCG3 Differential Delay Exceeded Interrupt Enable (DDEIE3). This bit enables an interrupt for DDE3.
Bit 5: VCG2 Differential Delay Exceeded Interrupt Enable (DDEIE2). This bit enables an interrupt for DDE2.
Bit 4: VCG1 Differential Delay Exceeded Interrupt Enable (DDEIE1). This bit enables an interrupt for DDE1.
Bits 0-3: Receive Re-Alignment of VCGn Interrupt Enable (REALIGNIE[4:1]) This bit enables an interrupt
if the corresponding REALIGNLn bit is set.
0 = interrupt disabled
1 = interrupt enabled
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 260 of 375
Register Name: VCAT.RCR4
Register Description: VCAT Receive Control Register 4
Register Address: 530h (+ 002h x (n-1), Physical WAN Port n=1 to 16)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
531h: RFRST - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
530h: RFM - - RNVCGC RVGS2 RVGS1 RVGS0 RPA
Default 0 0 0 0 0 0 0 0
Bit 15: Receive FIFO Reset (RFRST)
0 = The Receive FIFO resumes normal operations
1 = The Receive FIFO is in Reset. The FIFO is emptied, any transfer in progress is halted, the FIFO circuit
is powered down.
Bit 7: Remove and Reframe (RFM) A zero-to-one transition of this bit forces the associated line into the
“removed” state, which is held as long as the bit remains a 1. A one-to-zero transition on this bit causes the
associated receive port to reframe on the VCAT overhead.
Bit 4: Receive Non-VCG Control (RNVCGC)
0 = The VCAT byte position is not used for payload data.
1 = The VCAT byte position is used for payload data. Only valid when the port is not configured as a
member of a VCAT group.
Bits 1-3: Receive Port n VCAT Group Selection (RVGS[2:0])
RVGS[2:0] Receive WAN Group and VCG Selection
000 VCAT disabled for WAN Port, WAN Group 1
001 VCAT enabled for WAN Port, WAN Group 1 (VCG1)
010 VCAT disabled for WAN Port, WAN Group 2
011 VCAT enabled for WAN Port, WAN Group 2 (VCG2)
100 VCAT disabled for WAN Port, WAN Group 3
101 VCAT enabled for WAN Port, WAN Group 3 (VCG3)
110 VCAT disabled for WAN Port, WAN Group 4
111 VCAT enabled for WAN Port, WAN Group 4 (VCG4)
Note: Only a single WAN port may be assigned to a WAN Group in which VCAT is disabled.
Bit 0: Receive Port n Assign (RPA)
0 = Port n is Unassigned.
1 = Port n is Assigned to a VCG or Non-VCG.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 261 of 375
Register Name: VCAT.RSR1
Register Description: VCAT Receive Status Register 1
Register Address: 550h (+ 002h x (n-1), Physical WAN Port n=1 to 16)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
551h: RVSQ3 RVSQ2 RVSQ1 RVSQ0 CTRL3 CTRL2 CTRL1 CTRL0
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
550h: - - - RSACK - - - LOM
Default 0 0 0 0 0 0 0 0
Bits 12-15: Port n Receive Sequence (RVSQ[3:0]) These bits are updated every VCAT Frame on SOF
boundaries. These bits report the previous frame’s Sequence value. (LCAS only)
Bits 8-11: Port n Control Word (CTRL[3:0]) These bits are updated every VCAT Frame on SOF boundaries.
These bits report the previous frame’s Control Word. (LCAS only)
CTRL[3:0] Control Word
0000 FIXED
0001 ADD
0010 NORM
0011 EOS
0101 IDLE
1111 DNU
Bit 4: RS-ACK Status (RSACK)
0 = RS-ACK for port n for the previous VCAT frame is 0.
1 = RS-ACK for port n for the previous VCAT frame is 1.
Bit 0: Loss of Multiframe Sync (LOM) – This bit corresponds to the Receive VCAT Framer status of the WAN
port.
0 = No LOM for port n
1 = LOM active for port n
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 262 of 375
Register Name: VCAT.RSR2
Register Description: VCAT Receive Status Register 2
Register Address: 570h (+ 002h x (n-1), Physical WAN Port n=1 to 16)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
571h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
570h: - - - - CRCE GID SEMF EMF
Default 0 0 0 0 0 0 1 0
Bit 3: CRC Error (CRCE) This status bit is set if there was a CRC error in the previous VCAT frame. (LCAS only)
Bit 2: GID Alarm (GID) This status bit is set if the GID of port n does not match the VCG’s GID value.
Bit 1: Severely Errored Multiframe (SEMF) This status bit is set if there were 4 or more MFI errors in the previous
multiframe. Updated on Multiframe boundaries.
Bit 0: Errored Multiframe (EMF) This status bit is set if there was at least one MFI error in the previous
multiframe. Updated on Multiframe boundaries.
Register Name: VCAT.RSLSR
Register Description: VCAT Receive Serial Latched Status Register
Register Address: 590h (+ 002h x (n-1), Physical WAN Port n=1 to 16)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
591h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
590h: - - - RSACKL SQL CTRL - LOML
Default 0 0 0 0 0 0 0 0
Bit 4: RS-ACK Change Latched (RSACKL) Set when the corresponding RSACK status bit changes state.
Bit 3: SQ Change Latched (SQL) Set when the SQ[3:0] status bits change.
Bit 2: CTRL Code Change Latched (CTRLL) Set when the CTRL[3:0] status bits change.
Bit 0: Loss of Multiframe Sync Change Latched (LOML) Set when the corresponding LOM bit changes from an
inactive (0) to an active (1) state. The user should poll LOM to determine when the LOM condition is cleared.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 263 of 375
Register Name: VCAT.RSIE
Register Description: VCAT Receive Serial Interrupt Enable Register
Register Address: 5B0h (+ 002h x (n-1), Physical WAN Port n=1 to 16)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
5B1h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
5B0h: - - - RSACKIE SQIE CTRIE - LOMIE
Default 0 0 0 0 0 0 0 0
Bit 4: RSACK Change Interrupt Enable (RSACKIE) This bit enables an interrupt if the RSACKL bit is set.
0 = Interrupt for port n is Masked
1 = Interrupt for port n is Enabled
Bit 3: SQ Change Interrupt Enable (SQIE) This bit enables an interrupt if the SQL bit is set.
0 = Interrupt for port n is Masked
1 = Interrupt for port n is Enabled
Bit 2: CTRL Change Interrupt Enable (CTRIE) This bit enables an interrupt if the CTRLL bit is set.
0 = Interrupt for port n is Masked
1 = Interrupt for port n is Enabled
Bit 0: Loss of Multiframe Sync Change Interrupt Enable (LOMIE[16:1]) This bit enables an interrupt if the
LOML bit is set.
0 = Interrupt for port n is Masked
1 = Interrupt for port n is Enabled
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 264 of 375
Register Name: VCAT.RSR3
Register Description: VCAT Receive Status Register 3
Register Address: 5D0h (+ 002h x (n-1), Physical WAN Port n=1 to 16)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
5D1h: RGID15 RGID14 RGID13 RGID12 RGID11 RGID10 RGID9 RGID8
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
5D0h: RGID7 RGID6 RGID5 RGID4 RGID3 RGID2 RGID1 RGID0
Default 0 0 0 0 0 0 0 0
Bits 0 -15: Receive GID (RGID[15:0]) These bits provide the received 16-bit GID value for each of the 16 WAN
Lines. Latches the first bit when MFI2 = XXXX_0000. Bit order is reversed if RGIDBC=1.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 265 of 375
10.8 Serial Interface Registers
The Serial Interface contains the Serial transport circuitry and the associated serial port. The Serial Interface
register map consists of registers that are common functions, transmit functions, and receive functions.
Bits that are underlined are read-only; all other bits can be written. All reserved registers and bits with “-“
designation should be written to zero, unless specifically noted in the register definition. When read, the information
from reserved registers and bits designated with “-“ should be discarded.
Counter registers are updated by asserting (low to high transition) the associated performance monitoring update
signal (xxPMU). During the counter register update process, the associated performance monitoring status signal
(xxPMS) is deasserted. The counter register update process consists of loading the counter register with the
current count, resetting the counter, forcing the zero count status indication low for one clock cycle, and then
asserting xxPMS. No events are missed during this update procedure.
A latched bit is set when the associated event occurs, and remains set until it is cleared by reading. Once cleared,
a latched bit will not be set again until the associated event occurs again. Reserved configuration bits and registers
should be written to zero.
10.8.1 Serial Interface Transmit and Common Registers
Serial Interface Transmit Registers are used to control the transmitter associated with each Serial Interface. The
register map is shown in the following Table. Note that throughout this document the HDLC Processor is also
referred to as a “packet processor”.
10.8.2 Serial Interface Transmit Register Bit Descriptions
Register Name: LI.LCR1
Register Description: Serial Interface Loopback Control Register 1
Register Address: 600h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
601h: LLB16 LLB15 LLB14 LLB13 LLB12 LLB11 LLB10 LLB9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
600h: LLB8 LLB7 LLB6 LLB5 LLB4 LLB3 LLB2 LLB1
Default 0 0 0 0 0 0 0 0
Bits 0-15: Line Loopback Enable (LLB[15:0]) Data received on RDATAn will be looped to the Transmit
Serial Port, replacing the data on TDATAn. (Note: TCLKn must be the same clock as RCLKn).
0 = Line Loopback is Disabled
1 = Line Loopback is Enabled
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 266 of 375
Register Name: LI.LCR2
Register Description: Serial Interface Loopback Control Register 2
Register Address: 602h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
603h: TLB16 TLB15 TLB14 TLB13 TLB12 TLB11 TLB10 TLB9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
602h: TLB8 TLB7 TLB6 TLB5 TLB4 TLB3 TLB2 TLB1
Default 0 0 0 0 0 0 0 0
Bits 0-15: Terminal Loopback Enable(TLB[16:1]). Data transmitted on TDATAn will be internally looped to the
Receive Serial Port and data on RDATAn will be ignored and TCLKn will replace RCLKn.
0 = Terminal Loopback is Disabled
1 = Terminal Loopback is Enabled
Register Name: LI.TCSR
Register Description: Serial Interface Transmit Clock Status Register
Register Address: 604h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
605h: - - - TMCLKA4 - - - TMCLKA3
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
604h: TCLKA8 TCLKA7 TCLKA6 TCLKA5 TCLKA4 TCLKA3 TCLKA2 TCLKA1
Default 0 0 0 0 0 0 0 0
Bit 12: Transmit Clock Active (TMCLKA4).
0 = TMCLK4 is not transitioning.
1 = TMCLK4 is active.
Note: This real-time status bit reports whether TMCLK4 has transitioned since the last
read of this register.
Bit 8: Transmit Clock Active (TMCLKA3).
0 = TMCLK3 is not transitioning.
1 = TMCLK3 is active.
Note: This real-time status bit reports whether TMCLK4 has transitioned since the last
read of this register.
Bits 0-7: Transmit Clock Active (TCLKA[8:1])
0 = TMCLKm/TCLKn is not Transitioning
1 = TMCLKm/TCLKn is Active
Note: This real-time status bit reports whether TMCLKm/TCLKn has transitioned since the last
read of this register.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 267 of 375
Register Name: LI.TVCSR
Register Description: Serial Interface Transmit Voice Clock Status Register
Register Address: 606h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
607h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
606h: - - - - - - - TVCLKA1
Default 0 0 0 0 0 0 0 0
Bit 0: Transmit Voice Clock Active (TCLKA1).
0 = TVCLK1 is not Transitioning
1 = TVCLK1 is Active
Note: This real-time status bit reports whether TVCLKA1 has transitioned since the last read of this register.
Register Name: LI.RCSR
Register Description: Serial Interface Receive Clock Status Register
Register Address: 608h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
609h: RCLKA16 RCLKA15 RCLKA14 RCLKA13 RCLKA12 RCLKA11 RCLKA10 RCLKA9
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
608h: RCLKA8 RCLKA7 RCLKA6 RCLKA5 RCLKA4 RCLKA3 RCLKA2 RCLKA1
Default 0 0 0 0 0 0 0 0
Bits 0-15: Receive Clock Active (RCLKA[16:1])
0 = RCLKn is not Transitioning
1 = RCLKn is Active
Note: This real-time status bit reports whether RCLKn has transitioned since the last read of this register.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 268 of 375
Register Name: LI.RVCSR
Register Description: Serial Interface Receive Voice Clock Status Register
Register Address: 60Ah
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
60Bh: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
60Ah: - - - - - - - RVCLKA1
Default 0 0 0 0 0 0 0 0
Bit 0: Receive Voice Clock Active (RVCLKA1)
0 = RVCLK is not Transitioning
1 = RVCLK is Active
Note: This real-time status bit reports whether RVCLK has transitioned since the last read of this register.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 269 of 375
10.8.3 Transmit Per Serial Port Register Description
Register Name: LI.TCR
Register Description: Serial Interface Transmit Control Register
Register Address: 640h (+ 008h x (n-1), Physical Serial Port n=1 to 16)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
641h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
640h: - - - TCLKINV - TS_SETUP1 TS_SETUP0 TD_SEL
Default 0 0 0 0 0 0 0 0
Bit 4: TMCLKm/TCLKn Invert (TCLKINV) Note: Valid for m = 1 to 4, n = 1 to 8.
0 = TMCLKm/TCLKn is not inverted
1 = TMCLKm/TCLKn is inverted
Bits 1-2: TSYNC Setup (TS_SETUP[1:0]). These two bits accommodate a TSYNC signal that arrives earlier
than the start of frame.
TS_SETUP[1:0] TSYNC Arrives
00 0 cycles early
01 1 cycle early
10 2 cycles early
11 3 cycles early
Bit 0: TDATA Select (TD_SEL).
0 = TDATAn is referenced to the associated TMCLKn, TMSYNCn.
1 = TDATAn is referenced to the associated TCLKn, TSYNCn. Not valid for Serial Ports 9-16.
TMCLKn / TMSYNCn
Assignment when
TD_SEL=0
Ports
TMCLK1 / TMSYNC1 1-4
TMCLK2 / TMSYNC2 5-8
TMCLK3 / TMSYNC3* 9-12*
TMCLK4 / TMSYNC4* 13-16*
* Note: For serial ports 9-16, the TD_SEL bit is not available. Ports 9-16 must use TMCLKn and TMSYNCn.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 270 of 375
10.8.4 Transmit Voice Port Register Description
Register Name: LI.TVPCR
Register Description: Serial Interface Transmit Voice Port Control Register
Register Address: 6C0h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
6C1h: - - - - - - TVFRST TVCLKI
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
6C0h: TVOPF4 TVOPF3 TVOPF2 TVOPF1 TVOPF0 TSYNCC PC TPE
Default 0 0 0 0 0 0 0 0
Bit 9: Transmit Voice FIFO Reset (TVFRST)
0 = The Transmit Voice FIFO resumes normal operations
1 = Transmit Voice FIFO Reset. The FIFO is emptied, any transfer in progress is halted, the FIFO circuit is
powered down, and all incoming data is discarded.
Bit 8: Transmit Voice Clock Invert (TVCLKI).
0 = TVCLK is not inverted
1 = TVCLK is inverted
Bits 3-7: Transmit Voice Octets Per Frame (TVOPF[4:0]). Controls the number of octets that are used for voice
traffic per frame. Note: Max. number of octets allowed to be used for voice is 16.
00001 = 1st byte after Frame sync is a voice channel.
00010 = 1st two bytes after Frame sync are voice channels
Bit 2: TSYNC Control (TSYNCC) This setting is necessary only if voice ports are enabled. TVSYNC MUST be a
frame sync.
0 = TSYNC is a frame sync. Voice bytes output to TDATA from Voice FIFO after every TSYNC.
1 = TSYNC is a multiframe sync. Voice output to TDATA from Voice FIFO based on PC bit.
Bit 1: Port Configuration (PC) Used to divide down multiframe sync to frame sync.
0 = Port is configured for T1.
1 = Port is configured for E1.
Bit 0: Transmit Port Enable (TPE)
0 = Port is Disabled
1 = Port is Enabled
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 271 of 375
Register Name: LI.TVFSR
Register Description: Serial Interface Transmit Voice FIFO Status Register
Register Address: 6C2h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
6C3h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
6C2h: - - - - - - TVFU TVFO
Default 0 0 0 0 0 0 0 0
Bit 1: Transmit Voice FIFO Underflow (TVFU) This bit is set during a Transmit Voice FIFO underflow. An
underflow condition results in a loss of data. This bit remains set as long as the underflow condition exists.
Bit 0: Transmit Voice FIFO Overflow (TVFO) – This bit is set during a Transmit Voice FIFO overflow. An overflow
condition results in a loss of data. This bit remains set as long as the overflow condition exists.
Register Name: LI.TVFLSR
Register Description: Serial Interface Transmit Voice FIFO Latched Status Register
Register Address: 6C4h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
6C5h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
6C4h: - - - - - - TVFUL TVFOL
Default 0 0 0 0 0 0 0 0
Bit 1: Transmit Voice FIFO Underflow Latched (TVFUL) This bit is set when a Transmit Voice FIFO underflow
condition occurs. An underflow condition results in a loss of data. This bit remains set as long as the underflow
condition exists.
Bit 0: Transmit Voice FIFO Overflow Latched (TVFOL) This bit is set when a Transmit Voice FIFO overflow
condition occurs. An overflow condition results in a loss of data. This bit remains set as long as the overflow
condition exists.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 272 of 375
Register Name: LI.TVFSRIE
Register Description: Serial Interface Transmit Voice FIFO Interrupt Enable Register
Register Address: 6C8h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
6C9h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
6C8h: - - - - - - TVFULIE TVFOLIE
Default 0 0 0 0 0 0 0 0
Bit 1: Transmit Voice FIFO Underflow Interrupt Enable (TVFULIE) This bit enables an interrupt if the TVFUL bit
is set.
0 = interrupt disabled
1 = interrupt enabled
Bit 0: Transmit Voice FIFO Overflow Interrupt Enable (TVFOLIE) – This bit enables an interrupt if the TVFOL bit
is set .
0 = interrupt disabled
1 = interrupt enabled
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 273 of 375
10.8.5 Receive Per Serial Port Register Description
Register Name: LI.RCR1
Register Description: Serial Interface Receive Control Register 1
Register Address: 740h (+ 008h x (n-1), Physical Serial Port n=1 to 16)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
741h: - - - - - - - -
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
740h: - - - RCLKINV - - RFRST -
Default 0 0 0 0 0 0 0 0
Bit 4: RCLKn Invert (RCLKINV)
0 = RCLKn is not inverted, RDATA samples on rising edge of RCLK.
1 = RCLKn is inverted, RDATA samples on falling edge of RCLK.
Bit 1: Receive FIFO Reset (RFRST)
0 = The Receive FIFO resumes normal operations
1 = Receive FIFO Reset. The FIFO is emptied, any transfer in progress is halted, the FIFO circuit is
powered down, the pointers are reset, and all incoming data is discarded.
Bit 0: Reserved. Set to 0 for proper operation.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 274 of 375
10.8.6 Receive Voice Port Register Description
Register Name: LI.RVPCR
Register Description: Serial Interface Receive Voice Port Control Register
Register Address: 7C0h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
7C1h: - - - - - - RVFRST RVCLKI
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
7C0h: RVOPF4 RVOPF3 RVOPF2 RVOPF1 RVOPF0 RSYNCC PC RPE
Default 0 0 0 0 0 0 0 0
Bit 9: Receive Voice FIFO Reset (RVFRST)
0 = The Receive Voice FIFO resumes normal operations
1 = Receive Voice FIFO Reset. The FIFO is emptied, any transfer in progress is halted, the FIFO circuit is
powered down, and all incoming data is discarded.
Bit 8: Receive Voice Clock Invert (RVCLKI)
0 = RVCLK is not inverted
1 = RVCLK is inverted
Bits 3-7: Receive Voice Octets Per Frame (RVOPF[4:0]). Controls the number of octets that are used for voice
traffic per frame. Note: Max. number of octets allowed to be used for voice is 16.
00001 = 1st byte after Frame sync is a voice channel.
00010 = 1st two bytes after Frame sync are voice channels…
Bit 2: RSYNC Control (RSYNCC). This setting is necessary only if voice ports are enabled. RVSYNC MUST be a
frame sync.
0 = RSYNC is a frame sync. Voice bytes inserted into Voice FIFO after every RSYNC.
1 = RSYNC is a multiframe sync. Voice bytes inserted into Voice FIFO based on PC register bit.
Bit 1: Port Configuration (PC). Used to divide down multiframe sync to frame sync.
0 = Port is configured for T1.
1 = Port is configured for E1.
Bit 0: Receive Port Enable (RPE)
0 = Port is Disabled
1 = Port is Enabled
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 275 of 375
10.8.7 MAC Registers
The control registers related to the control of the individual MACs are shown in the following Table. The device
keeps statistics for the packet traffic sent and received. Note that the addresses listed are the indirect addresses
that must be provided to SU.MAC1RADH/SU.MAC1RADL or SU.MAC1AWH/SU.MAC1AWL.
Register Name: SU.MACCR
Register Description: MAC Control Register
Register Address: 0000h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0000h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0001h: WDD JD FBE JFE Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0002h: GMIIMIIS EM DRO LM DM Reserved DRTY APST
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0003h: ACST BOLMT1 BOLMT0 DC TE RE Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23: Watchdog Disable (WDD) - When set to 1, the watchdog timer on the receiver is disabled. When equal to
0, the MAC allows only 2048 bytes of data per frame.
Bit 22: Jabber Disable (JD) - When set to 1, the transmitter’s jabber timer is disabled. When equal to 0, the MAC
allows only 2048 bytes to be transmitter per frame.
Bit 21: Frame Burst Enable (FBE) – When set to 1, the MAC allows frame bursting during transmission in half-
duplex mode.
Bit 20: Jumbo Frame Enable (JFE) - When set to 1, the MAC allows the reception of frames up to 9018 bytes in
length without reporting a giant frame error in the receive frame status register. Frames between 9018 and 10240
bytes in length are passed with a giant frame error indication. Jabber Disable and Watchdog Disable bits should be
set to 1 to transmit and receive jumbo frames. This bit should be cleared when operating in full-duplex mode.
Bit 15: GMII / MII Selection (GMIIMIIS)
0 = GMII mode
1 = MII/RMII mode
Bit 14: Endian Mode (EM) - When set to 1, the MAC operates in Big-Endian Mode. When equal to 0, the MAC
operates in Little-Endian Mode. The Endian mode selection is applicable only for the transmit and receive data
paths.
Bit 13: Disable Receive Own (DRO) - When set to 1, the MAC disables the reception of frames while TX_EN is
asserted. When this bit equals zero, transmitted frames are also received by the MAC. This bit should be cleared
when operating in full-duplex mode.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 276 of 375
Bit 12: Loopback Mode (LM) - When set to 1, all frames destined for the transmit GMII/MII/RMII interface are
internally transferred to the receive GMII/MII/RMII. Frames received on the GMII/MII/RMII are not transferred to the
transmit GMII/MII/RMII interface. Note that there is no SA/DA swapping performed. If SA/DA swapping of LAN
traffic is required, the LAN extract/insertion functions must be used.
Bit 11: Duplex Mode (DM) - When set to 1, the MAC transmits and receives simultaneously (full-duplex).
Bit 9: Disable Retry (DRTY) - When set to 1, the MAC makes only a single attempt to transmit each frame. If a
collision occurs, the MAC ignores the current frame, reports a Frame Abort, reports an excessive collision error,
and proceeds to the next frame. When this bit equals 0, the MAC will retry collided frames based on the settings in
the Backoff Limit bits before signaling a retry error. This bit is applicable to half-duplex mode only.
Bit 8: Automatic Pad Stripping (APST) - When set to 1, all incoming frames with less than 46 byte length are
automatically stripped of the pad characters and FCS. When equal to zero, all frames are received unmodified.
Bit 7: Automatic CRC Stripping (ACST) - When set to 1, the MAC will strip the FCS field on incoming frames only
if the length field is less than or equal to 1500 bytes. All received frames with length field greater than 1500 bytes
will be passed to the receiver without stripping of the FCS field. When equal to zero, all frames are received
unmodified. For most applications of this device, this bit should equal 0.
Bits 5 - 6: Back-Off Limit (BOLMT[1:0])- These two bits allow the user to set the back-off limit used for the
maximum retransmission delay for collided frames. Default operation limits the maximum delay for retransmission
to a countdown of 10 bits from a random number generator. The user can reduce the maximum number of counter
bits as described in the table below. See IEEE 802.3 for details of the back-off algorithm.
Bit 7 Bit 6 Random Number Generator Bits Used
0 0 10
0 1 8
1 0 4
1 1 1
Bit 4: Deferral Check (DC) - When set to 1, the MAC will abort frame transmission if it has deferred for more than
24,288 bit times. The deferral counter starts when the transmitter is ready to transmit a frame, but is prevented
from transmission because RX_CRS is active. If the MAC begins transmission but a collision occurs after the
beginning of transmission, the deferral counter is reset again. If this bit is equal to zero, then the MAC will defer
indefinitely.
Bit 3: Transmitter Enable (TE) - When set to 1, frame transmission is enabled. When equal to zero, transmission
is disabled.
Bit 2: Receiver Enable (RE) - When set to 1, frame reception is enabled. When equal to zero, frames are not
received.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 277 of 375
Register Name: SU.MACFFR
Register Description: MAC Frame Filter Register
Register Address: 0004h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0004h: RAF Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0005h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0006h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0007h: PCF Reserve
d DBF PAM INVF HFUF HFMF PM
Default 0 0 0 0 0 0 0 0
Bit 31: Receive All Frames (RAF) - When set to 1, the receiver forwards all frames to the device, even if they do
not pass the destination address filter. When equal to zero, the receiver only forwards those frames that pass the
destination address filter.
Bit 7: Pass Pause Control Frames (PCF) - When set to 1, the receiver forwards all special multicast PAUSE
control frames to the device. The MAC also decodes the PAUSE control frame and disables the transmitter for the
specified amount of time. When equal to zero, the MAC decodes the PAUSE control frame and disables the
transmitter for the specified amount of time, but does not forward the PAUSE frame to the device.
Bit 5: Disable Broadcast Frames (DBF) - When set to 1, the MAC filters all incoming Broadcast frames. When
equal to zero, all broadcast frames are forwarded to the device.
Bit 4: Pass All Multicast (PAM) - When set to 1, all received multicast frames (1st bit of DA = “1”) are forwarded,
irrespective of the settings of the Hash filter and Inverse Filtering bits.
Bit 3: Inverse Filtering (INVF) - When set to 1, the programmable DA filter operates in inverse filtering mode. The
result of the filtering operations by the Hash HFUF/HFMF bits is inverted. When equal to zero, filtering is
determined by the HFUF/HFMF bits.
Bit 2: Hash Mode for Unicast Frames (HFUF) - When set to 1, address filtering operates in the imperfect (hash)
address filtering mode for unicast frames, according to the hash table. When equal to zero, perfect address filtering
is performed on unicast frames using the addresses specified in the MAC address filter registers.
Bit 1: Hash Mode for Multicast Frames (HFMF) - When set to 1, address filtering operates in the imperfect (hash)
address filtering mode for multicast frames, according to the hash table. When this bit equals zero, perfect address
filtering is performed on multicast frames using the addresses specified in the MAC address filter registers.
Bit 0: Promiscuous Mode (PM) – When set to 1, all non-control frames are allowed to pass, including broadcast
frames, regardless of destination address.
See Section 8.19.3 for more details on frame-filtering configuration.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 278 of 375
Register Name: SU.MACHTHR
Register Description: MAC Hash Table High Register
Register Address: 0008h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0008h: HTH[31] HTH[30] HTH[29] HTH[28] HTH[27] HTH[26] HTH[25] HTH[24]
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0009h: HTH[23] HTH[22] HTH[21] HTH[20] HTH[19] HTH[18] HTH[17] HTH[16]
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
000Ah: HTH[15] HTH[14] HTH[13] HTH[12] HTH[11] HTH[10] HTH[9] HTH[8]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
000Bh: HTH[7] HTH[6] HTH[5] HTH[4] HTH[3] HTH[2] HTH[1] HTH[0]
Default 0 0 0 0 0 0 0 0
Bits 0-31: Hash Table High (HTH[31:0]) - Contains the upper 32 bits of the Hash table used for group address
filtering.
Register Name: SU.MACHTLR
Register Description: MAC Hash Table Low Register
Register Address: 000Ch (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
000Ch: HTL[31] HTL[30] HTL[29] HTL[28] HTL[27] HTL[26] HTL[25] HTL[24]
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
000Dh: HTL[23] HTL[22] HTL[21] HTL[20] HTL[19] HTL[18] HTL[17] HTL[16]
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
000Eh: HTL[15] HTL[14] HTL[13] HTL[12] HTL[11] HTL[10] HTL[9] HTL[8]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
000Fh: HTL[7] HTL[6] HTL[5] HTL[4] HTL[3] HTL[2] HTL[1] HTL[0]
Default 0 0 0 0 0 0 0 0
Bits 0-31: Hash Table Low (HTL[31:0]) - Contains the upper 32 bits of the Hash table used for group address
filtering.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 279 of 375
Register Name: SU.GMIIA
Register Description: MAC MDIO Management Address Register
Register Address: 0010h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0010h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0011h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0012h: PPA[4] PPA[3] PPA[2] PPA[1] PPA[0] GM[4] GM[3] GM[2]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0013h: GM[1] GM[0] Reserved Reserved CR[1] CR[0] GW GB
Default 0 0 0 0 0 0 0 0
Bits 10-15: PHY Physical Layer Address (PPA[4:0]) - Contains the address of the PHY to be accessed.
Bits 6-9: PHY MDIO Register (GM[4:0]) - Contains the address of register within the PHY to be accessed.
Bits 2-3: Clock Range (CR[1:0]) - Selects MDC clock frequency.
00 = divide input clock by 42
01 = divide input clock by 62
10 = divide input clock by 16
11 = divide input clock by 26
Bit 1: PHY MDIO Write (GW) - When set to 1, a write operation will be performed. When equal to zero, a read
operation will be performed.
Bit 0: PHY GMII Busy (GB) - This bit should be set to 1 when writing to SU.GMIIA. The MAC will clear the bit
when it is no longer busy. Do not write to GMIIA or GMIID while this bit is still set to 1. During read operations,
the data in SU.GMIID is invalid until this bit is equal to 0.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 280 of 375
Register Name: SU.GMIID
Register Description: MAC MDIO Management Data Register
Register Address: 0014h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0014h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0015h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0016h: GD[15] GD[14] GD[13] GD[12] GD[11] GD[10] GD[9] GD[8]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0017h: GD[7] GD[6] GD[5] GD[4] GD[3] GD[2] GD[1] GD[0]
Default 0 0 0 0 0 0 0 0
Bits 0-15: MDIO Data (GD[15:0]) - Contains the 16-bit value read from the PHY after a management read
operation, or the 16-bit value to be written during a write operation.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 281 of 375
Register Name: SU.MACFCR
Register Description: MAC Flow Control Register
Register Address: 0018h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0018h: PT[15] PT[14] PT[13] PT[12] PT[11] PT[10] PT[9] PT[8]
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0019h: PT[7] PT[6] PT[5] PT[4] PT[3] PT[2] PT[1] PT[0]
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
001Ah: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
001Bh: Reserved Reserve
d Reserved PLT UP RFE TFE FCB
Default 0 0 0 0 0 0 0 0
Bits 16-31: Pause Time (PT[15:0]) - Contains the 16-bit value to be used in the time field in transmitted PAUSE
control frames.
Bit 4: Pause Low Threshold (PLT) - Set to 1 for 1000Mbps operation. Should equal 0 for 10/100Mbps operation.
Recommended settings for PT and PLT.
PT[0:15] PLT Retransmit Rate
Application Value Time Value Time 1 Pause Every
10Mbps 176 slots 9.01ms 0 7.37ms 1.64ms
100Mbps 176 slots
901μs 0 737μs 164μs
1Gbps (MPL <2049) 44 slots 90.1μs 1 73.7μs 16.4μs
1Gbps (MPL > 2048) 72 slots 147μs 1 131μs 16.4μs
Notes: “slots” are defined by the IEEE as the amount of time that it takes to transmit 64 bytes for 10/100Mbps and 512
bytes for 1000Mbps. Only the 10/100Mbps applications are applicable for the Port 2 MAC.
Bit 3: Unicast Pause Frame Detect (UP) - When set to 1, the MAC will detect Pause control frames with the
device’s unicast address, in addition to detecting Pause control frames with a multicast address. When equal to
zero, the MAC will only detect Pause control frames with the unique multicast address as specified in the 802.3x
standard.
Bit 2: Receive Flow Control Enable (RFE) - When set to 1, the MAC will receive Pause control frames and
disable the transmitter for the specified pause time. When this bit is equal to zero, the device will not respond to
Pause control frames.
Bit 1: Transmit Flow Control Enable (TFE) - When operating in Full-Duplex mode, if this bit is set, the MAC will
transmit Pause control frames as needed. When equal to zero, the MAC will not transmit Pause control frames.
Bit 0: Flow Control Busy (FCB) - This bit is equal to 1 when the transmission of a Pause control frame is in
progress. If the user writes a “1” to this bit, the device will transmit one Pause control frame.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 282 of 375
Register Name: SU.VLANTR
Register Description: MAC VLAN TAG REGISTER
Register Address: 001Ch (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
001Ch: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
001Dh: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
001Eh: VLTID[15] VLTID[14] VLTID[13] VLTID[12] VLTID[11] VLTID[10] VLTID[9] VLTID[8]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
001Fh: VLTID[7] VLTID[6] VLTID[5] VLTID[4] VLTID[3] VLTID[2] VLTID[1] VLTID[0]
Default 0 0 0 0 0 0 0 0
Bits 0-15: VLAN Tag ID (VLTID[15:0]) - Potentially not needed. Duplicated in other areas.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 283 of 375
Register Name: SU.ADDR0H
Register Description: MAC FILTER ADDRESS 0 HIGH
Register Address: 0040h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0040h: MADDR0AE Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0041h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0042h: MADDR0[47] MADDR0[46] MADDR0[45] MADDR0[44] MADDR0[43] MADDR0[42] MADDR0[41] MADDR0[40]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0043h: MADDR0[39] MADDR0[38] MADDR0[37] MADDR0[36] MADDR0[35] MADDR0[34] MADDR0[33] MADDR0[32]
Default 0 0 0 0 0 0 0 0
Bit 31: MAC Address Filter 0 Enable (MADDR0AE) - Must be set to 1 if address filtering is enabled.
Bits 0-15: MAC Address Filter 0 (MADDR0[47:32]) - Highest two bytes of MAC Filter Address 0.
Register Name: SU.ADDR0L
Register Description: MAC FILTER ADDRESS 0 LOW
Register Address: 0044h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0044h: MADDR0[31] MADDR0[30] MADDR0[29] MADDR0[28] MADDR0[27] MADDR0[26] MADDR0[25] MADDR0[24]
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0045h: MADDR0[23] MADDR0[22] MADDR0[21] MADDR0[20] MADDR0[19] MADDR0[18] MADDR0[17] MADDR0[16]
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0046h: MADDR0[15] MADDR0[14] MADDR0[13] MADDR0[12] MADDR0[11] MADDR0[10] MADDR0[9] MADDR0[8]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0047h: MADDR0[7] MADDR0[6] MADDR0[5] MADDR0[4] MADDR0[3] MADDR0[2] MADDR0[1] MADDR0[0]
Default 0 0 0 0 0 0 0 0
Bits 0-31: MAC Address Filter 0 (MADDR0[31:0]) - Lowest four bytes of MAC Filter Address 0.
See Section 8.19.3 for more details on frame-filtering configuration.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 284 of 375
Register Name: SU.ADDR1H
Register Description: MAC FILTER ADDRESS 1 HIGH
Register Address: 0048h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0048h: MADDR1AE Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0049h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
004Ah: MADDR1[47] MADDR1[46] MADDR1[45] MADDR1[44] MADDR1[43] MADDR1[42] MADDR1[41] MADDR1[40]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
004Bh: MADDR1[39] MADDR1[38] MADDR1[37] MADDR1[36] MADDR1[35] MADDR1[34] MADDR1[33] MADDR1[32]
Default 0 0 0 0 0 0 0 0
Bit 31: MAC Address Filter 1 Enable (MADDR1AE)
0 = Address value not used for filtering.
1 = Address used for “perfect” filtering.
Bits 0-15: MAC Address Filter 1 (MADDR1[47:32]) - Highest two bytes of MAC Filter Address 1.
Register Name: SU.ADDR1L
Register Description: MAC FILTER ADDRESS 1 LOW
Register Address: 004Ch (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
004Ch: MADDR1[31] MADDR1[30] MADDR1[29] MADDR1[28] MADDR1[27] MADDR1[26] MADDR1[25] MADDR1[24]
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
004Dh: MADDR1[23] MADDR1[22] MADDR1[21] MADDR1[20] MADDR1[19] MADDR1[18] MADDR1[17] MADDR1[16]
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
004Eh: MADDR1[15] MADDR1[14] MADDR1[13] MADDR1[12] MADDR1[11] MADDR1[10] MADDR1[9] MADDR1[8]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
004Fh: MADDR1[7] MADDR1[6] MADDR1[5] MADDR1[4] MADDR1[3] MADDR1[2] MADDR1[1] MADDR1[0]
Default 0 0 0 0 0 0 0 0
Bits 0-31: MAC Address Filter 1 (MADDR1[31:0]) - Lowest four bytes of MAC Filter Address 1.
See Section 8.19.3 for more details on frame-filtering configuration.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 285 of 375
Register Name: SU.ADDR2H
Register Description: MAC FILTER ADDRESS 2 HIGH
Register Address: 0050h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0050h: MADDR2AE Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0051h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0052h: MADDR2[47] MADDR2[46] MADDR2[45] MADDR2[44] MADDR2[43] MADDR2[42] MADDR2[41] MADDR2[40]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0053h: MADDR2[39] MADDR2[38] MADDR2[37] MADDR2[36] MADDR2[35] MADDR2[34] MADDR2[33] MADDR2[32]
Default 0 0 0 0 0 0 0 0
Bit 31: MAC Address Filter 2 Enable (MADDR2AE)
0 = Address value not used for filtering.
1 = Address used for “perfect” filtering.
Bits 0-15: MAC Address Filter 2 (MADDR2[47:32]) - Highest two bytes of MAC Filter Address 2.
Register Name: SU.ADDR2L
Register Description: MAC FILTER ADDRESS 2 LOW
Register Address: 0054h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0054h: MADDR2[31] MADDR2[30] MADDR2[29] MADDR2[28] MADDR2[27] MADDR2[26] MADDR2[25] MADDR2[24]
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0055h: MADDR2[23] MADDR2[22] MADDR2[21] MADDR2[20] MADDR2[19] MADDR2[18] MADDR2[17] MADDR2[16]
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0056h: MADDR2[15] MADDR2[14] MADDR2[13] MADDR2[12] MADDR2[11] MADDR2[10] MADDR2[9] MADDR2[8]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0057h: MADDR2[7] MADDR2[6] MADDR2[5] MADDR2[4] MADDR2[3] MADDR2[2] MADDR2[1] MADDR2[0]
Default 0 0 0 0 0 0 0 0
Bits 0-31: MAC Address Filter 2 (MADDR2[31:0]) - Lowest four bytes of MAC Filter Address 2.
See Section 8.19.3 for more details on frame-filtering configuration.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 286 of 375
Register Name: SU.ADDR3H
Register Description: MAC FILTER ADDRESS 3 HIGH
Register Address: 0058h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0058h: MADDR3AE Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0059h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
005Ah: MADDR3[47] MADDR3[46] MADDR3[45] MADDR3[44] MADDR3[43] MADDR3[42] MADDR3[41] MADDR3[40]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
005Bh: MADDR3[39] MADDR3[38] MADDR3[37] MADDR3[36] MADDR3[35] MADDR3[34] MADDR3[33] MADDR3[32]
Default 0 0 0 0 0 0 0 0
Bit 31: MAC Address Filter 3 Enable (MADDR3AE)
0 = Address value not used for filtering.
1 = Address used for “perfect” filtering.
Bits 0-15: MAC Address Filter 3 (MADDR3[47:32]) - Highest two bytes of MAC Filter Address 3.
Register Name: SU.ADDR3L
Register Description: MAC FILTER ADDRESS 3 LOW
Register Address: 005Ch (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
005Ch: MADDR3[31] MADDR3[30] MADDR3[29] MADDR3[28] MADDR3[27] MADDR3[26] MADDR3[25] MADDR3[24]
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
005Dh: MADDR3[23] MADDR3[22] MADDR3[21] MADDR3[20] MADDR3[19] MADDR3[18] MADDR3[17] MADDR3[16]
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
005Eh: MADDR3[15] MADDR3[14] MADDR3[13] MADDR3[12] MADDR3[11] MADDR3[10] MADDR3[9] MADDR3[8]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
005Fh: MADDR3[7] MADDR3[6] MADDR3[5] MADDR3[4] MADDR3[3] MADDR3[2] MADDR3[1] MADDR3[0]
Default 0 0 0 0 0 0 0 0
Bits 0-31: MAC Address Filter 3 (MADDR3[31:0]) - Lowest four bytes of MAC Filter Address 3.
See Section 8.19.3 for more details on frame-filtering configuration.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 287 of 375
Register Name: SU.ADDR4H
Register Description: MAC FILTER ADDRESS 4 HIGH
Register Address: 0060h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0060h: MADDR4AE Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0061h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0062h: MADDR4[47] MADDR4[46] MADDR4[45] MADDR4[44] MADDR4[43] MADDR4[42] MADDR4[41] MADDR4[40]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0063h: MADDR4[39] MADDR4[38] MADDR4[37] MADDR4[36] MADDR4[35] MADDR4[34] MADDR4[33] MADDR4[32]
Default 0 0 0 0 0 0 0 0
Bit 31: MAC Address Filter 4 Enable (MADDR4AE)
0 = Address value not used for filtering.
1 = Address used for “perfect” filtering.
Bits 0-15: MAC Address Filter 4 (MADDR4[47:32]) - Highest two bytes of MAC Filter Address 4.
Register Name: SU.ADDR4L
Register Description: MAC FILTER ADDRESS 4 LOW
Register Address: 0064h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0064h: MADDR4[31] MADDR4[30] MADDR4[29] MADDR4[28] MADDR4[27] MADDR4[26] MADDR4[25] MADDR4[24]
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0065h: MADDR4[23] MADDR4[22] MADDR4[21] MADDR4[20] MADDR4[19] MADDR4[18] MADDR4[17] MADDR4[16]
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0066h: MADDR4[15] MADDR4[14] MADDR4[13] MADDR4[12] MADDR4[11] MADDR4[10] MADDR4[9] MADDR4[8]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0067h: MADDR4[7] MADDR4[6] MADDR4[5] MADDR4[4] MADDR4[3] MADDR4[2] MADDR4[1] MADDR4[0]
Default 0 0 0 0 0 0 0 0
Bits 0-31: MAC Address Filter 4 (MADDR4[31:0]) - Lowest four bytes of MAC Filter Address 4.
See Section 8.19.3 for more details on frame-filtering configuration.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 288 of 375
Register Name: SU.ADDR5H
Register Description: MAC FILTER ADDRESS 5 HIGH
Register Address: 0068h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0068h: MADDR5AE Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0069h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
006Ah: MADDR5[47] MADDR5[46] MADDR5[45] MADDR5[44] MADDR5[43] MADDR5[42] MADDR5[41] MADDR5[40]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
006Bh: MADDR5[39] MADDR5[38] MADDR5[37] MADDR5[36] MADDR5[35] MADDR5[34] MADDR5[33] MADDR5[32]
Default 0 0 0 0 0 0 0 0
Bit 31: MAC Address Filter 5 Enable (MADDR5AE)
0 = Address value not used for filtering.
1 = Address used for “perfect” filtering.
Bits 0-15: MAC Address Filter 5 (MADDR5[47:32]) - Highest two bytes of MAC Filter Address 5.
Register Name: SU.ADDR5L
Register Description: MAC FILTER ADDRESS 5 LOW
Register Address: 006Ch (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
006Ch: MADDR5[31] MADDR5[30] MADDR5[29] MADDR5[28] MADDR5[27] MADDR5[26] MADDR5[25] MADDR5[24]
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
006Dh: MADDR5[23] MADDR5[22] MADDR5[21] MADDR5[20] MADDR5[19] MADDR5[18] MADDR5[17] MADDR5[16]
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
006Eh: MADDR5[15] MADDR5[14] MADDR5[13] MADDR5[12] MADDR5[11] MADDR5[10] MADDR5[9] MADDR5[8]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
006Fh: MADDR5[7] MADDR5[6] MADDR5[5] MADDR5[4] MADDR5[3] MADDR5[2] MADDR5[1] MADDR5[0]
Default 0 0 0 0 0 0 0 0
Bits 0-31: MAC Address Filter 5 (MADDR5[31:0]) - Lowest four bytes of MAC Filter Address 5.
See Section 8.19.3 for more details on frame-filtering configuration.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 289 of 375
Register Name: SU.ADDR6H
Register Description: MAC FILTER ADDRESS 6 HIGH
Register Address: 0070h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0070h: MADDR6AE Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0071h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0072h: MADDR6[47] MADDR6[46] MADDR6[45] MADDR6[44] MADDR6[43] MADDR6[42] MADDR6[41] MADDR6[40]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0073h: MADDR6[39] MADDR6[38] MADDR6[37] MADDR6[36] MADDR6[35] MADDR6[34] MADDR6[33] MADDR6[32]
Default 0 0 0 0 0 0 0 0
Bit 31: MAC Address Filter 6 Enable (MADDR6AE)
0 = Address value not used for filtering.
1 = Address used for “perfect” filtering.
Bits 0-15: MAC Address Filter 6 (MADDR6[47:32]) - Highest two bytes of MAC Filter Address 6.
Register Name: SU.ADDR6L
Register Description: MAC FILTER ADDRESS 6 LOW
Register Address: 0074h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0071h: MADDR6[31] MADDR6[30] MADDR6[29] MADDR6[28] MADDR6[27] MADDR6[26] MADDR6[25] MADDR6[24]
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0072h: MADDR6[23] MADDR6[22] MADDR6[21] MADDR6[20] MADDR6[19] MADDR6[18] MADDR6[17] MADDR6[16]
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0073h: MADDR6[15] MADDR6[14] MADDR6[13] MADDR6[12] MADDR6[11] MADDR6[10] MADDR6[9] MADDR6[8]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0074h: MADDR6[7] MADDR6[6] MADDR6[5] MADDR6[4] MADDR6[3] MADDR6[2] MADDR6[1] MADDR6[0]
Default 0 0 0 0 0 0 0 0
Bits 0-31: MAC Address Filter 6 (MADDR6[31:0]) - Lowest four bytes of MAC Filter Address 6.
See Section 8.19.3 for more details on frame-filtering configuration.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 290 of 375
Register Name: SU.ADDR7H
Register Description: MAC FILTER ADDRESS 7 HIGH
Register Address: 0078h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0078h: MADDR7AE Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0079h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
007Ah: MADDR7[47] MADDR7[46] MADDR7[45] MADDR7[44] MADDR7[43] MADDR7[42] MADDR7[41] MADDR7[40]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
007Bh: MADDR7[39] MADDR7[38] MADDR7[37] MADDR7[36] MADDR7[35] MADDR7[34] MADDR7[33] MADDR7[32]
Default 0 0 0 0 0 0 0 0
Bit 31: MAC Address Filter 7 Enable (MADDR7AE)
0 = Address value not used for filtering.
1 = Address used for “perfect” filtering.
Bits 0-15: MAC Address Filter 7 (MADDR7[47:32]) - Highest two bytes of MAC Filter Address 7.
Register Name: SU.ADDR7L
Register Description: MAC FILTER ADDRESS 7 LOW
Register Address: 007Ch (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
007Ch: MADDR7[31] MADDR7[30] MADDR7[29] MADDR7[28] MADDR7[27] MADDR7[26] MADDR7[25] MADDR7[24]
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
007Dh: MADDR7[23] MADDR7[22] MADDR7[21] MADDR7[20] MADDR7[19] MADDR7[18] MADDR7[17] MADDR7[16]
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
007Eh: MADDR7[15] MADDR7[14] MADDR7[13] MADDR7[12] MADDR7[11] MADDR7[10] MADDR7[9] MADDR7[8]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
007Fh: MADDR7[7] MADDR7[6] MADDR7[5] MADDR7[4] MADDR7[3] MADDR7[2] MADDR7[1] MADDR7[0]
Default 0 0 0 0 0 0 0 0
Bits 0-31: MAC Address Filter 7 (MADDR7[31:0]) - Lowest four bytes of MAC Filter Address 7.
See Section 8.19.3 for more details on frame-filtering configuration.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 291 of 375
Register Name: SU.ADDR8H
Register Description: MAC FILTER ADDRESS 8 HIGH
Register Address: 0080h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0080h: MADDR8AE Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0081h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0082h: MADDR8[47] MADDR8[46] MADDR8[45] MADDR8[44] MADDR8[43] MADDR8[42] MADDR8[41] MADDR8[40]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0083h: MADDR8[39] MADDR8[38] MADDR8[37] MADDR8[36] MADDR8[35] MADDR8[34] MADDR8[33] MADDR8[32]
Default 0 0 0 0 0 0 0 0
Bit 31: MAC Address Filter 8 Enable (MADDR8AE)
0 = Address value not used for filtering.
1 = Address used for “perfect” filtering.
Bits 0-15: MAC Address Filter 8 (MADDR8[47:32]) - Highest two bytes of MAC Filter Address 8.
Register Name: SU.ADDR8L
Register Description: MAC FILTER ADDRESS 8 LOW
Register Address: 0084h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0084h: MADDR8[31] MADDR8[30] MADDR8[29] MADDR8[28] MADDR8[27] MADDR8[26] MADDR8[25] MADDR8[24]
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0085h: MADDR8[23] MADDR8[22] MADDR8[21] MADDR8[20] MADDR8[19] MADDR8[18] MADDR8[17] MADDR8[16]
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0086h: MADDR8[15] MADDR8[14] MADDR8[13] MADDR8[12] MADDR8[11] MADDR8[10] MADDR8[9] MADDR8[8]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0087h: MADDR8[7] MADDR8[6] MADDR8[5] MADDR8[4] MADDR8[3] MADDR8[2] MADDR8[1] MADDR8[0]
Default 0 0 0 0 0 0 0 0
Bits 0-31: MAC Address Filter 8 (MADDR8[31:0]) - Lowest four bytes of MAC Filter Address 8.
See Section 8.19.3 for more details on frame-filtering configuration.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 292 of 375
Register Name: SU.ADDR9H
Register Description: MAC FILTER ADDRESS 9 HIGH
Register Address: 0088h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0088h: MADDR9AE Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0089h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
008Ah: MADDR9[47] MADDR9[46] MADDR9[45] MADDR9[44] MADDR9[43] MADDR9[42] MADDR9[41] MADDR9[40]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
008Bh: MADDR9[39] MADDR9[38] MADDR9[37] MADDR9[36] MADDR9[35] MADDR9[34] MADDR9[33] MADDR9[32]
Default 0 0 0 0 0 0 0 0
Bit 31: MAC Address Filter 9 Enable (MADDR9AE)
0 = Address value not used for filtering.
1 = Address used for “perfect” filtering.
Bits 0-15: MAC Address Filter 9 (MADDR9[47:32]) - Highest two bytes of MAC Filter Address 9.
Register Name: SU.ADDR9L
Register Description: MAC FILTER ADDRESS 9 LOW
Register Address: 008Ch (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
008Ch: MADDR9[31] MADDR9[30] MADDR9[29] MADDR9[28] MADDR9[27] MADDR9[26] MADDR9[25] MADDR9[24]
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
008Dh: MADDR9[23] MADDR9[22] MADDR9[21] MADDR9[20] MADDR9[19] MADDR9[18] MADDR9[17] MADDR9[16]
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
008Eh: MADDR9[15] MADDR9[14] MADDR9[13] MADDR9[12] MADDR9[11] MADDR9[10] MADDR9[9] MADDR9[8]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
008Fh: MADDR9[7] MADDR9[6] MADDR9[5] MADDR9[4] MADDR9[3] MADDR9[2] MADDR9[1] MADDR9[0]
Default 0 0 0 0 0 0 0 0
Bits 0-31: MAC Address Filter 9 (MADDR9[31:0]) - Lowest four bytes of MAC Filter Address 9.
See Section 8.19.3 for more details on frame-filtering configuration.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 293 of 375
Register Name: SU.ADDR10H
Register Description: MAC FILTER ADDRESS 10 HIGH
Register Address: 0090h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0090h: MADDR10AE Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0091h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0092h: MADDR10[47] MADDR10[46] MADDR10[45] MADDR10[44] MADDR10[43] MADDR10[42] MADDR10[41] MADDR10[40]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0093h: MADDR10[39] MADDR10[38] MADDR10[37] MADDR10[36] MADDR10[35] MADDR10[34] MADDR10[33] MADDR10[32]
Default 0 0 0 0 0 0 0 0
Bit 31: MAC Address Filter 10 Enable (MADDR10AE)
0 = Address value not used for filtering.
1 = Address used for “perfect” filtering.
Bits 0-15: MAC Address Filter 10 (MADDR10[47:32]) - Highest two bytes of MAC Filter Address 10.
Register Name: SU.ADDR10L
Register Description: MAC FILTER ADDRESS 10 LOW
Register Address: 0094h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0094h: MADDR10[31] MADDR10[30] MADDR10[29] MADDR10[28] MADDR10[27] MADDR10[26] MADDR10[25] MADDR10[24]
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0095h: MADDR10[23] MADDR10[22] MADDR10[21] MADDR10[20] MADDR10[19] MADDR10[18] MADDR10[17] MADDR10[16]
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0096h: MADDR10[15] MADDR10[14] MADDR10[13] MADDR10[12] MADDR10[11] MADDR10[10] MADDR10[9] MADDR10[8]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0097h: MADDR10[7] MADDR10[6] MADDR10[5] MADDR10[4] MADDR10[3] MADDR10[2] MADDR10[1] MADDR10[0]
Default 0 0 0 0 0 0 0 0
Bits 0-31: MAC Address Filter 10 (MADDR10[31:0]) - Lowest four bytes of MAC Filter Address 10.
See Section 8.19.3 for more details on frame-filtering configuration.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 294 of 375
Register Name: SU.ADDR11H
Register Description: MAC FILTER ADDRESS 11 HIGH
Register Address: 0098h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0098h: MADDR11AE Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0099h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
009Ah: MADDR11[47] MADDR11[46] MADDR11[45] MADDR11[44] MADDR11[43] MADDR11[42] MADDR11[41] MADDR11[40]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
009Bh: MADDR11[39] MADDR11[38] MADDR11[37] MADDR11[36] MADDR11[35] MADDR11[34] MADDR11[33] MADDR11[32]
Default 0 0 0 0 0 0 0 0
Bit 31: MAC Address Filter 11 Enable (MADDR11AE)
0 = Address value not used for filtering.
1 = Address used for “perfect” filtering.
Bits 0-15: MAC Address Filter 11 (MADDR11[47:32]) - Highest two bytes of MAC Filter Address 11.
Register Name: SU.ADDR11L
Register Description: MAC FILTER ADDRESS 11 LOW
Register Address: 009Ch (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
009Ch: MADDR11[31] MADDR11[30] MADDR11[29] MADDR11[28] MADDR11[27] MADDR11[26] MADDR11[25] MADDR11[24]
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
009Dh: MADDR11[23] MADDR11[22] MADDR11[21] MADDR11[20] MADDR11[19] MADDR11[18] MADDR11[17] MADDR11[16]
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
009Eh: MADDR11[15] MADDR11[14] MADDR11[13] MADDR11[12] MADDR11[11] MADDR11[10] MADDR11[9] MADDR11[8]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
009Fh: MADDR11[7] MADDR11[6] MADDR11[5] MADDR11[4] MADDR11[3] MADDR11[2] MADDR11[1] MADDR11[0]
Default 0 0 0 0 0 0 0 0
Bits 0-31: MAC Address Filter 11 (MADDR11[31:0]) - Lowest four bytes of MAC Filter Address 11.
See Section 8.19.3 for more details on frame-filtering configuration.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 295 of 375
Register Name: SU.ADDR12H
Register Description: MAC FILTER ADDRESS 12 HIGH
Register Address: 00A0h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
00A0h: MADDR12AE Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
00A1h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
00A2h: MADDR12[47] MADDR12[46] MADDR12[45] MADDR12[44] MADDR12[43] MADDR12[42] MADDR12[41] MADDR12[40]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
00A3h: MADDR12[39] MADDR12[38] MADDR12[37] MADDR12[36] MADDR12[35] MADDR12[34] MADDR12[33] MADDR12[32]
Default 0 0 0 0 0 0 0 0
Bit 31: MAC Address Filter 12 Enable (MADDR12AE)
0 = Address value not used for filtering.
1 = Address used for “perfect” filtering.
Bits 0-15: MAC Address Filter 12 (MADDR12[47:32]) - Highest two bytes of MAC Filter Address 12.
Register Name: SU.ADDR12L
Register Description: MAC FILTER ADDRESS 12 LOW
Register Address: 00A4h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
00A4h: MADDR12[31] MADDR12[30] MADDR12[29] MADDR12[28] MADDR12[27] MADDR12[26] MADDR12[25] MADDR12[24]
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
00A5h: MADDR12[23] MADDR12[22] MADDR12[21] MADDR12[20] MADDR12[19] MADDR12[18] MADDR12[17] MADDR12[16]
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
00A6h: MADDR12[15] MADDR12[14] MADDR12[13] MADDR12[12] MADDR12[11] MADDR12[10] MADDR12[9] MADDR12[8]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
00A7h: MADDR12[7] MADDR12[6] MADDR12[5] MADDR12[4] MADDR12[3] MADDR12[2] MADDR12[1] MADDR12[0]
Default 0 0 0 0 0 0 0 0
Bits 0-31: MAC Address Filter 12 (MADDR12[31:0]) - Lowest four bytes of MAC Filter Address 12.
See Section 8.19.3 for more details on frame-filtering configuration.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 296 of 375
Register Name: SU.ADDR13H
Register Description: MAC FILTER ADDRESS 13 HIGH
Register Address: 00A8h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
00A8h: MADDR13AE Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
00A9h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
00AAh: MADDR13[47] MADDR13[46] MADDR13[45] MADDR13[44] MADDR13[43] MADDR13[42] MADDR13[41] MADDR13[40]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
00ABh: MADDR13[39] MADDR13[38] MADDR13[37] MADDR13[36] MADDR13[35] MADDR13[34] MADDR13[33] MADDR13[32]
Default 0 0 0 0 0 0 0 0
Bit 31: MAC Address Filter 13 Enable (MADDR13AE)
0 = Address value not used for filtering.
1 = Address used for “perfect” filtering.
Bits 0-15: MAC Address Filter 13 (MADDR13[47:32]) - Highest two bytes of MAC Filter Address 13.
Register Name: SU.ADDR13L
Register Description: MAC FILTER ADDRESS 13 LOW
Register Address: 00ACh (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
00ACh: MADDR13[31] MADDR13[30] MADDR13[29] MADDR13[28] MADDR13[27] MADDR13[26] MADDR13[25] MADDR13[24]
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
00ADh: MADDR13[23] MADDR13[22] MADDR13[21] MADDR13[20] MADDR13[19] MADDR13[18] MADDR13[17] MADDR13[16]
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
00AEh: MADDR13[15] MADDR13[14] MADDR13[13] MADDR13[12] MADDR13[11] MADDR13[10] MADDR13[9] MADDR13[8]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
00AFh: MADDR13[7] MADDR13[6] MADDR13[5] MADDR13[4] MADDR13[3] MADDR13[2] MADDR13[1] MADDR13[0]
Default 0 0 0 0 0 0 0 0
Bits 0-31: MAC Address Filter 13 (MADDR13[31:0]) - Lowest four bytes of MAC Filter Address 13.
See Section 8.19.3 for more details on frame-filtering configuration.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 297 of 375
Register Name: SU.ADDR14H
Register Description: MAC FILTER ADDRESS 14 HIGH
Register Address: 00B0h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
00B0h: MADDR14AE Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
00B1h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
00B2h: MADDR14[47] MADDR14[46] MADDR14[45] MADDR14[44] MADDR14[43] MADDR14[42] MADDR14[41] MADDR14[40]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
00B3h: MADDR14[39] MADDR14[38] MADDR14[37] MADDR14[36] MADDR14[35] MADDR14[34] MADDR14[33] MADDR14[32]
Default 0 0 0 0 0 0 0 0
Bit 31: MAC Address Filter 14 Enable (MADDR14AE)
0 = Address value not used for filtering.
1 = Address used for “perfect” filtering.
Bits 0-15: MAC Address Filter 14 (MADDR14[47:32]) - Highest two bytes of MAC Filter Address 14.
Register Name: SU.ADDR14L
Register Description: MAC FILTER ADDRESS 14 LOW
Register Address: 00B4h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
00B4h: MADDR14[31] MADDR14[30] MADDR14[29] MADDR14[28] MADDR14[27] MADDR14[26] MADDR14[25] MADDR14[24]
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
00B5h: MADDR14[23] MADDR14[22] MADDR14[21] MADDR14[20] MADDR14[19] MADDR14[18] MADDR14[17] MADDR14[16]
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
00B6h: MADDR14[15] MADDR14[14] MADDR14[13] MADDR14[12] MADDR14[11] MADDR14[10] MADDR14[9] MADDR14[8]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
00B7h: MADDR14[7] MADDR14[6] MADDR14[5] MADDR14[4] MADDR14[3] MADDR14[2] MADDR14[1] MADDR14[0]
Default 0 0 0 0 0 0 0 0
Bits 0-31: MAC Address Filter 14 (MADDR14[31:0]) - Lowest four bytes of MAC Filter Address 14.
See Section 8.19.3 for more details on frame-filtering configuration.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 298 of 375
Register Name: SU.ADDR15H
Register Description: MAC FILTER ADDRESS 15 HIGH
Register Address: 00B8h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
00B8h: MADDR15AE Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
00B9h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
00BAh: MADDR15[47] MADDR15[46] MADDR15[45] MADDR15[44] MADDR15[43] MADDR15[42] MADDR15[41] MADDR15[40]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
00BBh: MADDR15[39] MADDR15[38] MADDR15[37] MADDR15[36] MADDR15[35] MADDR15[34] MADDR15[33] MADDR15[32]
Default 0 0 0 0 0 0 0 0
Bit 31: MAC Address Filter 15 Enable (MADDR15AE)
0 = Address value not used for filtering.
1 = Address used for “perfect” filtering.
Bits 0-15: MAC Address Filter 15 (MADDR15[47:32]) - Highest two bytes of MAC Filter Address 15.
Register Name: SU.ADDR15L
Register Description: MAC FILTER ADDRESS 15 LOW
Register Address: 00BCh (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
00B5h: MADDR15[31] MADDR15[30] MADDR15[29] MADDR15[28] MADDR15[27] MADDR15[26] MADDR15[25] MADDR15[24]
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
00B6h: MADDR15[23] MADDR15[22] MADDR15[21] MADDR15[20] MADDR15[19] MADDR15[18] MADDR15[17] MADDR15[16]
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
00B7h: MADDR15[15] MADDR15[14] MADDR15[13] MADDR15[12] MADDR15[11] MADDR15[10] MADDR15[9] MADDR15[8]
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
00B8h: MADDR15[7] MADDR15[6] MADDR15[5] MADDR15[4] MADDR15[3] MADDR15[2] MADDR15[1] MADDR15[0]
Default 0 0 0 0 0 0 0 0
Bits 0-31: MAC Address Filter 15 (MADDR15[31:0]) - Lowest four bytes of MAC Filter Address 15.
See Section 8.19.3 for more details on frame-filtering configuration.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 299 of 375
Register Name: SU.PCSCR
Register Description: MAC PHYSICAL CODING SUBLAYER (PCS) CONTROL REGISTER
Register Address: 00C0h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
00C0h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
00C1h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved ECD
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
00C2h: Reserved ELE ANE Reserved Reserved Reserved RAN Reserved
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
00C3h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
This register configures and initiates auto-negotiation of the external PHY device. It also enables PHY loopback.
Bit 16: Enable Comma Detect (ECD) - When set to 1, the MAC is enabled for comma detection and word
resynchronization.
Bit 14: External Loopback Enable (ELE) - When set to 1, causes the external PHY to loopback the transmit data
to the receiver.
Bit 13: Auto-Negotiation Enable (ANE) - When set to 1, the MAC will automatically negotiate the link speed with
the remote node. When equal to zero, auto-negotiation is disabled.
Bit 9: Restart Auto-Negotiation (RAN) - When set to 1 and ANE=1, the MAC will initiate auto-negotiation. This bit
will clear itself after auto-negotiation is started. Should be equal to zero during normal operation.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 300 of 375
Register Name: SU.ANSR
Register Description: MAC AUTO-NEGOTIATION STATUS REGISTER
Register Address: 00C4h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
00C4h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
00C5h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
00C6h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved ES
Default 0 0 0 0 0 0 0 1
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
00C7h: Reserved Reserved ANC Reserved ANS LS Reserved Reserved
Default 0 0 0 0 1 0 0 0
Bit 8: MAC Extended Status Support (ES) - This bit is always set to 1, to indicate that the MAC supports
extended status information.
Bit 5: Auto-Negotiation Complete (ANC) - This bit is set to 1 when auto-negotiation is complete. The bit is equal
to zero after auto-negotiation is initiated, and remains zero until completion of auto-negotiation.
Bit 3: Auto-Negotiation Support (ANS) - This bit is always set to 1, to indicate that the MAC supports extended
auto-negotiation.
Bit 2: Link Status (LS) - When set to 1, this bit indicates that the Ethernet link is connected. This bit is only
updated after a read operation. In order to see the current status, the bit must be read twice.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 301 of 375
Register Name: SU.LSR
Register Description: MAC MII/RMII/GMII STATUS REGISTER
Register Address: 00D8h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
00D8h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
00D9h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
00DAh: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
00DBh: Reserved Reserved Reserved Reserved LINKUP LNKSPD[1] LNKSPD[0] LINKM
Default 0 0 0 0 0 0 0 0
Bit 3: MII/RMII/GMII Link Status (LINKUP) – When equal to 1, the link is communicating. When equal to zero, the
link is not operational.
Bits 1-2: Link Speed (LNKSPD[1:0]) – Indicates the current link speed.
00 = 2.5MHz
01 = 25MHz
10 = 125MHz
Bit 0: Link Mode (LINKM) – Indicates the current link mode.
0 = Half-Duplex
1 = Full-Duplex
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 302 of 375
Register Name: SU.MMCCTRL
Register Description: MAC MANAGEMENT COUNTER CONTROL REGISTER
Register Address: 0100h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0100h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0101h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0102h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0103h: Reserved Reserved Reserved Reserved Reserved ROR CSR CRST
Default 0 0 0 0 0 0 0 0
Bit 2: Reset on Read (ROR) – When set to 1, each management counter will reset to zero after a read access of
the least-significant byte. When equal to zero, the counters will only be reset by the CRST bit.
Bit 1: Counter Stop Rollover (CSR) – When set to 1, each counter will saturate at the maximum value and not roll
over. When equal to zero, each counter can rollover to zero after the maximum value is exceeded.
Bit 0: Counter Reset (CRST) – Set to 1 to initiate a reset of all management counters. Set to zero for normal
operation.
0 = Normal operation.
1 = Reset all management counters.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 303 of 375
Register Name: SU.MMCRSR
Register Description: MAC MANAGEMENT COUNTER RECEIVE STATUS REGISTER
Register Address: 0104h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0104h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0105h: RXWDOG RXVLAN RXOVFL RXPAUSE RXRANGE RXLNERR RXUFC RX1K_MAX
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0106h: RX512_1K RX256_511 RX128_255 RX65_127 RX0_64 RXOVRSZ RXUNDRSZ RXJBBR
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0107h: RXRUNT RXALGN RXCRC RXMFC RXGBFC RXGBC RXBC RXFC
Default 0 0 0 0 0 0 0 0
Bits 1-23: Receive Counter Half-Full Status – Each bit is set to 1 when the corresponding MAC MMC counter
reaches half of the maximum value.
Register Name: SU.MMCTSR
Register Description: MAC MANAGEMENT COUNTER TRANSMIT STATUS REGISTER
Register Address: 0108h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0108h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved TXVLAN
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0109h: TXPAUSE TXXCSVDF TXFCNT TXBCNT TXCERR TXXCSVCL TXLTCL TXDFRD
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
010Ah: TXMLTICL TXSNGLCL TXUFE TXBFC TXMFC TXUCAST TX1K_MAX TX512_1K
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
010Bh: TX256_511 TX128_255 TX65_127 TX0_64 TXGMFC TXGBFC TXFC TXBC
Default 0 0 0 0 0 0 0 0
Bits 1-24: Transmit Counter Half-Full Status – Each bit is set to 1 when the corresponding MAC MMC counter
reaches half of the maximum value.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 304 of 375
Register Name: SU.MMCRIM
Register Description: MAC MANAGEMENT COUNTER RECEIVE INTERRUPT MASK
Register Address: 010Ch (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
010Ch: Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
010Dh: RXWDOG RXVLAN RXOVFL RXPAUSE RXRANGE RXLNERR RXUCAST RX1K_MAX
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
010Eh: RX512_1K RX256_511 RX128_255 RX65_127 RX0_64 RXOVRSZ RXUNDRSZ RXJBBR
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
010Fh: RXRUNT RXALGN RXCRC RXMFC RXGBFC RXGBC RXBC RXFC
Default 0 0 0 0 0 0 0 0
Bits 1-23: Receive Counter Half-Full Interrupt Mask
0 = The corresponding bit in SU.MMCRSR can generate an interrupt.
1 = The corresponding bit in SU.MMCRSR is masked, and will not generate an interrupt.
Register Name: SU.MMCTIM
Register Description: MAC MANAGEMENT COUNTER TRANSMIT INTERRUPT MASK
Register Address: 0110h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0110h: Reserved Reserved Reserved Reserved Reserved Reserved Reserved TXVLAN
Default 0 0 0 0 0 0 0 0
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0111h: TXPAUSE TXXCSVDF TXFCNT TXBCNT TXCERR TXXCSVCL TXLTCL TXDFRD
Default 0 0 0 0 0 0 0 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0112h: TXMLTICL TXSNGLCL TXUFE TXBFC TXMFC TXUCAST TX1K_MAX TX512_1K
Default 0 0 0 0 0 0 0 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0113h: TX256_511 TX128_255 TX65_127 TX0_64 TXGMFC TXGBFC TXFC TXBC
Default 0 0 0 0 0 0 0 0
Bits 1-24: Transmit Counter Half-Full Interrupt Mask
0 = The corresponding bit in SU.MMCTSR can generate an interrupt.
1 = The corresponding bit in SU.MMCTSR is masked, and will not generate an interrupt.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 305 of 375
Register Name: SU.TXBC
Register Description: MAC MMC TRANSMIT BYTE COUNTER
Register Address: 0114h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0114h: TXBC[31] TXBC[30] TXBC[29] TXBC[28] TXBC[27] TXBC[26] TXBC[25] TXBC[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0115h: TXBC[23] TXBC[22] TXBC[21] TXBC[20] TXBC[19] TXBC[18] TXBC[17] TXBC[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0116h: TXBC[15] TXBC[14] TXBC[13] TXBC[12] TXBC[11] TXBC[10] TXBC[9] TXBC[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0117h: TXBC[7] TXBC[6] TXBC[5] TXBC[4] TXBC[3] TXBC[2] TXBC[1] TXBC[0]
Bits 1-31: Transmit Byte Counter (TXBC[31:0]) – Contains the number of bytes (octets) transmitted, exclusive of
both preamble and retried bytes, in both good and bad frames.
Register Name: SU.TXFC
Register Description: MAC MMC TRANSMIT FRAME COUNTER
Register Address: 0118h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0118h: TXFC[31] TXFC[30] TXFC[29] TXFC[28] TXFC[27] TXFC[26] TXFC[25] TXFC[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0119h: TXFC[23] TXFC[22] TXFC[21] TXFC[20] TXFC[19] TXFC[18] TXFC[17] TXFC[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
011Ah: TXFC[15] TXFC[14] TXFC[13] TXFC[12] TXFC[11] TXFC[10] TXFC[9] TXFC[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
011Bh: TXFC[7] TXFC[6] TXFC[5] TXFC[4] TXFC[3] TXFC[2] TXFC[1] TXFC[0]
Bits 1-31: Transmit Frame Counter (TXFC[31:0]) – Contains the number of frames transmitted, including both
good and bad frames.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 306 of 375
Register Name: SU.TXGBFC
Register Description: MAC MMC TRANSMIT GOOD BROADCAST FRAMES COUNTER
Register Address: 011Ch (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
011Ch: TXGBFC[31] TXGBFC[30] TXGBFC[29] TXGBFC[28] TXGBFC[27] TXGBFC[26] TXGBFC[25] TXGBFC[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
011Dh: TXGBFC[23] TXGBFC[22] TXGBFC[21] TXGBFC[20] TXGBFC[19] TXGBFC[18] TXGBFC[17] TXGBFC[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
011Eh: TXGBFC[15] TXGBFC[14] TXGBFC[13] TXGBFC[12] TXGBFC[11] TXGBFC[10] TXGBFC[9] TXGBFC[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
011Fh: TXGBFC[7] TXGBFC[6] TXGBFC[5] TXGBFC[4] TXGBFC[3] TXGBFC[2] TXGBFC[1] TXGBFC[0]
Bits 1-31: Transmit Good Broadcast Frames Counter (TXGBFC[31:0]) – Contains the number of good
broadcast frames transmitted, exclusive of both preamble and retried bytes. Does not contain bad frames.
Register Name: SU.TXGMFC
Register Description: MAC MMC TRANSMIT GOOD MULTICAST FRAMES COUNTER
Register Address: 0120h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0120h: TXGMFC[31] TXGMFC[30] TXGMFC[29] TXGMFC[28] TXGMFC[27] TXGMFC[26] TXGMFC[25] TXGMFC[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0121h: TXGMFC[23] TXGMFC[22] TXGMFC[21] TXGMFC[20] TXGMFC[19] TXGMFC[18] TXGMFC[17] TXGMFC[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0122h: TXGMFC[15] TXGMFC[14] TXGMFC[13] TXGMFC[12] TXGMFC[11] TXGMFC[10] TXGMFC[9] TXGMFC[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0123h: TXGMFC[7] TXGMFC[6] TXGMFC[5] TXGMFC[4] TXGMFC[3] TXGMFC[2] TXGMFC[1] TXGMFC[0]
Bits 1-31: Transmit Good Multicast Frames Counter (TXGMFC[31:0]) – Contains the number of good multicast
frames transmitted.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 307 of 375
Register Name: SU.TX0_64
Register Description: MAC MMC TRANSMIT 0-64 BYTE FRAME COUNTER
Register Address: 0124h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0124h: TX0_64[31] TX0_64[30] TX0_64[29] TX0_64[28] TX0_64[27] TX0_64[26] TX0_64[25] TX0_64[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0125h: TX0_64[23] TX0_64[22] TX0_64[21] TX0_64[20] TX0_64[19] TX0_64[18] TX0_64[17] TX0_64[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0126h: TX0_64[15] TX0_64[14] TX0_64[13] TX0_64[12] TX0_64[11] TX0_64[10] TX0_64[9] TX0_64[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0127h: TX0_64[7] TX0_64[6] TX0_64[5] TX0_64[4] TX0_64[3] TX0_64[2] TX0_64[1] TX0_64[0]
Bits 1-31: Transmit 0-64 Byte Frames Counter (TX0_64[31:0]) – Contains the number of frames transmitted with
sizes of 64 bytes or less. Includes both good and bad frames.
Register Name: SU.TX65_127
Register Description: MAC MMC TRANSMIT 65-127 BYTE FRAMES COUNTER
Register Address: 0128h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0128h: TX65_127[31] TX65_127[30] TX65_127[29] TX65_127[28] TX65_127[27] TX65_127[26] TX65_127[25] TX65_127[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0129h: TX65_127[23] TX65_127[22] TX65_127[21] TX65_127[20] TX65_127[19] TX65_127[18] TX65_127[17] TX65_127[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
012Ah: TX65_127[15] TX65_127[14] TX65_127[13] TX65_127[12] TX65_127[11] TX65_127[10] TX65_127[9] TX65_127[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
012Bh: TX65_127[7] TX65_127[6] TX65_127[5] TX65_127[4] TX65_127[3] TX65_127[2] TX65_127[1] TX65_127[0]
Bits 1-31: Transmit 65-127 Byte Frames Counter (TX65_127[31:0]) – Contains the number of frames
transmitted with sizes of 65 to 127 bytes. Includes both good and bad frames.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 308 of 375
Register Name: SU.TX128_255
Register Description: MAC MMC TRANSMIT 128-255 BYTE FRAME COUNTER
Register Address: 012Ch (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
012Ch: TX128_255[31] TX128_255[30] TX128_255[29] TX128_255[28] TX128_255[27] TX128_255[26] TX128_255[25] TX128_255[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
012Dh: TX128_255[23] TX128_255[22] TX128_255[21] TX128_255[20] TX128_255[19] TX128_255[18] TX128_255[17] TX128_255[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
012Eh: TX128_255[15] TX128_255[14] TX128_255[13] TX128_255[12] TX128_255[11] TX128_255[10] TX128_255[9] TX128_255[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
012Fh: TX128_255[7] TX128_255[6] TX128_255[5] TX128_255[4] TX128_255[3] TX128_255[2] TX128_255[1] TX128_255[0]
Bits 1-31: Transmit 128-255 Byte Frames Counter (TX128_255[31:0]) – Contains the number of frames
transmitted with sizes of 128 to 255 bytes. Includes both good and bad frames.
Register Name: SU.TX256_511
Register Description: MAC MMC TRANSMIT 256-511 BYTE FRAMES COUNTER
Register Address: 0130h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0130h: TX256_511[31] TX256_511[30] TX256_511[29] TX256_511[28] TX256_511[27] TX256_511[26] TX256_511[25] TX256_511[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0131h: TX256_511[23] TX256_511[22] TX256_511[21] TX256_511[20] TX256_511[19] TX256_511[18] TX256_511[17] TX256_511[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0132h: TX256_511[15] TX256_511[14] TX256_511[13] TX256_511[12] TX256_511[11] TX256_511[10] TX256_511[9] TX256_511[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0133h: TX256_511[7] TX256_511[6] TX256_511[5] TX256_511[4] TX256_511[3] TX256_511[2] TX256_511[1] TX256_511[0]
Bits 1-31: Transmit 256-511 Byte Frames Counter (TX256_511[31:0]) – Contains the number of frames
transmitted with sizes of 256 to 511 bytes. Includes both good and bad frames.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 309 of 375
Register Name: SU.TX512_1K
Register Description: MAC MMC TRANSMIT 512-1023 BYTE FRAME COUNTER
Register Address: 0134h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0134h: TX512_1K[31] TX512_1K[30] TX512_1K[29] TX512_1K[28] TX512_1K[27] TX512_1K[26] TX512_1K[25] TX512_1K[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0135h: TX512_1K[23] TX512_1K[22] TX512_1K[21] TX512_1K[20] TX512_1K[19] TX512_1K[18] TX512_1K[17] TX512_1K[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0136h: TX512_1K[15] TX512_1K[14] TX512_1K[13] TX512_1K[12] TX512_1K[11] TX512_1K[10] TX512_1K[9] TX512_1K[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0137h: TX512_1K[7] TX512_1K[6] TX512_1K[5] TX512_1K[4] TX512_1K[3] TX512_1K[2] TX512_1K[1] TX512_1K[0]
Bits 1-31: Transmit 512-1023 Byte Frames Counter (TX512_1K[31:0]) Contains the number of frames
transmitted with sizes of 512 to 1023 bytes. Includes both good and bad frames.
Register Name: SU.TX1K_MAX
Register Description: MAC MMC TRANSMIT 1024-MAX BYTE FRAMES COUNTER
Register Address: 0138h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0138h: TX1K_MAX[31] TX1K_MAX[30] TX1K_MAX[29] TX1K_MAX[28] TX1K_MAX[27] TX1K_MAX[26] TX1K_MAX[25] TX1K_MAX[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0139h: TX1K_MAX[23] TX1K_MAX[22] TX1K_MAX[21] TX1K_MAX[20] TX1K_MAX[19] TX1K_MAX[18] TX1K_MAX[17] TX1K_MAX[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
013Ah: TX1K_MAX[15] TX1K_MAX[14] TX1K_MAX[13] TX1K_MAX[12] TX1K_MAX[11] TX1K_MAX[10] TX1K_MAX[9] TX1K_MAX[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
013Bh: TX1K_MAX[7] TX1K_MAX[6] TX1K_MAX[5] TX1K_MAX[4] TX1K_MAX[3] TX1K_MAX[2] TX1K_MAX[1] TX1K_MAX[0]
Bits 1-31: Transmit 1024-MAX Byte Frames Counter (TX1K_MAX[31:0]) – Contains the number of frames
transmitted with sizes of 1024 to the maximum allowed bytes. Includes both good and bad frames.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 310 of 375
Register Name: SU.TXUCAST
Register Description: MAC MMC TRANSMIT UNICAST FRAME COUNTER
Register Address: 013Ch (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
013Ch: TXUCAST[31] TXUCAST[30] TXUCAST[29] TXUCAST[28] TXUCAST[27] TXUCAST[26] TXUCAST[25] TXUCAST[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
013Dh: TXUCAST[23] TXUCAST[22] TXUCAST[21] TXUCAST[20] TXUCAST[19] TXUCAST[18] TXUCAST[17] TXUCAST[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
013Eh: TXUCAST[15] TXUCAST[14] TXUCAST[13] TXUCAST[12] TXUCAST[11] TXUCAST[10] TXUCAST[9] TXUCAST[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
013Fh: TXUCAST[7] TXUCAST[6] TXUCAST[5] TXUCAST[4] TXUCAST[3] TXUCAST[2] TXUCAST[1] TXUCAST[0]
Bits 1-31: Transmit Unicast Frames Counter (TXUCAST[31:0]) – Contains the number of frames transmitted
with a unicast address. Includes both good and bad frames.
Register Name: SU.TXMFC
Register Description: MAC MMC TRANSMIT MULTICAST FRAMES COUNTER
Register Address: 0140h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0140h: TXMFC[31] TXMFC[30] TXMFC[29] TXMFC[28] TXMFC[27] TXMFC[26] TXMFC[25] TXMFC[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0141h: TXMFC[23] TXMFC[22] TXMFC[21] TXMFC[20] TXMFC[19] TXMFC[18] TXMFC[17] TXMFC[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0142h: TXMFC[15] TXMFC[14] TXMFC[13] TXMFC[12] TXMFC[11] TXMFC[10] TXMFC[9] TXMFC[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0143h: TXMFC[7] TXMFC[6] TXMFC[5] TXMFC[4] TXMFC[3] TXMFC[2] TXMFC[1] TXMFC[0]
Bits 1-31: Transmit Multicast Frames Counter (TXMFC[31:0]) – Contains the number of frames transmitted with
a multicast address. Includes both good and bad frames.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 311 of 375
Register Name: SU.TXBFC
Register Description: MAC MMC TRANSMIT BROADCAST FRAME COUNTER
Register Address: 0144h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0144h: TXBFC[31] TXBFC[30] TXBFC[29] TXBFC[28] TXBFC[27] TXBFC[26] TXBFC[25] TXBFC[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0145h: TXBFC[23] TXBFC[22] TXBFC[21] TXBFC[20] TXBFC[19] TXBFC[18] TXBFC[17] TXBFC[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0146h: TXBFC[15] TXBFC[14] TXBFC[13] TXBFC[12] TXBFC[11] TXBFC[10] TXBFC[9] TXBFC[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0147h: TXBFC[7] TXBFC[6] TXBFC[5] TXBFC[4] TXBFC[3] TXBFC[2] TXBFC[1] TXBFC[0]
Bits 1-31: Transmit Broadcast Frames Counter (TXBFC[31:0]) – Contains the number of frames transmitted
with a broadcast address. Includes both good and bad frames.
Register Name: SU.TXUFE
Register Description: MAC MMC TRANSMIT UNDERFLOW FRAMES COUNTER
Register Address: 0148h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0148h: TXUFE[31] TXUFE[30] TXUFE[29] TXUFE[28] TXUFE[27] TXUFE[26] TXUFE[25] TXUFE[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0149h: TXUFE[23] TXUFE[22] TXUFE[21] TXUFE[20] TXUFE[19] TXUFE[18] TXUFE[17] TXUFE[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
014Ah: TXUFE[15] TXUFE[14] TXUFE[13] TXUFE[12] TXUFE[11] TXUFE[10] TXUFE[9] TXUFE[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
014Bh: TXUFE[7] TXUFE[6] TXUFE[5] TXUFE[4] TXUFE[3] TXUFE[2] TXUFE[1] TXUFE[0]
Bits 1-31: Transmit Underflow Frames Counter (TXUFE[31:0]) – Contains the number of frames aborted due to
underflow errors.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 312 of 375
Register Name: SU.TXSNGLCL
Register Description: MAC MMC TRANSMIT SINGLE COLLISION FRAME COUNTER
Register Address: 014Ch (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
014Ch: TXSNGLCL[31] TXSNGLCL[30] TXSNGLCL[29] TXSNGLCL[28] TXSNGLCL[27] TXSNGLCL[26] TXSNGLCL[25] TXSNGLCL[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
014Dh: TXSNGLCL[23] TXSNGLCL[22] TXSNGLCL[21] TXSNGLCL[20] TXSNGLCL[19] TXSNGLCL[18] TXSNGLCL[17] TXSNGLCL[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
014Eh: TXSNGLCL[15] TXSNGLCL[14] TXSNGLCL[13] TXSNGLCL[12] TXSNGLCL[11] TXSNGLCL[10] TXSNGLCL[9] TXSNGLCL[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
014Fh: TXSNGLCL[7] TXSNGLCL[6] TXSNGLCL[5] TXSNGLCL[4] TXSNGLCL[3] TXSNGLCL[2] TXSNGLCL[1] TXSNGLCL[0]
Bits 1-31: Transmit Single Collision Frames Counter (TXSNGLCL[31:0]) – Contains the number of frames
successfully transmitted after a single collision. Applicable in half-duplex mode only.
Register Name: SU.TXMLTICL
Register Description: MAC MMC TRANSMIT MULTIPLE COLLISION FRAMES COUNTER
Register Address: 0150h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0150h: TXMLTICL[31] TXMLTICL[30] TXMLTICL[29] TXMLTICL[28] TXMLTICL[27] TXMLTICL[26] TXMLTICL[25] TXMLTICL[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0151h: TXMLTICL[23] TXMLTICL[22] TXMLTICL[21] TXMLTICL[20] TXMLTICL[19] TXMLTICL[18] TXMLTICL[17] TXMLTICL[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0152h: TXMLTICL[15] TXMLTICL[14] TXMLTICL[13] TXMLTICL[12] TXMLTICL[11] TXMLTICL[10] TXMLTICL[9] TXMLTICL[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0153h: TXMLTICL[7] TXMLTICL[6] TXMLTICL[5] TXMLTICL[4] TXMLTICL[3] TXMLTICL[2] TXMLTICL[1] TXMLTICL[0]
Bits 1-31: Transmit Multiple Collision Frames Counter (TXMLTICL[31:0]) – Contains the number of frames
successfully transmitted after multiple collisions. Applicable in half-duplex mode only.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 313 of 375
Register Name: SU.TXDFRD
Register Description: MAC MMC TRANSMIT DEFERRED FRAME COUNTER
Register Address: 0154h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0154h: TXDFRD[31] TXDFRD[30] TXDFRD[29] TXDFRD[28] TXDFRD[27] TXDFRD[26] TXDFRD[25] TXDFRD[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0155h: TXDFRD[23] TXDFRD[22] TXDFRD[21] TXDFRD[20] TXDFRD[19] TXDFRD[18] TXDFRD[17] TXDFRD[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0156h: TXDFRD[15] TXDFRD[14] TXDFRD[13] TXDFRD[12] TXDFRD[11] TXDFRD[10] TXDFRD[9] TXDFRD[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0157h: TXDFRD[7] TXDFRD[6] TXDFRD[5] TXDFRD[4] TXDFRD[3] TXDFRD[2] TXDFRD[1] TXDFRD[0]
Bits 1-31: Transmit Deferred Frames Counter (TXDFRD[31:0]) – Contains the number of frames successfully
transmitted after deferral. Applicable in half-duplex mode only.
Register Name: SU.TXLTCL
Register Description: MAC MMC TRANSMIT LATE COLLISION FRAMES COUNTER
Register Address: 0158h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0158h: TXLTCL[31] TXLTCL[30] TXLTCL[29] TXLTCL[28] TXLTCL[27] TXLTCL[26] TXLTCL[25] TXLTCL[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0159h: TXLTCL[23] TXLTCL[22] TXLTCL[21] TXLTCL[20] TXLTCL[19] TXLTCL[18] TXLTCL[17] TXLTCL[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
015Ah: TXLTCL[15] TXLTCL[14] TXLTCL[13] TXLTCL[12] TXLTCL[11] TXLTCL[10] TXLTCL[9] TXLTCL[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
015Bh: TXLTCL[7] TXLTCL[6] TXLTCL[5] TXLTCL[4] TXLTCL[3] TXLTCL[2] TXLTCL[1] TXLTCL[0]
Bits 1-31: Transmit Late Collision Frames Counter (TXLTCL[31:0]) – Contains the number of frames aborted
due to late collisions. Applicable in half-duplex mode only.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 314 of 375
Register Name: SU.TXXCSVCL
Register Description: MAC MMC TRANSMIT EXCESSIVE COLLISION COUNTER
Register Address: 015Ch (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
015Ch: TXXCSVCL[31] TXXCSVCL[30] TXXCSVCL[29] TXXCSVCL[28] TXXCSVCL[27] TXXCSVCL[26] TXXCSVCL[25] TXXCSVCL[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
015Dh: TXXCSVCL[23] TXXCSVCL[22] TXXCSVCL[21] TXXCSVCL[20] TXXCSVCL[19] TXXCSVCL[18] TXXCSVCL[17] TXXCSVCL[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
015Eh: TXXCSVCL[15] TXXCSVCL[14] TXXCSVCL[13] TXXCSVCL[12] TXXCSVCL[11] TXXCSVCL[10] TXXCSVCL[9] TXXCSVCL[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
015Fh: TXXCSVCL[7] TXXCSVCL[6] TXXCSVCL[5] TXXCSVCL[4] TXXCSVCL[3] TXXCSVCL[2] TXXCSVCL[1] TXXCSVCL[0]
Bits 1-31: Transmit Excessive Collision Counter (TXXCSVCL[31:0]) – Contains the number of frames aborted
due to excessive collisions. Applicable in half-duplex mode only.
Register Name: SU.TXCRERR
Register Description: MAC MMC TRANSMIT CARRIER ERROR COUNTER
Register Address: 0160h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0160h: TXCRERR[31] TXCRERR[30] TXCRERR[29] TXCRERR[28] TXCRERR[27] TXCRERR[26] TXCRERR[25] TXCRERR[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0161h: TXCRERR[23] TXCRERR[22] TXCRERR[21] TXCRERR[20] TXCRERR[19] TXCRERR[18] TXCRERR[17] TXCRERR[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0162h: TXCRERR[15] TXCRERR[14] TXCRERR[13] TXCRERR[12] TXCRERR[11] TXCRERR[10] TXCRERR[9] TXCRERR[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0163h: TXCRERR[7] TXCRERR[6] TXCRERR[5] TXCRERR[4] TXCRERR[3] TXCRERR[2] TXCRERR[1] TXCRERR[0]
Bits 1-31: Transmit Carrier Error Counter (TXCRERR[31:0]) – Contains the number of frames aborted due to
carrier error (no carrier or loss of carrier).
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 315 of 375
Register Name: SU.TXGBC
Register Description: MAC MMC TRANSMIT GOOD BYTE COUNTER
Register Address: 0164h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0164h: TXGBC[31] TXGBC[30] TXGBC[29] TXGBC[28] TXGBC[27] TXGBC[26] TXGBC[25] TXGBC[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0165h: TXGBC[23] TXGBC[22] TXGBC[21] TXGBC[20] TXGBC[19] TXGBC[18] TXGBC[17] TXGBC[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0166h: TXGBC[15] TXGBC[14] TXGBC[13] TXGBC[12] TXGBC[11] TXGBC[10] TXGBC[9] TXGBC[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0167h: TXGBC[7] TXGBC[6] TXGBC[5] TXGBC[4] TXGBC[3] TXGBC[2] TXGBC[1] TXGBC[0]
Bits 1-31: Transmit Good Byte Counter (TXGBC[31:0]) – Contains the number of transmitted bytes in good
frames, exclusive of preamble bytes.
Register Name: SU.TXGFC
Register Description: MAC MMC TRANSMIT GOOD FRAME COUNTER
Register Address: 0168h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0168h: TXGFC[31] TXGFC[30] TXGFC[29] TXGFC[28] TXGFC[27] TXGFC[26] TXGFC[25] TXGFC[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0169h: TXGFC[23] TXGFC[22] TXGFC[21] TXGFC[20] TXGFC[19] TXGFC[18] TXGFC[17] TXGFC[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
016Ah: TXGFC[15] TXGFC[14] TXGFC[13] TXGFC[12] TXGFC[11] TXGFC[10] TXGFC[9] TXGFC[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
016Bh: TXGFC[7] TXGFC[6] TXGFC[5] TXGFC[4] TXGFC[3] TXGFC[2] TXGFC[1] TXGFC[0]
Bits 1-31: Transmit Good Frame Counter (TXGFC[31:0]) – Contains the number of good frames transmitted.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 316 of 375
Register Name: SU.TXXCSVDF
Register Description: MAC MMC TRANSMIT EXCESSIVE DEFERRAL COUNTER
Register Address: 016Ch (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
016Ch: TXXCSVDF[31] TXXCSVDF[30] TXXCSVDF[29] TXXCSVDF[28] TXXCSVDF[27] TXXCSVDF[26] TXXCSVDF[25] TXXCSVDF[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
016Dh: TXXCSVDF[23] TXXCSVDF[22] TXXCSVDF[21] TXXCSVDF[20] TXXCSVDF[19] TXXCSVDF[18] TXXCSVDF[17] TXXCSVDF[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
016Eh: TXXCSVDF[15] TXXCSVDF[14] TXXCSVDF[13] TXXCSVDF[12] TXXCSVDF[11] TXXCSVDF[10] TXXCSVDF[9] TXXCSVDF[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
016Fh: TXXCSVDF[7] TXXCSVDF[6] TXXCSVDF[5] TXXCSVDF[4] TXXCSVDF[3] TXXCSVDF[2] TXXCSVDF[1] TXXCSVDF[0]
Bits 1-31: Transmit Excessive Deferral Counter (TXXCSVDF[31:0]) – Contains the number of frames aborted
due to excessive deferral. Applicable in half-duplex mode only.
Register Name: SU.TXPAUSE
Register Description: MAC MMC TRANSMIT PAUSE FRAME COUNTER
Register Address: 0170h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0170h: TXPAUSE[31] TXPAUSE[30] TXPAUSE[29] TXPAUSE[28] TXPAUSE[27] TXPAUSE[26] TXPAUSE[25] TXPAUSE[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0171h: TXPAUSE[23] TXPAUSE[22] TXPAUSE[21] TXPAUSE[20] TXPAUSE[19] TXPAUSE[18] TXPAUSE[17] TXPAUSE[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0172h: TXPAUSE[15] TXPAUSE[14] TXPAUSE[13] TXPAUSE[12] TXPAUSE[11] TXPAUSE[10] TXPAUSE[9] TXPAUSE[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0173h: TXPAUSE[7] TXPAUSE[6] TXPAUSE[5] TXPAUSE[4] TXPAUSE[3] TXPAUSE[2] TXPAUSE[1] TXPAUSE[0]
Bits 1-31: Transmit Pause Frame Counter (TXPAUSE[31:0]) – Contains the number of good Pause frames
transmitted.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 317 of 375
Register Name: SU.TXVLANF
Register Description: MAC MMC TRANSMIT VLAN FRAME COUNTER
Register Address: 0174h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0174h: TXVLANF[31] TXVLANF[30] TXVLANF[29] TXVLANF[28] TXVLANF[27] TXVLANF[26] TXVLANF[25] TXVLANF[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0175h: TXVLANF[23] TXVLANF[22] TXVLANF[21] TXVLANF[20] TXVLANF[19] TXVLANF[18] TXVLANF[17] TXVLANF[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0176h: TXVLANF[15] TXVLANF[14] TXVLANF[13] TXVLANF[12] TXVLANF[11] TXVLANF[10] TXVLANF[9] TXVLANF[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0177h: TXVLANF[7] TXVLANF[6] TXVLANF[5] TXVLANF[4] TXVLANF[3] TXVLANF[2] TXVLANF[1] TXVLANF[0]
Bits 1-31: Transmit VLAN Frame Counter (TXVLANF[31:0]) – Contains the number of good VLAN frames
transmitted.
Register Name: SU.RXFC
Register Description: MAC MMC RECEIVE FRAME COUNTER
Register Address: 0180h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0180h: RXFC[31] RXFC[30] RXFC[29] RXFC[28] RXFC[27] RXFC[26] RXFC[25] RXFC[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0181h: RXFC[23] RXFC[22] RXFC[21] RXFC[20] RXFC[19] RXFC[18] RXFC[17] RXFC[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0182h: RXFC[15] RXFC[14] RXFC[13] RXFC[12] RXFC[11] RXFC[10] RXFC[9] RXFC[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0183h: RXFC[7] RXFC[6] RXFC[5] RXFC[4] RXFC[3] RXFC[2] RXFC[1] RXFC[0]
Bits 1-31: Receive Frame Counter (RXFC[31:0]) – Contains the number of frames received, both good and bad
frames included.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 318 of 375
Register Name: SU.RXBC
Register Description: MAC MMC RECEIVE BYTE COUNTER
Register Address: 0184h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0184h: RXBC[31] RXBC[30] RXBC[29] RXBC[28] RXBC[27] RXBC[26] RXBC[25] RXBC[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0185h: RXBC[23] RXBC[22] RXBC[21] RXBC[20] RXBC[19] RXBC[18] RXBC[17] RXBC[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0186h: RXBC[15] RXBC[14] RXBC[13] RXBC[12] RXBC[11] RXBC[10] RXBC[9] RXBC[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0187h: RXBC[7] RXBC[6] RXBC[5] RXBC[4] RXBC[3] RXBC[2] RXBC[1] RXBC[0]
Bits 1-31: Receive Byte Counter (RXBC[31:0]) – Contains the number of good and bad bytes received, exclusive
of preamble bytes.
Register Name: SU.RXGBC
Register Description: MAC MMC RECEIVE GOOD BYTE COUNTER
Register Address: 0188h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0188h: RXGBC[31] RXGBC[30] RXGBC[29] RXGBC[28] RXGBC[27] RXGBC[26] RXGBC[25] RXGBC[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0189h: RXGBC[23] RXGBC[22] RXGBC[21] RXGBC[20] RXGBC[19] RXGBC[18] RXGBC[17] RXGBC[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
018Ah: RXGBC[15] RXGBC[14] RXGBC[13] RXGBC[12] RXGBC[11] RXGBC[10] RXGBC[9] RXGBC[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
018Bh: RXGBC[7] RXGBC[6] RXGBC[5] RXGBC[4] RXGBC[3] RXGBC[2] RXGBC[1] RXGBC[0]
Bits 1-31: Receive Good Byte Counter (RXGBC[31:0]) – Contains the number of bytes received in good frames,
exclusive of preamble bytes.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 319 of 375
Register Name: SU.RXGBFC
Register Description: MAC MMC RECEIVE GOOD BROADCAST FRAME COUNTER
Register Address: 018Ch (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
018Ch: RXGBFC[31] RXGBFC[30] RXGBFC[29] RXGBFC[28] RXGBFC[27] RXGBFC[26] RXGBFC[25] RXGBFC[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
018Dh: RXGBFC[23] RXGBFC[22] RXGBFC[21] RXGBFC[20] RXGBFC[19] RXGBFC[18] RXGBFC[17] RXGBFC[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
018Eh: RXGBFC[15] RXGBFC[14] RXGBFC[13] RXGBFC[12] RXGBFC[11] RXGBFC[10] RXGBFC[9] RXGBFC[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
018Fh: RXGBFC[7] RXGBFC[6] RXGBFC[5] RXGBFC[4] RXGBFC[3] RXGBFC[2] RXGBFC[1] RXGBFC[0]
Bits 1-31: Receive Good Broadcast Frame Counter (RXGBFC[31:0]) – Contains the number of good broadcast
frames received.
Register Name: SU.RXMFC
Register Description: MAC MMC RECEIVE MULTICAST FRAME COUNTER
Register Address: 0190h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0190h: RXMFC[31] RXMFC[30] RXMFC[29] RXMFC[28] RXMFC[27] RXMFC[26] RXMFC[25] RXMFC[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0191h: RXMFC[23] RXMFC[22] RXMFC[21] RXMFC[20] RXMFC[19] RXMFC[18] RXMFC[17] RXMFC[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0192h: RXMFC[15] RXMFC[14] RXMFC[13] RXMFC[12] RXMFC[11] RXMFC[10] RXMFC[9] RXMFC[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0193h: RXMFC[7] RXMFC[6] RXMFC[5] RXMFC[4] RXMFC[3] RXMFC[2] RXMFC[1] RXMFC[0]
Bits 1-31: Receive Good Multicast Frame Counter (RXMFC[31:0]) – Contains the number of good Multicast
frames received.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 320 of 375
Register Name: SU.RXCRC
Register Description: MAC MMC RECEIVE CRC ERROR COUNTER
Register Address: 0194h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0194h: RXCRC[31] RXCRC[30] RXCRC[29] RXCRC[28] RXCRC[27] RXCRC[26] RXCRC[25] RXCRC[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0195h: RXCRC[23] RXCRC[22] RXCRC[21] RXCRC[20] RXCRC[19] RXCRC[18] RXCRC[17] RXCRC[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
0196h: RXCRC[15] RXCRC[14] RXCRC[13] RXCRC[12] RXCRC[11] RXCRC[10] RXCRC[9] RXCRC[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0197h: RXCRC[7] RXCRC[6] RXCRC[5] RXCRC[4] RXCRC[3] RXCRC[2] RXCRC[1] RXCRC[0]
Bits 1-31: Receive CRC Error Counter (RXCRC[31:0]) – Contains the number of frames received with CRC
errors.
Register Name: SU.RXALGN
Register Description: MAC MMC RECEIVE ALIGNMENT ERROR COUNTER
Register Address: 0198h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
0198h: RXALGN[31] RXALGN[30] RXALGN[29] RXALGN[28] RXALGN[27] RXALGN[26] RXALGN[25] RXALGN[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
0199h: RXALGN[23] RXALGN[22] RXALGN[21] RXALGN[20] RXALGN[19] RXALGN[18] RXALGN[17] RXALGN[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
019Ah: RXALGN[15] RXALGN[14] RXALGN[13] RXALGN[12] RXALGN[11] RXALGN[10] RXALGN[9] RXALGN[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
019Bh: RXALGN[7] RXALGN[6] RXALGN[5] RXALGN[4] RXALGN[3] RXALGN[2] RXALGN[1] RXALGN[0]
Bits 1-31: Receive Alignment Error Counter (RXALGN[31:0]) – Contains the number of frames received with
alignment (dribble) errors.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 321 of 375
Register Name: SU.RXRUNT
Register Description: MAC MMC RECEIVE RUNT ERROR COUNTER
Register Address: 019Ch (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
019Ch: RXRUNT[31] RXRUNT[30] RXRUNT[29] RXRUNT[28] RXRUNT[27] RXRUNT[26] RXRUNT[25] RXRUNT[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
019Dh: RXRUNT[23] RXRUNT[22] RXRUNT[21] RXRUNT[20] RXRUNT[19] RXRUNT[18] RXRUNT[17] RXRUNT[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
019Eh: RXRUNT[15] RXRUNT[14] RXRUNT[13] RXRUNT[12] RXRUNT[11] RXRUNT[10] RXRUNT[9] RXRUNT[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
019Fh: RXRUNT[7] RXRUNT[6] RXRUNT[5] RXRUNT[4] RXRUNT[3] RXRUNT[2] RXRUNT[1] RXRUNT[0]
Bits 1-31: Receive Runt Error Counter (RXRUNT[31:0]) – Contains the number of runt frames received.
Register Name: SU.RXJBBR
Register Description: MAC MMC RECEIVE JABBER ERROR COUNTER
Register Address: 01A0h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
01A0h: RXJBBR[31] RXJBBR[30] RXJBBR[29] RXJBBR[28] RXJBBR[27] RXJBBR[26] RXJBBR[25] RXJBBR[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
01A1h: RXJBBR[23] RXJBBR[22] RXJBBR[21] RXJBBR[20] RXJBBR[19] RXJBBR[18] RXJBBR[17] RXJBBR[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
01A2h: RXJBBR[15] RXJBBR[14] RXJBBR[13] RXJBBR[12] RXJBBR[11] RXJBBR[10] RXJBBR[9] RXJBBR[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
01A3h: RXJBBR[7] RXJBBR[6] RXJBBR[5] RXJBBR[4] RXJBBR[3] RXJBBR[2] RXJBBR[1] RXJBBR[0]
Bits 1-31: Receive Jabber Error Counter (RXJBBR[31:0]) – Contains the number of frames received with length
greater 1518 (including the CRC) and with CRC errors.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 322 of 375
Register Name: SU.RXUNDRSZ
Register Description: MAC MMC RECEIVE UNDERSIZE FRAME COUNTER
Register Address: 01A4h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
01A4h: RXUNDRSZ[31] RXUNDRSZ[30] RXUNDRSZ[29] RXUNDRSZ[28] RXUNDRSZ[27] RXUNDRSZ[26] RXUNDRSZ[25] RXUNDRSZ[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
01A5h: RXUNDRSZ[23] RXUNDRSZ[22] RXUNDRSZ[21] RXUNDRSZ[20] RXUNDRSZ[19] RXUNDRSZ[18] RXUNDRSZ[17] RXUNDRSZ[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
01A6h: RXUNDRSZ[15] RXUNDRSZ[14] RXUNDRSZ[13] RXUNDRSZ[12] RXUNDRSZ[11] RXUNDRSZ[10] RXUNDRSZ[9] RXUNDRSZ[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
01A7h: RXUNDRSZ[7] RXUNDRSZ[6] RXUNDRSZ[5] RXUNDRSZ[4] RXUNDRSZ[3] RXUNDRSZ[2] RXUNDRSZ[1] RXUNDRSZ[0]
Bits 1-31: Receive Undersize Frame Counter (RXUNDRSZ[31:0]) – Contains the number of frames received
with a size less than 64 bytes and a good CRC.
Register Name: SU.RXOVRSZ
Register Description: MAC MMC RECEIVE OVERSIZE FRAME COUNTER
Register Address: 01A8h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
01A8h: RXOVRSZ[31] RXOVRSZ[30] RXOVRSZ[29] RXOVRSZ[28] RXOVRSZ[27] RXOVRSZ[26] RXOVRSZ[25] RXOVRSZ[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
01A9h: RXOVRSZ[23] RXOVRSZ[22] RXOVRSZ[21] RXOVRSZ[20] RXOVRSZ[19] RXOVRSZ[18] RXOVRSZ[17] RXOVRSZ[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
01AAh: RXOVRSZ[15] RXOVRSZ[14] RXOVRSZ[13] RXOVRSZ[12] RXOVRSZ[11] RXOVRSZ[10] RXOVRSZ[9] RXOVRSZ[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
01ABh: RXOVRSZ[7] RXOVRSZ[6] RXOVRSZ[5] RXOVRSZ[4] RXOVRSZ[3] RXOVRSZ[2] RXOVRSZ[1] RXOVRSZ[0]
Bits 1-31: Receive Oversize Frame Counter (RXOVRSZ[31:0]) – Contains the number of frames received with
length greater than the maximum size with a valid CRC.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 323 of 375
Register Name: SU.RX0_64
Register Description: MAC MMC RECEIVE 0-64 BYTE FRAME COUNTER
Register Address: 01ACh (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
01ACh: RX0_64[31] RX0_64[30] RX0_64[29] RX0_64[28] RX0_64[27] RX0_64[26] RX0_64[25] RX0_64[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
01ADh: RX0_64[23] RX0_64[22] RX0_64[21] RX0_64[20] RX0_64[19] RX0_64[18] RX0_64[17] RX0_64[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
01AEh: RX0_64[15] RX0_64[14] RX0_64[13] RX0_64[12] RX0_64[11] RX0_64[10] RX0_64[9] RX0_64[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
01AFh: RX0_64[7] RX0_64[6] RX0_64[5] RX0_64[4] RX0_64[3] RX0_64[2] RX0_64[1] RX0_64[0]
Bits 1-31: Receive 0-64 Byte Frames Counter (RX0_64[31:0]) – Contains the number of frames received with
sizes of 64 bytes or less. Includes both good and bad frames.
Register Name: SU.RX65_127
Register Description: MAC MMC RECEIVE 65-127 BYTE FRAME COUNTER
Register Address: 01B0h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
01B0h: RX65_127[31] RX65_127[30] RX65_127[29] RX65_127[28] RX65_127[27] RX65_127[26] RX65_127[25] RX65_127[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
01B1h: RX65_127[23] RX65_127[22] RX65_127[21] RX65_127[20] RX65_127[19] RX65_127[18] RX65_127[17] RX65_127[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
01B2h: RX65_127[15] RX65_127[14] RX65_127[13] RX65_127[12] RX65_127[11] RX65_127[10] RX65_127[9] RX65_127[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
01B3h: RX65_127[7] RX65_127[6] RX65_127[5] RX65_127[4] RX65_127[3] RX65_127[2] RX65_127[1] RX65_127[0]
Bits 1-31: Receive 65-127 Byte Frames Counter (RX65_127[31:0]) – Contains the number of frames received
with sizes of 65 to 127 bytes. Includes both good and bad frames.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 324 of 375
Register Name: SU.RX128_255
Register Description: MAC MMC RECEIVE 128-255 BYTE FRAME COUNTER
Register Address: 01B4h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
01B4h: RX128_255[31] RX128_255[30] RX128_255[29] RX128_255[28] RX128_255[27] RX128_255[26] RX128_255[25] RX128_255[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
01B5h: RX128_255[23] RX128_255[22] RX128_255[21] RX128_255[20] RX128_255[19] RX128_255[18] RX128_255[17] RX128_255[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
01B6h: RX128_255[15] RX128_255[14] RX128_255[13] RX128_255[12] RX128_255[11] RX128_255[10] RX128_255[9] RX128_255[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
01B7h: RX128_255[7] RX128_255[6] RX128_255[5] RX128_255[4] RX128_255[3] RX128_255[2] RX128_255[1] RX128_255[0]
Bits 1-31: Receive 128-255 Byte Frames Counter (RX128_255[31:0]) – Contains the number of frames received
with sizes of 128 to 255 bytes. Includes both good and bad frames.
Register Name: SU.RX256_511
Register Description: MAC MMC RECEIVE 256-511 BYTE FRAME COUNTER
Register Address: 01B8h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
01B8h: RX256_511[31] RX256_511[30] RX256_511[29] RX256_511[28] RX256_511[27] RX256_511[26] RX256_511[25] RX256_511[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
01B9h: RX256_511[23] RX256_511[22] RX256_511[21] RX256_511[20] RX256_511[19] RX256_511[18] RX256_511[17] RX256_511[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
01BAh: RX256_511[15] RX256_511[14] RX256_511[13] RX256_511[12] RX256_511[11] RX256_511[10] RX256_511[9] RX256_511[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
01BBh: RX256_511[7] RX256_511[6] RX256_511[5] RX256_511[4] RX256_511[3] RX256_511[2] RX256_511[1] RX256_511[0]
Bits 1-31: Receive 256-511 Byte Frames Counter (RX256_511[31:0]) – Contains the number of frames received
with sizes of 256 to 511 bytes. Includes both good and bad frames.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 325 of 375
Register Name: SU.RX512_1K
Register Description: MAC MMC RECEIVE 512-1023 BYTE FRAME COUNTER
Register Address: 01BCh (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
01BCh: RX512_1K[31] RX512_1K[30] RX512_1K[29] RX512_1K[28] RX512_1K[27] RX512_1K[26] RX512_1K[25] RX512_1K[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
01BDh: RX512_1K[23] RX512_1K[22] RX512_1K[21] RX512_1K[20] RX512_1K[19] RX512_1K[18] RX512_1K[17] RX512_1K[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
01BEh: RX512_1K[15] RX512_1K[14] RX512_1K[13] RX512_1K[12] RX512_1K[11] RX512_1K[10] RX512_1K[9] RX512_1K[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
01BFh: RX512_1K[7] RX512_1K[6] RX512_1K[5] RX512_1K[4] RX512_1K[3] RX512_1K[2] RX512_1K[1] RX512_1K[0]
Bits 1-31: Receive 512-1023 Byte Frames Counter (RX512_1K[31:0]) – Contains the number of frames received
with sizes of 512 to 1023 bytes. Includes both good and bad frames.
Register Name: SU.RX1K_MAX
Register Description: MAC MMC RECEIVE 1024-MAX BYTE FRAME COUNTER
Register Address: 01C0h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
01C0h: RX1K_MAX[31] RX1K_MAX[30] RX1K_MAX[29] RX1K_MAX[28] RX1K_MAX[27] RX1K_MAX[26] RX1K_MAX[25] RX1K_MAX[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
01C1h: RX1K_MAX[23] RX1K_MAX[22] RX1K_MAX[21] RX1K_MAX[20] RX1K_MAX[19] RX1K_MAX[18] RX1K_MAX[17] RX1K_MAX[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
01C2h: RX1K_MAX[15] RX1K_MAX[14] RX1K_MAX[13] RX1K_MAX[12] RX1K_MAX[11] RX1K_MAX[10] RX1K_MAX[9] RX1K_MAX[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
01C3h: RX1K_MAX[7] RX1K_MAX[6] RX1K_MAX[5] RX1K_MAX[4] RX1K_MAX[3] RX1K_MAX[2] RX1K_MAX[1] RX1K_MAX[0]
Bits 1-31: Receive 1024-MAX Byte Frames Counter (RX1K_MAX[31:0]) – Contains the number of frames
received with sizes of 1024 to the maximum bytes. Includes both good and bad frames.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 326 of 375
Register Name: SU.RXUFC
Register Description: MAC MMC RECEIVE UNICAST FRAME COUNTER
Register Address: 01C4h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
01C4h: RXUFC[31] RXUFC[30] RXUFC[29] RXUFC[28] RXUFC[27] RXUFC[26] RXUFC[25] RXUFC[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
01C5h: RXUFC[23] RXUFC[22] RXUFC[21] RXUFC[20] RXUFC[19] RXUFC[18] RXUFC[17] RXUFC[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
01C6h: RXUFC[15] RXUFC[14] RXUFC[13] RXUFC[12] RXUFC[11] RXUFC[10] RXUFC[9] RXUFC[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
01C7h: RXUFC[7] RXUFC[6] RXUFC[5] RXUFC[4] RXUFC[3] RXUFC[2] RXUFC[1] RXUFC[0]
Bits 1-31: Receive Unicast Frame Counter (RXUFC[31:0]) – Contains the number of good unicast frames
received.
Register Name: SU.RXLNERR
Register Description: MAC MMC RECEIVE LENGTH ERROR COUNTER
Register Address: 01C8h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
01C8h: RXLNERR[31] RXLNERR[30] RXLNERR[29] RXLNERR[28] RXLNERR[27] RXLNERR[26] RXLNERR[25] RXLNERR[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
01C9h: RXLNERR[23] RXLNERR[22] RXLNERR[21] RXLNERR[20] RXLNERR[19] RXLNERR[18] RXLNERR[17] RXLNERR[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
01CAh: RXLNERR[15] RXLNERR[14] RXLNERR[13] RXLNERR[12] RXLNERR[11] RXLNERR[10] RXLNERR[9] RXLNERR[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
01CBh: RXLNERR[7] RXLNERR[6] RXLNERR[5] RXLNERR[4] RXLNERR[3] RXLNERR[2] RXLNERR[1] RXLNERR[0]
Bits 1-31: Receive Length Error Counter (RXLNERR[31:0]) – Contains the number of frames received with
length errors.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 327 of 375
Register Name: SU.RXRANGE
Register Description: MAC MMC RECEIVE OUT OF RANGE COUNTER
Register Address: 01CCh (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
01CCh: RXRANGE[31] RXRANGE[30] RXRANGE[29] RXRANGE[28] RXRANGE[27] RXRANGE[26] RXRANGE[25] RXRANGE[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
01CDh: RXRANGE[23] RXRANGE[22] RXRANGE[21] RXRANGE[20] RXRANGE[19] RXRANGE[18] RXRANGE[17] RXRANGE[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
01CEh: RXRANGE[15] RXRANGE[14] RXRANGE[13] RXRANGE[12] RXRANGE[11] RXRANGE[10] RXRANGE[9] RXRANGE[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
01CFh: RXRANGE[7] RXRANGE[6] RXRANGE[5] RXRANGE[4] RXRANGE[3] RXRANGE[2] RXRANGE[1] RXRANGE[0]
Bits 1-31: Receive Out of Range Counter (RXRANGE[31:0]) – Contains the number of frames received with an
invalid Ethernet Length/Type field.
Register Name: SU.RXPAUSE
Register Description: MAC MMC RECEIVE PAUSE FRAME COUNTER
Register Address: 01D0h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
01D0h: RXPAUSE[31] RXPAUSE[30] RXPAUSE[29] RXPAUSE[28] RXPAUSE[27] RXPAUSE[26] RXPAUSE[25] RXPAUSE[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
01D1h: RXPAUSE[23] RXPAUSE[22] RXPAUSE[21] RXPAUSE[20] RXPAUSE[19] RXPAUSE[18] RXPAUSE[17] RXPAUSE[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
01D2h: RXPAUSE[15] RXPAUSE[14] RXPAUSE[13] RXPAUSE[12] RXPAUSE[11] RXPAUSE[10] RXPAUSE[9] RXPAUSE[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
01D3h: RXPAUSE[7] RXPAUSE[6] RXPAUSE[5] RXPAUSE[4] RXPAUSE[3] RXPAUSE[2] RXPAUSE[1] RXPAUSE[0]
Bits 1-31: Receive Pause Frame Counter (RXPAUSE[31:0]) – Contains the number of good Pause frames
received.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 328 of 375
Register Name: SU.RXOVFL
Register Description: MAC MMC RECEIVE OVERFLOW COUNTER
Register Address: 01D4h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
01D4h: RXOVFL[31] RXOVFL[30] RXOVFL[29] RXOVFL[28] RXOVFL[27] RXOVFL[26] RXOVFL[25] RXOVFL[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
01D5h: RXOVFL[23] RXOVFL[22] RXOVFL[21] RXOVFL[20] RXOVFL[19] RXOVFL[18] RXOVFL[17] RXOVFL[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
01D6h: RXOVFL[15] RXOVFL[14] RXOVFL[13] RXOVFL[12] RXOVFL[11] RXOVFL[10] RXOVFL[9] RXOVFL[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
01D7h: RXOVFL[7] RXOVFL[6] RXOVFL[5] RXOVFL[4] RXOVFL[3] RXOVFL[2] RXOVFL[1] RXOVFL[0]
Bits 1-31: Receive Overflow Counter (RXOVFL[31:0]) – Contains the number of frames discarded due to a
receive FIFO overflow.
Register Name: SU.RXVLAN
Register Description: MAC MMC RECEIVE VLAN FRAME COUNTER
Register Address: 01D8h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
01D8h: RXVLAN[31] RXVLAN[30] RXVLAN[29] RXVLAN[28] RXVLAN[27] RXVLAN[26] RXVLAN[25] RXVLAN[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
01D9h: RXVLAN[23] RXVLAN[22] RXVLAN[21] RXVLAN[20] RXVLAN[19] RXVLAN[18] RXVLAN[17] RXVLAN[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
01DAh: RXVLAN[15] RXVLAN[14] RXVLAN[13] RXVLAN[12] RXVLAN[11] RXVLAN[10] RXVLAN[9] RXVLAN[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
01DBh: RXVLAN[7] RXVLAN[6] RXVLAN[5] RXVLAN[4] RXVLAN[3] RXVLAN[2] RXVLAN[1] RXVLAN[0]
Bits 1-31: Receive VLAN Frame Counter (RXVLAN[31:0]) – Contains the number of good and bad VLAN frames
received.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 329 of 375
Register Name: SU.RXWDOG
Register Description: MAC MMC RECEIVE WATCHDOG ERROR COUNTER
Register Address: 01DCh (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
01DCh: RXWDOG[31] RXWDOG[30] RXWDOG[29] RXWDOG[28] RXWDOG[27] RXWDOG[26] RXWDOG[25] RXWDOG[24]
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
01DDh: RXWDOG[23] RXWDOG[22] RXWDOG[21] RXWDOG[20] RXWDOG[19] RXWDOG[18] RXWDOG[17] RXWDOG[16]
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
01DEh: RXWDOG[15] RXWDOG[14] RXWDOG[13] RXWDOG[12] RXWDOG[11] RXWDOG[10] RXWDOG[9] RXWDOG[8]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
01DFh: RXWDOG[7] RXWDOG[6] RXWDOG[5] RXWDOG[4] RXWDOG[3] RXWDOG[2] RXWDOG[1] RXWDOG[0]
Bits 1-31: Receive Watchdog Error Counter (RXWDOG[31:0]) – Contains the number of frames discarded due
to a receive watchdog timer error.
Note – the SU.RXWDOG register may be unnecessary and thus may be removed.
Register Name: SU.MACMCR
Register Description: MAC Miscellaneous Control Register
Register Address: 1018h (indirect)
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
1018h: - - - - - - - -
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
1019h: - - - FTF - - - -
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
101Ah: - - - - - - - -
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
101Bh: - - - - - - - -
Bit 20: Flush Transmit FIFO (FTF) When this bit is written to 1, the MAC transmit FIFO is reset and cleared. This
bit automatically resets to zero when the reset operation is complete. Transmission should be disabled during the
flush transmit FIFO operation. Typically, the user will want to flush the transmit FIFO prior to enabling transmission
to avoid transmitting possible frame fragments that may be in the FIFO.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 330 of 375
11. Functional Timing
11.1 Functional SPI Interface Timing
Note: The transmit and receive order of the address and data bits are selected by the SPI_SWAP pin. The R/W
(read/write) MSB bit and B (burst) LSB bit position is not affected by the SPI_SWAP pin setting.
11.1.1 SPI Transmission Format and CPHA Polarity
When SPI_CPHA = 0, CS may be de-asserted between accesses. An access is defined as one or two control
bytes followed by a data byte. CS cannot be de-asserted between the control bytes, or between the last control
byte and the data byte. When SPI_CPHA = 0, CS may also remain asserted between accesses. If it remains
asserted and the BURST bit is set, no additional control bytes are expected after the first control byte(s) and data
are transferred. If the BURST bit is set, the address will be incremented for each additional byte of data transferred
until CS is de-asserted. If CS remains asserted and the BURST bit is not set, a control byte(s) is expected following
the data byte, and the address for the next access will be received from that. Anytime CS is de-asserted, the
BURST access is terminated.
When SPI_CPHA = 1, CS may remain asserted for more than one access without being toggled high and then low
again between accesses. If the BURST bit is set, the address should increment and no additional control bytes are
expected. If the BURST bit is not set, each data byte will be followed by the control byte(s) for the next access.
Additionally, CS may also be de-asserted between accesses when SPI_CPHA =1. In the case, any BURST access
is terminated, and the next byte received when CS is re-asserted will be a control byte.
The following diagrams describe the functionality of the SPI port for the four combinations of SPI_CPOL and
SPI_CPHA. They indicate the clock edge that samples the data and the level of the clock during no-transfer events
(high or low). Since the SPI port acts as a slave device, the master device provides the clock. The user must
configure the SPI_CPOL and SPI_CPHA pins to describe which type of clock that the master device is providing.
Note that due to the address space of the device, the unused bits A13, A12, and A11 should always be zero.
Figure 11-1. SPI Serial Port Access For Read Mode, SPI_CPOL=0, SPI_CPHA = 0
1A7
A13 A12 A11 A10 A9 A8
D7 D6 D5 D4 D3 D2 D1 D0
LSBMSB
LSBMSB
SCK
CS*
MOSI
MISO
B
A6 A5 A4 A3 A2 A1
LSBMSB
A0
Figure 11-2. SPI Serial Port Access For Read Mode, SPI_CPOL = 1, SPI_CPHA = 0
SCK
CS*
1A7
A13 A12 A11 A10 A9 A8
D7 D6 D5 D4 D3 D2 D1 D0
LSBMSB
LSBMSB
MOSI
MISO
B
A6 A5 A4 A3 A2 A1
LSBMSB
A0
SPI_CL
K
CS
SPI_MOSI
SPI_MISO
SPI_CL
K
CS
SPI_MOSI
SPI_MISO
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 331 of 375
Figure 11-3. SPI Serial Port Access For Read Mode, SPI_CPOL = 0, SPI_CPHA = 1
SCK
CS*
1A7
A13 A12 A11 A10 A9 A8
D7 D6 D5 D4 D3 D2 D1 D0
LSBMSB
LSBMSB
MOSI
MISO
B
A6 A5 A4 A3 A2 A1
LSBMSB
A0
Figure 11-4. SPI Serial Port Access For Read Mode, SPI_CPOL = 1, SPI_CPHA = 1
SCK
CS*
1A7
A13 A12 A11 A10 A9 A8
D7 D6 D5 D4 D3 D2 D1 D0
LSBMSB
LSBMSB
MOSI
MISO
B
A6 A5 A4 A3 A2 A1
LSBMSB
A0
Figure 11-5. SPI Serial Port Access For Write Mode, SPI_CPOL = 0, SPI_CPHA = 0
0A13
LSBMSB
SCK
CS*
MOSI
MISO
D7 D6 D5 D4 D3 D2 D1 D0
LSBMSB
A4 A3 A2 A1 A0
LSBMSB
A12A11A10A9A8A7A6A5 B
Figure 11-6. SPI Serial Port Access For Write Mode, SPI_CPOL = 1, SPI_CPHA = 0
SCK
CS*
0A13
LSBMSB
MOSI
MISO
D7 D6 D5 D4 D3 D2 D1 D0
LSBMSB
A4 A3 A2 A1 A0
LSBMSB
A12A11A10A9A8A7A6A5 B
SPI_CLK
CS
SPI_MOSI
SPI_MISO
SPI_CLK
CS
SPI_MOSI
SPI_MISO
SPI_CLK
CS
SPI_MOSI
SPI_MISO
SPI_CLK
CS
SPI_MOSI
SPI_MISO
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 332 of 375
Figure 11-7. SPI Serial Port Access For Write Mode, SPI_CPOL = 0, SPI_CPHA = 1
SCK
CS*
0A13
LSBMSB
MOSI
MISO
D7 D6 D5 D4 D3 D2 D1 D0
LSBMSB
A4 A3 A2 A1 A0
LSBMSB
A12A11A10A9A8A7A6A5 B
Figure 11-8. SPI Serial Port Access For Write Mode, SPI_CPOL = 1, SPI_CPHA = 1
SCK
CS*
0A13
LSBMSB
MOSI
MISO
D7 D6 D5 D4 D3 D2 D1 D0
LSBMSB
A4 A3 A2 A1 A0
LSBMSB
A12A11A10A9A8A7A6A5 B
SPI_CLK
CS
SPI_MOSI
SPI_MISO
SPI_CL
K
CS
SPI_MOSI
SPI_MISO
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 333 of 375
11.2 Functional Serial Interface Timing
The Serial Interface provides flexible timing to interconnect with a wide variety of serial devices. Figure 11-9 shows
the basic functional timing relationship for the transmit serial port interface. TCLK may be gapped during Framing
Overhead positions or to support Fractional T1/E1/T3/E3, as shown in Figure 11-11. The device provides the
TSYNC signal as a frame or byte boundary indication to an external interface. TSYNC is normally active high on
the first bit of the multiframe, but can be programmed to occur up to three cycles early, as shown in Figure 11-12.
TSYNC is minimally one pulse wide, but may be active for multiple clock cycles.
Figure 11-9. Transmit Serial Port Interface, without VCAT
TSYNC
TDATA
TCLK
MSB Encapsulated Ethernet DataMSB Encapsulated Ethernet DataMSBEncapsulated Ethernet Data
Figure 11-10. Transmit Serial Port Interface with VCAT
TSYNC
TDATA
TCLK
MSB VCAT OH Encapsulated Ethernet DataMSB Encapsulated Ethernet DataMSB
Figure 11-11. Transmit Serial Port Interface, with Gapped Clock
TSYNC
TDATA
TCLK
MSB Encapsulated Ethernet DataMSB Encapsulated EthernetMSBEncapsulated Ethernet DataLSB.....
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 334 of 375
The figure below demonstrates the TSYNC pulse configured to arrive 2 clock cycles before the byte boundary
through the use of the LI.TCR register.
Figure 11-12. Transmit Serial Port Interface with VCAT, early TSYNC (2 cycles)
TSYNC
TDATA
TCLK
MSB VCAT OH Encapsulated Ethernet DataMSB MSB Encapsulated Ethernet
Figure 11-13 shows the basic functional timing relationship for the receive serial port interface. RCLK may be
gapped during Framing Overhead positions or to support Fractional T1/E1/T3/E3, as shown in Figure 11-15. The
RSYNC signal must be provided to the device as a frame, multiframe, or byte boundary indication. VCAT
applications require a multiframe boundary. The expected position of the RSYNC pulse is not programmable, and
must be provided as indicated. Note that the first clock after the RSYNC will sample the LSB of the last byte of the
previous frame.
Figure 11-13. Receive Serial Port Interface, without VCAT, rising edge sampling
RSYNC
RDATA
RCLK
MSB Encapsulated Ethernet DataMSB Encapsulated Ethernet DataMSBEncapsulated Ethernet Data
LSB
Figure 11-14. Receive Serial Port Interface with VCAT, rising edge sampling
RSYNC
RDATA
RCLK
MSB Encapsulated Ethernet DataMSB Encapsulated Ethernet DataMSBVCAT OH
LSB
Figure 11-15. Receive Serial Port Interface with Gapped Clock (T1)
RSYNC
RDATA
RCLK
MSB Encapsulated Ethernet DataMSB Encapsulated EthernetMSBEncapsulated Ethernet Data
LSB Fbit
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 335 of 375
11.3 Voice Port Functional Timing Diagrams
Figure 11-16. Transmit Voice Port Interface with PCM Octets
TDATA(O)
TCLK(I)
TSYNC(I)
LSB MSB PCM OCTET 2
123456789 15
10 11 12 13 14 16 17 18 19 20 21 22 23 24
TVDATA(I)
PCM OCTET 1(prev frame) ETHERNET DATA 1
PCM OCTET 1 PCM OCTET 2
TVCLK(I)
TVSYNC(I)
TVDEN(I)
Figure 11-17 shows the receive serial port timing relationship when the data stream contains PCM octets. This
example shows two PCM octets being demuxed from the Ethernet data. RVSYNC is minimum one clock period
wide, but may be high multiple clock periods. Note that the PCM octets output on RVDATA are buffered for one
RVSYNC period, i.e. the PCM octets are delayed one frame. Voice data may be output at any point between frame
syncs, output when RVDEN is low.
Figure 11-17. Receive Voice Port Interface with PCM Octets
RDATA(I)
RCLK(I)
RSYNC(I)
LSB MSB PCM OCTET 2
123456789 15
10 11 12 13 14 16 17 18 19 20 21 22 23 24
RVCLK(I)
RVSYNC(I)
RVDATA(O)
PCM OCTET 1 ETHERNET DATA 1
PCM OCTET 1(prev frame) PCM OCTET 2
RVDEN(I)
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 336 of 375
11.4 MII/RMII and GMII Interfaces
In GMII Mode, TX_EN is high with the first bit of the preamble. For 10Mbps operation, the data bit outputs are
updated every 10 clocks.
Figure 11-18. GMII Transmit Interface Functional Timing
TXD[1:0
]
TX_E
N
REF_CLK
P R E A M B L E F C S
GMII Receive data on RXD[1:0] is expected to be synchronous with the rising edge of ______. The data is only
valid if RX_CRS is high. The external PHY asynchronously drives RX_CRS low during carrier loss.
Figure 11-19. GMII Receive Interface Functional Timing
RXD[1:0]
RX_CRS
REF_CLK
P R E A M B L E F C S
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 337 of 375
Each MII Interface Transmit Port has its own TX_CLK and data interface. The data TXD [3:0] operates
synchronously with TX_CLK. The LSB is presented first. TX_CLK should be 2.5MHz for 10Mbps operation and
25MHz for 100Mbps operation. TX_EN is valid at the same time as the first byte of the preamble. In DTE Mode
TX_CLK is input from the external PHY. In DCE Mode, the device provides TX_CLK, derived from an external
reference (SYSCLKI).
In Half-Duplex (DTE) Mode, the device supports RX_CRS and COL signals. RX_CRS is active when the PHY
detects transmit or receive activity. If there is a collision as indicated by the COL input, the device will replace the
data nibbles with jam nibbles. After a “random“ time interval, the frame is retransmitted. The MAC will try to send
the frame a maximum of 16 times. The jam sequence consists of 55555555h. Note that the COL signal and
RX_CRS can be asynchronous to the TX_CLK and are only valid in half duplex mode.
Figure 11-20. MII Transmit Functional Timing
TXD[3:0]
TX_EN
TX_CLK
P R E A E M B L E F C S
Figure 11-21. MII Transmit Half Duplex with a Collision Functional Timing
TXD[3:0]
TX_EN
TX_CLK
P R E A M B L E J J J J J J J J
RX_CRS
COL
Receive Data (RXD[3:0]) is clocked from the external PHY synchronously with RX_CLK. The RX_CLK signal is
2.5MHz for 10Mbps operation and 25MHz for 100Mbps operation. RX_DV is asserted by the PHY from the first
Nibble of the preamble in 100Mbps operation or first nibble of SFD for 10Mbps operation. The data on RXD[3:0] is
not accepted by the MAC if RX_DV is low or RX_ERR is high (in DTE mode). RX_ERR should be tied low when in
DCE Mode.
Figure 11-22. MII Receive Functional Timing
RXD[3:0]
RX_CLK
P R E A E M B L E F C S
RX_CRS
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 338 of 375
In RMII Mode, TX_EN is high with the first bit of the preamble. The TXD[1:0] is synchronous with the 50MHz
REF_CLK. For 10Mbps operation, the data bit outputs are updated every 10 clocks.
Figure 11-23. RMII Transmit Interface Functional Timing
TXD[1:0]
TX_EN
REF_CLK
P R E A M B L E F C S
RMII Receive data on RXD[1:0] is expected to be synchronous with the rising edge of the 50MHz REF_CLK. The
data is only valid if RX_CRS is high. The external PHY asynchronously drives RX_CRS low during carrier loss.
Figure 11-24. RMII Receive Interface Functional Timing
RXD[1:0]
RX_CRS
REF_CLK
P R E A M B L E F C S
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 339 of 375
12. Operating Parameters
ABSOLUTE MAXIMUM RATINGS
Voltage Range on Any Lead with respect to VSS (except VDD) ...............................–0.5V to +5.5V
Supply Voltage Range (VDD3.3) with Respect to VSS ............................................–0.3V to +3.6V
Supply Voltage Range (VDD1.8) with Respect to VSS ............................................–0.3V to +2.0V
Ambient Operating Temperature Range* ...................................................................–40ºC to +85ºC
Junction Operating Temperature Range ...................................................................–40ºC to +125ºC
Storage Temperature .................................................................................................–55ºC to +125ºC
Soldering Temperature .............................................................................................See J-STD-020 specification
These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the operation
sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time can affect reliability.
*Ambient Operating Temperature Range is assuming the device is mounted on a JEDEC standard test board in a convection cooled JEDEC
test enclosure.
Note: The “typ” values listed in this document are not production tested.
Note: All A/C timing parameters are guaranteed by design.
Table 12-1. Recommended DC Operating Conditions
(VDD3.3 = 3.3V ±5%,VDD2.5 = 2.5 ± 5%, VDD1.8 = 1.8 ± 5%, Tj = -40°C to +85°C.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Logic 1 (Pins Other Than SDRAM) VIH 2.00 5.5 V
Logic 0 (Pins Other Than SDRAM) VIL -0.30 +0.80 V
Logic 1, DDR SDRAM Interface VIHDDR VREF +
0.31 2.625 V
Logic 0, DDR SDRAM Interface VILDDR -0.30
VREF –
0.31 V
Supply (VDD3.3) ±5% VDD3.3 3.135 3.3 3.465 V
Supply (VDD2.5) ±5% VDD2.5 2.375 2.5 2.625 V
Supply (VDDQ) ±5% VDDQ 2.375 2.5 2.625 V
Supply (VDD1.8) ±5% VDD1.8 1.71 1.8 1.89 V
Supply (AVDD) ±5% AVDD 1.71 1.8 1.89 V
VREF DDR Voltage Reference VVREF 1.1875 1.3125 V
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 340 of 375
Table 12-2. DC Electrical Characteristics
(Tj = -40°C to +85°C.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
I/O Supply Current (VDD3.3 = 3.465V) IDDIO Notes 1, 2 30 50 mA
Core Supply Current (VDD1.8 = 1.89) IDDCORE Notes 1, 2 260 300 mA
AVDD 1.8V Supply Current IAVDD Notes 1, 2 5 10 mA
VDDQ 2.5V Supply Current IVDDQ Notes 1, 2 120 150 mA
Power-Down I/O Current IPDIO Note 3 1 mA
Power-Down Core Current IPDCORE Note 3 1 mA
Power-Down AVDD Current IPDAVDD Note 3 5 mA
Power-Down VDDQ Current IPDVDDQ Note 3 1 mA
Lead Capacitance CIO 7 pF
Input Leakage IIL -10 +10
μA
Input Leakage (pins with internal pull-up) IILP -100 -10
μA
Output Leakage (when Hi-Z) ILO -10 +10
μA
Output Voltage (IOH = -4.0mA) VOH 4 ma outputs 2.4 V
Output Voltage (IOL = +4.0mA) VOL 4 ma outputs 0.4 V
Output Voltage (IOH = -8.0mA) VOH 8 ma outputs 2.4 V
Output Voltage (IOL = +12.0mA) VOL 12 ma outputs 0.4 V
Output Voltage DDR SDRAM
(IOH = -8.1mA) VOHDDR DDR SDRAM
outputs 1.9 V
Output Voltage DDR SDRAM
(IOL = +8.1mA) VOLDDR DDR SDRAM
outputs 0.4 V
Note 1: Typical total power consumption for the DS33X162 at 400Mbps is approximately 1W.
Note 2: All outputs loaded with rated capacitance; all inputs between VDD and VSS; inputs with pullups connected to VDD.
Note 3: All disable and power-down bits set, RST held low, outputs not loaded.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 341 of 375
12.1 Thermal Characteristics
Table 12-3. Thermal Characteristics
PARAMETER MIN TYP MAX NOTES
Ambient Temperature -40°C +85°C 1
Junction Temperature
+125°C
Theta-JA (θJA) in Still Air for
256-Ball CSBGA (17mm)2 +29.9°C/W 2
Theta-JA (θJA) in Still Air for
144-Ball CSBGA (10mm)2 +47.1°C/W 2
Note 1: The package is mounted on a four-layer JEDEC standard test board.
Note 2: Theta-JA (θJA) is the junction to ambient thermal resistance, when the package is mounted on a four-layer JEDEC standard test board.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 342 of 375
12.2 Transmit and Receive GMII Interface
Table 12-4. Transmit GMII Interface
1000Mbps
PARAMETER SYMBOL
MIN TYP MAX
UNITS
GTX_CLK, RX_CLK Period t1 7.5 8 8.5 ns
GTX_CLK Frequency 1/t1 125 - 100ppm 125 125 + 100ppm MHz
GTX_CLK, RX_CLK High Time t3 2.5 ns
GTX_CLK, RX_CLK Low Time t2 2.5 ns
GTX_CLK to TXD, TX_ENn Output
Delay t4 0.5 5.0 ns
Figure 12-1. Transmit GMII Interface Timing
GTX_CLK
TXD[1:0]n
TX_ENn
t4
t4
t2
t3
t1
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 343 of 375
Table 12-5. Receive GMII Interface
1000Mbps
PARAMETER SYMBOL
MIN TYP MAX
UNITS
RX_CLK Period t5 7.5 ns
RX_CLK Frequency 1/t5 125 MHz
RX_CLK High Period t6 2.5 ns
RX_CLK Low Period t7 2.5 ns
RXD, RX_DV to RX_CLK Setup Time t8 2.0 ns
RX_CLK to RXD, RX_DV Hold Time t9 0.0 ns
Figure 12-2. Receive GMII Interface Timing
t8 t9
RX_CLKn
RXD[3:0]n
RX_DVn
t8 t9
t5
t6
t7
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 344 of 375
12.3 Transmit and Receive MII Interface
Table 12-6. Transmit MII Interface
10Mbps 100Mbps
PARAMETER SYMBOL
MIN TYP MAX MIN TYP MAX
UNITS
TX_CLK Period t1 400 40 ns
TX_CLK Low Time t2 140 260 14 26 ns
TX_CLK High Time t3 140 260 14 26 ns
TX_CLK to TXD, TX_EN
Delay t4 0 20 0 20 ns
Figure 12-3. Transmit MII Interface Timing
TX_CLKn
TXD[3:0]n
TX_ENn
t4
t4
t2
t3
t1
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 345 of 375
Table 12-7. Receive MII Interface
10Mbps 100Mbps
PARAMETER SYMBOL
MIN TYP MAX MIN TYP MAX
UNITS
RX_CLK Period t5 400 40 ns
RX_CLK Low Time t6 140 260 14 26 ns
RX_CLK High Time t7 140 260 14 26 ns
RXD, RX_DV to RX_CLK
Setup Time t8 5 5 20 ns
RX_CLK to RXD, RX_DV
Hold Time t9 5 5 ns
Figure 12-4. Receive MII Interface Timing
t8 t9
RX_CLKn
RXD[3:0]n
RX_DVn
t8 t9
t5
t6
t7
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 346 of 375
12.4 Transmit and Receive RMII Interface
Table 12-8. Transmit RMII Interface
10Mbps 100Mbps
PARAMETER SYMBOL
MIN TYP MAX MIN TYP MAX
UNITS
REF_CLK Frequency
50MHz
±
50ppm
50MHz
±
50ppm
REF_CLK Period t1 20 20 ns
REF_CLK Low Time t2 7 13 7 13 ns
REF_CLK High Time t3 7 13 7 13 ns
REF_CLK to TXD,
TX_EN Delay t4 3 10 3 10 ns
Figure 12-5. Transmit RMII Interface Timing
REF_CLK
TXD[1:0]
TX_EN
t4
t4
t2
t3
t1
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 347 of 375
Table 12-9. Receive RMII Interface
10Mbps 100Mbps
PARAMETER SYMBOL
MIN TYP MAX MIN TYP MAX
UNITS
REF_CLK Frequency
50MHz
±
50ppm
50MHz
±
50ppm
MHz
REF_CLK Period t1 20 20 ns
REF_CLK Low Time t2 7 13 7 13 ns
REF_CLK High Time t3 7 13 7 13 ns
RXD, RX_CRS to
REF_CLK Setup Time t8 5 5 ns
REF_CLK to RXD,
RX_CRS Hold Time t9 5 5 ns
Figure 12-6. Receive RMII Interface Timing
t8 t9
REF_CLK
RXD[3:0]
RX_CRS
t8 t9
t5
t6
t7
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 348 of 375
12.5 MDIO Interface
Table 12-10. MDIO Interface
PARAMETER SYMBOL MIN TYP MAX UNITS
MDC Frequency 2.016 2.5 MHz
MDC Period t1 400 496 ns
MDC Low Time t2 160 ns
MDC High Time t3 160 ns
MDC to MDIO Output Delay t4 0 20 ns
MDIO Input Setup Time t5 10 ns
MDIO Input Hold Time t6 0 ns
Figure 12-7. MDIO Interface Timing
MDC
MDIO
t4
MDC
t2
t3
t1
MDIO
t5 t6
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 349 of 375
12.6 Transmit and Receive WAN Interface
Table 12-11. Transmit WAN Interface
PARAMETER SYMBOL MIN TYP MAX UNITS
TCLK Frequency 52 MHz
TCLK Period t1 19.2 1000 ns
TCLK Low Time t2 8 550 ns
TCLK High Time t3 8 550 ns
TCLK to TDATA Output Delay t4 11 ns
TSYNC Setup Time t5 7 ns
TSYNC Hold Time t6 7 ns
Figure 12-8. Transmit WAN Timing (Noninverted TCLK)
TCLKn
t2
t3
t1
TDATAn
t4
TSYNCn
t5
t6
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 350 of 375
Table 12-12. Receive WAN Interface
PARAMETER SYMBOL MIN TYP MAX UNITS
RCLK Frequency 52 MHz
RCLK Period t1 19.2 1000 ns
RCLK Low Time t2 8 1000 ns
RCLK High Time t3 8 1000 ns
RDATAn Setup Time t4 7 ns
RSYNCn Setup Time t4 7 ns
RDATAn Hold Time t5 2 ns
RSYNCn Hold Time t5 2 ns
Figure 12-9. Receive WAN Timing (Noninverted RCLK)
RCLKn
t2
t3
t1
RDATAn
t4 t5
t4 t5
RSYNCn
t4 t5
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 351 of 375
12.7 Transmit and Receive Voice Port Interface
Table 12-13. Transmit Voice Port Interface
PARAMETER SYMBOL MIN TYP MAX UNITS
TVCLK Frequency 1/t1
16.384 MHz
TVCLK Clock Duty Cycle (High/Low) T3/T2 40 50 60 %
TVCLK Rise or Fall Times (20% to 80%)
4 ns
TVDATA, TVDEN, TVSYNC to TVCLK
Setup Time T4 6
ns
TVCLK to TVDATA, TVDEN, TVSYNC
Hold Time T5 0
ns
Figure 12-10. Transmit Voice Port Interface Timing
TVCLK
t2
t3
t1
TVDATA
TVDEN
t4 t5
t4 t5
TVSYNC
t4 t5
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 352 of 375
Table 12-14. Receive Voice Port Interface
PARAMETER SYMBOL MIN TYP MAX UNITS
RVCLK Frequency 1/T1 16.384 MHz
RVCLK Clock Duty Cycle (High/Low) T3/T2 40 50 60 %
RVCLK Rise or Fall Times (20% to 80%) 4 ns
RVDEN, RVSYNC to RVCLK Setup Time t5 6 ns
RVCLK to RVDEN, RVSYNC Hold Time t6 0 ns
RVCLK to RVDATA Output Delay T4 2 10 ns
Figure 12-11. Receive Voice Port Interface Timing
RVCLK
t2
t3
t1
RVDATA
t4
RVSYNC
t5 t6
RVDEN
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 353 of 375
12.8 DDR SDRAM Interface
Table 12-15. DDR SDRAM Interface
PARAMETER SYMBOL MIN TYP MAX UNITS
SD_CLK Output Period t1 7.5 8.5 ns
SD_CLK Output High Period t2 3.6 4.4 ns
SD_CLK Output Low Period t3 3.6 4.4 ns
Address and Control Output Hold Time t4 3 5 ns
SDATA Setup to SD_UDQS, SD_LDQS t5 0.8 ns
SDATA Output hold to SD_UDQS, SD_LDQS t6 0.8 ns
SD_UDQS, SD_LDQS Write Preamble t7 6 10 ns
SD_UDQS, SD_LDQS Write Postamble t8 3.2 4.8 ns
SD_UDQS, SD_LDQS to SD_UDM, SD_LDM
Hold Time t9 1 ns
SD_UDM, SD_LDM to SD_UDQS, SD_LDQS
Setup Time t10 1 ns
SD_UDQS, SD_LDQS to SDATA (Read) t11 -1 +1 ns
SD_CLK to SD_LDQS, SD_UDQS (Read) t12 -1 +1 ns
SD_LDQS, SD_UDQS High Pulse Width t13 3.4 4.5 ns
SD_LDQS, SD_UDQS Low Pulse Width t14 3.4 4.5 ns
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 354 of 375
Figure 12-12. DDR SDRAM Interface Timing
SD_CLK
SD_CLK
WRITE t4
Address /
Control t5
t7 t8
t9
SDATA
SD_UDQS
SD_LDQS
t1
P0 P1 P2 P3
READ
SDATA
SD_UDQS
SD_LDQS
SD_UDM
SD_LDM
t6
t10
t11
t12
t2 t3
SD_CLK
SD_CLK
t14
t13
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 355 of 375
12.9 AC Characteristics—Microprocessor Bus Interface Timing
Table 12-16. Parallel Microprocessor Bus
(VDD = 3.3V ± 5%, TA = -40°C to +85°C.)
PARAMETER SYMBOL MIN TYP MAX UNITS
Setup Time for A[10:0] Valid to Either RD, or
WR Active t1 10 ns
Setup Time for CS Active to Either RD, or WR
Active t2 0 ns
Delay Time from Either RD or DS Active to
DATA[7:0] Valid t3 75 ns
Hold Time from Either RD or WR Inactive to
CS Inactive t4 0 ns
Hold Time from CS or RD or DS Inactive to
DATA[7:0] Tri-State t5 2 20 ns
Wait Time from WR Active to Latch Data t6 80 ns
Data Setup Time to WR Inactive t7 10 ns
Data Hold Time from WR Inactive t8 2 ns
Address Hold from WR inactive t9 0 ns
Write Access to Subsequent Write/Read
Access Delay Time t10 80 ns
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 356 of 375
Figure 12-13. Intel Bus Read Timing (MODE = 0)
t2 t3
Address Valid
Data Valid
t4
t9
t5
t10
ADDR[12:0]
DATA[7:0]
CS
RD
WR t1
Figure 12-14. Intel Bus Write Timing (MODE = 0)
t2 t6
Address Valid
t4
t9
t10
ADDR[12:0]
DATA[7:0]
CS
RD
WR
t7 t8
t1
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 357 of 375
Figure 12-15. Motorola Bus Read Timing (MODE = 1)
t2 t3
Address Valid
Data Valid
t4
t9
t5
t10
ADDR[12:0]
DATA[7:0]
CS
DS
RWt1
Figure 12-16. Motorola Bus Write Timing (MODE = 1)
t2 t6
Address Valid
t4
t9
t10
ADDR[12:0]
DATA[7:0]
CS
RW
DS
t7 t8
t1
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 358 of 375
Table 12-17. Multiplexed Microprocessor Bus
PARAMETER SYMBOL MIN TYP MAX UNITS
Input Rise/Fall Times 20 ns
Address Valid to WR, RD, or DS active t1 10 ns
CS Setup to DS, WR, or RD active t2 0 ns
Output Data Delay Time from DS or RD t3 75 ns
DS, WR, or RD Inactive to CS inactive t4 0 ns
Data Hold on Read t5 2 20 ns
Data Setup to WR, or DS active t7 10 ns
Data Hold on Write t8 2 ns
ALE Fall to DS, WR, or RD active t9 2 ns
DS, WR, or RD Inactive to DS, WR, or RD
Active t10 80 ns
Address Valid to ALE active t11 10 ns
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 359 of 375
Figure 12-17. Multiplexed Intel Bus Read Timing (MODE = 0)
t2 t3
Address Valid Data Valid
t4
t5
t10
ADDR[12:0]
DATA[7:0]
CS
RD
WR t1
ALE
t11 t9
Figure 12-18. Multiplexed Intel Bus Write Timing (MODE = 0)
t2 t3
Address Valid Data Valid
t4
t8
t10
ADDR[12:0]
DATA[7:0]
CS
WR
RD t1
ALE
t11
t7
t9
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 360 of 375
Figure 12-19. Multiplexed Motorola Bus Read Timing (MODE = 1)
t2 t3
Address Valid Data Valid
t4
t5
t10
ADDR[12:0]
DATA[7:0]
CS
DS
RWt1
ALE
t11 t9
Figure 12-20. Multiplexed Motorola Bus Write Timing (MODE = 1)
t2 t3
Address Valid Data Valid
t4
t8
t10
ADDR[12:0]
DATA[7:0]
CS
DS
RW
ALE
t11
t7
t1
t9
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 361 of 375
Table 12-18. SPI Microprocessor Bus Mode
SYMBOL (1) CHARACTERISTIC
(2) MIN MAX UNITS
Operating Frequency 10 MHz
t1 Cycle Time 100 ns
t2 Enable Lead Time 15 ns
t3 Enable Lag Time 15 ns
t4 Clock (SPI_CLK) High Time 50 ns
t5 Clock (SPI_CLK) Low Time 50 ns
t6 Data Setup Time (input) 5 ns
t7 Data Hold Time (input) 15 ns
t8 Disable Time
(3)25 ns
t9 Data Hold Time 5 ns
Note 1: Symbols refer to dimensions in the following figure.
Note 2: 100 pF load on all SPI pins.
Note 3: Hold time to high-impedance state.
Figure 12-21. SPI Interface Timing Diagram
CS
SPI_CL
K
MSB BITS 6 - 1 LSB NOTE 2
SPI_MISO
MSB BIT 15 BITS 13 - 0
SPI_MOSI
T9
T6 T7
T2 T1
T4 T5 T8
T3
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 362 of 375
12.10 JTAG Interface
Table 12-19. JTAG Interface
(VDD = 3.3V ±5%, TA = -40°C to +85°C.)
PARAMETER SYMBOL MIN TYP MAX UNITS
JTCLK Clock Period t1 1000 ns
JTCLK Clock High:Low Time (Note 1) t2 : t3 50 500 ns
JTCLK to JTDI, JTMS Setup Time t4 2 ns
JTCLK to JTDI, JTMS Hold Time t5 2 ns
JTCLK to JTDO Delay t6 2 50 ns
JTCLK to JTDO HIZ Delay t7 2 50 ns
JTRST Width Low Time t8 100 ns
Note 1: Clock can be stopped high or low.
Figure 12-22. JTAG Interface Timing
JTCL
K
t1
JTD0
t4 t5
t2 t3
t7
JTDI, JTMS,
J
TRS
T
t6
JTRST
t8
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 363 of 375
13. JTAG Information
The device supports the standard instruction codes SAMPLE:PRELOAD, BYPASS, and EXTEST. Optional public
instructions included are HIGHZ, CLAMP, and IDCODE. See Table 13-1. The device contains the following as
required by IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture.
Test Access Port (TAP)
TAP Controller
Instruction Register
Bypass Register
Boundary Scan Register
Device Identification Register
The Test Access Port has the necessary interface pins; JTRST, JTCLK, JTMS, JTDI, and JTDO. See the pin
descriptions for details. Refer to IEEE 1149.1-1990, IEEE 1149.1a-1993, and IEEE 1149.1b-1994 for details about
the Boundary Scan Architecture and the Test Access Port.
Figure 13-1. JTAG Functional Block Diagram
JTDI JTMS JTCLK
J
TRST JTDO
TEST ACCESS PORT
CONTROLLER
VDD V
DD V
DD
BOUNDRY SCAN
REGISTER
BYPASS
REGISTER
INSTRUCTION
REGISTER
IDENTIFICATION
REGISTER
MUX
SELECT
TRI-STATE
10kΩ 10kΩ 10k
Ω
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 364 of 375
13.1 JTAG TAP Controller State Machine Description
This section covers the details on the operation of the Test Access Port (TAP) Controller State Machine. The TAP
controller is a finite state machine that responds to the logic level at JTMS on the rising edge of JTCLK.
13.1.1 TAP Controller State Machine
The TAP controller is a finite state machine that responds to the logic level at JTMS on the rising edge of JTCLK.
See Figure 13-2 for a diagram of the state machine operation.
13.1.1.1Test-Logic-Reset
Upon power-up, the TAP Controller is in the Test-Logic-Reset state. The Instruction register will contain the
IDCODE instruction. All system logic of the device will operate normally.
13.1.1.2Run-Test-Idle
The Run-Test-Idle is used between scan operations or during specific tests. The Instruction register and test
registers will remain idle.
13.1.1.3Select-DR-Scan
All test registers retain their previous state. With JTMS LOW, a rising edge of JTCLK moves the controller into the
Capture-DR state and will initiate a scan sequence. JTMS HIGH during a rising edge on JTCLK moves the
controller to the Select-IR-Scan state.
13.1.1.4Capture-DR
Data may be parallel-loaded into the test data registers selected by the current instruction. If the instruction does
not call for a parallel load or the selected register does not allow parallel loads, the test register will remain at its
current value. On the rising edge of JTCLK, the controller will go to the Shift-DR state if JTMS is LOW or it will go to
the Exit1-DR state if JTMS is HIGH.
13.1.1.5Shift-DR
The test data register selected by the current instruction is connected between JTDI and JTDO and will shift data
one stage towards its serial output on each rising edge of JTCLK. If a test register selected by the current
instruction is not placed in the serial path, it will maintain its previous state.
13.1.1.6Exit1-DR
While in this state, a rising edge on JTCLK will put the controller in the Update-DR state, which terminates the
scanning process, if JTMS is HIGH. A rising edge on JTCLK with JTMS LOW will put the controller in the Pause-
DR state.
13.1.1.7Pause-DR
Shifting of the test registers is halted while in this state. All test registers selected by the current instruction will
retain their previous state. The controller will remain in this state while JTMS is LOW. A rising edge on JTCLK with
JTMS HIGH will put the controller in the Exit2-DR state.
13.1.1.8Exit2-DR
A rising edge on JTCLK with JTMS HIGH while in this state will put the controller in the Update-DR state and
terminate the scanning process. A rising edge on JTCLK with JTMS LOW will enter the Shift-DR state.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 365 of 375
13.1.1.9Update-DR
A falling edge on JTCLK while in the Update-DR state will latch the data from the shift register path of the test
registers into the data output latches. This prevents changes at the parallel output due to changes in the shift
register.
13.1.1.10 Select-IR-Scan
All test registers retain their previous state. The instruction register will remain unchanged during this state. With
JTMS LOW, a rising edge on JTCLK moves the controller into the Capture-IR state and will initiate a scan
sequence for the instruction register. JTMS HIGH during a rising edge on JTCLK puts the controller back into the
Test-Logic-Reset state.
13.1.1.11 Capture-IR
The Capture-IR state is used to load the shift register in the instruction register with a fixed value. This value is
loaded on the rising edge of JTCLK. If JTMS is HIGH on the rising edge of JTCLK, the controller will enter the
Exit1-IR state. If JTMS is LOW on the rising edge of JTCLK, the controller will enter the Shift-IR state.
13.1.1.12 Shift-IR
In this state, the shift register in the instruction register is connected between JTDI and JTDO and shifts data one
stage for every rising edge of JTCLK towards the serial output. The parallel register, as well as all test registers,
remains at their previous states. A rising edge on JTCLK with JTMS HIGH will move the controller to the Exit1-IR
state. A rising edge on JTCLK with JTMS LOW will keep the controller in the Shift-IR state while moving data one
stage thorough the instruction shift register.
13.1.1.13 Exit1-IR
A rising edge on JTCLK with JTMS LOW will put the controller in the Pause-IR state. If JTMS is HIGH on the rising
edge of JTCLK, the controller will enter the Update-IR state and terminate the scanning process.
13.1.1.14 Pause-IR
Shifting of the instruction shift register is halted temporarily. With JTMS HIGH, a rising edge on JTCLK will put the
controller in the Exit2-IR state. The controller will remain in the Pause-IR state if JTMS is LOW during a rising edge
on JTCLK.
13.1.1.15 Exit2-IR
A rising edge on JTCLK with JTMS LOW will put the controller in the Update-IR state. The controller will loop back
to Shift-IR if JTMS is HIGH during a rising edge of JTCLK in this state.
13.1.1.16 Update-IR
The instruction code shifted into the instruction shift register is latched into the parallel output on the falling edge of
JTCLK as the controller enters this state. Once latched, this instruction becomes the current instruction. A rising
edge on JTCLK with JTMS held low will put the controller in the Run-Test-Idle state. With JTMS HIGH, the
controller will enter the Select-DR-Scan state.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 366 of 375
Figure 13-2. TAP Controller State Diagram
1
0
0
1
11
1
1
1
11
11
11
00
00
0
1
00
00
11
00
00
Select
DR-Scan
Capture DR
Shift DR
Exit DR
Pause DR
Exit2 DR
Update DR
Select
IR-Scan
Capture IR
Shift IR
Exit IR
Pause IR
Exit2 IR
Update IR
Test Logic
Reset
Run Test/
Idle
0
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 367 of 375
13.2 Instruction Register
The instruction register contains a shift register as well as a latched parallel output and is 3 bits in length. When the
TAP controller enters the Shift-IR state, the instruction shift register is connected between JTDI and JTDO. While in
the Shift-IR state, a rising edge on JTCLK with JTMS LOW will shift the data one stage towards the serial output at
JTDO. A rising edge on JTCLK in the Exit1-IR state or the Exit2-IR state with JTMS HIGH will move the controller
to the Update-IR state. The falling edge of that same JTCLK will latch the data in the instruction shift register to the
instruction parallel output. Instructions supported by the device and its respective operational binary codes are
shown in Table 13-1.
Table 13-1. Instruction Codes for IEEE 1149.1 Architecture
INSTRUCTION SELECTED REGISTER INSTRUCTION CODES
SAMPLE:PRELOAD Boundary Scan 010
BYPASS Bypass 111
EXTEST Boundary Scan 000
CLAMP Bypass 011
HIGHZ Bypass 100
IDCODE Device Identification 001
13.2.1 SAMPLE:PRELOAD
This is a mandatory instruction for the IEEE 1149.1 specification. This instruction supports two functions. The
digital I/Os of the device can be sampled at the boundary scan register without interfering with the normal operation
of the device by using the Capture-DR state. SAMPLE:PRELOAD also allows the device to shift data into the
boundary scan register via JTDI using the Shift-DR state.
13.2.2 BYPASS
When the BYPASS instruction is latched into the parallel instruction register, JTDI connects to JTDO through the
one-bit bypass test register. This allows data to pass from JTDI to JTDO not affecting the device’s normal
operation.
13.2.3 EXTEST
This allows testing of all interconnections to the device. When the EXTEST instruction is latched in the instruction
register, the following actions occur. Once enabled via the Update-IR state, the parallel outputs of all digital output
pins are driven. The boundary scan register is connected between JTDI and JTDO. The Capture-DR will sample all
digital inputs into the boundary scan register.
13.2.4 CLAMP
All digital outputs of the device will output data from the boundary scan parallel output while connecting the bypass
register between JTDI and JTDO. The outputs will not change during the CLAMP instruction.
13.2.5 HIGHZ
All digital outputs of the device are placed in a high-impedance state. The BYPASS register is connected between
JTDI and JTDO.
13.2.6 IDCODE
When the IDCODE instruction is latched into the parallel instruction register, the identification test register is
selected. The device identification code is loaded into the identification register on the rising edge of JTCLK
following entry into the Capture-DR state. Shift-DR can be used to shift the identification code out serially via
JTDO. During Test-Logic-Reset, the identification code is forced into the instruction register’s parallel output. The
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 368 of 375
ID code will always have a 1 in the LSB position. The next 11 bits identify the manufacturer’s JEDEC number and
number of continuation bytes followed by 16 bits for the device and 4 bits for the version.
13.3 JTAG ID Codes
Table 13-2. ID Code Structure
DEVICE REVISION
ID[31:28]
DEVICE CODE
ID[27:12]
MANUFACTURER’S CODE
ID[11:1]
REQUIRED
ID[0]
DS33Xyy rev A1 0000 0000 0000 0000 0110 000 1010 0001 1
DS33Xyy rev B1 0001 0000 0000 0000 0110 000 1010 0001 1
13.4 Test Registers
IEEE 1149.1 requires a minimum of two test registers: the bypass register and the boundary scan register. An
optional test register has been included in the device. This test register is the identification register and is used in
conjunction with the IDCODE instruction and the Test-Logic-Reset state of the TAP controller.
13.4.1 Boundary Scan Register
This register contains both a shift register path and a latched parallel output for all control cells and digital I/O cells
and is n bits in length.
13.4.2 Bypass Register
This is a single one-bit shift register used in conjunction with the BYPASS, CLAMP, and HIGHZ instructions, which
provides a short path between JTDI and JTDO.
13.4.3 Identification Register
The identification register contains a 32-bit shift register and a 32-bit latched parallel output. This register is
selected during the IDCODE instruction and when the TAP controller is in the Test-Logic-Reset state.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 369 of 375
13.5 JTAG Functional Timing
This functional timing for the JTAG circuits shows:
The JTAG controller starting from reset state.
Shifting out the first 4 LSB bits of the IDCODE.
Shifting in the BYPASS instruction (111) while shifting out the mandatory X01 pattern.
Shifting the TDI pin to the TDO pin through the bypass shift register.
An asynchronous reset occurs while shifting.
Figure 13-3. JTAG Functional Timing
JTCLK
JTRST
JTMS
JTDI
JTDO
(STATE) Reset
X
Run Test
Idle
Select DR
Scan
Capture
DR
Shift
DR
Exit1
DR
Update
DR
Select DR
Scan
Select IR
Scan
Capture
IR
Shift IR Exit1
IR
Update
IR
Select DR
Scan
Capture
DR
Shift
DR
Test
Logic Idle
(INST) IDCODE BYPASS IDCODE
X
X X X
X
Output
Pin Output pin level change if in "EXTEST" instruction mode
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 370 of 375
14. Pin Configuration
14.1 DS33X162/X161/X82/X81/X42/X41 Pin Configuration—256-Ball CSBGA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A JTCLK SDA[3] SDA[10] SDCS SDA[12] SRAS SWE
SD_CLK SD_CLK VSS VDDQ VDDQ SDATA[6] SDATA[4] VDDQ VDDQ
B JTRST SDA[2] SBA[1] SBA[0] SDA[6] SDA[9] SCAS VDD2.5 VREF SDATA[12] SDATA[13] SDATA[15] SDATA[7] VSSQ SDATA[2] SDATA[1]
C JTMS SDA[1] SDA[0]
SD_CLKE
N SDA[7] SDA[11] VSS VSSQ SDATA[9] SDATA[11] SDATA[14] SDATA[5] SD_LDQS VDDQ SDATA[3] SDATA[0]
D RDATA1 JTDI SDA[4] SDA[5] SDA[8] VSSQ SD_UDM SD_UDQS SDATA[8] VDDQ VDD1.8 SDATA[10] SD_LDM VDDQ VSSQ VSSQ
E RCLK1 JTDO VDD1.8 VDD1.8 VDD2.5 VSSQ VDD2.5 RST VDD3.3 VDD3.3 AVSS VDD3.3 RX_CRS1 COL1 VSSQ SYSCLKI
F RSYNC1 RDATA6 RDATA5 RCLK5 AVDD VSS VDD3.3 VSS VSS VSS VSS VDD1.8
RXD[1] /
RXD1[1]
RXD[2] /
RXD1[2] MDC VSS
G RCLK3 RSYNC3 RSYNC5 RDATA3 VDD3.3 VSS RCLK2 RDATA2 VSS A8 A10 VDD1.8 MDIO RXD[0] /
RXD1[0] RX_DV1 RX_CLK1
H RSYNC4 RDATA4 RSYNC6 RCLK4 VSS DNC RSYNC2 DNC VSS VSS VDD1.8 VDD1.8
TXD[3] /
TXD1[3]
RXD[3] /
RXD1[3] RX_ERR1 HIZ
J RCLK6 RCLK10 RCLK9 RCLK8 RCLK7 DNC ALE CS RD / DS WR / RW INT MODE TXD[0] /
TXD1[0] RX_CRS2 TXD[2] /
TXD1[2] SPI_SEL
K RDATA7 RDATA9 RDATA10 RSYNC9 VDD3.3 D0 /
SPI_MISO
D2 /
SPI_CLK D4 D6 /
SPI_CPHA A0 A2 A6 A4 TX_EN1
TXD[1] /
TXD1[1]
RXD[7] /
RXD2[3]
L RDATA8 RSYNC8 RSYNC11 RDATA12 RCLK13 D1 /
SPI_MOSI D3 D5 /SPI_
SWAP A1 A3 A5 A7 A9 TX_ERR1 RXD[6] /
RXD2[2] COL2
M RSYNC10 RCLK11 VDD1.8 RSYNC13 TDATA5 TSYNC3 TCLK5 VDD3.3 D7 /
SPI_CPOL TMCLK4 RX_DV2 RX_ERR2 VSS RMII_SEL TX_CLK1 RXD[5] /
RXD2[1]
N RDATA11 RCLK12 RDATA15 RDATA16 RSYNC7 TDATA6 TDATA7 TSYNC7 TDATA4 TDATA9 TDATA11 TDATA15 RX_CLK2 TMSYNC4 TXD[4] /
TXD2[0]
RXD[4] /
RXD2[0]
P RSYNC12 RDATA13 RSYNC15 VDD3.3 TCLK2 TDATA3 TSYNC4 TSYNC6 TCLK4 TCLK6 TDATA16 TDATA14 DCEDTES TDATA13 TXD[5] /
TXD2[1] TX_EN2
R RDATA14 RSYNC14 RCLK16 VSS TCLK1 TSYNC1 TSYNC5 TCLK3 TDATA8 TCLK8 TDATA10 TDATA12 VDD1.8 GTX_CLK TXD[6] /
TXD2[2] TX_ERR2
T RCLK14 DNC RSYNC16 RCLK15 VSS TDATA1 TDATA2 TSYNC2 TSYNC8 TCLK7 TMCLK3 TMSYNC3 REF_CLK VDD3.3 TXD[7] /
TXD2[3] TX_CLK2
Note: Shaded pins do not apply to all devices in the product family. See the pin listing for specific pin availability. In the high port
count devices, the shaded input pins DO NOT HAVE PULLUP/PULLDOWN resistors. Consideration must be taken during
board design to bias the inputs appropriately, and to float output pins (TDATA5-TDATA16, TX_EN2, TX_ERR2) if lower port
count designs are to be potentially stuffed with higher port count devices.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 371 of 375
14.2 DS33W41/DS33W11 Pin Configuration—256-Ball CSBGA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A JTCLK SDA[3] SDA[10] SDCS SDA[12] SRAS SWE
SD_CLK SD_CLK VSS VDDQ VDDQ SDATA[6] SDATA[4] VDDQ VDDQ
B JTRST SDA[2] SBA[1] SBA[0] SDA[6] SDA[9] SCAS VDD2.5 VREF SDATA[12] SDATA[13] SDATA[15] SDATA[7] VSSQ SDATA[2] SDATA[1]
C JTMS SDA[1] SDA[0]
SD_CLKE
N SDA[7] SDA[11] VSS VSSQ SDATA[9] SDATA[11] SDATA[14] SDATA[5] SD_LDQS VDDQ SDATA[3] SDATA[0]
D RDATA1 JTDI SDA[4] SDA[5] SDA[8] VSSQ SD_UDM SD_UDQS SDATA[8] VDDQ VDD1.8 SDATA[10] SD_LDM VDDQ VSSQ VSSQ
E RCLK1 JTDO VDD1.8 VDD1.8 VDD2.5 VSSQ VDD2.5 RST VDD3.3 VDD3.3 AVSS VDD3.3 RX_CRS1 COL1 VSSQ SYSCLKI
F RSYNC1 RVDATA RVCLK RVSYNC AVDD VSS VDD3.3 VSS VSS VSS VSS VDD1.8
RXD[1] /
RXD1[1]
RXD[2] /
RXD1[2] MDC VSS
G RCLK3 RSYNC3 RVDEN RDATA3 VDD3.3 VSS RCLK2 RDATA2 VSS A8 A10 VDD1.8 MDIO
RXD[0] /
RXD1[0] RX_DV1 RX_CLK1
H RSYNC4 RDATA4 RCLK4 VSS DNC RSYNC2 DNC VSS VSS VDD1.8 VDD1.8
TXD[3] /
TXD1[3]
RXD[3] /
RXD1[3] RX_ERR1 HIZ
J DNC ALE CS RD / DS WR / RW INT MODE TXD[0] /
TXD1[0] TXD[2] /
TXD1[2] SPI_SEL
K VDD3.3 D0 /
SPI_MISO
D2 /
SPI_CLK D4 D6 /
SPI_CPHA A0 A2 A6 A4 TX_EN1
TXD[1] /
TXD1[1]
RXD[7] /
RXD2[3]
L D1 /
SPI_MOSI D3 D5 /SPI_
SWAP A1 A3 A5 A7 A9 TX_ERR1 RXD[6] /
RXD2[2]
M VDD1.8 TVDATA TSYNC3 TVCLK VDD3.3 D7 /
SPI_CPOL VSS RMII_SEL TX_CLK1 RXD[5] /
RXD2[1]
N TVDEN TDATA4 TXD[4] /
TXD2[0]
RXD[4] /
RXD2[0]
P VDD3.3 TCLK2 TDATA3 TSYNC4 TCLK4 DCEDTES TXD[5] /
TXD2[1]
R VSS TCLK1 TSYNC1 TVSYNC TCLK3 VDD1.8 GTX_CLK TXD[6] /
TXD2[2]
T DNC RCLK15 VSS TDATA1 TDATA2 TSYNC2 REF_CLK VDD3.3 TXD[7] /
TXD2[3]
Note 1: Shaded pins do not apply to the DS33W11. See the pin listing for specific pin availability.
Note 2: The TVDEN pin is an input on the DS33W41/DS33W11, and is an output pin on other devices in the product family.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 372 of 375
14.3 DS33X11 Pin Configuration—144-Ball CSBGA
1 2 3 4 5 6 7 8 9 10 11 12
A VSS VDDQ SDA[0] SDA[9]
SDCS VSS SD_CLK SD_CLK SDATA[15] SDATA[4] SDATA[0] VSS
B VDD2.5 SDA[2] SDA[8] SDA[11] SRAS VSS VSS SDATA[10] SDATA[14] SDATA[5] SDATA[1] VDDQ
C SDA[4] SDA[6] SDA[10] SBA[1] SWE VDD2.5 VDDQ SDATA[8] SDATA[12] SDATA[7] SDATA[3] AVSS
D SDA[3] SDA[1] SDA[12] SBA[0] SCAS VREF SD_UDQS SDATA[9] SDATA[13] SDATA[6] SDATA[2] AVDD
E SDA[5] SDA[7] VSS VDDQ SD_CLKEN SD_LDM SD_UDM SD_LDQS SDATA[11] VDDQ VSS SYSCLKI
F VDD1.8 RST VDD3.3 DNC DNC VSS VSS TX_EN1 RX_DV1 HIZ VDD3.3 VSS
G RCLK1 JTMS JTCLK JTRST INT VDD1.8 VDD1.8 TX_ERR1 RX_ERR1 COL1 VSS RX_CRS1
H VDD3.3 JTDO JTDI MDIO MDC VDD3.3 VDD3.3 TXD[2] TXD[3] RXD[2] RXD[3] VDD1.8
J RSYNC1 RDATA1 CS SPI_MISO SPI_SWAP VSS VSS TXD[0] TXD[1] RXD[0] RXD[1] RX_CLK1
K VSS VSS DNC SPI_MOSI SPI_CPHA VSS RMII_SEL TXD[5] TXD[7] RXD[6] RXD[7] VDD3.3
L VDD1.8 DNC TDATA1 SPI_CLK SPI_CPOL VSS DCEDTES TXD[4] TXD[6] RXD[4] RXD[5] TX_CLK1
M VSS VDD3.3 TCLK1 TSYNC1 VDD1.8 VSS VDD3.3 REF_CLK VSS GTX_CLK VDD1.8 VSS
Note that the parallel bus is not available in the 144-pin DS33X11, and the SPI slave port must be used for processor control.
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 373 of 375
15. Package Information
The package drawing(s) in this data sheet may not reflect the most current specifications. The package number provided for
each package is a link to the latest package outline information. For the latest package outline drawings and land patterns, go to
www.maxim-ic.com/packages.
15.1 256-Ball CSBGA, 17mm x 17mm (56-G6017-001)
________________________________________________ DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 374 of 375
15.2 144-Ball CSBGA, 10mm x 10mm (56-G6008-003)
________________________________________________DS33X162/X161/X82/X81/X42/X41/X11/W41/W11
Rev: 063008 375 of 375
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses
are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2008 Maxim Integrated Products is a registered trademark of Maxim Integrated Products.
16. Document Revision History
REVISION
DATE DESCRIPTION PAGES
CHANGED
012108 Initial release (initial preliminary release 060607).
Added Section 8.19.3: Programmable Ethernet Destination Address Filtering. 85
Corrected AR.BFTOA bit names. 113, 223
Corrected SU.GMIIA bits 10:6 names. 131, 279
Corrected WNVDF bit definition (SU.WEM, bit 7). 164
Corrected LLIP[2:1] bit definition (SU.LIM, bits 3:2). 171
Clarified LP1PF[2:1] and LP1ETF[2:1] bit definitions (SU.LP1C, bits 4:1). 178
Clarified LP2PF[2:1] and LP2ETF[2:1] bit definitions (SU.LP2C, bits 4:1). 179
Corrected AR.WQ1EA bits 15:8 names to correctly match the register bit map in
Table 10-2. 210
Clarified WISPL bit definition (AR.MQC, bit 3). 221
Updated EBBYS bit definition (PP.EMCR, bit 8). 230
Updated DBBS bit definition (PP.DMCR, bit 9). 236
Clarified LM bit definition (SU.MACCR, bit 12). 276
050808
Added PM bit definition (SU.MACFFR, bit 0). 277
060508 Removed future status from DS33W11 in the Ordering Information table. 1
063008 Removed future status from DS33W41, DS33X41, DS33X42, DS33X82, and
DS33X161 in the Ordering Information table. 1