SKB15N60
1 Rev. 2.3 12.06.2013
Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled
Diode
75% lower Eoff compared to previous generation
combined with low conduction losses
Short circuit withstand time 10 s
Designed for frequency inverters for washing machines,
fans, pumps and vacuum cleaners
NPT-Technology for 600V applications offers:
- very tight parameter distribution
- high ruggedness, temperature stable behaviour
- parallel switching capability
Very soft, fast recovery anti-parallel Emitter Controlled
Diode
Pb-free lead plating; RoHS compliant
Qualified according to JEDEC1for target applications
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type VCE ICVCE(sat)TjMarking Package
SKB15N60 600V 15A 2.3V 150CK15N60 PG-TO263-3-2
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage VCE 600 V
DC collector current
TC= 25C
TC= 100C
IC31
15
A
Pulsed collector current, tplimited by Tjmax ICpuls 62
Turn off safe operating area
VCE 600V, Tj150C-62
Diode forward current
TC= 25C
TC= 100C
IF31
15
Diode pulsed current, tplimited by Tjmax IFpuls 62
Gate-emitter voltage VGE 20 V
Short circuit withstand time2
VGE = 15V, VCC 600V, Tj150CtSC 10 s
Power dissipation
TC= 25CPtot 139 W
Operating junction and storage temperature Tj,Tstg -55...+150 C
Soldering temperature (reflow soldering, MSL1) Ts260 °C
1J-STD-020 and JESD-022
2Allowed number of short circuits: <1000; time between short circuits: >1s.
PG-TO263-3-2
G
C
E
SKB15N60
2 Rev. 2.3 12.06.2013
Thermal Resistance
Parameter Symbol Conditions Max. Value Unit
Characteristic
IGBT thermal resistance,
junction case RthJC 0.9 K/W
Diode thermal resistance,
junction case RthJCD 1.7
SMD version, device on PCB1) RthJA 40
Electrical Characteristic, at Tj= 25 C, unless otherwise specified
Parameter Symbol Conditions Value Unit
min. Typ. max.
Static Characteristic
Collector-emitter breakdown voltage V(BR)CES VGE=0V, IC=500A600 - - V
Collector-emitter saturation voltage VCE(sat) VGE = 15V, IC=15A
Tj=25C
Tj=150C1.7
-2
2.3 2.4
2.8
Diode forward voltage VFVGE=0V, IF=15A
Tj=25C
Tj=150C
1.2
-1.4
1.25 1.8
1.65
Gate-emitter threshold voltage VGE(th) IC=400A,VCE=VGE 3 4 5
Zero gate voltage collector current ICES VCE=600V,VGE=0V
Tj=25C
Tj=150C-
--
-40
2000
A
Gate-emitter leakage current IGES VCE=0V,VGE=20V - - 100 nA
Transconductance gfs VCE=20V, IC=15A 3 10.9 - S
Dynamic Characteristic
Input capacitance Ciss VCE=25V,
VGE=0V,
f=1MHz
- 800 960 pF
Output capacitance Coss - 84 101
Reverse transfer capacitance Crss - 52 62
Gate charge QGate VCC=480V, IC=15A
VGE=15V - 76 99 nC
Internal emitter inductance
measured 5mm (0.197 in.) from case LE- 7 - nH
Short circuit collector current2) IC(SC) VGE=15V,tSC10s
VCC 600V,
Tj150C
- 150 - A
1) Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2(one layer, 70m thick) copper area for
collector connection. PCB is vertical without blown air.
2) Allowed number of short circuits: <1000; time between short circuits: >1s.
SKB15N60
3 Rev. 2.3 12.06.2013
Switching Characteristic, Inductive Load, at Tj=25 C
Parameter Symbol Conditions Value Unit
min. typ. max.
IGBT Characteristic
Turn-on delay time td(on) Tj=25C,
VCC=400V,IC=15A,
VGE=0/15V,
RG=21,
L
1) =180nH,
C
1) =250pF
Energy losses include
“tail” and diode reverse
recovery.
- 32 38 ns
Rise time tr- 23 28
Turn-off delay time td(off) - 234 281
Fall time tf- 46 55
Turn-on energy Eon - 0.30 0.36 mJ
Turn-off energy Eoff - 0.27 0.35
Total switching energy Ets - 0.57 0.71
Anti-Parallel Diode Characteristic
Diode reverse recovery time trr
tS
tF
Tj=25C,
VR=200V, IF=15A,
diF/dt=200A/s
-
-
-
279
28
254
-
-
-
ns
Diode reverse recovery charge Qrr - 390 - nC
Diode peak reverse recovery current Irrm - 5.0 - A
Diode peak rate of fall of reverse
recovery current during tb
dirr/dt - 180 - A/s
Switching Characteristic, Inductive Load, at Tj=150 C
Parameter Symbol Conditions Value Unit
min. typ. max.
IGBT Characteristic
Turn-on delay time td(on) Tj=150C
VCC=400V,IC=15A,
VGE=0/15V,
RG=21,
L
1) =180nH,
C
1) =250pF
Energy losses include
“tail” and diode reverse
recovery.
- 31 38 ns
Rise time tr- 23 28
Turn-off delay time td(off) - 261 313
Fall time tf- 54 65
Turn-on energy Eon - 0.45 0.54 mJ
Turn-off energy Eoff - 0.41 0.53
Total switching energy Ets - 0.86 1.07
Anti-Parallel Diode Characteristic
Diode reverse recovery time trr
tS
tF
Tj=150C
VR=200V, IF=15A,
diF/dt=200A/s
-
-
-
360
40
320
-
-
-
ns
Diode reverse recovery charge Qrr - 1020 - nC
Diode peak reverse recovery current Irrm - 7.5 - A
Diode peak rate of fall of reverse
recovery current during tb
dirr/dt - 200 - A/s
1) Leakage inductance L
and Stray capacity Cdue to dynamic test circuit in Figure E.
SKB15N60
4 Rev. 2.3 12.06.2013
IC,COLLECTOR CURRENT
10Hz 100Hz 1kHz 10kHz 100kHz
0A
10A
20A
30A
40A
50A
60A
70A
80A
TC=110°C
TC=80°C
IC,COLLECTOR CURRENT
1V 10V 100V 1000V
0.1A
1A
10A
100A
DC
1ms
200s
50s
15s
tp=5s
f,SWITCHING FREQUENCY VCE,COLLECTOR-EMITTER VOLTAGE
Figure 1.
Collector current as a function of
switching frequency
(Tj150C, D = 0.5, VCE = 400V,
V
GE
= 0/+15V, R
G
= 21)
Figure 2. Safe operating area
(D = 0, TC= 25C, Tj150C)
Ptot,POWER DISSIPATION
25°C 50°C 75°C 100°C 125°C
0W
20W
40W
60W
80W
100W
120W
140W
IC,COLLECTOR CURRENT
25°C 50°C 75°C 100°C 125°C
0A
5A
10A
15A
20A
25A
30A
35A
TC,CASE TEMPERATURE TC,CASE TEMPERATURE
Figure 3. Power dissipation as a function
of case temperature
(T
j
150C)
case temperature
(V
GE
15V, T
j
150C)
I
c
I
c
SKB15N60
5 Rev. 2.3 12.06.2013
IC,COLLECTOR CURRENT
0V 1V 2V 3V 4V 5V
0A
5A
10A
15A
20A
25A
30A
35A
40A
45A
50A
15V
13V
11V
9V
7V
5V
VGE=20V
IC,COLLECTOR CURRENT
0V 1V 2V 3V 4V 5V
0A
5A
10A
15A
20A
25A
30A
35A
40A
45A
50A
15V
13V
11V
9V
7V
5V
VGE=20V
VCE,COLLECTOR-EMITTER VOLTAGE VCE,COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics
(T
j
= 25C)
Figure 6. Typical outpu
t characteristics
(T
j
= 150C)
IC,COLLECTOR CURRENT
0V 2V 4V 6V 8V 10V
0A
5A
10A
15A
20A
25A
30A
35A
40A
45A
50A
-55°C
+150°C
Tj=+25°C
VCE(sat),COLLECTOR-EMITTER SATURATION VOLTAGE
-50°C 0°C 50°C 100°C 150°C
1.0V
1.5V
2.0V
2.5V
3.0V
3.5V
4.0V
VGE,GATE-EMITTER VOLTAGE Tj,JUNCTION TEMPERATURE
Figure 7. Typical transfer chara
cteristics
(VCE = 10V)
Figure 8. Typical collector
-
emitter
saturation voltage as a function of junction
temperature
(V
GE
= 15V)
IC= 15A
IC= 30A
SKB15N60
6 Rev. 2.3 12.06.2013
t,SWITCHING TIMES
5A 10A 15A 20A 25A 30A
10ns
100ns
tr
td(on)
tf
td(off)
t,SWITCHING TIMES
0204060
10ns
100ns
tr
td(on)
tf
td(off)
IC,COLLECTOR CURRENT RG,GATE RESISTOR
Figure 9. Typical switching times as a
function of collector current
(inductive load, Tj= 150C, VCE = 400V,
VGE = 0/+15V, RG= 21,
Dynamic test circuit in Figure E)
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, Tj= 150C, VCE = 400V,
VGE = 0/+15V, IC= 15A,
Dynamic test circuit in Figure E)
t,SWITCHING TIMES
0°C 50°C 100°C 150°C
10ns
100ns
tr
td(on)
tf
td(off)
VGE(th),GATE-EMITTER THRESHOLD VOLTAGE
-50°C 0°C 50°C 100°C 150°C
2.0V
2.5V
3.0V
3.5V
4.0V
4.5V
5.0V
5.5V
typ.
min.
max.
Tj,JUNCTION TEMPERATURE Tj,JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+15V,
IC= 15A, RG= 21,
Dynamic test circuit in Figure E)
Figure 12. Gate
-
emitter threshold voltage
as a function of junction temperature
(IC= 0.4mA)
SKB15N60
7 Rev. 2.3 12.06.2013
E,SWITCHING ENERGY LOSSES
0A 5A 10A 15A 20A 25A 30A 35A
0.0mJ
0.2mJ
0.4mJ
0.6mJ
0.8mJ
1.0mJ
1.2mJ
1.4mJ
1.6mJ
1.8mJ
Eon*
Eoff
Ets*
E,SWITCHING ENERGY LOSSES
020406080
0.0mJ
0.2mJ
0.4mJ
0.6mJ
0.8mJ
1.0mJ
1.2mJ
1.4mJ
Ets*
Eon*
Eoff
IC,COLLECTOR CURRENT RG,GATE RESISTOR
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, Tj= 150C, VCE = 400V,
VGE = 0/+15V, RG= 21,
Dynamic test circuit in Figure E)
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, Tj= 150C, VCE = 400V,
VGE = 0/+15V, IC= 15A,
Dynamic test circuit in Figure E)
E,SWITCHING ENERGY LOSSES
0°C 50°C 100°C 150°C
0.0mJ
0.2mJ
0.4mJ
0.6mJ
0.8mJ
1.0mJ
Ets*
Eon*
Eoff
ZthJC,TRANSIENT THERMAL IMPEDANCE
1µs 10µs 100µs 1ms 10ms 100ms 1s
10-4K/W
10-3K/W
10-2K/W
10-1K/W
100K/W
0.01
0.02
0.05
0.1
0.2
single pulse
D=0.5
Tj,JUNCTION TEMPERATURE tp,PULSE WIDTH
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+15V,
IC= 15A, RG= 21,
Dynamic test circuit in Figure E)
Figure 16. IGBT transient thermal
impedance as a function of pulse width
(D=tp/T)
*) Eon and Ets include losses
due to diode recovery. *) Eon and Ets include losses
due to diode recovery.
*) Eon and Ets include losses
due to diode recovery.
C
1
=
1
/
R
1
R1R2
C
2
=
2
/
R
2
R,( 1/W )
,(s)
0.5321 0.04968
0.2047 2.58*10
-
3
0.1304 2.54*10
-
4
0.0027 3.06*10
-
4
SKB15N60
8 Rev. 2.3 12.06.2013
VGE,GATE-EMITTER VOLTAGE
0nC 25nC 50nC 75nC 100nC
0V
5V
10V
15V
20V
25V
480V
120V
C,CAPACITANCE
0V 10V 20V 30V
10pF
100pF
1nF
Crss
Coss
Ciss
Q
GE
,GATE CHARGE V
CE
,COLLECTOR-EMITTER VOLTAGE
Figure 17. Typical gate charge
(IC= 15A)
Figure 18. Typical capacitance as a
function of collector-emitter voltage
(V
GE
= 0V, f= 1MHz)
tsc,SHORT CIRCUIT WITHSTAND TIME
10V 11V 12V 13V 14V 15V
0s
5s
10s
15s
20s
25
s
IC(sc),SHORT CIRCUIT COLLECTOR CURRENT
10V 12V 14V 16V 18V 20V
0A
50A
100A
150A
200A
250A
V
GE
,GATE-EMITTER VOLTAGE V
GE
,GATE-EMITTER VOLTAGE
Figure 19. Short circuit withstand time as a
function of gate-emitter voltage
(V
CE
= 600V, start at T
j
= 25C)
Figure 20. Typical short circuit collector
current as a function of gate-emitter voltage
(V
CE
600V, T
j
= 150C)
SKB15N60
9 Rev. 2.3 12.06.2013
trr,REVERSE RECOVERY TIME
100A/s 300A/s 500A/s 700A/s 900A/s
0ns
100ns
200ns
300ns
400ns
500ns
IF= 7.5A
IF= 15A
IF= 30A
Qrr,REVERSE RECOVERY CHARGE
100A/s 300A/s 500A/s 700A/s 900A/s
0nC
500nC
1000nC
1500nC
2000nC
IF= 30A
IF= 15A
IF= 7.5A
di
F
/dt,DIODE CURRENT SLOPE di
F
/dt,DIODE CURRENT SLOPE
Figure 21. Typical reverse recovery time as
a function of diode current slope
(VR= 200V, Tj= 125C,
Dynamic test circuit in Figure E)
Figure 22. Typical reverse recovery charge
as a function of diode current slope
(VR= 200V, Tj= 125C,
Dynamic test circuit in Figure E)
Irr,REVERSE RECOVERY CURRENT
100A/s 300A/s 500A/s 700A/s 900A/s
0A
4A
8A
12A
16A
20A
IF= 7.5A
IF= 30A
IF= 15A
di
rr
/dt
,
DIODE PEAK RATE OF FALL
OF REVERSE RECOVERY
CURRENT
100A/s 300A/s 500A/s 700A/s 900A/s
0A/s
200A/s
400A/s
600A/s
800A/s
1000A/
s
di
F
/dt,DIODE CURRENT SLOPE di
F
/dt,DIODE CURRENT SLOPE
Figure 23. Typical reverse recovery current
as a function of diode current slope
(VR= 200V, Tj= 125C,
Dynamic test circuit in Figure E)
Figure 24. Typical diode peak rate of fall of
reverse recovery current as a function of
diode current slope
(VR= 200V, Tj= 125C,
Dynamic test circuit in Figure E)
SKB15N60
10 Rev. 2.3 12.06.2013
IF,FORWARD CURRENT
0.0V 0.5V 1.0V 1.5V 2.0V
0A
5A
10A
15A
20A
25A
30A
150°C
-55°C
25°C
100°C
VF,FORWARD VOLTAGE
-40°C 0°C 40°C 80°C 120°C
1.0V
1.5V
2.0V
V
F
,FORWARD VOLTAGE T
j
,JUNCTION TEMPERATURE
Figure 25. Typical diode forward curr
ent as
a function of forward voltage
Figure 26. Typical diode forward voltage as
a function of junction temperature
ZthJCD,TRANSIENT THERMAL IMPEDANCE
1µs 10µs 100µs 1ms 10ms 100ms 1s
10-2K/W
10-1K/W
100K/W
0.01
0.02
0.05
0.1
0.2
single pulse
D=0.5
t
p
,PULSE WIDTH
Figure 27. Diode transient thermal
impedance as a function of pulse width
(D=t
p
/T)
IF= 15A
I
F
=
30
A
C
1
=
1
/
R
1
R1R2
C
2
=
2
/
R
2
R,( 1/W )
,(s)
0.311 7.83*10
-
2
0.271 1.21*10
-
2
0.221 1.36*10
-
3
0.584 1.53*10
-
4
0.314 2.50*10
-
5
SKB15N60
11 Rev. 2.3 12.06.2013
P
G
-
TO2
63
-
3
-
2
SKB15N60
12 Rev. 2.3 12.06.2013
I
r
r
m
90%
Ir r m
10%
Ir r m
di /dt
F
tr r
IF
i,v
t
QSQF
tStF
VR
di /dt
r r
Q =Q Q
r r S F
+
t =t t
r r S F
+
Figure C. Definition of diodes
switching characteristics
p(t)
1
2
n
T
(
t
)
j
1
1
2
2
n
n
T
C
r r
r
r
rr
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Leakage inductance L
=180nH
and Stray capacity C
=250pF.
Figure A. Definition of switching times
Figure B. Definition of switching losses
Published by
Infineon Technologies AG,
SKB15N60
13 Rev. 2.3 12.06.2013
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2013 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or
any information regarding the application of the device, Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the
types in question, please contact the nearest Infineon Technologies Office.
The Infineon Technologies component described in this Data Sheet may be used in life-support devices or
systems and/or automotive, aviation and aerospace applications or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the
failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or
effectiveness of that device or system. Life support devices or systems are intended to be implanted in the
human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable
to assume that the health of the user or other persons may be endangered.