R1245x SERIES 1.2A, 30V Step Down DC/DC converter NO.EA-269-130322 OUTLINE The R1245x series are CMOS-based Step-down DC/DC converter with internal N-channel high side Tr. The ON resistance of the built-in high-side transistor is 0.35 and the R1245 can provide the maximum 1.2A output current. Each of the ICs consists of an oscillator, a PWM control circuit, a voltage reference unit, an error amplifier, a phase compensation circuit, a slope compensation circuit, a soft-start circuit, protection circuits, an internal voltage regulator, and a switch for bootstrap circuit. The ICs can make up a step-down DC/DC converter with an inductor, resistors, a diode, and capacitors. The R1245x series are current mode operating type DC/DC converters without an external current sense resistor, and realizes fast response and high efficiency. As an output capacitor, a ceramic type capacitor can be used with the R1245X series. The options of the internal oscillator frequency are preset at 330kHz for version A and B, 500kHz for version C and D, 1000kHz for version E and F, 2400kHz for version G and H. As for protection, an Lx peak current limit circuit cycle by cycle, a thermal shutdown function and an under voltage lockout (UVLO) function are built in. Furthermore, there are two types for short protection, for A/C/E/G version, a latch protection function which makes the output latch off if the output voltage keeps lower than the set output voltage for a certain time after detecting current limit is built in, for B/D/F/H version, a fold-back protection function which changes the oscillator frequency slower after detecting short circuit or equivalent. As for the packages of the R1245 series, HSOP-8E, DFN(PLP)2020-8, SOT23-6W are available. FEATURES Operating Voltage ************************************************ 4.5V~30V Internal N-channel MOSFET Driver************************* RON=0.35 Typ. Adjustable output voltage with external resistor ****** 0.8V or more Feedback voltage and tolerance ***************************** 0.8V1.0% Peak current limit ***************************************************** Typ. 2.0A UVLO function released voltage****************************** Typ. 4.0V Operating frequency ************************************************ 330kHz (A/B version), 500kHz (C/D version), 1000kHz (E/F version), 2400kHz (G/H version) Fold-back protected frequency ******************************** 170kHz (B/D version), 250kHz (F version), 400kHz (H version) Latch protection delay time************************************** Typ. 4ms for A/C/E/G version Ceramic capacitors recommended for input and output. Stand-by current ****************************************************** Typ. 0A Packages ***************************************************************** SOT-23-6W, DFN(PLP)2020-8, HSOP-8E APPLICATIONS Power source for digital home appliance such as digital TV, DVD players. Power source for 5V PSU or 2-cell or more Li-ion battery powered communication equipment, cameras, video instruments such as VCRs, camcorders. Power source for high voltage battery-powered equipment. Power source for office equipment such as printers and fax machines. 1 R1245x BLOCK DIAGRAMS V IN Thermal Shutdown UVLO CE Regulator Regulator 5V BST Shutdown SETPULSE Oscillator *1 FB MAXDUTY S D Lx R Reference + + Soft Start Circuit(1ms) 0.8V Current Slope Circui t Limit Latch Circuit (4ms) *1 GND Peak Current Limit Circuit *1 Version A B C D E F G H 2 Oscillator frequency 330kHz 330kHz 500kHz 500kHz 1000kHz 1000kHz 2400kHz 2400kHz Short protection type Latch Fold-back Latch Fold-back Latch Fold-back Latch Fold-back R1245x SELECTION GUIDE In the R1245x Series, the package, type of short protection (Latch or Fold back), and the oscillator frequency can be selected with the user's request. Product code Package Quantity per reel Pb free Halogen free R1245S003-E2-FE HSOP-8E 1,000 Yes Yes DFN(PLP)2020-8 5,000 Yes Yes SOT-23-6W 3,000 Yes Yes R1245K003-TR R1245N001-TR-FE : Designation of the oscillator frequency and the protection function option. Oscillator Latch Fold back Symbol frequency protection protection 9 A 330kHz 9 B 330kHz 9 C 500kHz 9 D 500kHz 9 E 1000kHz 9 F 1000kHz 9 G 2400kHz 9 H 2400kHz 3 R1245x PIN CONFIGURATION * DFN(PLP)2020-8 Top View Bottom View 8 7 6 5 5 6 7 8 1 2 3 4 4 3 2 1 * HSOP-8E Top View 8 7 6 5 Bottom View * SOT-23-6W Top View 5 6 5 4 1 2 3 6 7 8 1 2 3 4 4 3 2 1 *Connect the backside heat radiation tub to GND or same as GND level (recommendation). The tub is connected to the GND pin. PIN DESCRIPTION z R1245S(HSOP-8E) Pin No. Symbol Description 1 LX LX Switching Pin 2 VIN Power Supply Pin 3 CE Chip Enable Pin (Active with "H") 4 TEST TEST pin (must be open for user side.) 5 GND Ground Pin 6 FB Feedback Pin 7 NC No connection 8 BST Bootstrap Pin *Connect the backside heat radiation tub to GND or same as GND level (recommendation). The tub is connected to the GND pin. 4 R1245x z R1245K (DFN(PLP)2020-8) Pin No. Symbol Description 1 LX LX Switching Pin 2 VIN Power Supply Pin 3 VIN Power Supply Pin 4 CE Chip Enable Pin (Active with "H" ) 5 GND Ground Pin 6 FB Feedback Pin 7 TEST Test Pin ( must be open for user side.) 8 BST Bootstrap Pin *Connect the backside heat radiation tub to GND or same as GND level (recommendation). The tub is connected to the GND pin. z R1245N (SOT23-6W) Pin No. 1 2 3 4 5 6 Symbol BST GND FB CE VIN LX Description Bootstrap Pin Ground Pin Feedback Pin Chip Enable Pin (Active with "H" ) Power Supply Pin LX Switching Pin ABSOLUTE MAXMUM RATINGS (GND=0V) Symbol Item Rating Unit -0.3 to 32.0 V VLX-0.3 to VLX+6.0 V VIN Input Voltage VBST BST Pin Voltage VLX LX Pin Voltage -0.3 to VIN+0.3 V VCE CE Pin Input Voltage -0.3 to VIN+0.3 V VCE CE Pin input Voltage -0.3 to VIN+0.3 V VFB Feedback Pin Voltage -0.3 to 6.0 V PD Ta Tstg Power Dissipation HSOP-8E Standard Land Pattern* 2900 DFN(PLP)2020-8 Standard Land Pattern* 880 SOT-23-6W Standard Land Pattern* 430 mW Operating Temperature Range -40 to 105 C Storage Temperature Range -55 to 125 C *For Power Dissipation, refer to the PACKAGE INFORMATION on the web site. ABSOLUTE MAXIMUM RATINGS Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured. 5 R1245x ELECTRICAL CHARACTERISTICS (Unless otherwise specified, VIN= 12V, Ta=25C) Symbol Item Conditions MIN. TYP. MAX. Unit 30 V 0.5 1.0 mA VIN Operating Input Voltage IIN VIN Consumption Current VIN=30V, VFB=1.0V VUVLO1 UVLO Detect Voltage Specified VIN falling edge 3.6 VUVLO2 -0.2 VUVLO2 -0.1 V VUVLO2 UVLO Released Voltage Specified rising edge 3.8 4.0 4.2 V 0.792 0.800 0.808 V VFB VFB/T fosc fFLB Maxduty 4.5 VFB Voltage Tolerance VFB Voltage Temperature Coefficient Oscillator Frequency Fold back Frequency Oscillator Maximum. Duty Cycle 100 -40C Ta 105C ppm/C Version A/B 300 330 360 Version C/D 450 500 550 Version E/F 900 1000 1100 Version G/H 2200 2400 2600 Version B/D 170 VFB<0.56V Version F 250 Version H 400 Version A/B/C/D 92 Version E/F 88 Version G/H 76 kHz kHz % tSS Soft-start Time VFB=0.72V 1 ms tDLY Delay Time for Latch Protection Version A/C/E/G 4 ms RLXH LX High Side Switch ON Resistance VBST-VLX=4.5V 0.35 ILXHOFF LX High Side Switch Leakage Current VIN=30V, VCE=0V ILIMLXH LX High Side Switch Limited Current VBST-VLX=4.5V VCEL CE "L" Input Voltage VIN=30V VCEH CE "H" Input Voltage VIN=30V 1.6 IFB VFB Input Current VIN=30.0V, VFB=1.0V -1.0 1.0 A ICEL CE "L" Input Current VIN=30V, VCE=0V -1.0 1.0 A ICEH CE "H" Input Current VIN=30V, VCE=30V -1.0 1.0 A TTSD Thermal Shutdown Detect Temperature Hysteresis 30C Standby Current VIN=30V Istandby 1.5 0 5 A 2.0 2.7 A 0.3 V V 160 0 C 5 A RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS) All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions. 6 R1245x TYPICAL APPLICATION R1245x00xA/B 330kHz CSPD 470pF R1 6k V IN 24V VOUT=1.2V VIN=24V BST V IN CIN 10F CBST 0.47F L 10H FB Lx COUT 47F D R2 12k TEST CE RC E "H"active 10k (recommended) GND R1245x00xC/D 500kHz CSPD 1000pF R1 3.75k V IN 24V CIN 10F VOUT=3.3V VIN=24V V IN BST FB Lx CBST 0.47F L 10H D R2 1.2k C OUT 22F CE TEST GND "H"active RC E 10k (recommended) *TEST pin must be open. 7 R1245x R1245x00xE/F 1000kHz CSPD 470pF R1 3.75k V IN 12V CIN 4.7F V IN VOUT=3.3V VIN=12V BST CBST 0.47F L 4.7H FB Lx COUT 10F D R2 1.2k TEST CE RCE "H"active 10k (recommended) GND R1245x00xG/H 2400kHz VOUT=5.0V VIN=12V V IN CSPD 470pF 12V R1 6.3k V IN BST CIN 2.2F CBST 0.47F L 2.2H FB Lx D R2 1.2k TEST COUT 4.7F CE GND RCE "H"active 10k (recommended) *TEST pin must be open. TECHNICAL NOTES *External components must be connected as close as possible to the ICs and make wiring as short as possible. Especially, the capacitor connected in between VIN pin and GND pin must be wiring the shortest. If their impedance is high, internal voltage of the IC may shift by the switching current, and the operating may be unstable. Make the power supply and GND lines sufficient. In the wiring of the power supply, GND, LX, VOUT and the inductor, large current by switching may flow. To avoid the bad influence, the wiring between the resistance, "Rup" for setting the output voltage and loading, and the wiring between the inductor and loading must be separated. *The ceramic capacitors have low ESR (Equivalent Series Resistance) and recommended for the ICs. The recommendation of CIN capacitor between VIN and GND is 10F or more for A/B/C/D version, 4.7F or more for E/F version, and 2.2F or more for G/H version. Verify the bias dependence and the temperature characteristics of the ceramic capacitors. Recommendation conditions are written based on the case which the recommendation parts are used with the R1245. *The R1245 series are designed with the recommendation inductance value and ceramic capacitor value and phase compensation has been made. If the inductance value is large, due to the lack of current sensing amount of the current mode, unstable operation may result. On the contrary, if the inductance value is small, the current sensing amount may increase too much, low frequency oscillation may occur when the on duty ratio is beyond 8 R1245x 50%. Not only that, if the inductance value is small, according to the increase of the load current, the peak current of the switching may increase, as a result, the current may reach the current limit value and the current limit may work. *As for the diode, use the Schottky diode with small capacitance between terminals. The reference characteristic of the capacitance between terminals is around 100pF or less at 10V. If the capacitance between terminals is large, excess switching current may flow and the operation of the IC may be unstable. If the capacitance between terminals of the Scottky diode is beyond 100pF at 10V or unknown, verify the load regulation, line regulation, and the load transient response. *Output voltage can be set by adjustment of the values of R1 and R2. The equation of setting the output voltage is VOUT=VFB x (R1+R2)/R2. If the values of R1 and R2 are large, the impedance of FB pin increases, and pickup the noise may result. The recommendation value range of R2 is approximately between 1.0k to 16k. If the operation may be unstable, reduce the impedance of FB pin. *For the CE pin, as an ESD protection element, a diode to VIN pin is formed internal of the IC. If CE pin voltage may become higher than VIN pin voltage, to prevent flowing large current from CE pin to VIN pin, connect 10k or more resistor between CE and VIN pin. *Connect the backside heat radiation tub of the DFN(PLP)2020-9/HSOP-8E to the GND. As for multi-layered boards, to make better power dissipation, putting some thermal vias on the thermal pad in the land pattern and radiation of the heat to another layer is effective. *After the soft-start operation, the latch function is enabled for version A/C/E/G. The latch protection starts the internal counter when the internal current limit protection circuit detects the current limit. When the internal counter counts up to the latch timer limit, typically 4ms, the output is latched off. To reset the latch function, make the CE pin "L", or make VIN pin voltage lower than UVLO detector threshold. Then in the case that the output voltage or FB voltage becomes setting voltage within the latch timer preset time, counter is initialized. If the slew rate of the power supply is too slow and after the soft-start time, the output voltage does not reach the set output voltage even if the latch timer preset time is over, the latch function may work unexpectedly. *After the soft-start operation, fold back protection function is enabled for version B/D/F/H. The fold back function will limit the oscillator frequency if the FB pin voltage becomes lower than typically 0.56V. For B/D version, the oscillator frequency will be reduced typically into 170kHz, for F version, into 250kHz, for H version, into 400kHz. If the slew rate of the power supply is too slow, and even after the soft-start time, the output voltage is still less than 70% of the set output voltage, or FB pin voltage is less than typically 0.56V, then this function may work unexpectedly. The performance of power circuit using this IC largely depends on external components. Selection of external components is very important, especially, do not exceed each rating value (voltage/current/power). 9 R1245x Recommended values for each output voltage R1245x00xA/B: 330kHz 0.8 to VOUT (V) 1.2 R1(RUP) (k) 5.0 R2(RBOT) (k) 16 12 1.20 1.20 CSPD (pF) open 470 2200 1000 COUT (F) 47 47 22 22 L(H) 4.7 10 15 33 R1245x00xC/D500kHz 0.8 to VOUT (V) 1.2 R1(RUP) (k) 1.2 to 1.5 1.5 to 2.0 to 2.0 5.0 =(VOUT / 0.8-1) x R2 5.0 to 12.0 12.0 R2(RBOT) (k) 16 16 16 1.2 1.2 1.2 CSPD (pF) open 100 100 1000 1000 470 COUT (F) L(H) 100 4.7 100 4.7 22 10 22 10 22 15 22 15 2.5 to 5.0 5.0 1.2 470 10 4.7 1.2 470 10 10 R1245x00xE/F1000kHz 0.8 to VOUT (V) 1.0 R1(RUP) (k) R2(RBOT) (k) 16 CSPD (pF) open 100 COUT (F) 2.2 L(H) R1245x00xG/H2400kHz 1.2 to VOUT (V) 1.8 R1(RUP) (k) R2(RBOT) (k) 16 CSPD (pF) 100 10 COUT (F) L(H) 10 1.2 to 2.5 to 2.5 5.0 =(VOUT / 0.8-1) x R2 1.0 1.0 to 1.2 16 100 100 2.2 1.2 to 1.5 to 1.5 2.5 =(VOUT / 0.8-1) x R2 16 16 100 100 47 22 2.2 2.2 1.8 to 2.5 to 2.5 5.0 =(VOUT / 0.8-1) x R2 12 1.2 100 470 10 4.7 1.5 2.2 5.0 1.2 470 4.7 4.7 R1245x *Divider resisters values and possible setting range of input /output Input Voltage range [V] VOUT R1(RUP) R2(RBOT) [V] 0.8 1 1.2 1.5 1.8 2 2.5 3.3 5 [k] [k] 0 open 0 16 4 16 8 16 6 12 10.5 12 14 16 20 16 Ver.AB Ver.CD Ver.EF Ver.GH 4.5 to 20 4.5 to 13.5 4.5 to 7 - 4.5 to 25.5 4.5 to 17 4.5 to 8.5 - 4.5 to 30 4.5 to 20 4.5 to 10 - 4.5 to 30 4.5 to 25 4.5 to 12.5 4.5 to 5.5 4.5 to 30 4.5 to 30 4.5 to 15 4.5 to 6.5 4.5 to 30 4.5 to 30 4.5 to 17 4.5 to 7 4.5 to 30 4.5 to 30 4.5 to 21 4.5 to 9 4.5 to 30 4.5 to 30 4.5 to 12 7 to 17 15 12 24 16 1.8 1.2 34 16 25.5 12 2.55 1.2 3.75 1.2 6.3 1.2 5.5 to 30 5.5 to 30 4.5 to 27.5 6 to 30 6.5 to 30 7 to 30 8 to 20 6 7.8 1.2 6.5 to 30 9 12.3 1.2 10 to 30 10 to 30 11 to 30 12 to 30 12 16.8 1.2 13 to 30 13 to 30 14 to 30 16 to 30 15 21.3 34.8 1.2 16.5 to 30 16.5 to 30 17 to 30 20 to 30 1.2 26.5 to 30 26.5 to 30 27.5 to 30 30 24 11 R1245x Recommended external Components examples (Considering all the range) Symbol Characteristics Value Parts Name MFR CIN 50V/X5R 10F UMK325BJ106MM-T TAIYO YUDEN 50V/X7R 4.7F GRM31CR71H475KA12L MURATA 50V/X7R 50V/X5R 2.2F GRM31CR71H225KA88L MURATA 10F UMK325BJ106MM-T TAIYO YUDEN 50V/X7R 25V/X7R 10V/X7R 10F 10F 22F KTS500B106M55N0T00 GRM31CR71E106K GRM31CR71A226M Nippon Chemi-Con MURATA MURATA 16V B 10V/X7R 47F 47F GRM32EB31C476KE15 GRM32ER71A476KE15 MURATA MURATA COUT NOTE: The value of COUT depends on the setting output voltage. CBST L D RCE 12 0.47F 10H EMK212B7474KD-T TAIYO YUDEN SLF6045T-100M1R6-3PF TDK 1.65A 4.7H SLF7045T-4R7M2R0-PF TDK 1.7A 4.7H NR4018T-4R7M2R0-PF TDK 2.4A 4.7H NR6020T4R7M TAIYO YUDEN 1.9A 10H NR6028T100M TAIYO YUDEN 2.3A 15H NR6045T150M TAIYO YUDEN 1.9A 22H NR6045T220M TAIYO YUDEN 1.9A 33H NR8040T330M TAIYO YUDEN 1.7A 2.2H VLCF4020T-2R2N1R7 TDK 1.65A 2.2H NR4012T2R2M TAIYO YUDEN 1.8A 1.5H NR3015T1R5N TAIYO YUDEN 1.8A NR4010T1R0N TAIYO YUDEN 30V/1.5A 1.0H 0.42V Panasonic 30V/2.0A 0.37V MA22D28 CMS06 40V/2.0A 0.55V TOSHIBA 40V/2.0A 0.43V CMS11 MA24D60 15V/2.0A 0.32V SBS010M SANYO 16V/X7R 1.8A TOSHIBA Panasonic An UP DIODE is formed between the CE pin and the VIN pin as an ESD protection element. If the CE pin may become higher than the voltage of the VIN pin, connect the 10kohm resistance between the CE pin and VIN pin, to prevent a large current from flowing into the VIN pin from the CE pin. R1245x Operation of the Buck Converter and the Output Current The DC/DC converter charges energy in the inductor when the switch turns on, and discharges the energy from the inductor when the switch turns off and controls with less energy loss, so that a lower output voltage than the input voltage is obtained. Refer to the following figures. IL ILmax i1 VI N Switch L Diode i2 V O UT ILmin topen C O UT G ND ton toff T=1/fosc Step 1: The switch turns on and current IL (=i1) flows, and energy is charged into COUT. At this moment, IL increases from ILmin (=0) to reach ILmax in proportion to the on-time period (ton) of the switch. Step 2: When the switch turns off, the diode turns on in order to maintain IL at ILmax, and current IL (=i2) flows. Step 3: IL (=i2) decreases gradually and reaches IL=ILmin=0 after a time period of topen, and the diode turns off. This case is called as discontinuous mode. If the output current becomes large, next switching cycle starts before IL becomes 0 and the diode turns off. In this case, IL value increases from ILmin (>0), and this case is called continuous mode. In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with the oscillator frequency (fosc) being maintained constant. Output Current and Selection of External Components The relation between the output current and external components is as follows: When the switch of LX turns on: (Wherein, the peak to peak value of the ripple current is described as IRP, the ON resistance of the switch is described as RONH, and the diode forward voltage as VF, and the DC resistance of the inductor is described as RL, and on time of the switch is described as ton) VIN = VOUT + (RONH + RL) x IOUT + L x IRP / ton **************************************************************** Equation 1 When the switch turns off (the diode turns on) as toff: L x IRP / toff = VF + VOUT + RL x IOUT ******************************************************************************* Equation 2 Put Equation 2 to Equation 1 and solve for ON duty of the switch, ton / ( toff + ton) = DON, DON = (VOUT + VF + RL x IOUT)/(VIN + VF - RONH x IOUT) **************************************************** Equation 3 13 R1245x Ripple Current is as follows: IRP = (VIN - VOUT - RONH x IOUT - RL x IOUT) x DON / fosc / L ********************************************* Equation 4 wherein, peak current that flows through L, and the peak current ILmax is as follows: ILmax = IOUT + IRP / 2****************************************************************************************************** Equation 5 As for the valley current ILmin, ILmin = IOUT - IRP / 2 ******************************************************************************************************* Equation 6 If ILmin<0, the step-down DC/DC converter operation becomes current discontinuous mode. Therefore the current condition of the current discontinuous mode, the next formula is true. IOUT < IRP / 2 ****************************************************************************************************************** Equation 7 Consider ILmax and ILmin, conditions of input and output and select external components. *The above explanation is based on the calculation in an ideal case in continuous mode. 14 R1245x Ripple Current and Lx current limit The ripple current of the inductor may change according to the various reasons. In the R1245x series, as an Lx current limit, Lx peak current limit is used. Therefore the upper limit of the inductor current is fixed. The peak current limit is not the average current of the inductor (output current). If the ripple current is large, peak current becomes also large. The characteristic is used for the fold back current limit of version B/D/F/H. In other words, the peak current limit is maintained and the switching frequency is reduced, as a result, the average current of the inductor is reduced. To release this condition, at 170kHz for version B/D, at 250kHz for version F, at 400kHz for version H must not be beyond the peak current limit. In the fig.1, the sequence of the Lx current limit function is described. Fig.1 LX Limit function sequence Latch protection function for version A/C/E/G The latch function works after detecting current limit and if the output voltage becomes low for a certain time, the output is latched off. Refer to the TECHNICAL NOTES. Fold back protection function for version B/D/F/H If FB voltage becomes lower than approximately 0.56V, the fold back protection function limits the oscillator frequency to typically 170kHz for version B/D, typically 250kHz fir version F, typically 400kHz for version H. By reducing frequency, the ripple current increases. The R1245x has the peak current limit function, therefore as in the equation 8, the Lx average current decreases by the increase of the ripple current. IOUT =ILmax + IRP / 2 Equation 8 If FB voltage becomes less than 0.56V, the oscillator frequency is reduced. At heavy load, if the R1245x becomes into the fold back protection mode, the situation may not be released by increase the ripple current. In terms of other notes on this protection function, refer to the TECHNICAL NOTES. 15 R1245x MAXIMUM OUTPUT CURRENT The output current of the R1245x is limit by the power dissipation PD of the package and the maximum specification 1.2A. The loss of the IC includes the switching loss, and it is difficult to estimate. To estimate the maximum output, using the efficiency data is one method. By using the efficiency data, the loss including the external components can be calculated with the equation, (100/efficiency(%)-1)x(VOUT(V)xIOUT(V)). From this equation, by reducing the loss of external components, the loss of the IC can be estimated. The main loss of the external components is composed by the rectifier diode and DCR of the inductor. Supposed that the forward voltage of the diode is described as VF, the loss of the diode can be described as follows: (VIN(V)-RON()xIOUT(A)-VOUT(V)-VF(V)))/VIN(V)xVF(V)xIOUT(A) The loss by the DCR of the inductor can be calculated by the formula DCR()xIOUT2(A). Thus, The loss of the IC = (100 / efficiency(%) -1) x (VOUT(V) x IOUT(A) - (VIN(V) - RON() x IOUT(A) - VOUT(V) -VF(V)) / VIN(V) x VF(V) xIOUT(A) - DCR() x IOUT2(A) The efficiency of the R1245 at Ta=25C, VIN=12V, VOUT=3.3V, IOUT=600mA is approximately 89.5% for version A/B(Oscillator frequency 330kHz). Supposed that the On resistance of the internal driver is 0.35, the DCR of the inductor is 65m, the VF of the rectifier diode is 0.3V and applied to the formula above, The loss of the IC = (100% / 89.5% - 1) x (3.3V x 0.6A) - (12V - 0.35 x 0.6A - 3.3V - 0.3V) / 12V x 0.3V x 0.6A - 0.065x0.62A=86mW The power dissipation PD of the package is specified at Ta=25C based on the Tjmax=125C. Thus the thermal resistance of the package ja=(Tjmax(C)-Ta(C))/PD(W), therefore the thermal resistance of the each available package is as follows: HSOP-8E: (125C-25C)/2.9W=34.5C/W DFN(PLP)2020-8: (125C-25C)/0.88W=114C/W SOT-23-6W: (125C-25C)/0.43W=233C/W Due to the loss of the IC is 86mW for this example, therefore Tj increase of the each package is as follows: HSOP-8E: 34.5C/Wx86mW=2.96C DFN(PLP)2020-8: 114C/Wx86mW=9.80C SOT-23-6W: 233C/Wx86mW=20.0C For all the packages, even if the ambient temperature is at 105C, Tj can be suppressed less than 125C. By the increase of the temperature, on resistance and switching loss increases, therefore, temperature margin is not enough, measure the efficiency at the actual maximum temperature and recalculation is necessary. At the same condition, if the preset frequency is 2400kHz, the efficiency will be down to approximately 81%. The result of the loss calculation is 310mW, therefore the Tj increase of each package is, HSOP-8E: 34.5C/Wx310mW=11C DFN(PLP)2020-8: 114C/Wx310mW=35C SOT-23-6W: 233C/Wx310mW=72C HSOP-8E can be used at the ambient temperature 105C, DFN(PLP)2020-8 can be used at the ambient temperature up to 90C, SOT-23-6W can be used at the ambient temperature up to 53C. Note that the result is different by the frequency. 16 R1245x The next graphs are the output current and estimated ambient temperature limit. Maximum output current VIN=12V , VOUT=3.3V , fosc=330kHz -40C 105C 1400 1200 IOUT [mA] 1000 800 SOT-23-6W DFN2020-8 HSOP-8E 600 400 200 0 -50 0 50 100 150 Ta[C] VIN=12V , VOUT=3.3V , fosc=2400kHz -40C 105C 1400 1200 IOUT [mA] 1000 SOT-23-6W DFN2020-8 HSOP-8E 800 600 400 200 0 -50 0 50 100 150 Ta[C] 17 R1245x INTERNAL EQUIVALENT CIRCUIT FOR EACH PIN Regulator VIN BST LX LX Regulator Regulator 18 VIN CE FB TEST R1245x TYPICAL CHARACTERISTICS 1) FB voltage vs. Temperature 2)Driver On resistance vs. Temperature R1245x00xx R1245x00xx (VIN=12V) 500 0.808 0.806 0.804 0.802 0.8 0.798 0.796 0.794 0.792 Driver On Resistance () FB Voltage (V) (VIN=12V) -50 -25 0 25 50 Ta () 450 400 350 300 250 200 75 100 125 -50 -25 0 25 50 Ta () 75 100 125 3) Oscillator frequency vs. Temperature R1245x00xC/R1245x00xD (VIN=12V) R1245x00xA/R1245x00xB (VIN=12V) 550 350 Frequency (kHz) Frequency (kHz) 360 340 330 320 310 300 500 475 450 -50 -25 0 25 50 Ta () 75 100 125 -50 R1245x00xE/R1245x00xF (VIN=12V) -25 0 25 50 Ta () 75 100 125 R1245x00xG/R1245x00xH (VIN=12V) 2640 1100 2560 1050 Frequency (kHz) Frequency (kHz) 525 1000 950 900 2480 2400 2320 2240 2160 -50 -25 0 25 50 Ta () 75 100 125 -50 -25 0 25 50 Ta () 75 100 125 19 R1245x 4) Maximum duty cycle vs. Temperature R1245x00xC/R1245x00xD (VIN=12V) 99 99 98 98 97 97 Maxduty (%) Maxduty (%) R1245x00xA/R1245x00xB (VIN=12V) 96 95 94 93 96 95 94 93 92 92 -50 -25 0 25 50 Ta () 75 100 125 -50 -25 96 86 95 85 94 93 84 83 92 91 90 89 75 100 125 82 81 80 79 -50 -25 20 25 50 Ta () R1245x00xG/R1245x00xH (VIN=12V) Maxduty (%) Maxduty (%) R1245x00xE/R1245x00xF (VIN=12V) 0 0 25 50 Ta () 75 100 125 -50 -25 0 25 50 Ta () 75 100 125 R1245x 5) Fold back frequency vs. Temperature R1245x00xB R1245x00xD 240 220 200 180 160 140 120 100 80 (VIN=12V) Fold back Frequency (kHz) Fold back Frequency (kHz) (VIN=12V) -50 -25 0 25 50 Ta () 240 220 200 180 160 140 120 100 80 75 100 125 -50 -25 R1245x00xF 0 25 50 Ta () 75 100 125 R1245x00xH (VIN=12V) (VIN=12V) Fold back Frequency (kHz) Fold back Frequency (kHz) 420 370 320 270 220 170 120 -50 -25 0 25 50 Ta () 75 100 125 720 620 520 420 320 220 120 -50 -25 0 25 50 Ta () 75 100 125 6) High side switch current limit vs. Temperature R1245x00xx (VIN=12V) 2.7 2.5 LX Current Limit (A) 2.3 2.1 1.9 1.7 1.5 -50 -25 0 25 50 Ta () 75 100 125 21 R1245x 7) UVLO detector threshold vs. Temperature 8) UVLO released voltage vs. Temperature R1245x00xx R1245x00xx 4.2 UVLO Released Voltage (V) UVLO Detector Threshold (V) 4.1 4 3.9 3.8 3.7 3.6 -50 -25 0 25 50 Ta () 75 4.1 4 3.9 3.8 100 125 9) Soft-start time vs. Temperature -50 -25 0 25 50 Ta () 75 10) Timer latch delay vs. Temperature R1245x00xx R1245x00xx (VIN=6V) (VIN=12V) 6 1.6 Delay Time For Latch Protection (ms) Soft Start Time (ms) 1.8 1.4 1.2 1 0.8 0.6 0.4 -50 -25 0 25 50 Ta () 75 5 4 3 2 1 -50 100 125 11) CE "H" Input voltage vs. Temperature -25 0 25 50 Ta () 75 R1245x00xx (VIN=12V) (VIN=12V) 2.5 2.5 CE "L" Voltage (V) CE "H" Voltage (V) 100 125 12) CE "L" Input voltage vs. Temperature R1245x00xx 2 1.5 1 0.5 -50 22 100 125 -25 0 25 50 Ta () 75 100 125 2 1.5 1 0.5 -50 -25 0 25 50 Ta () 75 100 125 R1245x 13) Soft-start waveform R1245x00xA/R1245x00xB R1245x00xA/R1245x00xB VOUT=3.3V , VIN=12V , IOUT=0mA , Ta=25C VOUT=3.3V , VIN=12V , IOUT=600mA , Ta=25C VCE VCE (5V/div) (5V/div) VOUT VOUT (1V/div) (1V/div) ILX ILX (200mA/div) (200mA/div) VLX VLX (10V/div) (10V/div) 200s/div 200s/div 14) Switching operation waveform R1245x00xA/R1245x00xB R1245x00xA/R1245x00xB VOUT=3.3V , VIN=12V , IOUT=0mA , Ta=25C VOUT=3.3V , VIN=12V , IOUT=600mA , Ta=25C VOUT (AC) V OUT (AC) (20mV/div) (20mV/div) IL X ILX (200mA/div) (200mA/div) VL X V LX (5V/div) (5V/div) 2s/div 2s/div R1245x00xG/R1245x00xH R1245x00xG/R1245x00xH VOUT=3.3V , VIN=12V , IOUT=20mA , Ta=25C VOUT=3.3V , VIN=12V , IOUT=600mA , Ta=25C V OUT (AC) VO UT (AC) (20mV/div) (20mV/div) ILX ILX (200mA/div) (200mA/div) V LX VL X (5V/div) 200ns/div (5V/div) 200ns/div 23 R1245x 15) Loaf transient response waveform R1245x00XA/R1245x00xB R1245x00xA/R1245x00xB VOUT=0.8V , VIN=12V , IOUT=6001200mA , Ta=25C VOUT=3.3V , VIN=12V , IOUT=6001200mA , Ta=25C VOUT VOUT (100mV/div) (200mV/div) IOUT IOUT (500mA/div) (500mA/div) 100s/div R1245x00xG/R1245x00xH VOUT=1.5V , VIN=4.5V , IOUT=6001200mA , Ta=25C V OUT ( 100mV /div ) R1245x00xG/R1245x00xH VOUT=3.3V , VIN=12V , IOUT=6001200mA , Ta=25C VO UT ( 100mV /div ) IOUT ( 500mA /div ) IO UT ( 500mA /div ) 50us/div 24 100s/div 50us/div R1245x 16) Limit latch operation waveform 17) Released waveform from limit latch R1245x00xA R1245x00xA VOUT=3.3V , VIN=12V , ROUT=5.50.05, Ta=25C VOUT=3.3V , VIN=12V , ROUT=5.50.055.5 , Ta=25C V OUT VO UT (2V/div) (2V/div) V LX VLX (10V/div) (10V/div) ILX ILX (1A/div) (1A/div) 1ms/div 18) Fold back operation waveform 1ms/div 19) Released waveform from fold back R1245x00xB R1245x00xB VOUT=3.3V , VIN=12V , ROUT=5.50.05 VOUT=3.3V , VIN=12V , ROUT=5.50.055.5 Ta=25C Ta=25C V OUT V OUT (2V/div) (2V/div) V LX V LX (10V/div) (10V/div) ILX ILX (1A/div) (1A/div) 20s/div 20s/div 20) Switching waveform at fold back operation R1245x00xB VOUT=3.3V , VIN=12V , ROUT=0.05, Ta=25C V OUT (2V/div) V LX (10V/div) ILX (1A/div) 2s/div 25 R1245x 21) Output current vs. Efficiency (Version A/B) R1245x00xA/R1245x00xB VOUT=0.8V (Ta=25) Efficiency (%) 80 60 100 VIN = 4.5V VIN = 6.0V VIN = 18V 80 Efficiency (%) 100 R1245x00xA/R1245x00xB VOUT=3.3V (Ta=25) 40 20 0 0.01 60 VIN = 4.5 V VIN = 12 V VIN = 24 V 40 20 0 0.1 1 IOUT 10 (mA) 100 1000 10000 0.01 0.1 R1245x00xA/R1245x00xB VOUT=5.0V (Ta=25) Efficiency (%) 80 100 VIN = 12V VIN = 24V VIN = 30V 80 60 40 20 0 100 Efficiency (%) 80 0.1 1 10 IOUT (mA) 100 1000 10000 40 20 100 VIN = 24V 0.1 1 10 IOUT (mA) 100 1000 10000 R1245x00xA/R1245x00xB VOUT=24V (Ta=25) VIN=30V 80 VIN = 30V 40 20 0 60 40 20 0 0.1 1 IOUT 26 VIN = 18V VIN = 24V VIN = 30V 60 0.01 R1245x00xA/R1245x00xB VOUT=15V (Ta=25) 60 0.01 1000 10000 0 Efficiency (%) 0.01 100 R1245x00xA/R1245x00xB VOUT=12V (Ta=25) Efficiency (%) 100 1 10 IOUT (mA) 10 (mA) 100 1000 10000 0.01 0.1 1 IOUT 10 (mA) 100 1000 10000 R1245x 22) Output Current vs. Efficiency (Version C/D) 80 60 VIN = 4.5V VIN = 6.0V VIN = 12V 100 80 Efficiency (%) Efficiency (%) 100 R1245x00xC/R1245x00xD VOUT=0.8V (Ta=25) 40 20 0 0.1 1 IOUT 100 Efficiency (%) 80 60 10 (mA) 100 R1245x00xC/R1245x00xD VOUT=5.0V (Ta=25) VIN = 12V VIN = 24V VIN = 30V 20 100 Efficiency (%) 80 60 1 10 IOUT (mA) 100 1000 10000 R1245x00xC/R1245x00xD VOUT=15V (Ta=25) VIN = 24V 1 10 IOUT (mA) 100 1000 10000 R1245x00xC/R1245x00xD VOUT=12V (Ta=25) VIN = 18V VIN = 24V VIN = 30V 40 20 0.01 20 0 0.1 1 10 IOUT (mA) 100 1000 10000 R1245x00xC/R1245x00xD VOUT=24V (Ta=25) 100 80 VIN = 30V 40 0.01 60 0.1 0 0.1 Efficiency (%) 100 20 0.01 0 0.01 VIN = 12V VIN = 24V 40 80 40 VIN = 4.5V 0 1000 10000 Efficiency (%) 0.01 60 R1245x00xC/R1245x00xD VOUT=3.3V (Ta=25) VIN = 30V 60 40 20 0 0.1 1 10 IOUT (mA) 100 1000 10000 0.01 0.1 1 10 IOUT (mA) 100 1000 10000 27 R1245x 23) Output current vs. Efficiency (Version E/F) Efficiency (%) 80 60 VIN = 4.5V 100 80 Efficiency (%) 100 R1245x00xE/R1245x00xF VOUT=0.8V (Ta=25) VIN = 6.0V 40 20 Efficiency (%) 80 60 0.1 1 10 IOUT (mA) 100 1000 R1245x00xE/R1245x00xF VOUT=5.0V (Ta=25) VIN = 12V VIN = 24V VIN = 30V 20 100 0 Efficiency (%) 80 60 1 10 IOUT (mA) 100 1000 10000 R1245x00xE/R1245x00xF VOUT=15V (Ta=25) VIN = 24V 20 0 28 1 10 IOUT (mA) 100 1000 10000 R1245x00xE/R1245x00xF VOUT=12V (Ta=25) VIN = 24V VIN = 30V 40 20 0.01 0.1 1 10 IOUT (mA) 100 1000 10000 R1245x00xE/R1245x00xF VOUT=24V (Ta=25) 100 80 VIN = 30V 40 0.01 60 0.1 0 0.1 Efficiency (%) 100 20 80 40 0.01 VIN = 12V VIN = 24V 40 0.01 10000 Efficiency (%) 100 VIN = 4.5V 0 0 0.01 60 R1245x00xE/R1245x00xF VOUT=3.3V (Ta=25) VIN = 30V 60 40 20 0 0.1 1 10 IOUT (mA) 100 1000 10000 0.01 0.1 1 10 IOUT (mA) 100 1000 10000 R1245x 24) Output current vs. Efficiency (Version G/H) R1245x00xG/R1245x00xH VOUT=1.5V (Ta=25) 100 Efficiency (%) Efficiency (%) 80 100 VIN = 4.5V 60 40 20 Efficiency (%) 80 0.1 1 10 IOUT (mA) 100 R1245x00xG/R1245x00xH VOUT=5.0V (Ta=25) VIN = 8.0V 20 100 80 VIN = 12V 60 40 20 0 0.01 40 0.01 1000 10000 Efficiency (%) 100 60 VIN = 6V VIN = 10V VIN = 12V 0 0 0.01 80 R1245x00xG/R1245x00xH VOUT=3.3V (Ta=25) 60 0.1 1 10 IOUT (mA) 100 1000 10000 R1245x00xG/R1245x00xH VOUT=12V (Ta=25) VIN = 24V VIN = 30V 40 20 0 0.1 1 10 IOUT (mA) 100 1000 10000 0.01 0.1 1 10 IOUT (mA) 100 1000 10000 29 R1245x R1245x00xA/R1245x00xB VOUT=0.8V (Ta=25) 0.808 0.806 0.804 0.802 0.800 0.798 0.796 0.794 0.792 0 200 400 600 800 IOUT (mA) R1245x00xA/R1245x00xB VOUT=3.3V (Ta=25) 3.33 3.32 3.31 3.30 3.29 3.28 3.27 3.26 3.25 VIN = 4.5 V VIN = 24 V 0 1000 1200 200 R1245x00xA/R1245x00xB VOUT=5.0V (Ta=25) 5.05 Output Voltage (V) VIN=6.0V Output Voltage (V) VIN=4.5V VIN=18V VIN = 12V VIN = 30V 5.03 VIN = 24V 5.01 4.99 4.97 4.95 VIN = 18V VIN = 30V 12.20 1000 1200 VIN = 24V 12.10 12.00 200 400 600 IOUT (mA) 800 1000 1200 0 VIN = 24V VIN = 30V 15.40 15.20 15.00 14.80 400 600 IOUT (mA) 800 1000 1200 24.70 Output Voltage (V) 15.60 200 R1245x00xA/R1245x00xB VOUT=24V (Ta=25) R1245x00xA/R1245x00xB VOUT=15V (Ta=25) Output Voltage (V) 800 11.90 0 VIN = 30V 24.50 24.30 24.10 23.90 0 30 400 600 IOUT (mA) VIN = 12 V R1245x00xA/R1245x00xB VOUT=12V (Ta=25) 12.30 Output Voltage (V) Output Voltage(V) 25) Output current vs Output voltage (Version A/B) 200 400 600 IOUT (mA) 800 1000 1200 0 200 400 600 IOUT (mA) 800 1000 1200 R1245x 0.808 0.806 0.804 0.802 0.800 0.798 0.796 0.794 0.792 0 400 600 IOUT (mA) VIN = 12V VIN = 30V 4.99 4.97 4.95 0 200 400 600 IOUT (mA) 800 200 12.10 15.20 15.00 14.80 14.60 0 200 400 600 IOUT (mA) 800 1000 1200 1000 1200 VIN = 24V 12.00 11.90 11.80 1000 1200 VIN = 24V VIN = 30V 800 VIN = 18V VIN = 30V 0 R1245x00xC/R1245x00xD VOUT=15V (Ta=25) 15.40 400 600 IOUT (mA) VIN = 12V R1245x00xC/R1245x00xD VOUT=12V (Ta=25) 12.20 VIN = 24V 5.01 VIN = 4.5V VIN = 24V 0 R1245x00xC/R1245x00xD VOUT=5.0V (Ta=25) 5.03 3.33 3.32 3.31 3.30 3.29 3.28 3.27 3.26 3.25 800 1000 1200 Output Voltage (V) Output Voltage (V) 200 VIN = 6.0V Output Voltage (V) VIN = 4.5V VIN = 12V 5.05 Output Voltage (V) R1245x00xC/R1245x00xD VOUT=3.3V (Ta=25) R1245x00xC/R1245x00xD VOUT=0.8V (Ta=25) 200 400 600 IOUT (mA) 800 1000 1200 R1245x00xC/R1245x00xD VOUT=24V (Ta=25) 24.40 Output Voltage (V) Output Voltage (V) 26) Output current vs. Output voltage (Version C/D) VIN = 30V 24.20 24.00 23.80 23.60 0 200 400 600 IOUT (mA) 800 1000 1200 31 R1245x R1245x00xE/R1245x00xF VOUT=0.8V (Ta=25) 0.808 0.806 0.804 0.802 0.800 0.798 0.796 0.794 0.792 Output Voltage (V) VIN = 4.5V 0 5.03 4.99 4.97 4.95 200 400 600 IOUT (mA) 800 VIN = 4.5V VIN = 24V 0 200 VIN = 24V 15.40 15.20 15.00 14.80 0 200 400 600 IOUT (mA) 800 1000 1200 1000 1200 VIN = 30V 12.00 11.90 11.80 1000 1200 VIN = 24V VIN = 30V 800 12.10 0 R1245x00xE/R1245x00xF VOUT=15V (Ta=25) 15.60 400 600 IOUT (mA) VIN = 12V R1245x00xE/R1245x00xF VOUT=12V (Ta=25) 12.20 VIN = 24V 5.01 R1245x00xE/R1245x00xF VOUT=3.3V (Ta=25) 3.33 3.32 3.31 3.30 3.29 3.28 3.27 3.26 3.25 1000 1200 Output Voltage (V) Output Voltage (V) 600 800 IOUT (mA) VIN = 12V VIN = 30V 0 Output Voltage (V) 400 R1245x00xE/R1245x00xF VOUT=5.0V (Ta=25) 5.05 32 200 200 400 600 IOUT (mA) 800 1000 1200 R1245x00xE/R1245x00xF VOUT=24V (Ta=25) 24.40 Output Voltage (V) Output Voltage(V) 27) Output current vs. Output voltage (Version E/F) VIN = 30V 24.20 24.00 23.80 23.60 0 200 400 600 IOUT (mA) 800 1000 1200 R1245x 28) Output current vs. Output voltage (Version G/H) VIN = 4.5V 1.510 Output Voltage (V) Output Voltage (V) 1.515 1.505 1.500 1.495 1.490 1.485 0 200 400 600 IOUT (mA) 800 3.33 3.32 3.31 3.30 3.29 3.28 3.27 3.26 3.25 1000 1200 VIN = 6V VIN = 12V 0 R1245x00xG/R1245x00xH VOUT=5.0V (Ta=25) 5.05 VIN = 8.0V 5.03 5.01 4.99 4.97 4.95 0 200 400 600 IOUT (mA) 800 1000 1200 200 400 600 IOUT (mA) VIN = 10V 800 1000 1200 R1245x00xG/R1245x00xH VOUT=12V (Ta=25) 12.20 VIN = 12V Output Voltage (V) Output Voltage (V) R1245x00xG/R1245x00xH VOUT=3.3V (Ta=25) R1245x00xG/R1245x00xH VOUT=1.5V (Ta=25) VIN = 24V VIN = 30V 12.10 12.00 11.90 11.80 0 200 400 600 IOUT (mA) 800 1000 1200 33 R1245x 29) Input voltage vs. Output voltage (Version A/B) R1245x00xA/R1245x00xB VOUT=3.3V (Ta=25) 0.808 0.806 0.804 0.802 0.800 0.798 0.796 0.794 0.792 IOUT=1mA IOUT=500mA IOUT=100mA IOUT=1200mA 3.33 Output Voltage (V) Output Voltage (V) R1245x00xA/R1245x00xB VOUT=0.8V (Ta=25) IOUT=1mA IOUT=100mA 3.32 3.31 3.30 3.29 3.28 3.27 4 6 8 10 VIN (V) 12 14 16 18 4 8 IOUT=1mA IOUT=500mA 5.03 IOUT=100mA IOUT=1200mA 5.01 4.99 4.97 12.20 Output Voltage (V) Output Voltage (V) 5.05 4.95 16 VIN (V) 20 24 28 IOUT=100mA IOUT=1200mA 12.15 IOUT=500mA 12.10 12.05 12.00 11.95 4 6 8 10 12 14 16 18 20 22 24 26 28 30 VIN (V) 12 IOUT=100mA IOUT=1200mA 15.20 IOUT=500mA 15.10 15.00 14.90 24.20 Output Voltage (V) 15.30 14 16 18 20 22 VIN (V) 24 26 28 30 R1245x00xA/R1245x00xB VOUT=24V (Ta=25) R1245x00xA/R1245x00xB VOUT=15V (Ta=25) Output Voltage (V) 12 R1245x00xA/R1245x00xB VOUT=12V (Ta=25) R1245x00xA/R1245x00xB VOUT=5.0V (Ta=25) IOUT=100mA IOUT=1200mA 24.10 IOUT=500mA 24.00 23.90 23.80 14 34 IOUT=10mA IOUT=1200mA 16 18 20 22 VIN (V) 24 26 28 30 24 25 26 27 VIN (V) 28 29 30 R1245x 30) Input voltage vs. Output voltage (Version C/D) R1245x00xC/R1245x00xD VOUT=3.3V (Ta=25) 1mA 500mA 4.5 6 12 1mA 500mA 3.30 3.29 3.28 3.27 4 8 5.03 5.01 4.99 4.97 4.95 4 6 14 16 18 20 22 VIN (V) 12.10 26 28 30 24 28 500mA 12.00 11.90 11.80 14 16 18 20 VIN (V) 22 24 26 28 30 R1245x00xC/R1245x00xD VOUT=24V (Ta=25) 24.20 500mA 24 20 100mA 1200mA 12 R1245x00xC/R1245x00xD VOUT=15V (Ta=25) 100mA 1200mA 16 VIN (V) R1245x00xC/R1245x00xD VOUT=12V (Ta=25) 8 10 12 14 16 18 20 22 24 26 28 30 VIN (V) 15.40 15.30 15.20 15.10 15.00 14.90 14.80 14.70 14.60 12 12.20 100mA 1200mA 100mA 1200mA 3.31 13.5 Output Voltage (V) Output Voltage (V) 10.5 1mA 500mA 3.32 R1245x00xC/R1245x00xD VOUT=5.0V (Ta=25) 5.05 Output Voltage (V) 7.5 9 VIN (V) 3.33 100mA 1200mA Output Voltage (V) 0.81 0.81 0.80 0.80 0.80 0.80 0.80 0.79 0.79 Output Voltage (V) Output Voltage (V) R1245x00xC/R1245x00xD VOUT=0.8V (Ta=25) 100mA 500mA 1200mA 24.10 24.00 23.90 23.80 24 25 26 27 VIN (V) 28 29 30 35 R1245x 1mA 500mA 5 6 1mA 500mA 3.30 3.29 3.28 3.27 4 8 5.03 5.01 4.99 4.97 4.95 5 10 15 VIN (V) 20 25 15.40 100mA 1200mA 15.20 15.00 14.80 14.60 16 18 20 22 VIN (V) 24 26 28 30 24 28 500mA 12.00 11.90 11.80 12 14 16 18 20 22 VIN (V) 24 26 28 30 R1245x00xE/R1245x00xF VOUT=24V (Ta=25) 24.40 500mA 20 100mA 1200mA 12.10 30 R1245x00xE/R1245x00xF VOUT=15V (Ta=25) 12 16 VIN (V) R1245x00xE/R1245x00xF VOUT=12V (Ta=25) 12.20 100mA 1200mA 100mA 1200mA 3.31 6.5 Output Voltage (V) Output Voltage (V) 5.5 VIN (V) 1mA 500mA 3.32 R1245x00xE/R1245x00xF VOUT=5.0V (Ta=25) 5.05 Output Voltage (V) 3.33 100mA 1200mA Output Voltage (V) 0.808 0.806 0.804 0.802 0.800 0.798 0.796 0.794 0.792 4.5 36 R1245x00xE/R1245x00xF VOUT=3.3V (Ta=25) R1245x00xE/R1245x00xF VOUT=0.8V (Ta=25) Output Voltage (V) Output Voltage (V) 31) Input voltage vs. Output voltage (Version E/F) 100mA 1200mA 24.20 500mA 24.00 23.80 23.60 26 27 28 VIN (V) 29 30 R1245x 32) Input voltage vs. Output voltage (Version G/H) R1245x00xG/R1245x00xH VOUT=1.5V (Ta=25) 1.505 1.500 1.495 1.490 1.485 4.5 4.7 4.9 VIN (V) 5.1 5.3 3.33 1mA 500mA 5.03 100mA 1200mA 5.01 4.99 4.97 4.95 6 8 10 12 VIN (V) 14 16 18 1mA 500mA 3.32 100mA 1200mA 3.31 3.30 3.29 3.28 3.27 4.5 5.5 R1245x00xG/R1245x00xH VOUT=5.0V (Ta=25) 5.05 Output Voltage (V) 100mA 1200mA Output Voltage (V) 1mA 500mA 1.510 5.5 6.5 7.5 8.5 VIN (V) 9.5 10.5 11.5 12.5 R1245x00xG/R1245x00xH VOUT=12V (Ta=25) 12.20 Output Voltage (V) Output Voltage (V) 1.515 R1245x00xG/R1245x00xH VOUT=3.3V (Ta=25) 100mA 1200mA 12.10 500mA 12.00 11.90 11.80 14 16 18 20 22 VIN (V) 24 26 28 30 37 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon. 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh. 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein. 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights. 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us. 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, firecontainment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products. 7. Anti-radiation design is not implemented in the products described in this document. 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information. Halogen Free For the conservation of the global environment, Ricoh is advancing the decrease of the negative environmental impact material. After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive. Basically after Apr. 1, 2012, we will ship out the Power Management ICs of the Halogen Free products only. (Ricoh Halogen Free products are also Antimony Free.) RICOH COMPANY, LTD. Electronic Devices Company http://www.ricoh.com/LSI/ RICOH COMPANY, LTD. Electronic Devices Company Higashi-Shinagawa Office (International Sales) 3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan Phone: +81-3-5479-2857 Fax: +81-3-5479-0502 RICOH EUROPE (NETHERLANDS) B.V. Semiconductor Support Centre Nieuw Kronenburg Prof. W.H. Keesomlaan 1, 1183 DJ, Amstelveen, The Netherlands P.O.Box 114, 1180 AC Amstelveen Phone: +31-20-5474-309 Fax: +31-20-5474-791 RICOH ELECTRONIC DEVICES KOREA Co., Ltd. 11 floor, Haesung 1 building, 942, Daechidong, Gangnamgu, Seoul, Korea Phone: +82-2-2135-5700 Fax: +82-2-2135-5705 RICOH ELECTRONIC DEVICES SHANGHAI Co., Ltd. Room403, No.2 Building, 690#Bi Bo Road, Pu Dong New district, Shanghai 201203, People's Republic of China Phone: +86-21-5027-3200 Fax: +86-21-5027-3299 RICOH COMPANY, LTD. Electronic Devices Company Taipei office Room109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.) Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623