NXP Semiconductors Document Number: IMX6ULIEC Rev. 2.2, 05/2017 Data Sheet: Technical Data MCIMX6G1CVM05AA MCIMX6G2CVM05AA MCIMX6G3CVM05AA MCIMX6G2CVK05AA MCIMX6G3CVK05AA i.MX 6UltraLite Applications Processors for Industrial Products MCIMX6G1CVM05AB MCIMX6G2CVM05AB MCIMX6G3CVM05AB MCIMX6G2CVK05AB MCIMX6G3CVK05AB Package Information Plastic Package BGA 14 x 14 mm, 0.8 mm pitch BGA 9 x 9 mm, 0.5 mm pitch Ordering Information See Table 1 on page 3 1 i.MX 6UltraLite introduction 1. The i.MX 6UltraLite is a high performance, ultra efficient processor family featuring NXP's advanced implementation of the single ARM Cortex(R)-A7 core, which operates at speeds up to 528 MHz. The i.MX 6UltraLite includes an integrated power management module that reduces the complexity of the external power supply and simplifies the power sequencing. Each processor in this family provides various memory interfaces, including LPDDR2, DDR3, DDR3L, Raw and Managed NAND flash, NOR flash, eMMC, Quad SPI, and a wide range of other interfaces for connecting peripherals, such as WLAN, BluetoothTM, GPS, displays, and camera sensors. The i.MX 6UltraLite is specifically useful for applications such as: * Electronics Point-of-Sale device * Telematics (c) 2016-2017 NXP B.V. 2. 3. 4. 5. 6. i.MX 6UltraLite introduction . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Ordering information . . . . . . . . . . . . . . . . . . . . . . . 3 1.2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Architectural overview . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Modules list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1. Special signal considerations . . . . . . . . . . . . . . . 17 3.2. Recommended connections for unused analog interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1. Chip-Level conditions . . . . . . . . . . . . . . . . . . . . . 20 4.2. Power supplies requirements and restrictions . . . 28 4.3. Integrated LDO voltage regulator parameters . . . 29 4.4. PLL's electrical characteristics . . . . . . . . . . . . . . . 31 4.5. On-Chip oscillators . . . . . . . . . . . . . . . . . . . . . . . 32 4.6. I/O DC parameters . . . . . . . . . . . . . . . . . . . . . . . 33 4.7. I/O AC parameters . . . . . . . . . . . . . . . . . . . . . . . . 37 4.8. Output buffer impedance parameters . . . . . . . . . 40 4.9. System modules timing . . . . . . . . . . . . . . . . . . . . 43 4.10. Multi-Mode DDR Controller (MMDC) . . . . . . . . . . 53 4.11. General-Purpose Media Interface (GPMI) timing 54 4.12. External peripheral interface parameters . . . . . . 62 4.13. A/D converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Boot mode configuration . . . . . . . . . . . . . . . . . . . . . . . . 95 5.1. Boot mode configuration pins . . . . . . . . . . . . . . . 95 5.2. Boot device interface allocation . . . . . . . . . . . . . . 96 Package information and contact assignments . . . . . . 103 6.1. 14x14 mm package information . . . . . . . . . . . . 103 6.2. 9x9 mm package information . . . . . . . . . . . . . . 116 6.3. GPIO reset behaviors during reset . . . . . . . . . . 129 i.MX 6UltraLite introduction * * * * IoT Gateway Access control panels Human Machine Interfaces (HMI) Smart appliances The features of the i.MX 6UltraLite processor include1: * Single-core ARM Cortex-A7--The single core A7 provides a cost-effective and power-efficient solution. * Multilevel memory system--The multilevel memory system of each device is based on the L1 instruction and data caches, L2 cache, and internal and external memory. The device supports many types of external memory devices, including DDR3, low voltage DDR3, LPDDR2, NOR Flash, NAND Flash (MLC and SLC), OneNANDTM, Quad SPI, and managed NAND, including eMMC up to rev 4.4/4.41/4.5. * Smart speed technology--Power management implemented throughout the IC that enables multimedia features and peripherals to consume minimum power in both active and various low power modes. * Dynamic voltage and frequency scaling--The processor improves the power efficiency by scaling the voltage and frequency to optimize performance. * Multimedia powerhouse--Multimedia performance is enhanced by a multilevel cache system, NEONTM MPE (Media Processor Engine) co-processor, a programmable smart DMA (SDMA) controller, an asynchronous audio sample rate converter, and a Pixel processing pipeline (PXP) to support 2D image processing, including color-space conversion, scaling, alpha-blending, and rotation. * Ethernet interfaces--10/100 Mbps Ethernet controllers. * Human-machine interface--Support one digital parallel display interface. * Interface flexibility--Each processor supports connections to a variety of interfaces: High-speed USB on-the-go with PHY, multiple expansion card port (high-speed MMC/SDIO host and other), 12-bit ADC module, CAN port, smart card interface compatible with EMV Standard v4.3, and a variety of other popular interfaces (such as UART, I2C, and I2S serial audio). * Advanced security--The processor deliver hardware-enabled security features that enable secure e-commerce, digital rights management (DRM), information encryption, secure boot, and secure software downloads. The security features are discussed in detail in the i.MX 6UltraLite Security Reference Manual (IMX6ULSRM). * Integrated power management--The processor integrates linear regulators and internally generate voltage levels for different domains. This significantly simplifies system power management structure. For a comprehensive list of the i.MX 6UltraLite features, see Section 1.2, "Features"". 1. The actual feature set depends on the part numbers as described in the Table 1 and Table 2. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 2 NXP Semiconductors i.MX 6UltraLite introduction 1.1 Ordering information Table 1 provides examples of orderable part numbers covered by this data sheet. Table 1. Ordering Information Part Number Feature Package Junction Temperature Tj (C) MCIMX6G1CVM05AA Single Core, 528 MHz 14 x 14 mm, 0.8 pitch, BGA -40 to +105 MCIMX6G1CVM05AB Single Core, 528 MHz 14 x 14 mm, 0.8 pitch, BGA -40 to +105 MCIMX6G2CVM05AA Single Core, 528 MHz 14 x 14 mm, 0.8 pitch, BGA -40 to +105 MCIMX6G2CVM05AB Single Core, 528 MHz 14 x 14 mm, 0.8 pitch, BGA -40 to +105 MCIMX6G3CVM05AA Single Core, 528 MHz 14 x 14 mm, 0.8 pitch, BGA -40 to +105 MCIMX6G3CVM05AB Single Core, 528 MHz 14 x 14 mm, 0.8 pitch, BGA -40 to +105 MCIMX6G2CVK05AA Single Core, 528 MHz 9 x 9 mm, 0.5 pitch, BGA -40 to +105 MCIMX6G2CVK05AB Single Core, 528 MHz 9 x 9 mm, 0.5 pitch, BGA -40 to +105 MCIMX6G3CVK05AA Single Core, 528 MHz 9 x 9 mm, 0.5 pitch, BGA -40 to +105 MCIMX6G3CVK05AB Single Core, 528 MHz 9 x 9 mm, 0.5 pitch, BGA -40 to +105 Figure 1 describes the part number nomenclature so that characteristics of a specific part number can be identified (for example, cores, frequency, temperature grade, fuse options, and silicon revision). The primary characteristic which describes which data sheet applies to a specific part is the temperature grade (junction) field. * The i.MX 6UltraLite Applications Processors for Industrial Products Data Sheet (IMX6ULIEC) covers parts listed with a "C (Industrial temp)" Ensure to have the proper data sheet for specific part by verifying the temperature grade (junction) field and matching it to the proper data sheet. If there are any questions, visit the web page nxp.com/imx6series or contact an NXP representative for details. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 3 i.MX 6UltraLite introduction MC Qualification Level MC Prototype Samples PC Mass Production MC Special SC IMX6 X @ i.MX 6UltraLite G Commercial VM - VK - Y - VK VM VM Silicon Rev A Rev. 1.0 (Maskset ID: 0N52P) A Ethernet C U (10/100M) A A N R T I2 C B Fuse Option % Reserved A SPI I2S Timer ADC CSI /PWM L C D 2048 2048 2048 2048 1536 1536 1536 1536 1536 1024 128 128 128 128 128 128 128 128 128 128 KB KB KB KB KB KB KB KB KB KB 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 8 8 8 8 8 8 8 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 4/8 4/8 4/8 4/8 4/8 4/8 4/8 4/8 4/8 4/8 2 2 2 2 2 2 2 2 2 1 Y Y Y Y Y Y Y Y Y - Y Y Y Y Y Y Y Y Y - 1024 512 128 KB 0 KB 2 1 1 1 1 0 8 4 4 2 4 2 3 1 4/8 2/4 1 1 - - $$ 528 MHz 05 696 MHz 07 Package Type @ Y Y Y Y Y Y Y Y Y Y VM Y Y Y Y - A % ARM Cortex-A7 Frequency Part Differentiator USB with PHY $$ Rev. 1.2 (Maskset ID 2N52P) X Pac Enha Stand eFuse L2 kage nced ard bit Cache Secur Secur ity ity VV Rev. 1.1 (Maskset ID: 1N52P) i.MX 6 Family Commercial Industrial Commercial Industrial Automotive Commercial Industrial Commercial Industrial Automotive Industrial + ROHS MAPBGA 14x14 0.8 mm VM MAPBGA 9x9 0.5 mm VK 3 Junction Temperature (Tj) + Commercial: 0 to + 95 C D Industrial: -40 to +105 C C Auto: -40 to + 125 C A 2 1 0 Figure 1. Part Number Nomenclature--i.MX 6UltraLite Table 2 shows the detailed information about peripherals. Table 2. Detailed Peripherals Information 1,2,3 Peripheral Name Ethernet Instance G0 G1 G2 G3 ENET1 Y Y Y Y ENET2 NA NA Y Y OTG1 Y Y Y Y OTG2 NA Y Y Y FLEXCAN1 NA Y Y Y FLEXCAN2 NA NA Y Y CSI CSI NA NA Y Y LCD LCDIF NA NA Y Y QSPI QSPI Y Y Y Y USB with PHY CAN i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 4 NXP Semiconductors i.MX 6UltraLite introduction Table 2. Detailed Peripherals Information (continued)1,2,3 Peripheral Name SDIO UART ISO7816-3 I2C SPI I2S/SAI Instance G0 G1 G2 G3 uSDHC1 Y Y Y Y uSDHC2 Y Y Y Y UART1 Y Y Y Y UART2 Y Y Y Y UART3 Y Y Y Y UART4 Y Y Y Y UART5 NA Y Y Y UART6 NA Y Y Y UART7 NA Y Y Y UART8 NA Y Y Y SIM1 NA Y Y Y SIM2 NA Y Y Y I2C1 Y Y Y Y I2C2 Y Y Y Y I2C3 NA Y Y Y I2C4 NA Y Y Y ECSPI1 Y Y Y Y ECSPI2 Y Y Y Y ECSPI3 NA Y Y Y ECSPI4 NA Y Y Y SAI1 Y Y Y Y SAI2 NA Y Y Y SAI3 NA Y Y Y i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 5 i.MX 6UltraLite introduction Table 2. Detailed Peripherals Information (continued)1,2,3 Peripheral Name Timer/PWM ADC Instance G0 G1 G2 G3 EPIT1 Y Y Y Y EPIT2 NA Y Y Y GPT1 Y Y Y Y GPT2 NA Y Y Y PWM1 Y Y Y Y PWM2 Y Y Y Y PWM3 Y Y Y Y PWM4 Y Y Y Y PWM5 NA Y Y Y PWM6 NA Y Y Y PWM7 NA Y Y Y PWM8 NA Y Y Y ADC1 Y Y Y Y ADC2 NA NA Y Y 1For detailed pin mux information, please refer to "Chapter 4 External Signals and Pin Multiplexing" of i.MX 6UltraLite Reference Manual (IMX6ULRM). 2 3 Y stands for yes, NA stands for not available. G0 and G3 are not offered in automotive grade. 1.2 Features The i.MX 6UltraLite processors are based on ARM Cortex-A7 MPCoreTM Platform, which has the following features: * Supports single ARM Cortex-A7 MPCore (with TrustZone) with: -- 32 KBytes L1 Instruction Cache -- 32 KBytes L1 Data Cache -- Private Timer -- Cortex-A7 NEON Media Processing Engine (MPE) Co-processor * General Interrupt Controller (GIC) with 128 interrupts support * Global Timer * Snoop Control Unit (SCU) * 128 KB unified I/D L2 cache * Single Master AXI bus interface output of L2 cache * Frequency of the core (including Neon and L1 cache), as per Table 11, "Operating Ranges," on page 23. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 6 NXP Semiconductors i.MX 6UltraLite introduction The SoC-level memory system consists of the following additional components: -- Boot ROM, including HAB (96 KB) -- Internal multimedia/shared, fast access RAM (OCRAM, 128 KB) -- Secure/non-secure RAM (32 KB) * External memory interfaces: The i.MX 6UltraLite processors support handheld DRAM, NOR, and NAND Flash memory standards. -- 16-bit LP-DDR2-800, 16-bit DDR3-800 and LV-DDR3-800 -- 8-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size, BA-NAND, PBA-NAND, LBA-NAND, OneNANDTM and others. BCH ECC up to 40 bits. -- 16/8-bit NOR Flash. All EIMv2 pins are muxed on other interfaces. Each i.MX 6UltraLite processor enables the following interfaces to external devices (some of them are muxed and not available simultaneously): * Displays: -- One parallel display port supports max 85 MHz display clock and up to WXGA (1366 x 768) at 60 Hz -- Support 24-bit, 18-bit, 16-bit, and 8-bit parallel display * Camera sensors1: -- One parallel camera port, up to 24 bit and 148.5 MHz pixel clock -- Support 24-bit, 16-bit, 10-bit, and 8-bit input -- Support BT.656 interface * Expansion cards: -- Two MMC/SD/SDIO card ports all supporting: - 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR-104 mode (104 MB/s max) - 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR and DDR modes (104 MB/s max) - 4-bit or 8-bit transfer mode specifications for eMMC chips up to 200 MHz in HS200 mode (200 MB/s max) * USB: -- Two high speed (HS) USB 2.0 OTG (Up to 480 Mbps), with integrated HS USB Phy * Miscellaneous IPs and interfaces: -- Three SAI supporting up to three I2S -- Sony Philips Digital Interconnect Format (SPDIF), Rx and Tx -- Eight UARTs, up to 5.0 Mbps each: - Providing RS232 interface - Supporting 9-bit RS485 multidrop mode - Support RTS/CTS for hardware flow control -- Four enhanced CSPI (eCSPI) 1. G2 and G3 only i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 7 i.MX 6UltraLite introduction -- -- -- -- -- -- -- -- -- -- -- Four I2C Two 10/100M Ethernet Controller (IEEE1588 compliant) Eight Pulse Width Modulators (PWM) System JTAG Controller (SJC) GPIO with interrupt capabilities 8x8 Key Pad Port (KPP) One Quad SPI Two Flexible Controller Area Network (FlexCAN) Three Watchdog timers (WDOG) Two 12-bit Analog to Digital Converters (ADC) with up to 10 input channels in total Touch Screen Controller (TSC) The i.MX 6UltraLite processors integrate advanced power management unit and controllers: * Provide PMU, including LDO supplies, for on-chip resources * Use Temperature Sensor for monitoring the die temperature * Use Voltage Sensor for monitoring the die voltage * Support DVFS techniques for low power modes * Use SW State Retention and Power Gating for ARM and NEON * Support various levels of system power modes * Use flexible clock gating control scheme * Two smart card interfaces compatible with EVM Standard 4.3 The i.MX 6UltraLite processors use dedicated hardware accelerators to meet the targeted multimedia performance. The use of hardware accelerators is a key factor in obtaining high performance at low power consumption, while having the CPU core relatively free for performing other tasks. The i.MX 6UltraLite processors incorporate the following hardware accelerators: * PXP--Pixel Processing Pipeline for imagine resize, rotation, overlay and CSC1. Off loading key pixel processing operations are required to support the LCD display applications. * ASRC--Asynchronous Sample Rate Converter Security functions are enabled and accelerated by the following hardware: * ARM TrustZone including the TZ architecture (separation of interrupts, memory mapping, etc.) * SJC--System JTAG Controller. Protecting JTAG from debug port attacks by regulating or blocking the access to the system debug features. * CAAM--Cryptographic Acceleration and Assurance Module, containing cryptographic and hash engines, 32 KB secure RAM, and True and Pseudo Random Number Generator (NIST certified). * SNVS--Secure Non-Volatile Storage, including Secure Real Time Clock. * CSU--Central Security Unit. CSU is configured during boot and by eFUSEs and determine the security level operation mode as well as the TZ policy. 1. G2 and G3 only i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 8 NXP Semiconductors i.MX 6UltraLite introduction * A-HAB--Advanced High Assurance Boot--HABv4 with the new embedded enhancements: SHA-256, 2048-bit RSA key, version control mechanism, warm boot, CSU, and TZ initialization. NOTE The actual feature set depends on the part numbers as described in Table 1 and Table 2. Functions such as display and camera interfaces, connectivity interfaces, and security features are not offered on all derivatives. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 9 Architectural overview 2 Architectural overview The following subsections provide an architectural overview of the i.MX 6UltraLite processor system. 2.1 Block diagram Figure 2 shows the functional modules in the i.MX 6UltraLite processor system. /3''5 ''5 %DWWHU\&WUO 'HYLFH ([WHUQDO0HPRU\ 1$1')/$6+ $50&RUWH[$ 03&RUH3ODWIRUP 00'& &RUWH[$&RUH (,0 *30, %&+ 125)/$6+ 3DUDOOHO -7$* ,((( 6HQVRUV 463, , .% ' .% 1(21 (70 'HEXJ &ORFN 5HVHW '$3 3// 73,8 &&0 &7,V *3& 6-& 65& 6&8 7LPHU 7LPHU&RQWURO 6HFXULW\ 6196 657& 2&5$0.% (3,7 $33HULSKHUDOV 520.% 7HPS0RQLWRU X6'+& ,& 6PDUW'0$ 6'0$ 6KDUHG3HULSKHUDOV $65& H&63, 'LVSOD\,QWHUIDFH ,PDJH3URFVVLQJ 63',)7[ 5[ 3L[HO3URFHVVLQJ3LSHOLQH 3;3 6$, 8$57 &0266HQVRU &DPHUD,QWHUIDFH 3RZHU0DQDJHPHQW &6, . /'2V 0RGHP,& 'LJLWDO$XGLR .H\SDG 3:0 046 /&',) 7RXFK3DQHO &RQWURO *37 /&'3DQHO :/$1 .26& ,QWHUQDO0HPRU\ 63%$ &68 )XVH%R[ 00&6' 6';& :'2* $;,DQG$+%6ZLWFK)DEULF &$$0 .%5$0 00&6' H00&H6' ;7$/26& /&DFKH.% 125)/$6+ 4XDG63, &U\VWDO &ORFN6RXUFH 6,0Y (096,0 &$1[ 2&273 ,208;& 0 (WKHUQHW [ 76& .33 *3,2 (WKHUQHW &RQWUROOHU$UHD 1HWZRUN &$1 86%27* 86%27* GHYKRVW Figure 2. i.MX 6UltraLite System Block Diagram1 1. Some modules shown in this block diagram are not offered on all derivatives. See Table 2 for exceptions. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 10 NXP Semiconductors Modules list 3 Modules list The i.MX 6UltraLite processors contain a variety of digital and analog modules. Table 3 describes these modules in alphabetical order.1 Table 3. i.MX 6UltraLite Modules List Block Mnemonic Block Name Subsystem ADC1 ADC2 Analog to Digital Converter -- The ADC is a 12-bit general purpose analog to digital converter. ARM ARM Platform ARM The ARM Core Platform includes 1x Cortex-A7 core. It also includes associated sub-blocks, such as the Level 2 Cache Controller, SCU (Snoop Control Unit), GIC (General Interrupt Controller), private timers, watchdog, and CoreSight debug modules. ASRC Asynchronous Sample Rate Converter Multimedia Peripherals The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of a signal associated to an input clock into a signal associated to a different output clock. The ASRC supports concurrent sample rate conversion of up to 10 channels of about -120dB THD+N. The sample rate conversion of each channel is associated to a pair of incoming and outgoing sampling rates. The ASRC supports up to three sampling rate pairs. BCH Binary-BCH ECC Processor System Control Peripherals The BCH module provides up to 40-bit ECC for NAND Flash controller (GPMI) CAAM Cryptographic accelerator and assurance module Security CAAM is a cryptographic accelerator and assurance module. CAAM implements several encryption and hashing functions, a run-time integrity checker, and a Pseudo Random Number Generator (PRNG). The pseudo random number generator is certified by Cryptographic Algorithm Validation Program (CAVP) of National Institute of Standards and Technology (NIST). Its DRBG validation number is 94 and its SHS validation number is 1455. CAAM also implements a Secure Memory mechanism. In i.MX 6UltraLite processors, the security memory provided is 32 KB. CCM GPC SRC Brief Description Clock Control Module, Clocks, Resets, and These modules are responsible for clock and reset General Power Power Control distribution in the system, and also for the system Controller, System Reset power management. Controller CSI Parallel CSI Multimedia Peripherals The CSI IP provides parallel CSI standard camera interface port. The CSI parallel data ports are up to 24 bits. It is designed to support 24-bit RGB888/YUV444, CCIR656 video interface, 8-bit YCbCr, YUV or RGB, and 8-bit/10-bit/16-bit Bayer data input. CSU Central Security Unit Security The Central Security Unit (CSU) is responsible for setting comprehensive security policy within the i.MX 6UltraLite platform. 1. Note that some modules listed in this table are not offered on all derivatives. See Table 2 for exceptions. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 11 Modules list Table 3. i.MX 6UltraLite Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description DAP Debug Access Port System Control Peripherals The DAP provides real-time access for the debugger without halting the core to: * System memory and peripheral registers * All debug configuration registers The DAP also provides debugger access to JTAG scan chains. The DAP module is internal to the Cortex-A7 Core Platform. eCSPI1 eCSPI2 eCSPI3 eCSPI4 Configurable SPI Connectivity Peripherals Full-duplex enhanced Synchronous Serial Interface, with data rate up to 52 Mbit/s. It is configurable to support Master/Slave modes, four chip selects to support multiple peripherals. EIM NOR-Flash /PSRAM interface Connectivity Peripherals The EIM NOR-FLASH / PSRAM provides: * Support 16-bit PSRAM memories (sync and async operating modes), at slow frequency * Support 16-bit NOR-Flash memories, at slow frequency * Multiple chip selects EMV SIM1 EMV SIM2 Europay, Master and Visa Subscriber Identification Module Connectivity peripherals EMV SIM is designed to facilitate communication to Smart Cards compatible to the EMV version 4.3 standard (Book 1) and Smart Cards compatible with ISO/IEC 7816-3 standard. ENET1 ENET2 Ethernet Controller Connectivity Peripherals The Ethernet Media Access Controller (MAC) is designed to support 10/100 Mbit/s Ethernet/IEEE 802.3 networks. An external transceiver interface and transceiver function are required to complete the interface to the media. The module has dedicated hardware to support the IEEE 1588 standard. See the ENET chapter of the reference manual for details. EPIT1 EPIT2 Enhanced Periodic Interrupt Timer Timer Peripherals Each EPIT is a 32-bit "set and forget" timer that starts counting after the EPIT is enabled by software. It is capable of providing precise interrupts at regular intervals with minimal processor intervention. It has a 12-bit prescaler for division of input clock frequency to get the required time setting for the interrupts to occur, and counter value can be programmed on the fly. FLEXCAN1 FLEXCAN2 Flexible Controller Area Network Connectivity Peripherals The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the Electromagnetic interference (EMI) environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module is a full implementation of the CAN protocol specification, Version 2.0 B, which supports both standard and extended message frames. GPIO1 GPIO2 GPIO3 GPIO4 GPIO5 General Purpose I/O Modules System Control Peripherals Used for general purpose input/output to external ICs. Each GPIO module supports up to 32 bits of I/O. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 12 NXP Semiconductors Modules list Table 3. i.MX 6UltraLite Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description GPMI General Purpose Memory Interface Connectivity Peripherals The GPMI module supports up to 8x NAND devices and 40-bit ECC for NAND Flash Controller (GPMI2). GPMI supports separate DMA channels for each NAND device. GPT1 GPT2 General Purpose Timer Timer peripherals Each GPT is a 32-bit "free-running" or "set and forget" mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in "set and forget" mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock. LCDIF LCD interface Connectivity peripherals The LCDIF is a general purpose display controller used to drive a wide range of display devices varying in size and capability. The LCDIF is designed to support dumb (synchronous 24-bit Parallel RGB interface) and smart (asynchronous parallel MPU interface) LCD devices. MQS Medium Quality Sound Multimedia Peripherals MQS is used to generate 2-channel medium quality PWM-like audio via two standard digital GPIO pins. PWM1 PWM2 PWM3 PWM4 PWM5 PWM6 PWM7 PWM8 Pulse Width Modulation Connectivity peripherals The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate sound from stored sample audio images and it can also generate tones. It uses 16-bit resolution and a 4x16 data FIFO to generate sound. PXP Pixel Processing Pipeline Display peripherals A high-performance pixel processor capable of 1 pixel/clock performance for combined operations, such as color-space conversion, alpha blending, gamma-mapping, and rotation. The PXP is enhanced with features specifically for gray scale applications. In addition, the PXP supports traditional pixel/frame processing paths for still-image and video processing applications, allowing it to interface with the integrated EPD. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 13 Modules list Table 3. i.MX 6UltraLite Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description QSPI Quad SPI Connectivity peripherals Quad SPI module act as an interface to external serial flash devices. This module contains the following features: * Flexible sequence engine to support various flash vendor devices * Single pad/Dual pad/Quad pad mode of operation * Single Data Rate/Double Data Rate mode of operation * Parallel Flash mode * DMA support * Memory mapped read access to connected flash devices * Multi-master access with priority and flexible and configurable buffer for each master SAI1 SAI2 SAI3 -- -- The SAI module provides a synchronous audio interface (SAI) that supports full duplex serial interfaces with frame synchronization, such as I2S, AC97, TDM, and codec/DSP interfaces. SDMA Smart Direct Memory Access System Control Peripherals The SDMA is multi-channel flexible DMA engine. It helps in maximizing system performance by off-loading the various cores in dynamic data routing. It has the following features: * Powered by a 16-bit instruction-set micro-RISC engine * Multi-channel DMA supporting up to 32 time-division multiplexed DMA channels * 48 events with total flexibility to trigger any combination of channels * Memory accesses including linear, FIFO, and 2D addressing * Shared peripherals between ARM and SDMA * Very fast context-switching with 2-level priority based preemptive multi-tasking * DMA units with auto-flush and prefetch capability * Flexible address management for DMA transfers (increment, decrement, and no address changes on source and destination address) * DMA ports can handle unit-directional and bi-directional flows (copy mode) * Support of byte-swapping * Library of Scripts and API is available 2x SIMv2 Smart Card Connectivity peripherals Smart card interface compliant with ISO7816. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 14 NXP Semiconductors Modules list Table 3. i.MX 6UltraLite Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description SJC System JTAG Controller System Control Peripherals The SJC provides JTAG interface, which complies with JTAG TAP standards, to internal logic. The i.MX 6UltraLite processors use JTAG port for production, testing, and system debugging. In addition, the SJC provides BSR (Boundary Scan Register) standard support, which complies with IEEE1149.1 and IEEE1149.6 standards. The JTAG port must be accessible during platform initial laboratory bring-up, for manufacturing tests and troubleshooting, as well as for software debugging by authorized entities. The i.MX 6UltraLite SJC incorporates three security modes for protecting against unauthorized accesses. Modes are selected through eFUSE configuration. SNVS Secure Non-Volatile Storage Security Secure Non-Volatile Storage, including Secure Real Time Clock, Security State Machine, Master Key Control, and Violation/Tamper Detection and reporting. SPDIF Sony Philips Digital Interconnect Format Multimedia Peripherals A standard audio file transfer format, developed jointly by the Sony and Phillips corporations. Has Transmitter and Receiver functionality. System Counter -- -- The system counter module is a programmable system counter which provides a shared time base to the Cortex A series cores as part of ARM's generic timer architecture. It is intended for use in application where the counter is always powered on and supports multiple, unrelated clocks. TSC Touch Screen Touch Controller TZASC Trust-Zone Address Space Controller Security The TZASC (TZC-380 by ARM) provides security address region control functions required for intended application. It is used on the path to the DRAM controller. UART1 UART2 UART3 UART4 UART5 UART6 UART7 UART8 UART Interface Connectivity Peripherals Each of the UART modules support the following serial data transmit/receive protocols and configurations: * 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd or none) * Programmable baud rates up to 5 Mbps. * 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting auto-baud With touch controller to support 4-wire and 5-wire resistive touch panel. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 15 Modules list Table 3. i.MX 6UltraLite Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description uSDHC1 uSDHC2 SD/MMC and SDXC Enhanced Multi-Media Card / Secure Digital Host Controller Connectivity Peripherals i.MX 6UltraLite specific SoC characteristics: All four MMC/SD/SDIO controller IPs are identical and are based on the uSDHC IP. They are: * Fully compliant with MMC command/response sets and Physical Layer as defined in the Multimedia Card System Specification, v4.5/4.2/4.3/4.4/4.41/ including high-capacity (size > 2 GB) cards HC MMC. * Fully compliant with SD command/response sets and Physical Layer as defined in the SD Memory Card Specifications, v3.0 including high-capacity SDXC cards up to 2 TB. * Fully compliant with SDIO command/response sets and interrupt/read-wait mode as defined in the SDIO Card Specification, Part E1, v3.0 Two ports support: * 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR104 mode (104 MB/s max) * 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR and DDR modes (104 MB/s max) * 4-bit or 8-bit transfer mode specifications for eMMC chips up to 200 MHz in HS200 mode (200 MB/s max) USB Universal Serial Bus 2.0 Connectivity Peripherals USBO2 (USB OTG1 and USB OTG2) contains: * Two high-speed OTG 2.0 modules with integrated HS USB PHYs * Support eight Transmit (TX) and eight Receive (Rx) endpoints, including endpoint 0 WDOG1 WDOG3 Watch Dog Timer Peripherals The Watch Dog Timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the ARM core, and a second point evokes an external event on the WDOG line. WDOG2 (TZ) Watch Dog (TrustZone) Timer Peripherals The TrustZone Watchdog (TZ WDOG) timer module protects against TrustZone starvation by providing a method of escaping normal mode and forcing a switch to the TZ mode. TZ starvation is a situation where the normal OS prevents switching to the TZ mode. Such situation is undesirable as it can compromise the system's security. Once the TZ WDOG module is activated, it must be serviced by TZ software on a periodic basis. If servicing does not take place, the timer times out. Upon a time-out, the TZ WDOG asserts a TZ mapped interrupt that forces switching to the TZ mode. If it is still not served, the TZ WDOG asserts a security violation signal to the CSU. The TZ WDOG module cannot be programmed or deactivated by a normal mode SW. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 16 NXP Semiconductors Modules list 3.1 Special signal considerations Table 4 lists special signal considerations for the i.MX 6UltraLite processors. The signal names are listed in alphabetical order. The package contact assignments can be found in Section 6, "Package information and contact assignments"." Signal descriptions are provided in the i.MX 6UltraLite Reference Manual (IMX6ULRM). Table 4. Special Signal Considerations Signal Name Remarks CCM_CLK1_P/ CCM_CLK1_N One general purpose differential high speed clock Input/output is provided. It can be used: * To feed external reference clock to the PLLs and further to the modules inside SoC. * To output internal SoC clock to be used outside the SoC as either reference clock or as a functional clock for peripherals. See the i.MX 6UltraLite Reference Manual (IMX6ULRM) for details on the respective clock trees. Alternatively one may use single ended signal to drive CLK1_P input. In this case corresponding CLK1_N input should be tied to the constant voltage level equal 1/2 of the input signal swing. Termination should be provided in case of high frequency signals. After initialization, the CLK1 input/output can be disabled (if not used). If unused either or both of the CLK1_N/P pairs may remain unconnected. RTC_XTALI/RTC_XTALO If the user wishes to configure RTC_XTALI and RTC_XTALO as an RTC oscillator, a 32.768 kHz crystal, (100 k ESR, 10 pF load) should be connected between RTC_XTALI and RTC_XTALO. Keep in mind the capacitors implemented on either side of the crystal are about twice the crystal load capacitor. To hit the exact oscillation frequency, the board capacitors need to be reduced to account for board and chip parasitics. The integrated oscillation amplifier is self biasing, but relatively weak. Care must be taken to limit parasitic leakage from RTC_XTALI and RTC_XTALO to either power or ground (>100 M). This will debias the amplifier and cause a reduction of startup margin. Typically RTC_XTALI and RTC_XTALO should bias to approximately 0.5 V. If it is desired to feed an external low frequency clock into RTC_XTALI, the RTC_XTALO pin must remain unconnected or driven with a complimentary signal. The logic level of this forcing clock should not exceed VDD_SNVS_CAP level and the frequency should be <100 kHz under typical conditions. In case when high accuracy real time clock are not required system may use internal low frequency ring oscillator. It is recommended to connect RTC_XTALI to GND and keep RTC_XTALO unconnected. XTALI/XTALO A 24.0 MHz crystal should be connected between XTALI and XTALO. The crystal must be rated for a maximum drive level of 250 W. An ESR (equivalent series resistance) of typical 80 is recommended. NXP BSP (board support package) software requires 24 MHz on XTALI/XTALO. The crystal can be eliminated if an external 24 MHz oscillator is available in the system. In this case, XTALO must be directly driven by the external oscillator and XTALI mounted with 18 pF capacitor. Please refer to the EVK board reference design for details. The logic level of this forcing clock cannot exceed NVCC_PLL level. If this clock is used as a reference for USB, then there are strict frequency tolerance and jitter requirements. See OSC24M chapter and relevant interface specifications chapters for details. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 17 Modules list Table 4. Special Signal Considerations (continued) Signal Name Remarks DRAM_VREF When using DDR_VREF with DDR I/O, the nominal reference voltage must be half of the NVCC_DRAM supply. The user can tie DDR_VREF to a precision external resistor divider. Use a 1 k 0.5% resistor to GND and a 1 k 0.5% resistor to NVCC_DRAM. Shunt each resistor with a closely-mounted 0.1 F capacitor. To reduce supply current, a pair of 1.5 k 0.1% resistors can be used. Using resistors with recommended tolerances ensures the 2% DDR_VREF tolerance (per the DDR3 specification) is maintained when two DDR3 ICs plus the i.MX 6UltraLite are drawing current on the resistor divider. DRAM calibration resistor 240 1% used as reference during DRAM output buffer driver calibration should be connected between this pad and GND. ZQPAD GPANAIO This signal is reserved for NXP manufacturing use only. This output must remain unconnected. JTAG_nnnn The JTAG interface is summarized in Table 5. Use of external resistors is unnecessary. However, if external resistors are used, the user must ensure that the on-chip pull-up/down configuration is followed. For example, do not use an external pull down on an input that has on-chip pull-up. JTAG_TDO is configured with a keeper circuit such that the non-connected condition is eliminated if an external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental and should be avoided. JTAG_MOD is referenced as SJC_MOD in the i.MX 6UltraLite reference manual. Both names refer to the same signal. JTAG_MOD must be externally connected to GND for normal operation. Termination to GND through an external pull-down resistor (such as 1 k) is allowed. JTAG_MOD set to hi configures the JTAG interface to mode compliant with IEEE1149.1 standard. JTAG_MOD set to low configures the JTAG interface for common SW debug adding all the system TAPs to the chain. NC These signals are No Connect (NC) and should be floated by the user. POR_B This cold reset negative logic input resets all modules and logic in the IC. May be used in addition to internally generated power on reset signal (logical AND, both internal and external signals are considered active low). ONOFF ONOFF can be configured in debounce, off to on time, and max time-out configurations. The debounce and off to on time configurations supports 0, 50, 100 and 500 ms. Debounce is used to generate the power off interrupt. While in the ON state, if ONOFF button is pressed longer than the debounce time, the power off interrupt is generated. Off to on time supports the time it takes to request power on after a configured button press time has been reached. While in the OFF state, if ONOFF button is pressed longer than the off to on time, the state will transition from OFF to ON. Max time-out configuration supports 5, 10, 15 seconds and disable. Max time-out configuration supports the time it takes to request power down after ONOFF button has been pressed for the defined time. TEST_MODE TEST_MODE is for NXP factory use. The user must tie this pin directly to GND. Table 5. JTAG Controller Interface Summary JTAG I/O Type On-chip Termination JTAG_TCK Input 47 kpull-up JTAG_TMS Input 47 kpull-up JTAG_TDI Input 47 kpull-up JTAG_TDO 3-state output Keeper i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 18 NXP Semiconductors Modules list Table 5. JTAG Controller Interface Summary (continued) 3.2 JTAG I/O Type On-chip Termination JTAG_TRSTB Input 47 kpull-up JTAG_MOD Input 100 kpull-up Recommended connections for unused analog interfaces Table 6 shows the recommended connections for unused analog interfaces. Table 6. Recommended Connections for Unused Analog Interfaces Module Pad Name Recommendations if Unused CCM CCM_CLK1_N, CCM_CLK1_P Float USB USB_OTG1_CHD_B, USB_OTG1_DN, USB_OTG1_DP, USB_OTG1_VBUS, USB_OTG2_CHD_B, USB_OTG2_DN, USB_OTG2_DP, USB_OTG2_VBUS Float ADC ADC_VREFH Tie to VDDA_ADC_3P3 VDDA_ADC_3P3 VDDA_ADC_3P3 must be powered even if the ADC is not used. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 19 Electrical characteristics 4 Electrical characteristics This section provides the device and module-level electrical characteristics for the i.MX 6UltraLite processors. 4.1 Chip-Level conditions This section provides the device-level electrical characteristics for the IC. See Table 7 for a quick reference to the individual tables and sections. Table 7. i.MX 6UltraLite Chip-Level Conditions For these characteristics Topic appears Absolute maximum ratings on page 20 Thermal resistance on page 21 Operating ranges on page 23 External clock sources on page 24 Maximum supply currents on page 25 Low power mode supply currents on page 27 USB PHY current consumption on page 28 4.1.1 Absolute maximum ratings CAUTION Stress beyond those listed under Table 8 may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Table 8 shows the absolute maximum operating ratings. Table 8. Absolute Maximum Ratings Parameter Description Symbol Min Max Unit Core Supplies Input Voltage (LDO Enabled) VDD_SOC_IN -0.3 1.6 V Core Supplies Input Voltage (LDO Bypass) VDD_SOC_IN -0.3 1.4 V VDD_HIGH_IN Supply voltage VDD_HIGH_IN -0.3 3.6 V Core Supplies Output Voltage (LDO Enabled) VDD_ARM_CAP VDD_SOC_CAP -0.3 1.4 V VDD_HIGH_CAP LDO Output Supply Voltage VDD_HIGH_CAP -0.3 2.6 V i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 20 NXP Semiconductors Electrical characteristics Table 8. Absolute Maximum Ratings (continued) Supply Input Voltage to Secure Non-Volatile Storage and Real Time Clock VDD_SNVS_IN -0.3 3.6 USB_OTG_VBUS -- 5.5 V IO Supply for DDR Interface NVCC_DRAM -0.4 1.975 (see note1) V Supply for DDR pre-drivers NVCC_DRAM_2P5 -0.3 2.85 V NVCC_CSI NVCC_ENET NVCC_GPIO NVCC_LCD NVCC_NAND NVCC_SD1 -0.5 3.7 V VDDA_ADC_3P3 -- 3.7 V Input/Output Voltage range (Non-DDR Pins) Vin/Vout -0.5 OVDD + 0.3 (see V Input/Output Voltage range (DDR Pins) Vin/Vout -0.5 OVDD + 0.4 (see V -- -- 2000 500 V -40 150 oC USB VBUS Supply IO Supply for GPIO Type Pins Supply for ADC 3P3V ESD damage Immunity: note1) note1, 2) Vesd Human Body Model (HBM) Charge Device Model (CDM) Storage Temperature range TSTORAGE 1 The absolute maximum voltage includes an allowance for 400 mV of overshoot on the IO pins. Per JEDEC standards, the allowed signal overshoot must be derated if NVCC_DRAM exceeds 1.575 V. 2 OVDD is the I/O supply voltage. 4.1.2 4.1.2.1 Thermal resistance 14x14 MM (VM) package thermal resistance Table 9 displays the 14x14 MM (VM) package thermal resistance data. Table 9. 14x14 MM (VM) Thermal Resistance Data1 Rating Test Conditions Symbol Value Unit Notes Junction to Ambient Natural convection Single-layer board (1s) RJA 58.4 oC/W 2,3 Junction to Ambient Natural convection Four-layer board (2s2p) RJA 37.6 oC/W 2,3,4 Junction to Ambient (@200 Single layer board (1s) ft/min) RJMA 48.6 oC/W 2,4 Junction to Ambient (@200 Four layer board (2s2p) ft/min) RJMA 32.9 o C/W 2,4 RJB 21.8 oC/W 5 Junction to Board -- i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 21 Electrical characteristics Table 9. 14x14 MM (VM) Thermal Resistance Data1 Rating Test Conditions Symbol Value Junction to Case -- RJC 19.3 Junction to Package Top Natural Convection JT 2.3 Junction to Package Bottom Natural Convection JB 12.0 1 2 3 4 5 6 7 8 Unit o Notes C/W 6 oC/W 7 o 8 C/W As per JEDEC JESD51-2 the intent of (thermal resistance) measurement is solely for a thermal performance comparison of one package to another in a standardized environment. This methodology is not meant to and will not predict the performance of a package in an application-specific environment. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal. Per JEDEC JESD51-6 with the board horizontal. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB 4.1.2.2 9x9 MM (VK) package thermal resistance Table 10 displays the 9x9 MM (VK) thermal resistance data. Table 10. 9x9 MM (VK) Thermal Resistance Data Rating Test Conditions Symbol Value Unit Notes Junction to Ambient Natural Convection Single-layer board (1s) RJA 65.6 oC/W 1,2 Junction to Ambient Natural Convection Four-layer board (2s2p) RJA 36.2 oC/W 2,2,3 Junction to Ambient (@200 Single layer board (1s) ft/min) RJMA 51.2 oC/W 2,3 Junction to Ambient (@200 Four layer board (2s2p) ft/min) RJMA 31.8 oC/W 2,3 Junction to Board -- RJB 17.1 oC/W 4 Junction to Case -- RJC 14.5 oC/W 5 Junction to Package Top Natural Convection JT 0.6 oC/W 6 JB_CSB 11.1 oC/W 7 Junction to Package Bottom Natural Convection 1 Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 2 Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 22 NXP Semiconductors Electrical characteristics 3 Per JEDEC JESD51-6 with the board horizontal. Thermal resistances between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. 5 Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). 6 Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. 7 Thermal resistance between the die and the central solder balls on the bottom of the package based on simulation. 4 4.1.3 Operating ranges Table 11 provides the operating ranges of the i.MX 6UltraLite processors. For details on the chip's power structure, see the "Power Management Unit (PMU)" chapter of the i.MX 6UltraLite Reference Manual (IMX6ULRM). Table 11. Operating Ranges Parameter Description Symbol Operating Conditions Min Typ Max1 Unit VDD_SOC_IN -- 1.275 -- 1.5 V VDD_SOC_IN must be 125 mV higher than the LDO Output Set Point (VDD_ARM_CAP and VDD_SOC_CAP) for correct supply voltage regulation. VDD_ARM_CAP A7 core at 528 MHz 1.15 -- 1.3 V A7 core at 396 MHz 1.00 -- 1.3 A7 core at 198 MHz 0.925 -- 1.3 Output voltage must be set to the following rules: * VDD_ARM_CAP <= VDD_SOC_CAP * VDD_SOC_CAP VDD_ARM_CAP < 330 mV VDD_SOC_CAP -- 1.15 -- 1.3 V -- Run Mode: LDO Bypassed VDD_SOC_IN A7 core operation at 528 MHz or below 1.15 -- 1.3 V A7 core operation above 528 MHz is not supported when LDO is bypassed. SUSPEND (DSM) Mode VDD_SOC_IN -- 0.90 -- 1.3 V Refer to Table 15 Low Power Mode Current and Power Consumption on page 15 VDD_HIGH internal Regulator VDD_HIGH_IN2 -- 2.80 -- 3.6 V Must match the range of voltages that the rechargeable backup battery supports. Backup battery supply range VDD_SNVS_IN3 -- 2.40 -- 3.6 V Can be combined with VDDHIGH_IN, if the system does not require keeping real time and other data on OFF state. USB_OTG1_VBUS -- 4.40 -- 5.5 V -- USB_OTG2_VBUS -- 4.40 -- 5.5 V -- Run Mode: LDO Enabled USB supply voltages Comment i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 23 Electrical characteristics Table 11. Operating Ranges (continued) DDR I/O supply GPIO supplies NVCC_DRAM LPDDR2 1.14 1.2 1.3 V -- DDR3L 1.28 1.35 1.45 V -- DDR3 1.43 1.5 1.575 V -- NVCC_DRAM2P5 -- 2.25 2.5 2.75 V -- NVCC_CSI -- 1.65 1.8, 2.8, 3.3 3.6 V All digital I/O supplies (NVCC_xxxx) must be powered (unless otherwise specified in this data sheet) under normal conditions whether the associated I/O pins are in use or not. -- 3.0 3.15 3.6 V VDDA_ADC_3P3 must be powered when chip is in RUN mode, IDLE mode, or SUSPEND mode. VDDA_ADC_3P3 should not be powered when chip is in SNVS mode. oC See the application note, i.MX 6UltraLite Product Lifetime Usage Estimates for information on product lifetime (power-on years) for this processor. NVCC_ENET NVCC_GPIO NVCC_UART NVCC_LCD NVCC_NAND NVCC_SD1 A/D converter VDDA_ADC_3P3 Temperature Operating Ranges Junction temperature Tj Industrial -40 -- 105 1 Applying the maximum voltage results in maximum power consumption and heat generation. NXP recommends a voltage set point = (Vmin + the supply tolerance). This result in an optimized power/speed ratio. 2 In setting VDD_HIGH_IN voltage, refer to the Errata ERR010690 (SNVS_LP Registers Reset Issue). 3 In setting VDD_SNVS_IN voltage with regards to Charging Currents and RTC, refer to the i.MX 6UltraLite Hardware Development Guide (IMX6ULHDG). Table 12 shows on-chip LDO regulators that can supply on-chip loads. Table 12. On-Chip LDOs1 and their On-Chip Loads 1 4.1.4 Voltage Source Load VDD_HIGH_CAP NVCC_DRAM_2P5 Comment Board-level connection to VDD_HIGH_CAP On-chip LDOs are designed to supply i.MX6UltraLite loads and must not be used to supply external loads. External clock sources Each i.MX 6UltraLite processor has two external input system clocks: a low frequency (RTC_XTALI) and a high frequency (XTALI). i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 24 NXP Semiconductors Electrical characteristics The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit, power-down real time clock operation, and slow system and watch-dog counters. The clock input can be connected to either external oscillator or a crystal using internal oscillator amplifier. Additionally, there is an internal ring oscillator, which can be used instead of the RTC_XTALI if accuracy is not important. The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other peripherals. The system clock input can be connected to either external oscillator or a crystal using internal oscillator amplifier. Table 13 shows the interface frequency requirements. Table 13. External Input Clock Frequency Parameter Description Symbol Min Typ Max Unit RTC_XTALI Oscillator1,2 fckil -- 32.7683/32.0 -- kHz Oscillator2,4 fxtal -- 24 -- MHz XTALI 1 External oscillator or a crystal with internal oscillator amplifier. The required frequency stability of this clock source is application dependent. For recommendations, see the Hardware Development Guide for i.MX 6UltraLite Applications Processors (IMX6ULHDG). 3 Recommended nominal frequency 32.768 kHz. 4 External oscillator or a fundamental frequency crystal with internal oscillator amplifier. 2 The typical values shown in Table 13 are required for use with NXP BSPs to ensure precise time keeping and USB operation. For RTC_XTALI operation, two clock sources are available. * On-chip 40 kHz ring oscillator--this clock source has the following characteristics: -- Approximately 25 A more Idd than crystal oscillator -- Approximately 50% tolerance -- No external component required -- Starts up quicker than 32 kHz crystal oscillator * External crystal oscillator with on-chip support circuit: -- At power up, ring oscillator is utilized. After crystal oscillator is stable, the clock circuit switches over to the crystal oscillator automatically. -- Higher accuracy than ring oscillator -- If no external crystal is present, then the ring oscillator is utilized The decision of choosing a clock source should be taken based on real-time clock use and precision time-out. 4.1.5 Maximum supply currents The data shown in Table 14 represent a use case designed specifically to show the maximum current consumption possible. All cores are running at the defined maximum frequency and are limited to L1 cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited practical use case, if at all, and be limited to an extremely low duty cycle unless the intention was to specifically show the worst case power consumption. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 25 Electrical characteristics See the i.MX 6UltraLite Power Consumption Measurement Application Note (AN5170) for more details on typical power consumption under various use case definitions. Table 14. Maximum Supply Currents Power Line Conditions Max Current Unit VDD_SOC_IN 528 MHz ARM clock based on Dhrystone test 500 mA VDD_HIGH_IN -- 1251 mA VDD_SNVS_IN -- 500 2 A USB_OTG1_VBUS USB_OTG2_VBUS -- 503 mA VDDA_ADC_3P3 100 Ohm maximum loading for touch panel 35 mA Primary Interface (IO) Supplies NVCC_DRAM -- (See4) -- NVCC_DRAM_2P5 -- 50 mA NVCC_GPIO N=16 Use maximum IO Equation5 -- NVCC_UART N=16 Use maximum IO equation5 -- NVCC_ENET N=16 Use maximum IO equation5 -- NVCC_LCD N=29 Use maximum IO equation5 -- NVCC_NAND N=17 Use maximum IO equation5 -- NVCC_SD1 N=6 Use maximum IO equation5 -- NVCC_CSI N=12 Use maximum IO equation5 -- MISC DRAM_VREF 1 2 3 4 5 -- 1 mA The actual maximum current drawn from VDD_HIGH_IN will be as shown plus any additional current drawn from the VDD_HIGH_CAP outputs, depending upon actual application configuration (for example, NVCC_DRAM_2P5 supplies). The maximum VDD_SNVS_IN current may be higher depending on specific operating configurations, such as BOOT_MODE[1:0] not equal to 00, or use of the Tamper feature. During initial power on, VDD_SNVS_IN can draw up to 1 mA, if available. VDD_SNVS_CAP charge time will increase if less than 1 mA is available. This is the maximum current per active USB physical interface. The DRAM power consumption is dependent on several factors, such as external signal termination. DRAM power calculators are typically available from the memory vendors. They take in account factors, such as signal termination. See the i.MX 6UltraLite Power Consumption Measurement Application Note (AN5170) or examples of DRAM power consumption during specific use case scenarios. General equation for estimated, maximum power consumption of an IO power supply: Imax = N x C x V x (0.5 x F) Where: N--Number of IO pins supplied by the power line C--Equivalent external capacitive load V--IO voltage (0.5 xF)--Data change rate. Up to 0.5 of the clock rate (F) In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 26 NXP Semiconductors Electrical characteristics 4.1.6 Low power mode supply currents Table 15 shows the current core consumption (not including I/O) of i.MX 6UltraLite processors in selected low power modes. Table 15. Low Power Mode Current and Power Consumption Test Conditions Supply Typical1 Units LDO_ARM and LDO_SOC are set to 1.15 V LDO_2P5 set to 2.5 V, LDO_1P1 set to 1.1 V CPU in WFI, CPU clock gated DDR is in self refresh 24 MHz XTAL is ON 528 PLL is active, other PLLS are power down High-speed peripheral clock gated, but remain powered VDD_SOC_IN (1.275 V) 7.7 mA VDD_HIGH_IN (3.0 V) 10.5 VDD_SNVS_IN (3.0 V) 0.06 Total 41.5 mW * LDO_ARM and LDO_SOC are set to bypass mode * LDO_2P5 set to 2.5 V, LDO_1P1 set to 1.1 V * CPU in WFI, CPU clock gated * DDR is in self refresh * 24 MHz XTAL is ON * 528 PLL is active, other PLLs are power down * High-speed peripheral clock gated, but remain powered VDD_SOC_IN (1.15 V) 7.5 mA VDD_HIGH_IN (3.0 V) 9.5 VDD_SNVS_IN (3.0 V) 0.06 Total 37.3 mW * LDO_SOC is set to 1.15 V, LDO_ARM is in PG mode * LDO_2P5 and LDO_1P1 are set to weak mode * CPU in power gate mode * DDR is in self refresh * All PLLs are power down * 24 MHz XTAL is off, 24 MHz RCOSC used as clock source * High-speed peripheral are powered off VDD_SOC_IN (1.275 V) 3.2 mA VDD_HIGH_IN (3.0 V) 1.5 VDD_SNVS_IN (3.0 V) 0.05 Total 8.7 mW * LDO_SOC is in bypass mode, LDO_ARM is in PG mode * LDO-2P5 and LDO_1P1 are set to weak mode * CPU in power gate mode * DDR is in self refresh * All PLLs are power down * 24 MHz XTAL is off, 24 MHz RCOSC used as clock source * High-speed peripheral are powered off VDD_SOC_IN (1.15 V) 2.8 mA VDD_HIGH_IN (3.0 V) 0.4 VDD_SNVS_IN (3.0 V) 0.05 Total 4.57 mW * LDO_SOC is in bypass mode, LDO_ARM is in PG mode * LDO_2P5 and LDO_1P1 are shut off * CPU in power gate mode * DDR is in self refresh * All PLLs are power down * 24 MHz XTAL is off, 24 MHz RCOSC is off * All clocks are shut off, except 32 kHz RTC * High-speed peripheral are powered off VDD_SOC_IN (0.9 V) 0.44 mA VDD_HIGH_IN (3.0 V) 0.03 VDD_SNVS_IN (3.0 V) 0.03 Total 0.58 Mode SYSTEM IDLE: LDO Enabled * * * * * * * SYSTEM IDLE: LDO Bypassed LOW POWER IDLE: LDO Enabled LOW POWER IDLE: LDO Bypassed SUSPEND (DSM) mW i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 27 Electrical characteristics Table 15. Low Power Mode Current and Power Consumption (continued) SNVS (RTC) 1 * All SOC digital logic, analog module are shut off * 32 kHz RTC is alive * Tamper detection circuit remains active VDD_SOC_IN (0 V) 0 VDD_HIGH_IN (0 V) 0 VDD_SNVS_IN (3.0 V) 0.02 Total 0.06 mA mW Typical process material in fab 4.1.7 4.1.7.1 USB PHY current consumption Power down mode In power down mode, everything is powered down, including the USB VBUS valid detectors in typical condition. Table 16 shows the USB interface current consumption in power down mode. Table 16. USB PHY Current Consumption in Power Down Mode Current VDD_USB_CAP (3.0 V) VDD_HIGH_CAP (2.5 V) NVCC_PLL (1.1 V) 5.1 A 1.7 A < 0.5 A NOTE The currents on the VDD_HIGH_CAP and VDD_USB_CAP were identified to be the voltage divider circuits in the USB-specific level shifters. 4.2 Power supplies requirements and restrictions The system design must comply with power-up sequence, power-down sequence, and steady state guidelines as described in this section to guarantee the reliable operation of the device. Any deviation from these sequences may result in the following situations: * Excessive current during power-up phase * Prevention of the device from booting * Irreversible damage to the processor (worst-case scenario) 4.2.1 Power-Up sequence The below restrictions must be followed: * VDD_SNVS_IN supply must be turned on before any other power supply or be connected (shorted) with VDD_HIGH_IN supply. * If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other supply is switched on. * VDD_HIGH_IN should be turned on before VDD_SOC_IN. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 28 NXP Semiconductors Electrical characteristics NOTE The POR_B input (if used) must be immediately asserted at power-up and remain asserted until after the last power rail reaches its working voltage. In the absence of an external reset feeding the POR_B input, the internal POR module takes control. See the i.MX 6UltraLite Reference Manual (IMX6ULRM) for further details and to ensure that all necessary requirements are being met. NOTE Need to ensure that there is no back voltage (leakage) from any supply on the board towards the 3.3 V supply (for example, from the external components that use both the 1.8 V and 3.3 V supplies). NOTE USB_OTG1_VBUS and USB_OTG2_VBUS are not part of the power supply sequence and may be powered at any time. 4.2.2 Power-Down sequence The following restrictions must be followed: * VDD_SNVS_IN supply must be turned off after any other power supply or be connected (shorted) with VDD_HIGH_IN supply. * If a coin cell is used to power VDD_SNVS_IN, then ensure that it is removed after any other supply is switched off. CAUTION For power sequence control on VDD_HIGH_IN and VDD_SOC_IN, refer to the ERR010690 (SNVS_LP Registers Reset Issue). 4.2.3 Power supplies usage All I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_xxx) is OFF. This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O power supply of each pin, see "Power Rail" columns in pin list tables of Section 6, "Package information and contact assignments"." 4.3 Integrated LDO voltage regulator parameters Various internal supplies can be powered ON from internal LDO voltage regulators. All the supply pins named *_CAP must be connected to external capacitors. The onboard LDOs are intended for internal use only and should not be used to power any external circuitry. See the i.MX 6UltraLite Reference Manual (IMX6ULRM) for details on the power tree scheme. NOTE The *_CAP signals should not be powered externally. These signals are intended for internal LDO operation only. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 29 Electrical characteristics 4.3.1 Digital regulators (LDO_ARM, LDO_SOC) There are two digital LDO regulators ("Digital", because of the logic loads that they drive, not because of their construction). The advantages of the regulators are to reduce the input supply variation because of their input supply ripple rejection and their on-die trimming. This translates into more stable voltage for the on-chip logics. These regulators have two basic modes: * Power Gate. The regulation FET is switched fully off limiting the current draw from the supply. The analog part of the regulator is powered down here limiting the power consumption. * Analog regulation mode. The regulation FET is controlled such that the output voltage of the regulator equals the programmed target voltage. The target voltage is fully programmable in 25 mV steps. For additional information, see the i.MX 6UltraLite Reference Manual (IMX6ULRM). 4.3.2 4.3.2.1 Regulators for analog modules LDO_1P1 The LDO_1P1 regulator implements a programmable linear-regulator function from VDD_HIGH_IN (see Table 11 for minimum and maximum input requirements). Typical Programming Operating Range is 1.0 V to 1.2 V with the nominal default setting as 1.1 V. The LDO_1P1 supplies the USB Phy, and PLLs. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded to take the necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can also be enabled for systems requiring this feature. For information on external capacitor requirements for this regulator, see the Hardware Development Guide for i.MX 6UltraLite Applications Processors (IMX6ULHDG). For additional information, see the i.MX 6UltraLite Reference Manual (IMX6ULRM). 4.3.2.2 LDO_2P5 The LDO_2P5 module implements a programmable linear-regulator function from VDD_HIGH_IN (see Table 11 for minimum and maximum input requirements). Typical Programming Operating Range is 2.25 V to 2.75 V with the nominal default setting as 2.5 V. LDO_2P5 supplies the DDR IOs, USB Phy, E-fuse module, and PLLs. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded, to take the necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can also be enabled for systems requiring this feature. An alternate self-biased low-precision weak-regulator is included that can be enabled for applications needing to keep the output voltage alive during low-power modes where the main regulator driver and its associated global bandgap reference module are disabled. The output of the weak-regulator is not programmable and is a function of the input supply as well as the load current. Typically, with a 3 V input supply the weak-regulator output is 2.525 V and its output impedance is approximately 40 . i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 30 NXP Semiconductors Electrical characteristics For information on external capacitor requirements for this regulator, see the Hardware Development Guide for i.MX 6UltraLite Applications Processors (IMX6ULHDG). For additional information, see the i.MX 6UltraLite Reference Manual (IMX6ULRM). 4.3.2.3 LDO_USB The LDO_USB module implements a programmable linear-regulator function from the USB VUSB voltages (4.4 V-5.5 V) to produce a nominal 3.0 V output voltage. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded, to take the necessary steps. This regulator has a built in power-mux that allows the user to select to run the regulator from either USB VBUS supply, when both are present. If only one of the USB VBUS voltages is present, then, the regulator automatically selects this supply. Current limit is also included to help the system meet in-rush current targets. For information on external capacitor requirements for this regulator, see the Hardware Development Guide for i.MX 6UltraLite Applications Processors (IMX6ULHDG). For additional information, see the i.MX 6UltraLite Reference Manual (IMX6ULRM). 4.4 4.4.1 PLL's electrical characteristics Audio/Video PLL's electrical parameters Table 17. Audio/Video PLL's Electrical Parameters 4.4.2 Parameter Value Clock output range 650 MHz ~1.3 GHz Reference clock 24 MHz Lock time <11250 reference cycles 528 MHz PLL Table 18. 528 MHz PLL's Electrical Parameters Parameter Value Clock output range 528 MHz PLL output Reference clock 24 MHz Lock time <11250 reference cycles i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 31 Electrical characteristics 4.4.3 Ethernet PLL Table 19. Ethernet PLL's Electrical Parameters 4.4.4 Parameter Value Clock output range 500 MHz Reference clock 24 MHz Lock time <11250 reference cycles 480 MHz PLL Table 20. 480 MHz PLL's Electrical Parameters 4.4.5 Parameter Value Clock output range 480 MHz PLL output Reference clock 24 MHz Lock time <383 reference cycles ARM PLL Table 21. ARM PLL's Electrical Parameters 4.5 4.5.1 Parameter Value Clock output range 648 MHz ~ 1296 MHz Reference clock 24 MHz Lock time <2250 reference cycles On-Chip oscillators OSC24M This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implement an oscillator. The oscillator is powered from NVCC_PLL. The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight forward biased-inverter implementation is used. 4.5.2 OSC32K This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implement a low power oscillator. It also implements a power mux such that it can be powered from either a ~3 V backup battery (VDD_SNVS_IN) or VDD_HIGH_IN such as the oscillator consumes i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 32 NXP Semiconductors Electrical characteristics power from VDD_HIGH_IN when that supply is available and transitions to the backup battery when VDD_HIGH_IN is lost. In addition, if the clock monitor determines that the OSC32K is not present, then the source of the 32 K will automatically switch to a crude internal ring oscillator. The frequency range of this block is approximately 10-45 kHz. It highly depends on the process, voltage, and temperature. The OSC32k runs from VDD_SNVS_CAP supply, which comes from the VDD_HIGH_IN/VDD_SNVS_IN. The target battery is a ~3 V coin cell. Proper choice of coin cell type is necessary for chosen VDD_HIGH_IN range. Appropriate series resistor (Rs) must be used when connecting the coin cell. Rs depends on the charge current limit that depends on the chosen coin cell. For example, for Panasonic ML621: * Average Discharge Voltage is 2.5 V * Maximum Charge Current is 0.6 mA For a charge voltage of 3.2 V, Rs = (3.2-2.5)/0.6 m = 1.17 k. Table 22. OSC32K Main Characteristics Min Typ Max Comments Fosc -- 32.768 KHz -- This frequency is nominal and determined mainly by the crystal selected. 32.0 K would work as well. Current consumption -- 4 A -- The 4 A is the consumption of the oscillator alone (OSC32k). Total supply consumption will depend on what the digital portion of the RTC consumes. The ring oscillator consumes 1 A when ring oscillator is inactive, 20 A when the ring oscillator is running. Another 1.5 A is drawn from vdd_rtc in the power_detect block. So, the total current is 6.5 A on vdd_rtc when the ring oscillator is not running. Bias resistor -- 14 M -- This integrated bias resistor sets the amplifier into a high gain state. Any leakage through the ESD network, external board leakage, or even a scope probe that is significant relative to this value will debias the amp. The debiasing will result in low gain, and will impact the circuit's ability to start up and maintain oscillations. Crystal Properties 4.6 Cload -- 10 pF ESR -- 50 k -- Usually crystals can be purchased tuned for different Cloads. This Cload value is typically 1/2 of the capacitances realized on the PCB on either side of the quartz. A higher Cload will decrease oscillation margin, but increases current oscillating through the crystal. 100 k Equivalent series resistance of the crystal. Choosing a crystal with a higher value will decrease the oscillating margin. I/O DC parameters This section includes the DC parameters of the following I/O types: * XTALI and RTC_XTALI (Clock Inputs) DC Parameters * General Purpose I/O (GPIO) * Double Data Rate I/O (DDR) for LPDDR2 and DDR3 modes * LVDS I/O DC Parameters i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 33 Electrical characteristics NOTE The term `OVDD' in this section refers to the associated supply rail of an input or output. Figure 3. Circuit for Parameters Voh and Vol for I/O Cells 4.6.1 XTALI and RTC_XTALI (clock inputs) DC parameters Table 23 shows the DC parameters for the clock inputs. Table 23. XTALI and RTC_XTALI DC Parameters1 Parameter Symbol Test Conditions Min Max Unit XTALI high-level DC input voltage Vih -- 0.8 x NVCC_PLL NVCC_PLL V XTALI low-level DC input voltage Vil -- 0 0.2 V RTC_XTALI high-level DC input voltage Vih -- 0.8 1.1 V RTC_XTALI low-level DC input voltage Vil -- 0 0.2 V 1 The DC parameters are for external clock input only. 4.6.2 Single voltage General Purpose I/O (GPIO) DC parameters Table 24 shows DC parameters for GPIO pads. The parameters in Table 24 are guaranteed per the operating ranges in Table 11, unless otherwise noted. Table 24. Single Voltage GPIO DC Parameters Parameter Symbol High-level output voltage1 VOH Ioh= -0.1mA (ipp_dse=001,010) OVDD-0.15 Ioh= -1mA (ipp_dse=011,100,101,110,111) Low-level output voltage1 VOL Iol= 0.1mA (ipp_dse=001,010) Iol= 1mA (ipp_dse=011,100,101,110,111) High-Level input voltage1,2 VIH 1,2 VIL Low-Level input voltage Test Conditions Min Max Units - V - 0.15 V -- 0.7*OVDD OVDD V -- 0 0.3*OVDD V i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 34 NXP Semiconductors Electrical characteristics Table 24. Single Voltage GPIO DC Parameters (continued) Parameter Symbol Test Conditions Min Max Units Input Hysteresis (OVDD= 1.8V) VHYS_LowVDD OVDD=1.8V 250 -- mV Input Hysteresis (OVDD=3.3V) VHYS_HighVDD OVDD=3.3V 250 -- mV 2,3 Schmitt trigger VT+ VTH+ -- 0.5*OVDD -- mV Schmitt trigger VT-2,3 VTH- -- -- 0.5*OVDD mV Pull-up resistor (22_k PU) RPU_22K Vin=0V -- 212 A Pull-up resistor (22_k PU) RPU_22K Vin=OVDD -- 1 A Pull-up resistor (47_k PU) RPU_47K Vin=0V -- 100 A Pull-up resistor (47_k PU) RPU_47K Vin=OVDD -- 1 A Pull-up resistor (100_k PU) RPU_100K Vin=0V -- 48 A Pull-up resistor (100_k PU) RPU_100K Vin=OVDD -- 1 A Pull-down resistor (100_k PD) RPD_100K Vin=OVDD -- 48 A Pull-down resistor (100_k PD) RPD_100K Vin=0V -- 1 A Input current (no PU/PD) IIN VI = 0, VI = OVDD -1 1 A Keeper Circuit Resistance R_Keeper VI =0.3*OVDD, VI = 0.7* OVDD 105 175 k 1 Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods. Non-compliance to this specification may affect device reliability or cause permanent damage to the device. 2 To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s. 3 Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled. 4.6.3 DDR I/O DC parameters The DDR I/O pads support LPDDR2 and DDR3/DDR3L operational modes. For details on supported DDR memory configurations, see Section 4.10, "Multi-Mode DDR Controller (MMDC)". MMDC operation with the standards stated above is contingent upon the board DDR design adherence to the DDR design and layout requirements stated in the Hardware Development Guide for the i.MX 6UltraLite Applications Processor (IMX6ULHDG). 4.6.3.1 LPDDR2 mode I/O DC parameters Table 25. LPDDR2 I/O DC Electrical Parameters1 Parameters Symbol Test Conditions Min Max Unit High-level output voltage VOH Ioh= -0.1mA 0.9*OVDD -- V Low-level output voltage VOL Iol= 0.1mA -- 0.1*OVDD V Input Reference Voltage Vref -- 0.49*OVDD 0.51*OVDD V i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 35 Electrical characteristics Table 25. LPDDR2 I/O DC Electrical Parameters1 (continued) 1 2 Parameters Symbol Test Conditions Min Max Unit DC High-Level input voltage Vih_DC -- Vref+0.13 OVDD V DC Low-Level input voltage Vil_DC -- OVSS Vref-0.13 V 2 Differential Input Logic High Vih_diff -- 0.26 Note -- Differential Input Logic Low Vil_diff -- Note2 -0.26 -- Pull-up/Pull-down Impedance Mismatch Mmpupd -- -15 15 % 240 unit calibration resolution Rres -- -- 10 Keeper Circuit Resistance Rkeep -- 110 175 k Input current (no pull-up/down) Iin VI = 0, VI = OVDD -2.5 2.5 A Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document. The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot. 4.6.3.2 DDR3/DDR3L mode I/O DC parameters The parameters in Table 27 are guaranteed per the operating ranges in Table 11, unless otherwise noted. Table 27. DDR3/DDR3L I/O DC Electrical Characteristics Parameters Symbol Test Conditions Min Max Unit High-level output voltage VOH Ioh= -0.1mA Voh (for ipp_dse=001) 0.8*OVDD1 -- V Low-level output voltage VOL Iol= 0.1mA Vol (for ipp_dse=001) 0.2*OVDD -- V High-level output voltage VOH Ioh= -1mA Voh (for all except ipp_dse=001) 0.8*OVDD -- V Low-level output voltage VOL Iol= 1mA Vol (for all except ipp_dse=001) 0.2*OVDD -- V Input Reference Voltage Vref -- 0.49*ovdd 0.51*ovdd V OVDD V DC High-Level input voltage Vih_DC -- DC Low-Level input voltage Vil_DC -- OVSS Vref-0.1 V Differential Input Logic High Vih_diff -- 0.2 -- V Differential Input Logic Low Vil_diff -- -- -0.2 V Termination Voltage Vtt Vtt tracking OVDD/2 0.49*OVDD 0.51*OVDD V -- -10 10 % Pull-up/Pull-down Impedance Mismatch Mmpupd 1 Vref 2+0.1 240 unit calibration resolution Rres -- -- 10 Keeper Circuit Resistance Rkeep -- 105 165 k Input current (no pull-up/down) Iin VI = 0,VI = OVDD -2.9 2.9 A OVDD - I/O power supply (1.425 V-1.575 V for DDR3 and 1.283 V-1.45 V for DDR3L) i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 36 NXP Semiconductors Electrical characteristics 2 Vref - DDR3/DDR3L external reference voltage 4.6.4 LVDS I/O DC parameters The LVDS interface complies with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits" for details. Table 28 shows the Low Voltage Differential Signaling (LVDS) I/O DC parameters. Table 28. LVDS I/O DC Characteristics 4.7 Parameter Symbol Test Conditions Min Typ Max Unit Output Differential Voltage VOD Rload-100 Diff 250 350 450 mV Output High Voltage VOH IOH = 0 mA 1.25 1.375 1.6 V Output Low Voltage VOL IOL = 0 mA 0.9 1.025 1.25 V Offset Voltage VOS -- 1.125 1.2 1.375 V I/O AC parameters This section includes the AC parameters of the following I/O types: * General Purpose I/O (GPIO) * Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and Figure 5. From Output Under Test Test Point CL CL includes package, probe and fixture capacitance Figure 4. Load Circuit for Output 80% 80% Output (at pad) 20% tr tf OVDD 20% 0V Figure 5. Output Transition Time Waveform 4.7.1 General Purpose I/O AC parameters The I/O AC parameters for GPIO in slow and fast modes are presented in the Table 29 and Table 30, respectively. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the IOMUXC control registers. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 37 Electrical characteristics Table 29. General Purpose I/O AC Parameters 1.8 V Mode Parameter Symbol Test Condition Min Typ Max Output Pad Transition Times, rise/fall (Max Drive, ipp_dse=111) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate -- -- 2.72/2.79 1.51/1.54 Output Pad Transition Times, rise/fall (High Drive, ipp_dse=101) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate -- -- 3.20/3.36 1.96/2.07 Output Pad Transition Times, rise/fall (Medium Drive, ipp_dse=100) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate -- -- 3.64/3.88 2.27/2.53 Output Pad Transition Times, rise/fall (Low Drive. ipp_dse=011) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate -- -- 4.32/4.50 3.16/3.17 Input Transition Times1 trm -- -- -- 25 ns Unit 1 Unit ns Hysteresis mode is recommended for inputs with transition times greater than 25 ns. Table 30. General Purpose I/O AC Parameters 3.3 V Mode Parameter Symbol Test Condition Min Typ Max Output Pad Transition Times, rise/fall (Max Drive, ipp_dse=101) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate -- -- 1.70/1.79 1.06/1.15 Output Pad Transition Times, rise/fall (High Drive, ipp_dse=011) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate -- -- 2.35/2.43 1.74/1.77 Output Pad Transition Times, rise/fall (Medium Drive, ipp_dse=010) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate -- -- 3.13/3.29 2.46/2.60 Output Pad Transition Times, rise/fall (Low Drive. ipp_dse=001) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate -- -- 5.14/5.57 4.77/5.15 ns Input Transition Times1 trm -- -- -- 25 ns 1 ns Hysteresis mode is recommended for inputs with transition times greater than 25 ns. 4.7.2 DDR I/O AC parameters The Multi-mode DDR Controller (MMDC) is compatible with JEDEC-compliant SDRAMs. For details on supported DDR memory configurations, see Section 4.10, "Multi-Mode DDR Controller (MMDC)". MMDC operation with the standards stated above is contingent upon the board DDR design adherence to the DDR design and layout requirements stated in the Hardware Development Guide for the i.MX 6UltraLite Applications Processor (IMX6ULHDG). Table 31 shows the AC parameters for DDR I/O operating in LPDDR2 mode. Table 31. DDR I/O LPDDR2 Mode AC Parameters1 Parameter AC input logic high AC input logic low AC differential input high voltage2 Symbol Test Condition Min Max Unit Vih(ac) -- Vref + 0.22 OVDD V Vil(ac) -- 0 Vref - 0.22 V Vidh(ac) -- 0.44 -- V i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 38 NXP Semiconductors Electrical characteristics Table 31. DDR I/O LPDDR2 Mode AC Parameters1 (continued) Parameter Symbol Test Condition Min Max Unit AC differential input low voltage Vidl(ac) -- -- 0.44 V Input AC differential cross point voltage3 Vix(ac) Relative to Vref -0.12 0.12 V Over/undershoot peak Vpeak -- -- 0.35 V Over/undershoot area (above OVDD or below OVSS) Varea 400 MHz -- 0.3 V-ns tsr 50 to Vref. 5 pF load. Drive impedance = 40 30% 1.5 3.5 V/ns 50 to Vref. 5pF load.Drive impedance = 60 30% 1 2.5 clk = 400 MHz -- 0.1 Single output slew rate, measured between Vol (ac) and Voh (ac) Skew between pad rise/fall asymmetry + skew caused by SSN tSKD ns 1 Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document. Vid(ac) specifies the input differential voltage | Vtr - Vcp | required for switching, where Vtr is the "true" input signal and Vcp is the "complementary" input signal. The Minimum value is equal to Vih(ac) - Vil(ac). 3 The typical value of Vix(ac) is expected to be about 0.5 x OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac) indicates the voltage at which differential input signal must cross. 2 Table 32 shows the AC parameters for DDR I/O operating in DDR3/DDR3L mode. Table 32. DDR I/O DDR3/DDR3L Mode AC Parameters1 Parameter Symbol Test Condition Min Typ Max Unit Vih(ac) -- Vref + 0.175 -- OVDD V Vil(ac) -- 0 -- Vref - 0.175 V AC differential input voltage Vid(ac) -- 0.35 -- -- V Input AC differential cross point voltage3 Vix(ac) Relative to Vref Vref - 0.15 -- Vref + 0.15 V Over/undershoot peak Vpeak -- -- -- 0.4 V Over/undershoot area (above OVDD or below OVSS) Varea 400 MHz -- -- 0.5 V-ns Single output slew rate, measured between Vol (ac) and Voh (ac) tsr Driver impedance = 34 2.5 -- 5 V/ns Skew between pad rise/fall asymmetry + skew caused by SSN tSKD clk = 400 MHz -- -- 0.1 ns AC input logic high AC input logic low 2 1 Note that the JEDEC JESD79_3D specification supersedes any specification in this document. Vid(ac) specifies the input differential voltage | Vtr-Vcp | required for switching, where Vtr is the "true" input signal and Vcp is the "complementary" input signal. The Minimum value is equal to Vih(ac) - Vil(ac). 3 The typical value of Vix(ac) is expected to be about 0.5 x OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac) indicates the voltage at which differential input signal must cross. 2 i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 39 Electrical characteristics 4.8 Output buffer impedance parameters This section defines the I/O impedance parameters of the i.MX 6UltraLite processors for the following I/O types: * Single Voltage General Purpose I/O (GPIO) * Double Data Rate I/O (DDR) for LPDDR2, and DDR3/DDR3L modes NOTE GPIO and DDR I/O output driver impedance is measured with "long" transmission line of impedance Ztl attached to I/O pad and incident wave launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that defines specific voltage of incident wave relative to OVDD. Output driver impedance is calculated from this voltage divider (see Figure 6). i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 40 NXP Semiconductors Electrical characteristics OVDD PMOS (Rpu) Ztl , L = 20 inches ipp_do pad predriver Cload = 1p NMOS (Rpd) OVSS U,(V) Vin (do) VDD t,(ns) 0 U,(V) Vout (pad) OVDD Vref2 Vref1 Vref t,(ns) 0 Rpu = Rpd = Vovdd - Vref1 Vref1 Vref2 Vovdd - Vref2 Ztl Ztl Figure 6. Impedance Matching Load for Measurement i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 41 Electrical characteristics 4.8.1 Single voltage GPIO output buffer impedance Table 33 shows the GPIO output buffer impedance (OVDD 1.8 V). Table 33. GPIO Output Buffer Average Impedance (OVDD 1.8 V) Parameter Output Driver Impedance Symbol Rdrv Drive Strength (DSE) Typ Value Unit 001 010 011 100 101 110 111 260 130 88 65 52 43 37 Table 34 shows the GPIO output buffer impedance (OVDD 3.3 V). Table 34. GPIO Output Buffer Average Impedance (OVDD 3.3 V) Parameter Output Driver Impedance 4.8.2 Symbol Rdrv Drive Strength (DSE) Typ Value Unit 001 010 011 100 101 110 111 157 78 53 39 32 26 23 DDR I/O output buffer impedance Table 35 shows DDR I/O output buffer impedance of i.MX 6UltraLite processors. Table 35. DDR I/O Output Buffer Impedance Typical Parameter Output Driver Impedance Symbol Rdrv Test Conditions DSE (Drive Strength) 000 001 010 011 100 101 110 111 NVCC_DRAM=1.5 V (DDR3) DDR_SEL=11 NVCC_DRAM=1.2 V (LPDDR2) DDR_SEL=10 Hi-Z 240 120 80 60 48 40 34 Hi-Z 240 120 80 60 48 40 34 Unit Note: 1. Output driver impedance is controlled across PVTs using ZQ calibration procedure. 2. Calibration is done against 240 external reference resistor. 3. Output driver impedance deviation (calibration accuracy) is 5% (max/min impedance) across PVTs. 4. It is recommended to use a strong driver strength (<= 48 ) for all DDR pads and all DDR type (DDR3/DDR3L/LPDDR2). i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 42 NXP Semiconductors Electrical characteristics 4.9 System modules timing This section contains the timing and electrical parameters for the modules in each i.MX 6UltraLite processor. 4.9.1 Reset timings parameters Figure 7 shows the reset timing and Table 36 lists the timing parameters. POR_B (Input) CC1 Figure 7. Reset Timing Diagram Table 36. Reset Timing Parameters ID CC1 4.9.2 Parameter Min Max Unit 1 -- RTC_XTALI cycle Duration of POR_B to be qualified as valid. WDOG reset timing parameters Figure 8 shows the WDOG reset timing and Table 37 lists the timing parameters. WDOGn_B (Output) CC3 Figure 8. WDOGn_B Timing Diagram Table 37. WDOGn_B Timing Parameters ID CC3 Parameter Duration of WDOGn_B Assertion Min Max Unit 1 -- RTC_XTALI cycle NOTE RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or approximately 30 s. NOTE WDOG1_B output signals (for each one of the Watchdog modules) do not have dedicated pins, but are muxed out through the IOMUX. See the IOMUX manual for detailed information. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 43 Electrical characteristics 4.9.3 External Interface Module (EIM) The following subsections provide information on the EIM. Maximum operating frequency for EIM data transfer is 104 MHz. Timing parameters in this section that are given as a function of register settings or clock periods are valid for the entire range of allowed frequencies (0-104 MHz). 4.9.3.1 EIM interface pads allocation EIM supports 16-bit and 8-bit devices operating in address/data separate or multiplexed modes. Table 38 provides EIM interface pads allocation in different modes. Table 38. EIM Internal Module Multiplexing1 Multiplexed Address/Data mode Non Multiplexed Address/Data Mode Setup EIM_ADDR [15:00] EIM_ADDR [26:16] EIM_DATA [07:00], EIM_EB0_B EIM_DATA [15:08], EIM_EB1_B 1 8 Bit 16 Bit 16 Bit MUM = 0, DSZ = 100 MUM = 0, DSZ = 101 MUM = 0, DSZ = 110 MUM = 0, DSZ = 111 MUM = 0, DSZ = 001 MUM = 0, DSZ = 010 MUM = 1, DSZ = 001 EIM_AD [15:00] EIM_ADDR [26:16] EIM_DATA [07:00] EIM_AD [15:00] EIM_ADDR [26:16] -- EIM_AD [15:00] EIM_ADDR [26:16] Reserved EIM_AD [15:00] EIM_ADDR [26:16] Reserved EIM_AD [15:00] EIM_ADDR [26:16] EIM_DATA [07:00] EIM_AD [15:00] EIM_ADDR [26:16] Reserved EIM_AD [15:00] EIM_ADDR [26:16] EIM_AD [07:00] -- EIM_DATA [15:08] Reserved Reserved EIM_DATA [15:08] Reserved EIM_AD [15:08] For more information on configuration ports mentioned in this table, see the i.MX 6UltraLite Reference Manual (IMX6ULRM). i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 44 NXP Semiconductors Electrical characteristics 4.9.3.2 General EIM timing-synchronous mode Figure 9, Figure 10, and Table 39 specify the timings related to the EIM module. All EIM output control signals may be asserted and deasserted by an internal clock synchronized to the EIM_BCLK rising edge according to corresponding assertion/negation control fields. , WE2 ... EIM_BCLK WE4 WE3 WE1 WE5 EIM_ADDRxx EIM_CSx_B EIM_WE_B WE6 WE7 WE8 WE9 WE10 WE11 WE12 WE13 WE14 WE15 WE16 WE17 EIM_OE_B EIM_EBx_B EIM_LBA_B Output Data Figure 9. EIM Outputs Timing Diagram EIM_BCLK WE18 Input Data WE19 WE20 EIM_WAIT_B WE21 Figure 10. EIM Inputs Timing Diagram 4.9.3.3 Examples of EIM synchronous accesses Table 39. EIM Bus Timing Parameters ID Parameter time2 Min1 Max1 Unit t x (k + 1) -- ns WE1 EIM_BCLK Cycle WE2 EIM_BCLK Low Level Width 0.4 x t x (k + 1) -- ns WE3 EIM_BCLK High Level Width 0.4 x t x (k + 1) -- ns WE4 Clock rise to address valid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 45 Electrical characteristics Table 39. EIM Bus Timing Parameters (continued) ID 1 2 Parameter Min1 Max1 Unit WE5 Clock rise to address invalid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns WE6 Clock rise to EIM_CSx_B valid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns WE7 Clock rise to EIM_CSx_B invalid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns WE8 Clock rise to EIM_WE_B Valid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns WE9 Clock rise to EIM_WE_B Invalid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns WE10 Clock rise to EIM_OE_B Valid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns WE11 Clock rise to EIM_OE_B Invalid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns WE12 Clock rise to EIM_EBx_B Valid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns WE13 Clock rise to EIM_EBx_B Invalid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns WE14 Clock rise to EIM_LBA_B Valid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns WE15 Clock rise to EIM_LBA_B Invalid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns WE16 Clock rise to Output Data Valid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns WE17 Clock rise to Output Data Invalid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns WE18 Input Data setup time to Clock rise 2.3 -- ns WE19 Input Data hold time from Clock rise 2 -- ns WE20 EIM_WAIT_B setup time to Clock rise 2 -- ns WE21 EIM_WAIT_B hold time from Clock rise 2 -- ns k represents register setting BCD value. t is clock period (1/Freq.) For 104 MHz, t = 9.165 ns. Figure 11 to Figure 14 provide few examples of basic EIM accesses to external memory devices with the timing parameters mentioned previously for specific control parameters settings. EIM_BCLK EIM_ADDRxx EIM_CSx_B WE4 WE5 Address v1 Last Valid Address WE6 WE7 EIM_WE_B EIM_LBA_B EIM_OE_B EIM_EBx_B EIM_DATAxx WE14 WE15 WE10 WE11 WE12 WE13 WE18 D(v1) WE19 Figure 11. Synchronous Memory Read Access, WSC=1 i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 46 NXP Semiconductors Electrical characteristics EIM_BCLK EIM_ADDRxx Last Valid Address EIM_CSx_B EIM_WE_B WE5 WE4 Address V1 WE6 WE7 WE8 WE9 WE14 EIM_LBA_B WE15 EIM_OE_B WE13 WE12 EIM_EBx_B WE16 EIM_DATAxx WE17 D(V1) Figure 12. Synchronous Memory, Write Access, WSC=1, WBEA=0 and WADVN=0 EIM_BCLK EIM_ADDRxx/ EIM_ADxx EIM_CSx_B EIM_WE_B WE4 Last Valid Address WE5 WE17 WE16 Write Data Address V1 WE6 WE7 WE8 WE9 WE14 WE15 EIM_LBA_B EIM_OE_B WE10 WE11 EIM_EBx_B Figure 13. Muxed Address/Data (A/D) Mode, Synchronous Write Access, WSC=6, ADVA=0, ADVN=1, and ADH=1 NOTE In 32-bit muxed address/data (A/D) mode the 16 MSBs are driven on the data bus. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 47 Electrical characteristics EIM_BCLK EIM_ADDRxx/ EIM_ADxx WE4 WE5 Last Valid Address Address V1 WE6 WE19 Data WE18 EIM_CSx_B WE7 EIM_WE_B WE15 WE14 EIM_LBA_B WE10 WE11 EIM_OE_B WE12 WE13 EIM_EBx_B Figure 14. 16-Bit Muxed A/D Mode, Synchronous Read Access, WSC=7, RADVN=1, ADH=1, OEA=0 4.9.3.4 General EIM timing-asynchronous mode Figure 15 through Figure 19, and Table 40 help to determine timing parameters relative to the chip select (CS) state for asynchronous and DTACK EIM accesses with corresponding EIM bit fields and the timing parameters mentioned above. Asynchronous read & write access length in cycles may vary from what is shown in Figure 15 through Figure 18 as RWSC, OEN and CSN is configured differently. See the i.MX 6UltraLite Reference Manual (IMX6ULRM) for the EIM programming model. end of access start of access INT_CLK MAXCSO EIM_CSx_B EIM_ADDRxx/ WE31 EIM_ADxx Last Valid Address WE32 Address V1 Next Address EIM_WE_B EIM_LBA_B WE39 WE40 EIM_OE_B WE35 WE36 EIM_EBx_B WE37 WE38 EIM_DATAxx[7:0] WE44 MAXCO D(V1) WE43 MAXDI Figure 15. Asynchronous Memory Read Access (RWSC = 5) i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 48 NXP Semiconductors Electrical characteristics end of access start of access INT_CLK MAXCSO EIM_CSx_B EIM_ADDRxx/ EIM_ADxx MAXDI WE31 D(V1) Addr. V1 WE32A WE44 EIM_WE_B WE39 EIM_LBA_B WE40A WE35A WE36 EIM_OE_B WE37 WE38 EIM_EBx_B MAXCO Figure 16. Asynchronous A/D Muxed Read Access (RWSC = 5) EIM_CSx_B WE31 EIM_ADDRxx Last Valid Address WE33 EIM_WE_B WE39 EIM_LBA_B WE32 Address V1 Next Address WE34 WE40 EIM_OE_B WE45 WE46 EIM_EBx_B EIM_DATAxx WE42 WE41 D(V1) Figure 17. Asynchronous Memory Write Access i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 49 Electrical characteristics EIM_CSx_B EIM_ADDRxx/ WE31 WE41 D(V1) Addr. V1 EIM_DATAxx WE42 WE32A WE33 WE34 EIM_WE_B WE40A WE39 EIM_LBA_B EIM_OE_B WE46 WE45 EIM_EBx_B Figure 18. Asynchronous A/D Muxed Write Access EIM_CSx_B EIM_ADDRxx WE31 Last Valid Address WE32 Next Address Address V1 EIM_WE_B WE39 WE40 WE35 WE36 WE37 WE38 EIM_LBA_B EIM_OE_B EIM_EBx_B EIM_DATAxx[7:0] WE44 D(V1) WE43 WE48 EIM_DTACK_B WE47 Figure 19. DTACK Mode Read Access (DAP=0) i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 50 NXP Semiconductors Electrical characteristics EIM_CSx_B WE31 EIM_ADDRxx Last Valid Address WE32 Next Address Address V1 EIM_WE_B WE33 WE34 EIM_LBA_B WE39 WE40 WE45 WE46 EIM_OE_B EIM_EBx_B WE42 EIM_DATAxx WE41 D(V1) WE48 EIM_DTACK_B WE47 Figure 20. DTACK Mode Write Access (DAP=0) Table 40. EIM Asynchronous Timing Parameters Table Relative Chip to Select1,2 Determination by Synchronous measured parameters Min Max Unit EIM_CSx_B valid to Address Valid WE4 - WE6 - CSA x t -3.5 - CSA x t 3.5 - CSA x t ns Address Invalid to EIM_CSx_B Invalid WE7 - WE5 - CSN x t -3.5 - CSN x t 3.5 - CSN x t ns t + WE4 - WE7 + (ADVN + ADVA + 1 - CSA) x t t - 3.5 + (ADVN + ADVA + 1 - CSA) x t t + 3.5 + (ADVN + ADVA + 1 - CSA) x t ns Ref No. Parameter WE31 WE32 WE32A(mu EIM_CSx_B valid to xed A/D Address Invalid WE33 EIM_CSx_B Valid to WE8 - WE6 + (WEA - WCSA) x -3.5 + (WEA - WCSA) x t 3.5 + (WEA - WCSA) x t EIM_WE_B Valid t ns WE34 EIM_WE_B Invalid to EIM_CSx_B Invalid ns WE35 EIM_CSx_B Valid to WE10 - WE6 + (OEA - RCSA) x EIM_OE_B Valid t WE35A (muxed A/D) WE36 WE7 - WE9 + (WEN - WCSN) x -3.5 + (WEN - WCSN) x t 3.5 + (WEN - WCSN) x t t -3.5 + (OEA - RCSA) x t 3.5 + (OEA - RCSA) x t ns EIM_CSx_B Valid to WE10 - WE6 + (OEA + RADVN -3.5 + (OEA + RADVN + 3.5 + (OEA + RADVN + EIM_OE_B Valid + RADVA + ADH + 1 - RCSA) x RADVA + ADH + 1 RADVA + ADH + 1 RCSA) x t t RCSA) x t ns EIM_OE_B Invalid to EIM_CSx_B Invalid ns WE7 - WE11 + (OEN - RCSN) x -3.5 + (OEN - RCSN) x t 3.5 + (OEN - RCSN) x t t i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 51 Electrical characteristics Table 40. EIM Asynchronous Timing Parameters Table Relative Chip to Select1,2 Ref No. Parameter Determination by Synchronous measured parameters Min Max Unit WE37 EIM_CSx_B Valid to WE12 - WE6 + (RBEA - RCSA) -3.5 + (RBEA - RCSA) x t 3.5 + (RBEA - RCSA) x EIM_EBx_B Valid xt t (Read access) ns WE38 EIM_EBx_B Invalid WE7 - WE13 + (RBEN - RCSN) -3.5 + (RBEN - RCSN) x t 3.5 + (RBEN- RCSN) x t to EIM_CSx_B xt Invalid (Read access) ns WE39 EIM_CSx_B Valid to WE14 - WE6 + (ADVA - CSA) x EIM_LBA_B Valid t WE40 EIM_LBA_B Invalid to EIM_CSx_B Invalid (ADVL is asserted) WE40A (muxed A/D) WE41 WE41A (muxed A/D) WE7 - WE15 - CSN x t EIM_CSx_B Valid to WE14 - WE6 + (ADVN + ADVA EIM_LBA_B Invalid + 1 - CSA) x t EIM_CSx_B Valid to Output Data Valid WE16 - WE6 - WCSA x t EIM_CSx_B Valid to WE16 - WE6 + (WADVN + Output Data Valid WADVA + ADH + 1 - WCSA) x t -3.5 + (ADVA - CSA) x t 3.5 + (ADVA - CSA) x t ns -3.5 - CSN x t 3.5 - CSN x t ns -3.5 + (ADVN + ADVA + 3.5 + (ADVN + ADVA + 1 - CSA) x t 1 - CSA) x t ns -3.5 - WCSA x t 3.5 - WCSA x t ns -3.5 + (WADVN + WADVA + ADH + 1 WCSA) x t 3.5 + (WADVN + WADVA + ADH + 1 WCSA) x t ns WE42 Output Data Invalid to EIM_CSx_B Invalid WE17 - WE7 - CSN x t -3.5 - CSN x t 3.5 - CSN x t ns MAXCO Output maximum delay from internal driving EIM_ADDRxx/contr ol flip-flops to chip outputs 10 -- 10 ns MAXCSO Output maximum delay from internal chip selects driving flip-flops to EIM_CSx_B out 10 -- 10 ns MAXDI EIM_DATAxx maximum delay from chip input data to its internal flip-flop 5 -- 5 ns WE43 Input Data Valid to EIM_CSx_B Invalid MAXCO - MAXCSO + MAXDI MAXCO - MAXCSO + MAXDI -- ns WE44 EIM_CSx_B Invalid to Input Data Invalid 0 0 -- ns i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 52 NXP Semiconductors Electrical characteristics Table 40. EIM Asynchronous Timing Parameters Table Relative Chip to Select1,2 Determination by Synchronous measured parameters Min Max Unit EIM_CSx_B Valid to EIM_EBx_B Valid (Write access) WE12 - WE6 + (WBEA WCSA) x t -3.5 + (WBEA - WCSA) x t 3.5 + (WBEA - WCSA) xt ns WE46 EIM_EBx_B Invalid to EIM_CSx_B Invalid (Write access) WE7 - WE13 + (WBEN WCSN) x t -3.5 + (WBEN - WCSN) x 3.5 + (WBEN - WCSN) t xt ns MAXDTI MAXIMUM delay from EIM_DTACK_B to its internal flip-flop + 2 cycles for synchronization 10 -- 10 -- WE47 EIM_DTACK_B Active to EIM_CSx_B Invalid MAXCO - MAXCSO + MAXDTI MAXCO - MAXCSO + MAXDTI -- ns WE48 EIM_CSx_B Invalid to EIM_DTACK_B Invalid 0 0 -- ns Ref No. Parameter WE45 1 For more information on configuration parameters mentioned in this table, see the i.MX 6UltraLite Reference Manual (IMX6ULRM). 2 In this table, CSA means WCSA when write operation or RCSA when read operation -- t means clock period from axi_clk frequency. --CSA means register setting for WCSA when in write operations or RCSA when in read operations. --CSN means register setting for WCSN when in write operations or RCSN when in read operations. --ADVN means register setting for WADVN when in write operations or RADVN when in read operations. --ADVA means register setting for WADVA when in write operations or RADVA when in read operations. 4.10 Multi-Mode DDR Controller (MMDC) The Multi-Mode DDR Controller is a dedicated interface to DDR3/DDR3L/LPDDR2 SDRAM. 4.10.1 MMDC compatibility with JEDEC-compliant SDRAMs The i.MX 6UltraLite MMDC supports the following memory types: * LPDDR2 SDRAM compliant with JESD209-2B LPDDR2 JEDEC standard release June, 2009 * DDR3/DDR3L SDRAM compliant with JESD79-3D DDR3 JEDEC standard release April, 2008 MMDC operation with the standards stated above is contingent upon the board DDR design adherence to the DDR design and layout requirements stated in the Hardware Development Guide for the i.MX 6UltraLite Applications Processor (IMX6ULHDG). i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 53 Electrical characteristics 4.10.2 MMDC supported DDR3/DDR3L/LPDDR2 configurations Table 41 shows the MMDC supported DDR3/DDR3L/LPDDR2 configurations. Table 41. i.MX 6UltraLite Supported DDR3/DDR3L/LPDDR2 Configurations Parameter DDR3 DDR3L LDDDR2 400 MHz 400 MHz 400 MHz Bus width 16-bit 16-bit 16-bit Channel Single Single Single 2 2 2 Clock frequency Chip selects 4.11 General-Purpose Media Interface (GPMI) timing The i.MX 6UltraLite GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up to 200 MB/s I/O speed and individual chip select. It supports Asynchronous timing mode, Source Synchronous timing mode and Samsung Toggle timing mode separately described in the following subsections. 4.11.1 Asynchronous mode AC timing (ONFI 1.0 compatible) Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The maximum I/O speed of GPMI in asynchronous mode is about 50 MB/s. Figure 21 through Figure 24 depicts the relative timing between GPMI signals at the module level for different operations under asynchronous mode. Table 42 describes the timing parameters (NF1-NF17) that are shown in the figures. .!.$?#,% .!.$?#%?" .!.$?7%?" E& E& E& E& E& .!.$?!,% E& E& E& .!.$?$!4!XX E& Z Figure 21. Command Latch Cycle Timing Diagram i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 54 NXP Semiconductors Electrical characteristics E& .!.$?#,% E& .!.$?#%?" E& .!.$?7%?" E& .!.$?!,% E& E& E& E& EEd E& Figure 22. Address Latch Cycle Timing Diagram E& .!.$?#,% .!.$?#%?" E& E& E& .!.$?7%?" E& .!.$?!,% E& E& E& .!.$?$!4!XX E& ZE& Figure 23. Write Data Latch Cycle Timing Diagram .!.$?#,% .!.$?#%?" E& .!.$?2%?" .!.$?2%!$9?" E& E& E& E& .!.$?$!4!XX E& ZE& Figure 24. Read Data Latch Cycle Timing Diagram (Non-EDO Mode) .!.$?#,% .!.$?#%?" E& E& .!.$?2%?" .!.$?2%!$9?" E& E& E& EEd E& ZE& Figure 25. Read Data Latch Cycle Timing Diagram (EDO Mode) i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 55 Electrical characteristics Table 42. Asynchronous Mode Timing Parameters1 ID Parameter Timing T = GPMI Clock Cycle Symbol Unit Min. NF1 NF2 NF3 NF4 NF5 NF6 NF7 NF8 NF9 NF10 NF11 NF12 NF13 NF14 NF15 NF16 NF17 1 2 3 4 5 6 NAND_CLE setup time NAND_CLE hold time NAND_CE0_B setup time NAND_CE0_B hold time NAND_WE_B pulse width NAND_ALE setup time NAND_ALE hold time Data setup time Data hold time Write cycle time Data setup on read Data hold on read (AS + DS + 1) T [see ns ns 2 DS T [see ] ns (AS + DS) T - 0.49 [see tALS tALH ns ns DS T - 0.26 [see 2] ns DH T - 1.37 [see 2] ns (DS + DH) T [see 2] ns DH T [see (AS + 2) T [see 2] -- DH T [see ns 2] ns 2] ns (DS T -0.67)/18.38 [see -- 0.82/11.83 [see ns 2] (DS + DH) T [see tREH ns 3,2] DS T [see tRP tRC ] (DH T - 0.42 [see ] tDH tWC 3,2 2 tDS tDHR ] (DH+1) T - 1 [see ] tWP tDSR ns 3,2 2 tCH Ready to NAND_RE_B low NAND_RE_B high hold time DH T - 0.72 [see ] tCS tRR4 ns 2 tCLH tWH READ cycle time (AS + DS) T - 0.12 [see 2,3] tCLS NAND_WE_B hold time NAND_RE_B pulse width Max. 5,6] -- 5,6] ns ns GPMI's Async Mode output timing can be controlled by the module's internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings. AS minimum value can be 0, while DS/DH minimum value is 1. T = GPMI clock period -0.075ns (half of maximum p-p jitter). NF12 is guaranteed by the design. Non-EDO mode. EDO mode, GPMI clock 100 MHz (AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0). In EDO mode (Figure 24), NF16/NF17 is different from the definition in non-EDO mode (Figure 23). They are called tREA/tRHOH (RE# access time/RE# HIGH to output hold). The typical values for them are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI will sample NAND_DATAxx at rising edge of delayed NAND_RE_B provided by an internal DPLL. The delay value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX 6UltraLite Reference Manual). The typical value of this control register is 0x8 at 50 MT/s EDO mode. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 56 NXP Semiconductors Electrical characteristics 4.11.2 Source synchronous mode AC timing (ONFI 2.x compatible) Figure 26 to Figure 28 show the write and read timing of Source Synchronous Mode. 1) 1) .!.$?#%?" 1) 1$1'B&/( 1) 1) 1) 1$1'B$/( 1) 1) 1$1'B:(5(B% 1) 1$1'B&/. 1$1'B'46 1$1'B'46 2XWSXWHQDEOH 1) 1) 1) 1) 1$1'B'$7$>@ &0' $'' 1$1'B'$7$>@ 2XWSXWHQDEOH Figure 26. Source Synchronous Mode Command and Address Timing Diagram i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 57 Electrical characteristics .!.$?#%?" 1) 1) 1) .!.$?#,% 1) 1) 1) 1) 1) .!.$?!,% 1) 1) 1$1'B:(5(B% 1) .!.$?#,+ 1) 1) .!.$?$13 .!.$?$13 2XWSXWHQDEOH 1) 1) .!.$?$1;= 1) 1) .!.$?$1;= 2XWSXWHQDEOH Figure 27. Source Synchronous Mode Data Write Timing Diagram .!.$?#%?" 1) 1) 1) 1) .!.$?#,% 1$1'B$/( .!.$?7%2% 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) .!.$?#,+ .!.$?$13 .!.$?$13 /UTPUT ENABLE .!.$?$!4!;= .!.$?$!4!;= /UTPUT ENABLE Figure 28. Source Synchronous Mode Data Read Timing Diagram i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 58 NXP Semiconductors Electrical characteristics .!.$?$13 E& .!.$?$!4!;= E& E& E& Figure 29. NAND_DQS/NAND_DQ Read Valid Window Table 43. Source Synchronous Mode Timing Parameters1 ID Parameter Symbol Timing T = GPMI Clock Cycle Min. Unit Max. NF18 NAND_CE0_B access time tCE CE_DELAY T - 0.79 [see 2] ns NF19 NAND_CE0_B hold time tCH 0.5 tCK - 0.63 [see 2] ns NF20 Command/address NAND_DATAxx setup time tCAS 0.5 tCK - 0.05 ns NF21 Command/address NAND_DATAxx hold time tCAH 0.5 tCK - 1.23 ns tCK -- ns NF23 Preamble delay tPRE PRE_DELAY T - 0.29 [see 2] ns NF24 Postamble delay tPOST POST_DELAY T - 0.78 [see 2] ns NF25 NAND_CLE and NAND_ALE setup time tCALS 0.5 tCK - 0.86 ns NF26 NAND_CLE and NAND_ALE hold time tCALH 0.5 tCK - 0.37 ns NF27 NAND_CLK to first NAND_DQS latching transition tDQSS T - 0.41 [see 2] ns NF28 Data write setup -- 0.25 tCK - 0.35 -- NF29 Data write hold -- 0.25 tCK - 0.85 -- NF30 NAND_DQS/NAND_DQ read setup skew -- -- 2.06 -- NF31 NAND_DQS/NAND_DQ read hold skew -- -- 1.95 -- NF22 Clock period 1 GPMI's source synchronous mode output timing can be controlled by the module's internal registers GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing depends on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings. 2 T = tCK(GPMI clock period) -0.075ns (half of maximum p-p jitter). For DDR Source sync mode, Figure 29 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 0.85ns (max) and 1ns (max) for tQHS at 200MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of a delayed NAND_DQS signal, which can be provided by an internal DPLL. The delay value can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6UltraLite Reference Manual). Generally, the typical delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 59 Electrical characteristics 4.11.3 4.11.3.1 Samsung toggle mode AC timing Command and address timing NOTE Samsung Toggle Mode command and address timing is the same as ONFI 1.0 compatible Async mode AC timing. See Section 4.11.1, "Asynchronous mode AC timing (ONFI 1.0 compatible)"," for details. 4.11.3.2 Read and write timing DEV?CLK .!.$?#%X?" .!.$?#,% .!.$?!,% .!.$?7%?" .!.$?2%?" .& .& .!.$?$13 .!.$?$!4!;= T#+ T#+ Figure 30. Samsung Toggle Mode Data Write Timing i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 60 NXP Semiconductors Electrical characteristics DEV?CLK .!.$?#%X?" .& .!.$?#,% .!.$?!,% .!.$?7%?" T #+ .& T #+ .& .!.$?2%?" T #+ T #+ T #+ .!.$?$13 .!.$?$!4!;= Figure 31. Samsung Toggle Mode Data Read Timing Table 44. Samsung Toggle Mode Timing Parameters1 ID Parameter Symbol Timing T = GPMI Clock Cycle Unit Min. NF1 NF2 NF3 NF4 NF5 NF6 NF7 NF8 NAND_CLE setup time NAND_CLE hold time NAND_CE0_B setup time NAND_CE0_B hold time NAND_WE_B pulse width NAND_ALE setup time NAND_ALE hold time Command/address NAND_DATAxx setup time tCLS tCLH tCS (AS + DS) T - 0.12 [see DH T - 0.72 [see DH T - 1 [see DS T [see tWP (AS + DS) T - 0.49 [see 3,2 ] -- tALH 2 DH T - 0.42 [see ] -- tCAS 2] -- 2 -- DS T - 0.26 [see NF18 NAND_CEx_B access time tCE NF22 Clock period tCK NF24 Postamble delay -- -- 4,2 NF23 Preamble delay -- 2] DH T - 1.37 [see ] Command/address NAND_DATAxx hold time -- 3,2] 2] tCAH NF9 -- 2] (AS + DS) T - 0.58 [see tCH tALS Max. 2,3] tPRE tPOST CE_DELAY T [see ] -- PRE_DELAY T [see 5,2] 2 POST_DELAY T +0.43 [see ] -- ns -- ns -- ns -- ns i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 61 Electrical characteristics Table 44. Samsung Toggle Mode Timing Parameters1 (continued) ID Parameter Symbol Timing T = GPMI Clock Cycle Unit Min. Max. NF28 Data write setup 6 tDS 0.25 tCK - 0.32 -- ns NF29 Data write hold tDH6 0.25 tCK - 0.79 -- ns NF30 NAND_DQS/NAND_DQ read setup skew tDQSQ7 -- 3.18 -- NF31 NAND_DQS/NAND_DQ read hold skew tQHS7 -- 3.27 -- 1 2 3 4 5 6 7 The GPMI toggle mode output timing can be controlled by the module's internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings. AS minimum value can be 0, while DS/DH minimum value is 1. T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter). CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started with enough time of ALE/CLE assertion to low level. PRE_DELAY+1) (AS+DS) Shown in Figure 30. Shown in Figure 31. For DDR Toggle mode, Figure 29 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which is provided by an internal DPLL. The delay value of this register can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6UltraLite Reference Manual). Generally, the typical delay value is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay. 4.12 External peripheral interface parameters The following subsections provide information on external peripheral interfaces. 4.12.1 4.12.1.0.1 CMOS Sensor Interface (CSI) timing parameters Gated clock mode timing Figure 32 and Figure 33 shows the gated clock mode timings for CSI, and Table 45 describes the timing parameters (P1-P7) shown in the figures. A frame starts with a rising/falling edge on CSI_VSYNC i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 62 NXP Semiconductors Electrical characteristics (VSYNC), then CSI_HSYNC (HSYNC) is asserted and holds for the entire line. The pixel clock, CSI_PIXCLK (PIXCLK), is valid as long as HSYNC is asserted. CSI_VSYNC P1 CSI_HSYNC P7 P2 P5 P6 CSI_PIXCLK P3 P4 CSI_DATA[23:00] Figure 32. CSI Gated Clock Mode--Sensor Data at Falling Edge, Latch Data at Rising Edge CSI_VSYNC P1 CSI_HSYNC P7 P2 P6 P5 CSI_PIXCLK P3 P4 CSI_DATA[23:00] Figure 33. CSI Gated Clock Mode--Sensor Data at Rising Edge, Latch Data at Falling Edge Table 45. CSI Gated Clock Mode Timing Parameters ID Parameter Symbol Min. Max. Units P1 CSI_VSYNC to CSI_HSYNC time tV2H 33.5 -- ns P2 CSI_HSYNC setup time tHsu 1 -- ns P3 CSI DATA setup time tDsu 1 -- ns i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 63 Electrical characteristics Table 45. CSI Gated Clock Mode Timing Parameters (continued) ID Parameter Symbol Min. Max. Units tDh 1 -- ns P4 CSI DATA hold time P5 CSI pixel clock high time tCLKh 3.75 -- ns P6 CSI pixel clock low time tCLKl 3.75 -- ns P7 CSI pixel clock frequency fCLK -- 133 MHz 4.12.1.0.2 Ungated clock mode timing Figure 34 shows the ungated clock mode timings of CSI, and Table 46 describes the timing parameters (P1-P6) that are shown in the figure. In ungated mode the CSI_VSYNC and CSI_PIXCLK signals are used, and the CSI_HSYNC signal is ignored. CSI_VSYNC P1 P6 P4 P5 CSI_PIXCLK P2 P3 CSI_DATA[23:00] Figure 34. CSI Ungated Clock Mode--Sensor Data at Falling Edge, Latch Data at Rising Edge Table 46. CSI Ungated Clock Mode Timing Parameters ID Parameter Symbol Min. Max. Units tVSYNC 33.5 -- ns P1 CSI_VSYNC to pixel clock time P2 CSI DATA setup time tDsu 1 -- ns P3 CSI DATA hold time tDh 1 -- ns P4 CSI pixel clock high time tCLKh 3.75 -- ns P5 CSI pixel clock low time tCLKl 3.75 -- ns P6 CSI pixel clock frequency fCLK -- 133 MHz The CSI enables the chip to connect directly to external CMOS image sensors, which are classified as dumb or smart as follows: * Dumb sensors only support traditional sensor timing (vertical sync (VSYNC) and horizontal sync (HSYNC)) and output-only Bayer and statistics data. * Smart sensors support CCIR656 video decoder formats and perform additional processing of the image (for example, image compression, image pre-filtering, and various data output formats). i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 64 NXP Semiconductors Electrical characteristics The following subsections describe the CSI timing in gated and ungated clock modes. 4.12.2 ECSPI timing parameters This section describes the timing parameters of the ECSPI blocks. The ECSPI have separate timing parameters for master and slave modes. 4.12.2.1 ECSPI master mode timing Figure 35 depicts the timing of ECSPI in master mode. Table 47 lists the ECSPI master mode timing characteristics. ECSPIx_RDY_B ECSPIx_SS_B CS10 CS1 CS2 CS3 CS5 CS6 CS4 ECSPIx_SCLK CS7 CS3 CS2 ECSPIx_MOSI CS8 CS9 ECSPIx_MISO Figure 35. ECSPI Master Mode Timing Diagram Table 47. ECSPI Master Mode Timing Parameters ID Parameter Min Max Unit CS1 ECSPIx_SCLK Cycle Time-Read ECSPIx_SCLK Cycle Time-Write tclk 43 15 -- ns CS2 ECSPIx_SCLK High or Low Time-Read ECSPIx_SCLK High or Low Time-Write tSW 21.5 7 -- ns CS3 ECSPIx_SCLK Rise or Fall1 tRISE/FALL -- -- ns CS4 ECSPIx_SS_B pulse width tCSLH Half ECSPIx_SCLK period -- ns CS5 ECSPIx_SS_B Lead Time (CS setup time) tSCS Half ECSPIx_SCLK period - 4 -- ns CS6 ECSPIx_SS_B Lag Time (CS hold time) tHCS Half ECSPIx_SCLK period - 2 -- ns CS7 ECSPIx_MOSI Propagation Delay (CLOAD = 20 pF) tPDmosi -1 1 ns CS8 ECSPIx_MISO Setup Time tSmiso 14 -- ns CS9 ECSPIx_MISO Hold Time tHmiso 0 -- ns tSDRY 5 -- ns CS10 RDY to ECSPIx_SS_B 1 Symbol Time2 See specific I/O AC parameters Section 4.7, "I/O AC parameters"." i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 65 Electrical characteristics 2 SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals. 4.12.2.2 ECSPI slave mode timing Figure 36 depicts the timing of ECSPI in slave mode. Table 48 lists the ECSPI slave mode timing characteristics. ECSPIx_SS_B CS2 CS1 CS5 CS6 CS4 ECSPIx_SCLK CS2 CS9 ECSPIx_MISO CS7 CS8 ECSPIx_MOSI Figure 36. ECSPI Slave Mode Timing Diagram Table 48. ECSPI Slave Mode Timing Parameters ID Parameter Symbol Min Max Unit CS1 ECSPIx_SCLK Cycle Time-Read ECSPI_SCLK Cycle Time-Write tclk 15 43 -- ns CS2 ECSPIx_SCLK High or Low Time-Read ECSPIx_SCLK High or Low Time-Write tSW 7 21.5 -- ns CS4 ECSPIx_SS_B pulse width tCSLH Half ECSPIx_SCLK period -- ns CS5 ECSPIx_SS_B Lead Time (CS setup time) tSCS 5 -- ns CS6 ECSPIx_SS_B Lag Time (CS hold time) tHCS 5 -- ns CS7 ECSPIx_MOSI Setup Time tSmosi 4 -- ns CS8 ECSPIx_MOSI Hold Time tHmosi 4 -- ns CS9 ECSPIx_MISO Propagation Delay (CLOAD = 20 pF) tPDmiso 4 19 ns i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 66 NXP Semiconductors Electrical characteristics Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC 4.12.3 timing This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (Single Data Rate) timing, eMMC4.4/4.41/4.5 (Dual Date Rate) timing and SDR104/50(SD3.0) timing. 4.12.3.1 SD/eMMC4.3 (single data rate) AC timing Figure 37 depicts the timing of SD/eMMC4.3, and Table 49 lists the SD/eMMC4.3 timing characteristics. SD4 SD2 SD1 SD5 SDx_CLK SD3 SD6 Output from uSDHC to card SDx_DATA[7:0] SD7 SD8 Input from card to uSDHC SDx_DATA[7:0] Figure 37. SD/eMMC4.3 Timing Table 49. SD/eMMC4.3 Interface Timing Specification ID Parameter Symbols Min Max Unit Clock Frequency (Low Speed) fPP1 0 400 kHz Clock Frequency (SD/SDIO Full Speed/High Speed) fPP2 0 25/50 MHz Clock Frequency (MMC Full Speed/High Speed) fPP3 0 20/52 MHz Clock Frequency (Identification Mode) fOD 100 400 kHz SD2 Clock Low Time tWL 7 -- ns SD3 Clock High Time tWH 7 -- ns SD4 Clock Rise Time tTLH -- 3 ns SD5 Clock Fall Time tTHL -- 3 ns 3.6 ns Card Input Clock SD1 uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK) SD6 uSDHC Output Delay tOD -6.6 i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 67 Electrical characteristics Table 49. SD/eMMC4.3 Interface Timing Specification (continued) ID Parameter Symbols Min Max Unit uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK) SD7 uSDHC Input Setup Time SD8 4 uSDHC Input Hold Time tISU 2.5 -- ns tIH 1.5 -- ns 1 In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V. In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 0-25 MHz. In high-speed mode, clock frequency can be any value between 0-50 MHz. 3 In normal (full) speed mode for MMC card, clock frequency can be any value between 0-20 MHz. In high-speed mode, clock frequency can be any value between 0-52 MHz. 4 To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns. 2 4.12.3.2 eMMC4.4/4.41 (dual data rate) AC timing Figure 38 depicts the timing of eMMC4.4/4.41. Table 50 lists the eMMC4.4/4.41 timing characteristics. Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD). SD1 SDx_CLK SD2 SD2 Output from eSDHCv3 to card SDx_DATA[7:0] ...... SD3 SD4 Input from card to eSDHCv3 SDx_DATA[7:0] ...... Figure 38. eMMC4.4/4.41 Timing Table 50. eMMC4.4/4.41 Interface Timing Specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency (eMMC4.4/4.41 DDR) fPP 0 52 MHz SD1 Clock Frequency (SD3.0 DDR) fPP 0 50 MHz uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK) SD2 uSDHC Output Delay tOD 2.5 7.1 ns uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK) SD3 uSDHC Input Setup Time tISU 1.7 -- ns SD4 uSDHC Input Hold Time tIH 1.5 -- ns i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 68 NXP Semiconductors Electrical characteristics 4.12.3.3 SDR50/SDR104 AC timing Figure 39 depicts the timing of SDR50/SDR104, and Table 51 lists the SDR50/SDR104 timing characteristics. 6' 6' 6' 6&. 6'6' ELWRXWSXWIURPX6'+&WRFDUG 6' 6' ELWLQSXWIURPFDUGWRX6'+& 6' Figure 39. SDR50/SDR104 Timing Table 51. SDR50/SDR104 Interface Timing Specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency Period tCLK 5.0 -- ns SD2 Clock Low Time tCL 0.46 x tCLK 0.54 x tCLK ns SD3 Clock High Time tCH 0.46 x tCLK 0.54 x tCLK ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK) SD4 uSDHC Output Delay tOD -3 1 ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK) SD5 uSDHC Output Delay tOD -1.6 0.74 ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK) SD6 uSDHC Input Setup Time tISU 2.5 -- ns SD7 uSDHC Input Hold Time tIH 1.5 -- ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1 SD8 1Data Card Output Data Window tODW 0.5 x tCLK -- ns window in SDR104 mode is variable. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 69 Electrical characteristics 4.12.3.4 HS200 mode timing Figure 40 depicts the timing of HS200 mode, and Table 52 lists the HS200 timing characteristics. 6' 6' 6' 6&. 6'6' ELWRXWSXWIURPX6'+&WRH00& ELWLQSXWIURPH00&WRX6'+& 6' Figure 40. HS200 Mode Timing Table 52. HS200 Interface Timing Specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency Period tCLK 5.0 -- ns SD2 Clock Low Time tCL 0.46 x tCLK 0.54 x tCLK ns SD3 Clock High Time tCH 0.46 x tCLK 0.54 x tCLK ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK) uSDHC Output Delay SD5 tOD -1.6 0.74 ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1 Card Output Data Window SD8 1HS200 4.12.3.5 tODW 0.5 x tCLK -- ns is for 8 bits while SDR104 is for 4 bits. Bus operation condition for 3.3 V and 1.8 V signaling Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of SDR104/SDR50 mode is 1.8 V. The DC parameters for the NVCC_SD1 supply are identical to those shown in Table 24, "Single Voltage GPIO DC Parameters," on page 34. 4.12.4 Ethernet Controller (ENET) AC electrical specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 70 NXP Semiconductors Electrical characteristics 4.12.4.1 ENET MII mode timing This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal timings. 4.12.4.1.1 MII receive signal timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER, and ENET_RX_CLK) The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_RX_CLK frequency. Figure 41 shows MII receive signal timings. Table 53 describes the timing parameters (M1-M4) shown in the figure. M3 ENET_RX_CLK (input) M4 ENET_RX_DATA3,2,1,0 (inputs) ENET_RX_EN ENET_RX_ER M1 M2 Figure 41. MII Receive Signal Timing Diagram Table 53. MII Receive Signal Timing Characteristic1 ID Min. Max. Unit M1 ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to ENET_RX_CLK setup 5 -- ns M2 ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER hold 5 -- ns M3 ENET_RX_CLK pulse width high 35% 65% ENET_RX_CLK period M4 ENET_RX_CLK pulse width low 35% 65% ENET_RX_CLK period 1 ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode. 4.12.4.1.2 MII transmit signal timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER, and ENET_TX_CLK) The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_TX_CLK frequency. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 71 Electrical characteristics Figure 42 shows MII transmit signal timings. Table 54 describes the timing parameters (M5-M8) shown in the figure. M7 ENET_TX_CLK (input) M5 M8 ENET_TX_DATA3,2,1,0 (outputs) ENET_TX_EN ENET_TX_ER M6 Figure 42. MII Transmit Signal Timing Diagram Table 54. MII Transmit Signal Timing Characteristic1 ID Min. Max. Unit M5 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER invalid 5 -- ns M6 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER valid -- 20 ns M7 ENET_TX_CLK pulse width high 35% 65% ENET_TX_CLK period M8 ENET_TX_CLK pulse width low 35% 65% ENET_TX_CLK period 1 ENET_TX_EN, 4.12.4.1.3 ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode. MII asynchronous inputs signal timing (ENET_CRS and ENET_COL) Figure 43 shows MII asynchronous input timings. Table 55 describes the timing parameter (M9) shown in the figure. ENET_CRS, ENET_COL M9 Figure 43. MII Async Inputs Timing Diagram Table 55. MII Asynchronous Inputs Signal Timing ID 1 M9 1 Characteristic ENET_CRS to ENET_COL minimum pulse width Min. Max. Unit 1.5 -- ENET_TX_CLK period ENET_COL has the same timing in 10-Mbit 7-wire interface mode. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 72 NXP Semiconductors Electrical characteristics 4.12.4.1.4 MII serial management channel timing (ENET_MDIO and ENET_MDC) The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3 MII specification. However the ENET can function correctly with a maximum MDC frequency of 15 MHz. Figure 44 shows MII asynchronous input timings. Table 56 describes the timing parameters (M10-M15) shown in the figure. M14 M15 ENET_MDC (output) M10 ENET_MDIO (output) M11 ENET_MDIO (input) M12 M13 Figure 44. MII Serial Management Channel Timing Diagram Table 56. MII Serial Management Channel Timing ID Characteristic Min. Max. Unit M10 ENET_MDC falling edge to ENET_MDIO output invalid (min. propagation delay) 0 -- ns M11 ENET_MDC falling edge to ENET_MDIO output valid (max. propagation delay) -- 5 ns M12 ENET_MDIO (input) to ENET_MDC rising edge setup 18 -- ns M13 ENET_MDIO (input) to ENET_MDC rising edge hold 0 -- ns M14 ENET_MDC pulse width high 40% 60% ENET_MDC period M15 ENET_MDC pulse width low 40% 60% ENET_MDC period 4.12.4.2 RMII mode timing In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz 50 ppm continuous reference clock. ENET_RX_EN is used as the ENET_RX_EN in RMII. Other signals under RMII mode include ENET_TX_EN, ENET_TX_DATA[1:0], ENET_RX_DATA[1:0] and ENET_RX_ER. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 73 Electrical characteristics Figure 45 shows RMII mode timings. Table 57 describes the timing parameters (M16-M21) shown in the figure. M16 M17 ENET_CLK (input) M18 ENET_TX_DATA (output) ENET_TX_EN M19 ENET_RX_EN (input) ENET_RX_DATA[1:0] ENET_RX_ER M20 M21 Figure 45. RMII Mode Signal Timing Diagram Table 57. RMII Signal Timing ID Characteristic Min. Max. Unit M16 ENET_CLK pulse width high 35% 65% ENET_CLK period M17 ENET_CLK pulse width low 35% 65% ENET_CLK period M18 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid 4 -- ns M19 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid -- 13 ns M20 ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to ENET_CLK setup 2 -- ns M21 ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER hold 2 -- ns 4.12.5 Flexible Controller Area Network (FLEXCAN) AC electrical specifications The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing the CAN protocol according to the CAN 2.0B protocol specification. The processor has two CAN modules available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See the IOMUXC chapter of the i.MX 6UltraLite Reference Manual (IMX6ULRM) to see which pins expose Tx and Rx pins; these ports are named FLEXCAN_TX and FLEXCAN_RX, respectively. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 74 NXP Semiconductors Electrical characteristics 4.12.6 I2C module timing parameters This section describes the timing parameters of the I2C module. Figure 46 depicts the timing of I2C module, and Table 58 lists the I2C module timing characteristics. IC11 IC10 I2Cx_SDA I2Cx_SCL IC2 START IC7 IC4 IC8 IC10 IC11 IC6 IC9 IC3 STOP START START IC5 IC1 Figure 46. I2C Bus Timing Table 58. I2C Module Timing Parameters Standard Mode ID Fast Mode Parameter Unit Min Max Min Max IC1 I2Cx_SCL cycle time 10 -- 2.5 -- s IC2 Hold time (repeated) START condition 4.0 -- 0.6 -- s IC3 Set-up time for STOP condition 4.0 -- 0.6 -- s IC4 Data hold time 01 3.452 01 0.92 s IC5 HIGH Period of I2Cx_SCL Clock 4.0 -- 0.6 -- s IC6 LOW Period of the I2Cx_SCL Clock 4.7 -- 1.3 -- s IC7 Set-up time for a repeated START condition 4.7 -- 0.6 -- s IC8 Data set-up time 250 -- 1003 -- ns IC9 Bus free time between a STOP and START condition 4.7 -- 1.3 -- s IC10 Rise time of both I2Cx_SDA and I2Cx_SCL signals -- 1000 20 + 0.1Cb4 300 ns IC11 Fall time of both I2Cx_SDA and I2Cx_SCL signals -- 300 20 + 0.1Cb4 300 ns IC12 Capacitive load for each bus line (Cb) -- 400 -- 400 pF 1 A device must internally provide a hold time of at least 300 ns for I2Cx_SDA signal to bridge the undefined region of the falling edge of I2Cx_SCL. 2 The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2Cx_SCL signal. 3 A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (ID No IC7) of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2Cx_SCL signal. If such a device does stretch the LOW period of the I2Cx_SCL signal, it must output the next data bit to the I2Cx_SDA line max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification) before the I2Cx_SCL line is released. 4 Cb = total capacitance of one bus line in pF. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 75 Electrical characteristics 4.12.7 Pulse Width Modulator (PWM) timing parameters This section describes the electrical information of the PWM. The PWM can be programmed to select one of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin. Figure 47 depicts the timing of the PWM, and Table 59 lists the PWM timing parameters. 0 0 07-N?/54 Figure 47. PWM Timing Table 59. PWM Output Timing Parameters ID 4.12.8 Parameter Min Max Unit PWM Module Clock Frequency 0 ipg_clk MHz P1 PWM output pulse width high 15 -- ns P2 PWM output pulse width low 15 -- ns LCD Controller (LCDIF) parameters Figure 48 shows the LCDIF timing and Table 60 lists the timing parameters. / / / /&'QB&/. IDOOLQJHGJHFDSWXUH /&'QB&/. ULVLQJHGJHFDSWXUH /&'QB'$7$>@ /&'Q&RQWURO6LJQDOV / / / / Figure 48. LCD Timing i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 76 NXP Semiconductors Electrical characteristics Table 60. LCD Timing Parameters ID Parameter Symbol Min Max Unit tCLK(LCD) -- 150 MHz L1 LCD pixel clock frequency L2 LCD pixel clock high (falling edge capture) tCLKH(LCD) 3 -- ns L3 LCD pixel clock low (rising edge capture) tCLKL(LCD) 3 -- ns L4 LCD pixel clock high to data valid (falling edge capture) td(CLKH-DV) -1 1 ns L5 LCD pixel clock low to data valid (rising edge capture) td(CLKL-DV) -1 1 ns L6 LCD pixel clock high to control signal valid (falling edge capture) td(CLKH-CTRLV) -1 1 ns L7 LCD pixel clock low to control signal valid (rising edge capture) td(CLKL-CTRLV) -1 1 ns 4.12.8.1 LCDIF signal mapping Table 61 lists the details about the mapping signals. Table 61. LCD Signal Parameters Pin name 8-bit DOTCLK LCD IF 16-bit DOTCLK LCD IF 18-bit DOTCLK LCD IF 24-bit DOTCLK LCD IF 8-bit DVI LCD IF LCD_RS -- -- -- -- CCIR_CLK LCD_VSYNC* (Two options) LCD_VSYNC LCD_VSYNC LCD_VSYNC LCD_VSYNC -- LCD_HSYNC LCD_HSYNC LCD_HSYNC LCD_HSYNC LCD_HSYNC -- LCD_DOTCLK LCD_DOTCLK LCD_DOTCLK LCD_DOTCLK LCD_DOTCLK -- LCD_ENABLE LCD_ENABLE LCD_ENABLE LCD_ENABLE LCD_ENABLE -- LCD_D23 -- -- -- R[7] -- LCD_D22 -- -- -- R[6] -- LCD_D21 -- -- -- R[5] -- LCD_D20 -- -- -- R[4] -- LCD_D19 -- -- -- R[3] -- LCD_D18 -- -- -- R[2] -- LCD_D17 -- -- R[5] R[1] -- LCD_D16 -- -- R[4] R[0] -- LCD_D15 / VSYNC* -- R[4] R[3] G[7] -- LCD_D14 / HSYNC** -- R[3] R[2] G[6] -- LCD_D13 / LCD_DOTCLK ** -- R21] R[1] G[5] -- i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 77 Electrical characteristics Table 61. LCD Signal Parameters (continued) LCD_D12 / ENABLE** -- R[1] R[0] G[4] -- LCD_D11 -- R[0] G[5] G[3] -- LCD_D10 -- G[5] G[4] G[2] -- LCD_D9 -- G[4] G[3] G[1] -- LCD_D8 -- G[3] G[2] G[0] -- LCD_D8 -- G[3] G[2] G[0] -- LCD_D7 R[2] G[2] G[1] B[7] Y/C[7] LCD_D6 R[1] G[1] G[0] B[6] Y/C[6] LCD_D5 R[0] G[0] B[5] B[5] Y/C[5] LCD_D4 G[2] B[4] B[4] B[4] Y/C[4] LCD_D3 G[1] B[3] B[3] B[3] Y/C[3] LCD_D2 G[0] B[2] B[2] B[2] Y/C[2] LCD_D1 B[1] B[1] B[1] B[1] Y/C[1] LCD_D0 B[0] B[0] B[0] B[0] Y/C[0] LCD_RESET LCD_RESET LCD_RESET LCD_RESET LCD_RESET -- LCD_BUSY / LCD_VSYNC LCD_BUSY (or optional LCD_VSYNC) LCD_BUSY (or optional LCD_VSYNC) LCD_BUSY (or optional LCD_VSYNC) LCD_BUSY (or optional LCD_VSYNC) -- 4.12.9 QUAD SPI (QSPI) timing parameters Measurement conditions are with 35 pF load on SCK and SIO pins and input slew rate of 1 V/ns. 4.12.9.1 SDR mode 463,[B6&/. 7,6 7,+ 7,6 7,+ 463,[B'$7$>@ Figure 49. QuadSPI Input/Read Timing (SDR mode with internal sampling) i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 78 NXP Semiconductors Electrical characteristics Table 62. QuadSPI Input Timing (SDR mode with internal sampling) Value Symbol Parameter Unit Min Max TIS Setup time for incoming data 8.67 -- ns TIH Hold time requirement for incoming data 0 -- ns 463,[B6&/. 463,[B'$7$>@ 7,6 7,+ 7,6 7,+ 463,[B'46 Figure 50. QuadSPI Input/Read Timing (SDR mode with loopback DQS sampling) Table 63. QuadSPI Input/Read Timing (SDR mode with loopback DQS sampling) Value Symbol Parameter Unit Min Max TIS Setup time for incoming data 2 -- ns TIH Hold time requirement for incoming data 1 -- ns NOTE For internal sampling, the timing values assumes using sample point 0, that is QuadSPIx_SMPR[SDRSMP] = 0. For loopback DQS sampling, the data strobe is output to the DQS pad together with the serial clock. The data strobe is looped back from DQS pad and used to sample input data. * * 463,[B6&/. 7&66 7&6+ 7&. 463,[B&6 7'92 7'92 463,[B6,2 7'+2 7'+2 Figure 51. QuadSPI Output/Write Timing (SDR mode) i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 79 Electrical characteristics Table 64. QuadSPI Output/Write Timing (SDR mode) Value Symbol Parameter Unit Min Max TDVO Output data valid time -- 2 ns TDHO Output data hold time 0 -- ns TCK SCK clock period 10 -- ns TCSS Chip select output setup time 3 -- SCK cycle(s) TCSH Chip select output hold time 3 -- SCK cycle(s) NOTE Tcss and Tcsh are configured by the QuadSPIx_FLSHCR register, the default value of 3 are shown on the timing. Please refer to the i.MX 6UltraLite Reference Manual (IMX6ULRM) for more details. 4.12.9.2 DDR mode 463,[B6&/. 7,6 7,+ 7,6 7,+ 463,[B'$7$>@ Figure 52. QuadSPI Input/Read Timing (DDR mode with internal sampling) Table 65. QuadSPI Input/Read Timing (DDR mode with internal sampling) Value Symbol Parameter Unit Min Max TIS Setup time for incoming data 8.67 -- ns TIH Hold time requirement for incoming data 0 -- ns i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 80 NXP Semiconductors Electrical characteristics 463,[B6&/. 463,[B'$7$>@ 7,6 7,+ 7,6 7,+ 463,[B'46 Figure 53. QuadSPI Input/Read Timing (DDR mode with loopback DQS sampling) Table 66. QuadSPI Input/Read Timing (DDR mode with loopback DQS sampling) Value Symbol Parameter Unit Min Max TIS Setup time for incoming data 2 -- ns TIH Hold time requirement for incoming data 1 -- ns NOTE For internal sampling, the timing values assumes using sample point 0, that is QuadSPIx_SMPR[SDRSMP] = 0. For loopback DQS sampling, the data strobe is output to the DQS pad together with the serial clock. The data strobe is looped back from DQS pad and used to sample input data. * * 463,[B6&/. 7&66 7&. 7&6+ 463,[B&6 7'92 7'92 463,[B6,2 7'+2 7'+2 Figure 54. QuadSPI Output/Write Timing (DDR mode) Table 67. QuadSPI Output/Write Timing (DDR mode) Value Symbol Parameter Unit Min Max TDVO Output data valid time -- 0.25 x TSCLK + 2 ns ns TDHO Output data hold time 0.25 x TSCLK -- ns TCK SCK clock period 20 -- ns i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 81 Electrical characteristics Table 67. QuadSPI Output/Write Timing (DDR mode) Value Symbol Parameter Unit Min Max TCSS Chip select output setup time 3 -- SCK cycle(s) TCSH Chip select output hold time 3 -- SCK cycle(s) NOTE Tcss and Tcsh are configured by the QuadSPIx_FLSHCR register, the default value of 3 are shown on the timing. Please refer to the i.MX 6UltraLite Reference Manual (IMX6ULRM) for more details. 4.12.10 SAI/I2S switching specifications This section provides the AC timings for the SAI in master (clocks driven) and slave (clocks input) modes. All timings are given for non-inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP] = 0) and non-inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below. Table 68. Master Mode SAI Timing Num Characteristic Min Max Unit S1 SAI_MCLK cycle time 2 x tsys -- ns S2 SAI_MCLK pulse width high/low 40% 60% MCLK period S3 SAI_BCLK cycle time 4 x tsys -- ns S4 SAI_BCLK pulse width high/low 40% 60% BCLK period S5 SAI_BCLK to SAI_FS output valid -- 15 ns S6 SAI_BCLK to SAI_FS output invalid 0 -- ns S7 SAI_BCLK to SAI_TXD valid -- 15 ns S8 SAI_BCLK to SAI_TXD invalid 0 -- ns S9 SAI_RXD/SAI_FS input setup before SAI_BCLK 15 -- ns S10 SAI_RXD/SAI_FS input hold after SAI_BCLK 0 -- ns i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 82 NXP Semiconductors Electrical characteristics Figure 55. SAI Timing -- Master Modes Table 69. Master Mode SAI Timing Num Characteristic Min Max Unit S11 SAI_BCLK cycle time (input) 4 x tsys -- ns S12 SAI_BCLK pulse width high/low (input) 40% 60% BCLK period S13 SAI_FS input setup before SAI_BCLK 10 -- ns S14 SAI_FA input hold after SAI_BCLK 2 -- ns S15 SAI_BCLK to SAI_TXD/SAI_FS output valid -- 20 ns S16 SAI_BCLK to SAI_TXD/SAI_FS output invalid 0 -- ns S17 SAI_RXD setup before SAI_BCLK 10 -- ns S18 SAI_RXD hold after SAI_BCLK 2 -- ns Figure 56. SAI Timing -- Slave Modes i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 83 Electrical characteristics 4.12.11 SCAN JTAG Controller (SJC) timing parameters Figure 57 depicts the SJC test clock input timing. Figure 58 depicts the SJC boundary scan timing. Figure 59 depicts the SJC test access port. Signal parameters are listed in Table 70. SJ1 SJ2 JTAG_TCK (Input) SJ2 VM VIH VM VIL SJ3 SJ3 Figure 57. Test Clock Input Timing Diagram JTAG_TCK (Input) VIH VIL SJ4 Data Inputs SJ5 Input Data Valid SJ6 Data Outputs Output Data Valid SJ7 Data Outputs SJ6 Data Outputs Output Data Valid Figure 58. Boundary Scan (JTAG) Timing Diagram i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 84 NXP Semiconductors Electrical characteristics JTAG_TCK (Input) VIH VIL SJ8 JTAG_TDI JTAG_TMS (Input) SJ9 Input Data Valid SJ10 JTAG_TDO (Output) Output Data Valid SJ11 JTAG_TDO (Output) SJ10 JTAG_TDO (Output) Output Data Valid Figure 59. Test Access Port Timing Diagram JTAG_TCK (Input) JTAG_TRST_B (Input) SJ13 SJ12 Figure 60. JTAG_TRST_B Timing Diagram Table 70. JTAG Timing All Frequencies Parameter1,2 ID Unit Min Max 0.001 22 MHz 45 -- ns 22.5 -- ns SJ0 JTAG_TCK frequency of operation 1/(3*TDC)1 SJ1 JTAG_TCK cycle time in crystal mode SJ2 JTAG_TCK clock pulse width measured at VM2 SJ3 JTAG_TCK rise and fall times -- 3 ns SJ4 Boundary scan input data set-up time 5 -- ns SJ5 Boundary scan input data hold time 24 -- ns SJ6 JTAG_TCK low to output data valid -- 40 ns SJ7 JTAG_TCK low to output high impedance -- 40 ns SJ8 JTAG_TMS, JTAG_TDI data set-up time 5 -- ns i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 85 Electrical characteristics Table 70. JTAG Timing (continued) 1 2 All Frequencies Parameter1,2 ID Unit Min Max SJ9 JTAG_TMS, JTAG_TDI data hold time 25 -- ns SJ10 JTAG_TCK low to JTAG_TDO data valid -- 44 ns SJ11 JTAG_TCK low to JTAG_TDO high impedance -- 44 ns SJ12 JTAG_TRST_B assert time 100 -- ns SJ13 JTAG_TRST_B set-up time to JTAG_TCK low 40 -- ns TDC = target frequency of SJC VM = mid-point voltage 4.12.12 SPDIF timing parameters The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal. Table 71 and Figure 61 and Figure 62 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode. Table 71. SPDIF Timing Parameters Timing Parameter Range Characteristics Symbol Unit Min Max SPDIF_IN Skew: asynchronous inputs, no specs apply -- -- 0.7 ns SPDIF_OUT output (Load = 50pf) * Skew * Transition rising * Transition falling -- -- -- -- -- -- 1.5 24.2 31.3 ns SPDIF_OUT1 output (Load = 30pf) * Skew * Transition rising * Transition falling -- -- -- -- -- -- 1.5 13.6 18.0 ns Modulating Rx clock (SPDIF_SR_CLK) period srckp 40.0 -- ns SPDIF_SR_CLK high period srckph 16.0 -- ns SPDIF_SR_CLK low period srckpl 16.0 -- ns Modulating Tx clock (SPDIF_ST_CLK) period stclkp 40.0 -- ns SPDIF_ST_CLK high period stclkph 16.0 -- ns SPDIF_ST_CLK low period stclkpl 16.0 -- ns i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 86 NXP Semiconductors Electrical characteristics srckp srckpl SPDIF_SR_CLK srckph VM VM (Output) Figure 61. SPDIF_SR_CLK Timing Diagram stclkp stclkpl SPDIF_ST_CLK stclkph VM VM (Input) Figure 62. SPDIF_ST_CLK Timing Diagram 4.12.13 UART I/O configuration and timing parameters 4.12.13.1 UART RS-232 serial mode timing The following sections describe the electrical information of the UART module in the RS-232 mode. 4.12.13.1.1 UART transmitter Figure 63 depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit format. Table 72 lists the UART RS-232 serial mode transmits timing characteristics. UA1 UARTx_TX_DATA (output) Possible Parity Bit UA1 Start Bit Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Par Bit STOP BIT Next Start Bit UA1 UA1 Figure 63. UART RS-232 Serial Mode Transmit Timing Diagram Table 72. RS-232 Serial Mode Transmit Timing Parameters ID UA1 1 2 Parameter Transmit Bit Time Symbol Min Max Unit tTbit 1/Fbaud_rate1 - Tref_clk2 1/Fbaud_rate + Tref_clk -- Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider). i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 87 Electrical characteristics 4.12.13.1.2 UART receiver Figure 64 depicts the RS-232 serial mode receives timing with 8 data bit/1 stop bit format. Table 73 lists serial mode receive timing characteristics. UA2 Start Bit UARTx_RX_DATA (output) Possible Parity Bit UA2 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Next Start Bit Par Bit STOP BIT UA2 UA2 Figure 64. UART RS-232 Serial Mode Receive Timing Diagram Table 73. RS-232 Serial Mode Receive Timing Parameters ID Parameter Symbol Min Max Unit UA2 Receive Bit Time1 tRbit 1/Fbaud_rate2 - 1/(16 x Fbaud_rate) 1/Fbaud_rate + 1/(16 x Fbaud_rate) -- 1 The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/(16 x Fbaud_rate). 2 F baud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. 4.12.13.1.3 UART IrDA mode timing The following subsections give the UART transmit and receive timings in IrDA mode. UART IrDA mode transmitter Figure 65 depicts the UART IrDA mode transmit timing, with 8 data bit/1 stop bit format. Table 74 lists the transmit timing characteristics. UA3 UA4 UA3 UA3 UA3 UARTx_TX_D ATA Start Bit Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Possible Parity Bit Bit 7 STOP BIT Figure 65. UART IrDA Mode Transmit Timing Diagram Table 74. IrDA Mode Transmit Timing Parameters 1 ID Parameter Symbol Min Max Unit UA3 Transmit Bit Time in IrDA mode tTIRbit 1/Fbaud_rate1 Tref_clk2 1/Fbaud_rate + Tref_clk -- UA4 Transmit IR Pulse Duration tTIRpulse (3/16) x (1/Fbaud_rate) (3/16) x (1/Fbaud_rate) - Tref_clk + Tref_clk -- Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 88 NXP Semiconductors Electrical characteristics 2 Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider). UART IrDA mode receiver Figure 66 depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format. Table 75 lists the receive timing characteristics. UA5 UA6 UA5 UA5 UA5 UARTx_RX_ DATA Start Bit Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Possible Parity Bit Bit 7 STOP BIT Figure 66. UART IrDA Mode Receive Timing Diagram Table 75. IrDA Mode Receive Timing Parameters ID Parameter UA5 Receive Bit Time1 in IrDA mode UA6 Receive IR Pulse Duration Symbol Min Max Unit tRIRbit 1/Fbaud_rate2 - 1/(16 x Fbaud_rate) 1/Fbaud_rate + 1/(16 x Fbaud_rate) -- tRIRpulse 1.41 s (5/16) x (1/Fbaud_rate) -- 1 The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/(16 x Fbaud_rate). 2 F baud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. 4.12.14 USB PHY parameters This section describes the USB-OTG PHY parameters. The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG with the following amendments. * USB ENGINEERING CHANGE NOTICE -- Title: 5V Short Circuit Withstand Requirement Change -- Applies to: Universal Serial Bus Specification, Revision 2.0 * Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000 * USB ENGINEERING CHANGE NOTICE -- Title: Pull-up/Pull-down resistors -- Applies to: Universal Serial Bus Specification, Revision 2.0 * USB ENGINEERING CHANGE NOTICE -- Title: Suspend Current Limit Changes -- Applies to: Universal Serial Bus Specification, Revision 2.0 * USB ENGINEERING CHANGE NOTICE -- Title: USB 2.0 Phase Locked SOFs i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 89 Electrical characteristics * * -- Applies to: Universal Serial Bus Specification, Revision 2.0 On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification -- Revision 2.0 plus errata and ecn June 4, 2010 Battery Charging Specification (available from USB-IF) -- Revision 1.2, December 7, 2010 -- Portable device only 4.13 A/D converter 4.13.1 12-bit ADC electrical characteristics 4.13.1.1 12-bit ADC operating conditions Table 76. 12-bit ADC Operating Conditions Characteristic Conditions Symb Typ1 Min Max Unit Comment Absolute VDDAD 3.0 - 3.6 V -- Delta to VDD (VDD-VDDAD)2 VDDAD -100 0 100 mV -- Ground voltage Delta to VSS (VSS-VSSAD) VSSAD -100 0 100 mV -- Ref Voltage High -- VREFH 1.13 VDDAD VDDAD V -- Ref Voltage Low -- VREFL VSSAD VSSAD VSSAD V -- Input Voltage -- VADIN VREFL -- VREFH V -- Input Capacitance 8/10/12 bit modes CADIN -- 1.5 2 pF -- Input Resistance ADLPC=0, ADHSC=1 RADIN -- 5 7 kohms -- ADLPC=0, ADHSC=0 -- 12.5 15 kohms -- ADLPC=1, ADHSC=0 -- 25 30 kohms -- 12 bit mode fADCK = RAS 40MHz ADLSMP=0, ADSTS=10, ADHSC=1 -- -- 1 kohms Tsamp=150 ns Supply voltage Analog Source Resistance RAS depends on Sample Time Setting (ADLSMP, ADSTS) and ADC Power Mode (ADHSC, ADLPC). See charts for Minimum Sample Time vs RAS ADC Conversion Clock ADLPC=0, ADHSC=1 Frequency 12 bit mode 1 fADCK 4 -- 40 MHz -- ADLPC=0, ADHSC=0 12 bit mode 4 -- 30 MHz -- ADLPC=1, ADHSC=0 12 bit mode 4 -- 20 MHz -- Typical values assume VDDAD = 3.0 V, Temp = 25C, fADCK=20 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 90 NXP Semiconductors Electrical characteristics 2 DC potential differences Figure 67. 12-bit ADC Input Impedance Equivalency Diagram 4.13.1.1.1 12-bit ADC characteristics Table 77. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) Conditions1 Characteristic [L:] Supply Current ADLPC=1, ADHSC=0 Symb IDDAD Typ2 Min -- 250 ADLPC=0, ADHSC=0 350 ADLPC=0, ADHSC=1 400 Max Unit Comment -- A ADLSMP=0 ADSTS=10 ADCO=1 [L:] Supply Current Stop, Reset, Module Off IDDAD -- 0.01 0.8 A -- ADC Asynchronous Clock Source ADHSC=0 fADACK -- 10 -- MHz tADACK = 1/fADACK -- 20 -- ADHSC=1 i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 91 Electrical characteristics Table 77. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) (continued) Characteristic Sample Cycles Conversion Cycles Conditions1 ADLSMP=0, ADSTS=00 Symb Csamp Typ2 Min -- 2 ADLSMP=0, ADSTS=01 4 ADLSMP=0, ADSTS=10 6 ADLSMP=0, ADSTS=11 8 ADLSMP=1, ADSTS=00 12 ADLSMP=1, ADSTS=01 16 ADLSMP=1, ADSTS=10 20 ADLSMP=1, ADSTS=11 24 ADLSMP=0 ADSTS=00 Cconv -- 28 ADLSMP=0 ADSTS=01 30 ADLSMP=0 ADSTS=10 32 ADLSMP=0 ADSTS=11 34 ADLSMP=1 ADSTS=00 38 ADLSMP=1 ADSTS=01 42 ADLSMP=1 ADSTS=10 46 ADLSMP=1, ADSTS=11 50 Max Unit Comment -- cycles -- -- cycles -- i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 92 NXP Semiconductors Electrical characteristics Table 77. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) (continued) Conditions1 Characteristic Conversion Time ADLSMP=0 ADSTS=00 [P:][C:] Total Unadjusted Error 0.8 ADLSMP=0 ADSTS=11 0.85 ADLSMP=1 ADSTS=00 0.95 ADLSMP=1 ADSTS=01 1.05 ADLSMP=1 ADSTS=10 1.15 ADLSMP=1, ADSTS=11 1.25 Fadc=40 MHz LSB 1 LSB = (VREFH VREFL)/2 N -- LSB -- LSB -- LSB -- LSB -- Bits -- dB -- 10 bit mode -- 2 -- 8 bit mode -- 1.5 -- -- 1 -- 10bit mode -- 0.5 -- 8 bit mode -- 0.2 -- -- 2.6 -- 10bit mode -- 0.8 -- 8 bit mode -- 0.3 -- -- -0.3 -- 10bit mode -- -0.15 -- 8 bit mode -- -0.15 -- -- -2.5 -- 10bit mode -- -0.6 -- 8 bit mode -- -0.3 -- 10.7 -- INL EZS EFS [L:] Effective Number 12 bit mode of Bits ENOB 10.1 [L:] Signal to Noise plus Distortion SINAD SINAD = 6.02 x ENOB + 1.76 1 See ENOB Comment s -- DNL Unit -- 4.5 12 bit mode TUE Max -- 12 bit mode Full-Scale Error 0.7 ADLSMP=0 ADSTS=10 12 bit mode Zero-Scale Error -- 0.75 12 bit mode [P:][C:] Integral Non-Linearity Tconv Typ2 Min ADLSMP=0 ADSTS=01 12 bit mode [P:][C:] Differential Non-Linearity Symb All accuracy numbers assume the ADC is calibrated with VREFH=VDDAD i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 93 Electrical characteristics 2 Typical values assume VDDAD = 3.0 V, Temp = 25C, Fadck=20 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. NOTE The ADC electrical spec would be met with the calibration enabled configuration. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 94 NXP Semiconductors Boot mode configuration 5 Boot mode configuration This section provides information on boot mode configuration pins allocation and boot devices interfaces allocation. 5.1 Boot mode configuration pins Table 78 provides boot options, functionality, fuse values, and associated pins. Several input pins are also sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse. The boot option pins are in effect when BT_FUSE_SEL fuse is `0' (cleared, which is the case for an unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX 6UltraLite Fuse Map document and the System Boot chapter in i.MX 6UltraLite Reference Manual (IMX6ULRM). Table 78. Fuses and Associated Pins Used for Boot Pin Direction at reset eFuse name Details BOOT_MODE0 Input with 100 K pull-down N/A Boot mode selection BOOT_MODE1 Input with 100 K pull-down N/A Boot mode selection i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 95 Boot mode configuration Table 78. Fuses and Associated Pins Used for Boot (continued) Pin 5.2 Direction at reset eFuse name LCD_DATA00 Input with 100 K pull-down BT_CFG1[0] LCD_DATA01 Input with 100 K pull-down BT_CFG1[1] LCD_DATA02 Input with 100 K pull-down BT_CFG1[2] LCD_DATA03 Input with 100 K pull-down BT_CFG1[3] LCD_DATA04 Input with 100 K pull-down BT_CFG1[4] LCD_DATA05 Input with 100 K pull-down BT_CFG1[5] LCD_DATA06 Input with 100 K pull-down BT_CFG1[6] LCD_DATA07 Input with 100 K pull-down BT_CFG1[7] LCD_DATA08 Input with 100 K pull-down BT_CFG2[0] LCD_DATA09 Input with 100 K pull-down BT_CFG2[1] LCD_DATA10 Input with 100 K pull-down BT_CFG2[2] LCD_DATA11 Input with 100 K pull-down BT_CFG2[3] LCD_DATA12 Input with 100 K pull-down BT_CFG2[4] LCD_DATA13 Input with 100 K pull-down BT_CFG2[5] LCD_DATA14 Input with 100 K pull-down BT_CFG2[6] LCD_DATA15 Input with 100 K pull-down BT_CFG2[7] LCD_DATA16 Input with 100 K pull-down BT_CFG4[0] LCD_DATA17 Input with 100 K pull-down BT_CFG4[1] LCD_DATA18 Input with 100 K pull-down BT_CFG4[2] LCD_DATA19 Input with 100 K pull-down BT_CFG4[3] LCD_DATA20 Input with 100 K pull-down BT_CFG4[4] LCD_DATA21 Input with 100 K pull-down BT_CFG4[5] LCD_DATA22 Input with 100 K pull-down BT_CFG4[6] LCD_DATA23 Input with 100 K pull-down BT_CFG4[7] Details Boot Options, Pin value overrides fuse settings for BT_FUSE_SEL = `0'. Signal Configuration as Fuse Override Input at Power Up. These are special I/O lines that control the boot up configuration during product development. In production, the boot configuration can be controlled by fuses. Boot device interface allocation The following tables list the interfaces that can be used by the boot process in accordance with the specific boot mode configuration. The tables also describe the interface's specific modes and IOMUXC allocation, which are configured during boot when appropriate. Table 79. QSPI Boot trough QSPI Ball Name Signal Name Mux Mode Common Quad Mode NAND_WP_B qspi.A_SCLK Alt2 Yes Yes NAND_DQS qspi.A_SS0_B Alt2 Yes Yes + Port A DQS + Port A CS1 + Port B + Port B DQS + Port B CS1 i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 96 NXP Semiconductors Boot mode configuration Table 79. QSPI Boot trough QSPI (continued) NAND_READY_B qspi.A_DATA[0] Alt2 Yes Yes NAND_CE0_B qspi.A_DATA[1] Alt2 Yes Yes NAND_CE1_B qspi.A_DATA[2] Alt2 Yes Yes NAND_CLE qspi.A_DATA[3] Alt2 Yes Yes NAND_DATA05 qspi.B_DATA[3] Alt2 Yes NAND_DATA04 qspi.B_DATA[2] Alt2 Yes NAND_DATA03 qspi.B_DATA[1] Alt2 Yes NAND_DATA02 qspi.B_DATA[0] Alt2 Yes NAND_WE_B qspi.B_SS0_B Alt2 Yes NAND_RE_B qspi.B_SCLK Alt2 Yes NAND_DATA07 qspi.A_SS1_B Alt2 NAND_ALE qspi.A_DQS Alt2 NAND_DATA00 qspi.B_SS1_B Alt2 NAND_DATA01 qspi.B_DQS Alt2 Yes Yes Yes Yes Table 80. SPI Boot through ECSPI1 Ball Name Signal Name Mux Mode Common CSI_DATA07 ecspi1.MISO Alt 3 Yes CSI_DATA06 ecspi1.MOSI Alt 3 Yes CSI_DATA04 ecspi1.SCLK Alt 3 Yes CSI_DATA05 ecspi1.SS0 Alt 3 LCD_DATA05 ecspi1.SS1 Alt 8 LCD_DATA06 ecspi1.SS2 Alt 8 LCD_DATA07 ecspi1.SS3 Alt 8 BOOT_CFG4 BOOT_CFG4 BOOT_CFG4 BOOT_CFG4 [5:4]=00b [5:4]=01b [5:4]=10b [5:4]=11b Yes Yes Yes Yes Table 81. SPI Boot through ECSPI2 Ball Name Signal Name Mux Mode Common CSI_DATA03 ecspi2.MISO Alt 3 Yes CSI_DATA02 ecspi2.MOSI Alt 3 Yes CSI_DATA00 ecspi2.SCLK Alt 3 Yes CSI_DATA01 ecspi2.SS0 Alt 3 LCD_HSYNC ecspi2.SS1 Alt 8 BOOT_CFG 4[5:4]=00b BOOT_CFG4 BOOT_CFG4 BOOT_CFG4 [5:4]=01b [5:4]=10b [5:4]=11b Yes Yes i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 97 Boot mode configuration Table 81. SPI Boot through ECSPI2 (continued) LCD_VSYNC ecspi2.SS2 Alt 8 LCD_RESET ecspi2.SS3 Alt 8 Yes Yes Table 82. SPI Boot through ECSPI3 Ball Name Signal Name Mux Mode Common UART2_RTS_B ecspi3.MISO Alt 8 Yes UART2_CTS_B ecspi3.MOSI Alt 8 Yes UART2_RX_DATA ecspi3.SCLK Alt 8 Yes UART2_TX_DATA ecspi3.SS0 Alt 8 NAND_ALE ecspi3.SS1 Alt 8 NAND_RE_B ecspi3.SS2 Alt 8 NAND_WE_B ecspi3.SS3 Alt 8 BOOT_CFG4 BOOT_CFG4[ BOOT_CFG4[ BOOT_CFG4 [5:4]=00b 5:4]=01b 5:4]=10b [5:4]=11b Yes Yes Yes Yes Table 83. SPI Boot through ECSPI4 Ball Name Signal Name Mux Mode Common ENET2_TX_CLK ecspi4.MISO Alt 3 Yes ENET2_TX_EN ecspi4.MOSI Alt 3 Yes ENET2_TX_DATA1 ecspi4.SCLK Alt 3 Yes ENET2_RX_ER ecspi4.SS0 Alt 3 NAND_DATA01 ecspi4.SS1 Alt 8 NAND_DATA02 ecspi4.SS2 Alt 8 NAND_DATA03 ecspi4.SS3 Alt 8 BOOT_CFG4 BOOT_CFG4 [5:4]=00b [5:4]=01b BOOT_CFG4[ 5:4]=10b BOOT_CFG 4[5:4]=11b Yes Yes Yes Yes Table 84. NAND Boot through GPMI Ball Name Signal Name Mux Mode Common NAND_CLE rawnand.CLE Alt 0 Yes NAND_ALE rawnand.ALE Alt 0 Yes NAND_WP_B rawnand.WP_B Alt 0 Yes NAND_READY_B rawnand.READY_B Alt 0 Yes NAND_CE0_B rawnand.CE0_B Alt 0 Yes NAND_CE1_B rawnand.CE1_B Alt 0 NAND_RE_B rawnand.RE_B Alt 0 Yes NAND_WE_B rawnand.WE_B Alt 0 Yes BOOT_CFG1[3:2]= BOOT_CFG1[3:2]= 01b 10b Yes Yes i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 98 NXP Semiconductors Boot mode configuration Table 84. NAND Boot through GPMI (continued) BOOT_CFG1[3:2]= BOOT_CFG1[3:2]= 01b 10b Ball Name Signal Name Mux Mode Common NAND_DATA00 rawnand.DATA00 Alt 0 Yes NAND_DATA01 rawnand.DATA01 Alt 0 Yes NAND_DATA02 rawnand.DATA02 Alt 0 Yes NAND_DATA03 rawnand.DATA03 Alt 0 Yes NAND_DATA04 rawnand.DATA04 Alt 0 Yes NAND_DATA05 rawnand.DATA05 Alt 0 Yes NAND_DATA06 rawnand.DATA06 Alt 0 Yes NAND_DATA07 rawnand.DATA07 Alt 0 Yes NAND_DQS rawnand.DQS Alt 0 Yes CSI_MCLK rawnand.CE2_B Alt 2 Yes CSI_PIXCLK rawnand.CE3_B Alt 2 Yes Table 85. SD/MMC Boot through USDHC1 Ball Name Signal Name Mux Mode UART1_RTS_B usdhc1.CD_B Alt 2 SD1_CLK usdhc1.CLK Alt 0 Yes SD1_CMD usdhc1.CMD Alt 0 Yes SD1_DATA0 usdhc1.DATA0 Alt 0 Yes SD1_DATA1 usdhc1.DATA1 Alt 0 Yes Yes SD1_DATA2 usdhc1.DATA2 Alt 0 Yes Yes SD1_DATA3 usdhc1.DATA3 Alt 0 NAND_READY_B usdhc1.DATA4 Alt 1 Yes NAND_CE0_B usdhc1.DATA5 Alt 1 Yes NAND_CE1_B usdhc1.DATA6 Alt 1 Yes NAND_CLE usdhc1.DATA7 Alt 1 Yes GPIO1_IO09 usdhc1.RESET_B Alt 5 Yes GPIO1_IO05 usdhc1.VSELECT Alt 4 Yes Common 4-bit 8-bit BOOT_CFG1[1]=1 (SD Power Cycle) SDMMC MFG mode Yes Yes i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 99 Boot mode configuration Table 86. SD/MMC Boot through USDHC2 Ball Name Signal Name Mux Mode Commo n NAND_RE_B usdhc2.CLK Alt 1 Yes NAND_WE_B usdhc2.CMD Alt 1 Yes NAND_DATA00 usdhc2.DATA0 Alt 1 Yes NAND_DATA01 usdhc2.DATA1 NAND_DATA02 BOOT_CFG1[1]=1 (SD Power Cycle) 4-bit 8-bit Alt 1 Yes Yes usdhc2.DATA2 Alt 1 Yes Yes NAND_DATA03 usdhc2.DATA3 Alt 1 NAND_DATA04 usdhc2.DATA4 Alt 1 Yes NAND_DATA05 usdhc2.DATA5 Alt 1 Yes NAND_DATA06 usdhc2.DATA6 Alt 1 Yes NAND_DATA07 usdhc2.DATA7 Alt 1 Yes NAND_ALE usdhc2.RESET_B Alt 5 Yes GPIO1_IO08 usdhc2.VSELECT Alt 4 Yes Yes Table 87. NOR/OneNAND Boot through EIM Ball Name Signal Name Mux Mode Common CSI_DATA00 weim.AD[0] Alt 4 Yes CSI_DATA01 weim.AD[1] Alt 4 Yes CSI_DATA02 weim.AD[2] Alt 4 Yes CSI_DATA03 weim.AD[3] Alt 4 Yes CSI_DATA04 weim.AD[4] Alt 4 Yes CSI_DATA05 weim.AD[5] Alt 4 Yes CSI_DATA06 weim.AD[6] Alt 4 Yes CSI_DATA07 weim.AD[7] Alt 4 Yes NAND_DATA00 weim.AD[8] Alt 4 Yes NAND_DATA01 weim.AD[9] Alt 4 Yes NAND_DATA02 weim.AD[10] Alt 4 Yes NAND_DATA03 weim.AD[11] Alt 4 Yes NAND_DATA04 weim.AD[12] Alt 4 Yes NAND_DATA05 weim.AD[13] Alt 4 Yes NAND_DATA06 weim.AD[14] Alt 4 Yes NAND_DATA07 weim.AD[15] Alt 4 Yes NAND_CLE weim.ADDR[16] Alt 4 ADL16 Non-Mux AD16 Mux Yes Yes i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 100 NXP Semiconductors Boot mode configuration Table 87. NOR/OneNAND Boot through EIM (continued) ADL16 Non-Mux AD16 Mux Alt 4 Yes Yes weim.ADDR[18] Alt 4 Yes Yes SD1_CMD weim.ADDR[19] Alt 4 Yes Yes SD1_CLK weim.ADDR[20] Alt 4 Yes Yes SD1_DATA0 weim.ADDR[21] Alt 4 Yes Yes SD1_DATA1 weim.ADDR[22] Alt 4 Yes Yes SD1_DATA2 weim.ADDR[23] Alt 4 Yes Yes SD1_DATA3 weim.ADDR[24] Alt 4 Yes Yes ENET2_RXER weim.ADDR[25] Alt 4 Yes Yes ENET2_CRS_DV weim.ADDR[26] Alt 4 Yes Yes CSI_MCLK weim.CS0_B Alt 4 LCD_DATA08 weim.DATA[0] Alt 4 Yes LCD_DATA09 weim.DATA[1] Alt 4 Yes LCD_DATA10 weim.DATA[2] Alt 4 Yes LCD_DATA11 weim.DATA[3] Alt 4 Yes LCD_DATA12 weim.DATA[4] Alt 4 Yes LCD_DATA13 weim.DATA[5] Alt 4 Yes LCD_DATA14 weim.DATA[6] Alt 4 Yes LCD_DATA15 weim.DATA[7] Alt 4 Yes LCD_DATA16 weim.DATA[8] Alt 4 Yes LCD_DATA17 weim.DATA[9] Alt 4 Yes LCD_DATA18 weim.DATA[10] Alt 4 Yes LCD_DATA19 weim.DATA[11] Alt 4 Yes LCD_DATA20 weim.DATA[12] Alt 4 Yes LCD_DATA21 weim.DATA[13] Alt 4 Yes LCD_DATA22 weim.DATA[14] Alt 4 Yes LCD_DATA23 weim.DATA[15] Alt 4 Yes NAND_RE_B weim.EB_B[0] Alt 4 Yes Yes NAND_WE_B weim.EB_B[1] Alt 4 Yes Yes CSI_HSYNC weim.LBA_B Alt 4 Yes CSI_PIXCLK weim.OE Alt 4 Yes CSI_VSYNC weim.RW Alt 4 Yes Ball Name Signal Name Mux Mode NAND_ALE weim.ADDR[17] NAND_CE1_B Common Yes i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 101 Boot mode configuration Table 88. Serial Download through UART1 Ball Name Signal Name Mux Mode Common UART1_TX_DATA uart1.TX_DATA Alt 0 Yes UART1_RX_DATA uart1.RX_DATA Alt 0 Yes Table 89. Serial Download through UART2 Ball Name Signal Name Mux Mode Common UART2_TX_DATA uart2.TX_DATA Alt 0 Yes UART2_RX_DATA uart2.RX_DATA Alt 0 Yes i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 102 NXP Semiconductors Package information and contact assignments 6 Package information and contact assignments This section includes the contact assignment information and mechanical package drawing. 6.1 6.1.1 14x14 mm package information 14x14 mm, 0.8 mm pitch, ball matrix Figure 68 shows the top, bottom, and side views of the 14x14 mm BGA package. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 103 Package information and contact assignments Figure 68. 14x14 mm BGA, Case x Package Top, Bottom, and Side Views i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 104 NXP Semiconductors Package information and contact assignments 6.1.2 14x14 mm supplies contact assignments and functional contact assignments Table 90 shows the device connection list for ground, sense, and reference contact signals. Table 90. 14x14 mm Supplies Contact Assignment Supply Rail Name Ball(s) Position(s) Remark ADC_VREFH M13 -- DRAM_VREF P4 -- GPANAIO R13 -- NGND_KEL0 M12 -- NVCC_CSI F4 -- NVCC_DRAM G6, H6, J6, K6, L6, M6 -- NVCC_DRAM_2P5 N6 -- NVCC_ENET F13 -- NVCC_GPIO J13 -- NVCC_LCD E13 -- NVCC_NAND E7 -- NVCC_PLL P13 -- NVCC_SD1 C4 -- NVCC_UART H13 -- VDD_ARM_CAP G9, G10, G11, H11 -- VDD_HIGH_CAP R14, R15 -- VDD_HIGH_IN N13 -- VDD_SNVS_CAP N12 -- VDD_SNVS_IN P12 -- VDD_SOC_CAP G8, H8, J8, J11, K8, K11, L8, L9, L10, L11 -- VDD_SOC_IN H9, H10, J9, J10, K9, K10 -- VDD_USB_CAP R12 -- VDDA_ADC_3P3 L13 -- VSS A1, A17, C3, C7, C11, C15, E8, E11, F6, F7, F8, F9, F10,F11, F12, G3, G5, G7, G12, G15, H7, H12, J5, J7, J12, K7, K12, L3, L7, L12, M7, M8, M9, M10, M11, N3, N5, R3, R5, R7, R11, R16, R17, T14, U1, U14, U17 -- i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 105 Package information and contact assignments Table 91 shows an alpha-sorted list of functional contact assignments for the 14x14 mm package. Table 91. 14x14 mm Functional Contact Assignments Out of Reset Condition 14x14 Ball Power Group Ball Type BOOT_MODE0 T10 VDD_SNVS_IN BOOT_MODE1 U10 CCM_CLK1_N Ball Name Default Mode Default Function Input/ Output GPIO ALT5 BOOT_MODE0 Input 100 k pull-down VDD_SNVS_IN GPIO ALT5 BOOT_MODE1 Input 100 k pull-down P16 VDD_HIGH_CAP LVDS -- CCM_CLK1_N -- -- CCM_CLK1_P P17 VDD_HIGH_CAP LVDS -- CCM_CLK1_P -- -- CCM_PMIC_STBY_REQ U9 VDD_SNVS_IN GPIO ALT0 CCM_PMIC_STBY_REQ Output -- CSI_DATA00 E4 NVCC_CSI GPIO ALT5 CSI_DATA00 Input Keeper CSI_DATA01 E3 NVCC_CSI GPIO ALT5 CSI_DATA01 Input Keeper CSI_DATA02 E2 NVCC_CSI GPIO ALT5 CSI_DATA02 Input Keeper CSI_DATA03 E1 NVCC_CSI GPIO ALT5 CSI_DATA03 Input Keeper CSI_DATA04 D4 NVCC_CSI GPIO ALT5 CSI_DATA04 Input Keeper CSI_DATA05 D3 NVCC_CSI GPIO ALT0 CSI_DATA05 Input Keeper CSI_DATA06 D2 NVCC_CSI GPIO ALT5 CSI_DATA06 Input Keeper CSI_DATA07 D1 NVCC_CSI GPIO ALT5 CSI_DATA07 Input Keeper CSI_HSYNC F3 NVCC_CSI GPIO ALT5 CSI_HSYNC Input Keeper CSI_MCLK F5 NVCC_CSI GPIO ALT5 CSI_MCLK Input Keeper CSI_PIXCLK E5 NVCC_CSI GPIO ALT5 CSI_PIXCLK Input Keeper CSI_VSYNC F2 NVCC_CSI GPIO ALT5 CSI_VSYNC Input Keeper DRAM_ADDR00 L5 NVCC_DRAM DDR ALT0 DRAM_ADDR00 Output 100 k pull-up DRAM_ADDR01 H2 NVCC_DRAM DDR ALT0 DRAM_ADDR01 Output 100 k pull-up DRAM_ADDR02 K1 NVCC_DRAM DDR ALT0 DRAM_ADDR02 Output 100 k pull-up DRAM_ADDR03 M2 NVCC_DRAM DDR ALT0 DRAM_ADDR03 Output 100 k pull-up DRAM_ADDR04 K4 NVCC_DRAM DDR ALT0 DRAM_ADDR04 Output 100 k pull-up DRAM_ADDR05 L1 NVCC_DRAM DDR ALT0 DRAM_ADDR05 Output 100 k pull-up DRAM_ADDR06 G2 NVCC_DRAM DDR ALT0 DRAM_ADDR06 Output 100 k pull-up Value i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 106 NXP Semiconductors Package information and contact assignments Table 91. 14x14 mm Functional Contact Assignments (continued) DRAM_ADDR07 H4 NVCC_DRAM DDR ALT0 DRAM_ADDR07 Output 100 k pull-up DRAM_ADDR08 J4 NVCC_DRAM DDR ALT0 DRAM_ADDR08 Output 100 k pull-up DRAM_ADDR09 L2 NVCC_DRAM DDR ALT0 DRAM_ADDR09 Output 100 k pull-up DRAM_ADDR10 M4 NVCC_DRAM DDR ALT0 DRAM_ADDR10 Output 100 k pull-up DRAM_ADDR11 K3 NVCC_DRAM DDR ALT0 DRAM_ADDR11 Output 100 k pull-up DRAM_ADDR12 L4 NVCC_DRAM DDR ALT0 DRAM_ADDR12 Output 100 k pull-up DRAM_ADDR13 H3 NVCC_DRAM DDR ALT0 DRAM_ADDR13 Output 100 k pull-up DRAM_ADDR14 G1 NVCC_DRAM DDR ALT0 DRAM_ADDR14 Output 100 k pull-up DRAM_ADDR15 K5 NVCC_DRAM DDR ALT0 DRAM_ADDR15 Output 100 k pull-up DRAM_CAS_B J2 NVCC_DRAM DDR ALT0 DRAM_CAS_B Output 100 k pull-up DRAM_CS0_B N2 NVCC_DRAM DDR ALT0 DRAM_CS0_B Output 100 k pull-up DRAM_CS1_B H5 NVCC_DRAM DDR ALT0 DRAM_CS1_B Output 100 k pull-up DRAM_DATA00 T4 NVCC_DRAM DDR ALT0 DRAM_DATA00 Input 100 k pull-up DRAM_DATA01 U6 NVCC_DRAM DDR ALT0 DRAM_DATA01 Input 100 k pull-up DRAM_DATA02 T6 NVCC_DRAM DDR ALT0 DRAM_DATA02 Input 100 k pull-up DRAM_DATA03 U7 NVCC_DRAM DDR ALT0 DRAM_DATA03 Input 100 k pull-up DRAM_DATA04 U8 NVCC_DRAM DDR ALT0 DRAM_DATA04 Input 100 k pull-up DRAM_DATA05 T8 NVCC_DRAM DDR ALT0 DRAM_DATA05 Input 100 k pull-up DRAM_DATA06 T5 NVCC_DRAM DDR ALT0 DRAM_DATA06 Input 100 k pull-up DRAM_DATA07 U4 NVCC_DRAM DDR ALT0 DRAM_DATA07 Input 100 k pull-up DRAM_DATA08 U2 NVCC_DRAM DDR ALT0 DRAM_DATA08 Input 100 k pull-up i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 107 Package information and contact assignments Table 91. 14x14 mm Functional Contact Assignments (continued) DRAM_DATA09 U3 NVCC_DRAM DDR ALT0 DRAM_DATA09 Input 100 k pull-up DRAM_DATA10 U5 NVCC_DRAM DDR ALT0 DRAM_DATA10 Input 100 k pull-up DRAM_DATA11 R4 NVCC_DRAM DDR ALT0 DRAM_DATA11 Input 100 k pull-up DRAM_DATA12 P5 NVCC_DRAM DDR ALT0 DRAM_DATA12 Input 100 k pull-up DRAM_DATA13 P3 NVCC_DRAM DDR ALT0 DRAM_DATA13 Input 100 k pull-up DRAM_DATA14 R2 NVCC_DRAM DDR ALT0 DRAM_DATA14 Input 100 k pull-up DRAM_DATA15 R1 NVCC_DRAM DDR ALT0 DRAM_DATA15 Input 100 k pull-up DRAM_DQM0 T7 NVCC_DRAM DDR ALT0 DRAM_DQM0 Output 100 k pull-up DRAM_DQM1 T3 NVCC_DRAM DDR ALT0 DRAM_DQM1 Output 100 k pull-up DRAM_ODT0 N1 NVCC_DRAM DDR ALT0 DRAM_ODT0 Output 100 k pull-down DRAM_ODT1 F1 NVCC_DRAM DDR ALT0 DRAM_ODT1 Output 100 k pull-down DRAM_RAS_B M5 NVCC_DRAM DDR ALT0 DRAM_RAS_B Output 100 k pull-up DRAM_RESET G4 NVCC_DRAM DDR ALT0 DRAM_RESET Output 100 k pull-down DRAM_SDBA0 M1 NVCC_DRAM DDR ALT0 DRAM_SDBA0 Output 100 k pull-up DRAM_SDBA1 H1 NVCC_DRAM DDR ALT0 DRAM_SDBA1 Output 100 k pull-up DRAM_SDBA2 K2 NVCC_DRAM DDR ALT0 DRAM_SDBA2 Output 100 k pull-up DRAM_SDCKE0 M3 NVCC_DRAM DDR ALT0 DRAM_SDCKE0 Output 100 k pull-down DRAM_SDCKE1 J3 NVCC_DRAM DDR ALT0 DRAM_SDCKE1 Output 100 k pull-down DRAM_SDCLK0_N P2 NVCC_DRAM DDRCLK ALT0 DRAM_SDCLK0_N Input 100 k pull-up DRAM_SDCLK0_P P1 NVCC_DRAM DDRCLK ALT0 DRAM_SDCLK0_P Input 100 k pull-up DRAM_SDQS0_N P7 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS0_N Input 100 k pull-down i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 108 NXP Semiconductors Package information and contact assignments Table 91. 14x14 mm Functional Contact Assignments (continued) DRAM_SDQS0_P P6 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS0_P Input 100 k pull-down DRAM_SDQS1_N T2 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS1_N Input 100 k pull-down DRAM_SDQS1_P T1 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS1_P Input 100 k pull-down DRAM_SDWE_B J1 NVCC_DRAM DDR ALT0 DRAM_SDWE_B Output 100 k pull-up DRAM_ZQPAD N4 NVCC_DRAM GPIO -- DRAM_ZQPAD Input Keeper ENET1_RX_DATA0 F16 NVCC_ENET GPIO ALT5 ENET1_RX_DATA0 Input Keeper ENET1_RX_DATA1 E17 NVCC_ENET GPIO ALT5 ENET1_RX_DATA1 Input Keeper ENET1_RX_EN E16 NVCC_ENET GPIO ALT5 ENET1_RX_EN Input Keeper ENET1_RX_ER D15 NVCC_ENET GPIO ALT5 ENET1_RX_ER Input Keeper ENET1_TX_CLK F14 NVCC_ENET GPIO ALT5 ENET1_TX_CLK Input Keeper ENET1_TX_DATA0 E15 NVCC_ENET GPIO ALT5 ENET1_TX_DATA0 Input Keeper ENET1_TX_DATA1 E14 NVCC_ENET GPIO ALT5 ENET1_TX_DATA1 Input Keeper ENET1_TX_EN F15 NVCC_ENET GPIO ALT5 ENET1_TX_EN Input Keeper ENET2_RX_DATA0 C17 NVCC_ENET GPIO ALT5 ENET2_RX_DATA0 Input Keeper ENET2_RX_DATA1 C16 NVCC_ENET GPIO ALT5 ENET2_RX_DATA1 Input Keeper ENET2_RX_EN B17 NVCC_ENET GPIO ALT5 ENET2_RX_EN Input Keeper ENET2_RX_ER D16 NVCC_ENET GPIO ALT5 ENET2_RX_ER Input Keeper ENET2_TX_CLK D17 NVCC_ENET GPIO ALT5 ENET2_TX_CLK Input Keeper ENET2_TX_DATA0 A15 NVCC_ENET GPIO ALT5 ENET2_TX_DATA0 Input Keeper ENET2_TX_DATA1 A16 NVCC_ENET GPIO ALT5 ENET2_TX_DATA1 Input Keeper ENET2_TX_EN B15 NVCC_ENET GPIO ALT5 ENET2_TX_EN Input Keeper GPIO1_IO00 K13 NVCC_GPIO GPIO ALT5 GPIO1_IO00 Input Keeper GPIO1_IO01 L15 NVCC_GPIO GPIO ALT5 GPIO1_IO01 Input Keeper GPIO1_IO02 L14 NVCC_GPIO GPIO ALT5 GPIO1_IO02 Input Keeper GPIO1_IO03 L17 NVCC_GPIO GPIO ALT5 GPIO1_IO03 Input Keeper GPIO1_IO04 M16 NVCC_GPIO GPIO ALT5 GPIO1_IO04 Input Keeper GPIO1_IO05 M17 NVCC_GPIO GPIO ALT5 GPIO1_IO05 Input Keeper GPIO1_IO06 K17 NVCC_GPIO GPIO ALT5 GPIO1_IO06 Input Keeper GPIO1_IO07 L16 NVCC_GPIO GPIO ALT5 GPIO1_IO07 Input Keeper GPIO1_IO08 N17 NVCC_GPIO GPIO ALT5 GPIO1_IO08 Input Keeper GPIO1_IO09 M15 NVCC_GPIO GPIO ALT5 GPIO1_IO09 Input Keeper i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 109 Package information and contact assignments Table 91. 14x14 mm Functional Contact Assignments (continued) JTAG_MOD P15 NVCC_GPIO GPIO ALT5 JTAG_MOD Input 100 k pull-up JTAG_TCK M14 NVCC_GPIO GPIO ALT5 JTAG_TCK Input 47 k pull-up JTAG_TDI N16 NVCC_GPIO GPIO ALT5 JTAG_TDI Input 47 k pull-up JTAG_TDO N15 NVCC_GPIO GPIO ALT5 JTAG_TDO Output Keeper JTAG_TMS P14 NVCC_GPIO GPIO ALT5 JTAG_TMS Input 47 k pull-up JTAG_TRST_B N14 NVCC_GPIO GPIO ALT5 JTAG_TRST_B Input 47 k pull-up LCD_CLK A8 NVCC_LCD GPIO ALT5 LCD_CLK Input Keeper LCD_DATA00 B9 NVCC_LCD GPIO ALT5 LCD_DATA00 Input Keeper LCD_DATA01 A9 NVCC_LCD GPIO ALT5 LCD_DATA01 Input Keeper LCD_DATA02 E10 NVCC_LCD GPIO ALT5 LCD_DATA02 Input Keeper LCD_DATA03 D10 NVCC_LCD GPIO ALT5 LCD_DATA03 Input Keeper LCD_DATA04 C10 NVCC_LCD GPIO ALT5 LCD_DATA04 Input Keeper LCD_DATA05 B10 NVCC_LCD GPIO ALT5 LCD_DATA05 Input Keeper LCD_DATA06 A10 NVCC_LCD GPIO ALT5 LCD_DATA06 Input Keeper LCD_DATA07 D11 NVCC_LCD GPIO ALT5 LCD_DATA07 Input Keeper LCD_DATA08 B11 NVCC_LCD GPIO ALT5 LCD_DATA08 Input Keeper LCD_DATA09 A11 NVCC_LCD GPIO ALT5 LCD_DATA09 Input Keeper LCD_DATA10 E12 NVCC_LCD GPIO ALT5 LCD_DATA10 Input Keeper LCD_DATA11 D12 NVCC_LCD GPIO ALT5 LCD_DATA11 Input Keeper LCD_DATA12 C12 NVCC_LCD GPIO ALT5 LCD_DATA12 Input Keeper LCD_DATA13 B12 NVCC_LCD GPIO ALT5 LCD_DATA13 Input Keeper LCD_DATA14 A12 NVCC_LCD GPIO ALT5 LCD_DATA14 Input Keeper LCD_DATA15 D13 NVCC_LCD GPIO ALT5 LCD_DATA15 Input Keeper LCD_DATA16 C13 NVCC_LCD GPIO ALT5 LCD_DATA16 Input Keeper LCD_DATA17 B13 NVCC_LCD GPIO ALT5 LCD_DATA17 Input Keeper LCD_DATA18 A13 NVCC_LCD GPIO ALT5 LCD_DATA18 Input Keeper LCD_DATA19 D14 NVCC_LCD GPIO ALT5 LCD_DATA19 Input Keeper LCD_DATA20 C14 NVCC_LCD GPIO ALT5 LCD_DATA20 Input Keeper LCD_DATA21 B14 NVCC_LCD GPIO ALT5 LCD_DATA21 Input Keeper LCD_DATA22 A14 NVCC_LCD GPIO ALT5 LCD_DATA22 Input Keeper LCD_DATA23 B16 NVCC_LCD GPIO ALT5 LCD_DATA23 Input Keeper i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 110 NXP Semiconductors Package information and contact assignments Table 91. 14x14 mm Functional Contact Assignments (continued) LCD_ENABLE B8 NVCC_LCD GPIO ALT5 LCD_ENABLE Input Keeper LCD_HSYNC D9 NVCC_LCD GPIO ALT5 LCD_HSYNC Input Keeper LCD_RESET E9 NVCC_LCD GPIO ALT5 LCD_RESET Input Keeper LCD_VSYNC C9 NVCC_LCD GPIO ALT5 LCD_VSYNC Input Keeper NAND_ALE B4 NVCC_NAND GPIO ALT5 VDDSOC Input Keeper NAND_CE0_B C5 NVCC_NAND GPIO ALT5 NAND_CE0_B Input Keeper NAND_CE1_B B5 NVCC_NAND GPIO ALT5 NAND_CE1_B Input Keeper NAND_CLE A4 NVCC_NAND GPIO ALT5 NAND_CLE Input Keeper NAND_DATA00 D7 NVCC_NAND GPIO ALT5 NAND_DATA00 Input Keeper NAND_DATA01 B7 NVCC_NAND GPIO ALT5 NAND_DATA01 Input Keeper NAND_DATA02 A7 NVCC_NAND GPIO ALT5 NAND_DATA02 Input Keeper NAND_DATA03 D6 NVCC_NAND GPIO ALT5 NAND_DATA03 Input Keeper NAND_DATA04 C6 NVCC_NAND GPIO ALT5 NAND_DATA04 Input Keeper NAND_DATA05 B6 NVCC_NAND GPIO ALT5 NAND_DATA05 Input Keeper NAND_DATA06 A6 NVCC_NAND GPIO ALT5 NAND_DATA06 Input Keeper NAND_DATA07 A5 NVCC_NAND GPIO ALT5 NAND_DATA07 Input Keeper NAND_DQS E6 NVCC_NAND GPIO ALT5 NAND_DQS Input Keeper NAND_RE_B D8 NVCC_NAND GPIO ALT5 NAND_RE_B Input Keeper NAND_READY_B A3 NVCC_NAND GPIO ALT5 NAND_READY_B Input Keeper NAND_WE_B C8 NVCC_NAND GPIO ALT5 NAND_WE_B Input Keeper NAND_WP_B D5 NVCC_NAND GPIO ALT5 NAND_WP_B Input Keeper ONOFF R8 VDD_SNVS_IN GPIO ALT0 ONOFF Input 100 k pull-up POR_B P8 VDD_SNVS_IN GPIO ALT0 POR_B Input 100 k pull-up RTC_XTALI T11 VDD_SNVS_CAP ANALOG -- RTC_XTALI -- -- RTC_XTALO U11 VDD_SNVS_CAP ANALOG -- RTC_XTALO -- -- SD1_CLK C1 NVCC_SD1 GPIO ALT5 SD1_CLK Input Keeper SD1_CMD C2 NVCC_SD1 GPIO ALT5 SD1_CMD Input Keeper SD1_DATA0 B3 NVCC_SD1 GPIO ALT5 SD1_DATA0 Input Keeper SD1_DATA1 B2 NVCC_SD1 GPIO ALT5 SD1_DATA1 Input Keeper SD1_DATA2 B1 NVCC_SD1 GPIO ALT5 SD1_DATA2 Input Keeper SD1_DATA3 A2 NVCC_SD1 GPIO ALT5 SD1_DATA3 Input Keeper SNVS_PMIC_ON_REQ T9 VDD_SNVS_IN GPIO ALT0 SNVS_PMIC_ON_REQ Output 100 k pull-up i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 111 Package information and contact assignments Table 91. 14x14 mm Functional Contact Assignments (continued) SNVS_TAMPER0 R10 VDD_SNVS_IN GPIO -- GPIO5_IO00/SNVS_TAM PER01 Input Keeper1 SNVS_TAMPER1 R9 VDD_SNVS_IN GPIO -- GPIO5_IO01/SNVS_TAM PER11 Input Keeper1 SNVS_TAMPER2 P11 VDD_SNVS_IN GPIO -- GPIO5_IO02/SNVS_TAM PER21 Input Keeper1 SNVS_TAMPER3 P10 VDD_SNVS_IN GPIO -- GPIO5_IO03/SNVS_TAM PER31 Input Keeper1 SNVS_TAMPER4 P9 VDD_SNVS_IN GPIO -- GPIO5_IO04/SNVS_TAM PER41 Input Keeper1 SNVS_TAMPER5 N8 VDD_SNVS_IN GPIO -- GPIO5_IO05/SNVS_TAM PER51 Input Keeper1 SNVS_TAMPER6 N11 VDD_SNVS_IN GPIO -- GPIO5_IO06/SNVS_TAM PER61 Input Keeper1 SNVS_TAMPER7 N10 VDD_SNVS_IN GPIO -- GPIO5_IO07/SNVS_TAM PER71 Input Keeper1 SNVS_TAMPER8 N9 VDD_SNVS_IN GPIO -- GPIO5_IO08/SNVS_TAM PER81 Input Keeper1 SNVS_TAMPER9 R6 VDD_SNVS_IN GPIO -- GPIO5_IO09/SNVS_TAM PER91 Input Keeper1 TEST_MODE N7 VDD_SNVS_IN GPIO ALT0 TEST_MODE Input Keeper UART1_CTS_B K15 NVCC_UART GPIO ALT5 UART1_CTS_B Input Keeper UART1_RTS_B J14 NVCC_UART GPIO ALT5 UART1_RTS_B Input Keeper UART1_RX_DATA K16 NVCC_UART GPIO ALT5 UART1_RX_DATA Input Keeper UART1_TX_DATA K14 NVCC_UART GPIO ALT5 UART1_TX_DATA Input Keeper UART2_CTS_B J15 NVCC_UART GPIO ALT5 UART2_CTS_B Input Keeper UART2_RTS_B H14 NVCC_UART GPIO ALT5 UART2_RTS_B Input Keeper UART2_RX_DATA J16 NVCC_UART GPIO ALT5 UART2_RX_DATA Input Keeper UART2_TX_DATA J17 NVCC_UART GPIO ALT5 UART2_TX_DATA Input Keeper UART3_CTS_B H15 NVCC_UART GPIO ALT5 UART3_CTS_B Input Keeper UART3_RTS_B G14 NVCC_UART GPIO ALT5 UART3_RTS_B Input Keeper UART3_RX_DATA H16 NVCC_UART GPIO ALT5 UART3_RX_DATA Input Keeper UART3_TX_DATA H17 NVCC_UART GPIO ALT5 UART3_TX_DATA Input Keeper UART4_RX_DATA G16 NVCC_UART GPIO ALT5 UART4_RX_DATA Input Keeper UART4_TX_DATA G17 NVCC_UART GPIO ALT5 UART4_TX_DATA Input Keeper UART5_RX_DATA G13 NVCC_UART GPIO ALT5 UART5_RX_DATA Input Keeper UART5_TX_DATA F17 NVCC_UART GPIO ALT5 UART5_TX_DATA Input Keeper USB_OTG1_CHD_B U16 OPEN DRAIN GPIO -- USB_OTG1_CHD_B -- -- i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 112 NXP Semiconductors Package information and contact assignments Table 91. 14x14 mm Functional Contact Assignments (continued) USB_OTG1_DN T15 VDD_USB_CAP ANALOG -- USB_OTG1_DN -- -- USB_OTG1_DP U15 VDD_USB_CAP ANALOG -- USB_OTG1_DP -- -- USB_OTG1_VBUS T12 USB_VBUS VBUS POWER -- USB_OTG1_VBUS -- -- USB_OTG2_DN T13 VDD_USB_CAP ANALOG -- USB_OTG2_DN -- -- USB_OTG2_DP U13 VDD_USB_CAP ANALOG -- USB_OTG2_DP -- -- USB_OTG2_VBUS U12 USB_VBUS VBUS POWER -- USB_OTG2_VBUS -- -- XTALI T16 NVCC_PLL ANALOG -- XTALI -- -- XTALO T17 NVCC_PLL ANALOG -- XTALO -- -- 1 SNVS_TAMPER0 to SNVS_TAMPER9 can be configured as GPIO or tamper detection pin, it is depending on the fuse setting TAMPER_PIN_DISABLE[1:0]. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 113 114 5 6 7 8 9 10 11 12 13 14 NAND_DATA07 NAND_DATA06 NAND_DATA02 LCD_CLK LCD_DATA01 LCD_DATA06 LCD_DATA09 LCD_DATA14 LCD_DATA18 LCD_DATA22 NAND_CE1_B NAND_DATA05 NAND_DATA01 LCD_ENABLE LCD_DATA00 LCD_DATA05 LCD_DATA08 LCD_DATA13 LCD_DATA17 LCD_DATA21 NAND_CE0_B NAND_DATA04 VSS NAND_WE_B LCD_VSYNC LCD_DATA04 VSS LCD_DATA12 LCD_DATA16 LCD_DATA20 NAND_WP_B NAND_DATA03 NAND_DATA00 NAND_RE_B LCD_HSYNC LCD_DATA03 LCD_DATA07 LCD_DATA11 LCD_DATA15 LCD_DATA19 CSI_PIXCLK NAND_DQS NVCC_NAND VSS LCD_RESET LCD_DATA02 VSS LCD_DATA10 NVCC_LCD ENET1_TX_DATA1 ENET1_TX_DATA0 ENET1_RX_ER CSI_MCLK VSS VSS VSS VSS VSS VSS VSS NVCC_ENET ENET1_TX_CLK ENET1_TX_EN F UART5_TX_DATA ENET2_RX_ER ENET2_RX_DATA1 LCD_DATA23 E D C B ENET1_RX_DATA1 ENET2_TX_CLK ENET2_RX_DATA0 ENET2_RX_EN ENET1_RX_EN 4 NAND_CLE NAND_ALE NVCC_SD1 CSI_DATA04 CSI_DATA00 NVCC_CSI ENET1_RX_DATA0 3 NAND_READY_B SD1_DATA0 VSS CSI_DATA05 CSI_DATA01 CSI_HSYNC A VSS 17 ENET2_TX_DATA1 16 ENET2_TX_EN ENET2_TX_DATA0 15 2 SD1_DATA3 SD1_DATA1 SD1_CMD CSI_DATA06 CSI_DATA02 CSI_VSYNC VSS 1 VSS A SD1_DATA2 B SD1_CLK C CSI_DATA07 D CSI_DATA03 E 6.1.3 DRAM_ODT1 F Package information and contact assignments 14x14 mm, 0.8 mm pitch, ball map Table 92 shows the 14x14 mm, 0.8 mm pitch ball map for the i.MX 6UltraLite. Table 92. 14x14 mm, 0.8 mm Pitch, Ball Map i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors NXP Semiconductors VSS DRAM_RESET DRAM_ADDR13 DRAM_ADDR07 DRAM_SDCKE1 DRAM_ADDR08 DRAM_ADDR04 DRAM_ADDR10 DRAM_ADDR12 VDD_SOC_CAP VDD_ARM_CAP VDD_ARM_CAP VDD_ARM_CAP VSS UART5_RX_DATA UART3_RTS_B VSS VDD_SOC_CAP VDD_SOC_IN VDD_SOC_IN VDD_ARM_CAP VSS NVCC_UART UART2_RTS_B UART3_CTS_B VDD_SOC_CAP VDD_SOC_IN VDD_SOC_IN VDD_SOC_CAP VSS NVCC_GPIO UART1_RTS_B UART2_CTS_B VDD_SOC_IN VDD_SOC_IN VDD_SOC_CAP VSS GPIO1_IO00 UART1_TX_DATA UART1_CTS_B UART1_RX_DATA UART2_RX_DATA UART3_RX_DATA UART4_RX_DATA UART2_TX_DATA UART3_TX_DATA UART4_TX_DATA VDD_SOC_CAP GPIO1_IO06 K VDD_SOC_CAP VDD_SOC_CAP VDD_SOC_CAP VDD_SOC_CAP VSS VDDA_ADC_3P3 GPIO1_IO02 GPIO1_IO01 GPIO1_IO07 GPIO1_IO03 L VSS VSS VSS VSS NGND_KEL0 ADC_VREFH JTAG_TCK GPIO1_IO09 GPIO1_IO04 GPIO1_IO05 M SNVS_TAMPER5 SNVS_TAMPER8 SNVS_TAMPER7 SNVS_TAMPER6 VDD_SNVS_CAP VDD_HIGH_IN JTAG_TRST_B JTAG_TDO JTAG_TDI GPIO1_IO08 N G VSS VSS VSS VSS VSS VSS TEST_MODE H NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM_2P5 J VSS DRAM_CS1_B VSS DRAM_ADDR15 DRAM_ADDR00 DRAM_RAS_B VSS DRAM_ZQPAD VSS DRAM_ADDR11 DRAM_SDCKE0 DRAM_ADDR06 DRAM_ADDR01 DRAM_CAS_B DRAM_SDBA2 DRAM_ADDR03 DRAM_ADDR09 DRAM_CS0_B VSS DRAM_ADDR14 G DRAM_SDBA1 H DRAM_SDWE_B J DRAM_ADDR02 K DRAM_ADDR05 L DRAM_SDBA0 M DRAM_ODT0 N Package information and contact assignments Table 92. 14x14 mm, 0.8 mm Pitch, Ball Map (continued) i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 115 6.2 6.2.1 116 DRAM_DATA13 DRAM_VREF DRAM_DATA12 POR_B DRAM_DATA11 VSS SNVS_TAMPER9 DRAM_SDQS0_P DRAM_SDQS0_N VSS VSS ONOFF DRAM_DQM1 DRAM_DATA00 DRAM_DATA06 DRAM_DATA02 DRAM_DQM0 DRAM_DATA05 DRAM_DATA09 DRAM_DATA07 DRAM_DATA10 DRAM_DATA01 DRAM_DATA03 DRAM_DATA04 3 4 5 6 7 8 JTAG_TMS JTAG_MOD CCM_CLK1_N CCM_CLK1_P VDD_HIGH_CAP VDD_HIGH_CAP VSS VSS VSS USB_OTG1_DN XTALI XTALO VSS USB_OTG1_DP USB_OTG1_CHD_B VSS 14 15 16 17 P NVCC_PLL GPANAIO USB_OTG2_DN USB_OTG2_DP 13 R VDD_SNVS_IN VDD_USB_CAP USB_OTG1_VBUS USB_OTG2_VBUS 12 T SNVS_TAMPER2 VSS RTC_XTALI RTC_XTALO 11 U SNVS_TAMPER3 SNVS_TAMPER0 BOOT_MODE0 BOOT_MODE1 10 SNVS_TAMPER4 DRAM_SDCLK0_N DRAM_DATA14 DRAM_SDQS1_N DRAM_DATA08 2 9 CCM_PMIC_STBY_REQ SNVS_PMIC_ON_REQ SNVS_TAMPER1 DRAM_SDCLK0_P DRAM_DATA15 P DRAM_SDQS1_P R VSS T 1 U Package information and contact assignments Table 92. 14x14 mm, 0.8 mm Pitch, Ball Map (continued) 9x9 mm package information 9x9 mm, 0.5 mm pitch, ball matrix Figure 69 shows the top, bottom, and side views of the 9x9 mm BGA package. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors Package information and contact assignments Figure 69. 9X9 mm BGA, Case x Package Top, Bottom, and Side Views i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 117 Package information and contact assignments 6.2.2 9x9 mm supplies contact assignments and functional contact assignments Table 93 shows the device connection list for ground, sense, and reference contact signals. Table 93. 9x9 mm Supplies Contact Assignment Supply Rail Name Ball(s) Position(s) Remark ADC_VREFH N13 -- DRAM_VREF T1 -- GPANAIO T11 -- NGND_KEL0 M10 -- NVCC_CSI E5 -- NVCC_DRAM G5, L5, M5, N6 -- NVCC_DRAM_2P5 K6 -- NVCC_ENET G13 -- NVCC_GPIO M13 -- NVCC_LCD E13 -- NVCC_NAND E11 -- NVCC_PLL T13 -- NVCC_SD1 E7 -- NVCC_UART L13 -- VDD_ARM_CAP G9, G10, G11, H9, H10, H11 -- VDD_HIGH_CAP U11 -- VDD_HIGH_IN U15 -- VDD_SNVS_CAP N12 -- VDD_SNVS_IN P12 -- VDD_SOC_CAP G7, G8, H7, H8, J7, J8, K7, K8, L7, L8 -- VDD_SOC_IN J9, J10, J11, K9, K10, K11, L9, L10, L11 -- VDD_USB_CAP N11 -- VDDA_ADC_3P3 T17 -- VSS A2, A7, A12, A17, B1, C15, F1, F3, F8, F10, F17, H6, H12, J3, J15, K12, M1, M3, M8, M17, R3, R9, R12, R15, U1, U6, U13, U17 -- i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 118 NXP Semiconductors Package information and contact assignments Table 94 shows an alpha-sorted list of functional contact assignments for the 9x9 mm package. Table 94. 9x9 mm Functional Contact Assignments Out of Reset Condition 9x9 Ball Power Group Ball Type BOOT_MODE0 T8 VDD_SNVS_IN BOOT_MODE1 U8 CCM_CLK1_N Ball Name Default Mode Default Function Input/ Output GPIO ALT5 BOOT_MODE0 Input 100 k pull-down VDD_SNVS_IN GPIO ALT5 BOOT_MODE1 Input 100 k pull-down U16 VDD_HIGH_CAP LVDS -- CCM_CLK1_N -- -- CCM_CLK1_P T16 VDD_HIGH_CAP LVDS -- CCM_CLK1_P -- -- CCM_PMIC_STBY_REQ U7 VDD_SNVS_IN GPIO ALT0 CCM_PMIC_STBY_REQ Output -- CSI_DATA00 C3 NVCC_CSI GPIO ALT5 CSI_DATA00 Input Keeper CSI_DATA01 D4 NVCC_CSI GPIO ALT5 CSI_DATA01 Input Keeper CSI_DATA02 B2 NVCC_CSI GPIO ALT5 CSI_DATA02 Input Keeper CSI_DATA03 D1 NVCC_CSI GPIO ALT5 CSI_DATA03 Input Keeper CSI_DATA04 C4 NVCC_CSI GPIO ALT5 CSI_DATA04 Input Keeper CSI_DATA05 B3 NVCC_CSI GPIO ALT0 CSI_DATA05 Input Keeper CSI_DATA06 A3 NVCC_CSI GPIO ALT5 CSI_DATA06 Input Keeper CSI_DATA07 C2 NVCC_CSI GPIO ALT5 CSI_DATA07 Input Keeper CSI_HSYNC D2 NVCC_CSI GPIO ALT5 CSI_HSYNC Input Keeper CSI_MCLK C1 NVCC_CSI GPIO ALT5 CSI_MCLK Input Keeper CSI_PIXCLK D5 NVCC_CSI GPIO ALT5 CSI_PIXCLK Input Keeper CSI_VSYNC D3 NVCC_CSI GPIO ALT5 CSI_VSYNC Input Keeper DRAM_ADDR00 G1 NVCC_DRAM DDR ALT0 DRAM_ADDR00 Output 100 k pull-up DRAM_ADDR01 G2 NVCC_DRAM DDR ALT0 DRAM_ADDR01 Output 100 k pull-up DRAM_ADDR02 H1 NVCC_DRAM DDR ALT0 DRAM_ADDR02 Output 100 k pull-up DRAM_ADDR03 J2 NVCC_DRAM DDR ALT0 DRAM_ADDR03 Output 100 k pull-up DRAM_ADDR04 M4 NVCC_DRAM DDR ALT0 DRAM_ADDR04 Output 100 k pull-up DRAM_ADDR05 H2 NVCC_DRAM DDR ALT0 DRAM_ADDR05 Output 100 k pull-up DRAM_ADDR06 E4 NVCC_DRAM DDR ALT0 DRAM_ADDR06 Output 100 k pull-up Value i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 119 Package information and contact assignments Table 94. 9x9 mm Functional Contact Assignments (continued) DRAM_ADDR07 J4 NVCC_DRAM DDR ALT0 DRAM_ADDR07 Output 100 k pull-up DRAM_ADDR08 J5 NVCC_DRAM DDR ALT0 DRAM_ADDR08 Output 100 k pull-up DRAM_ADDR09 J1 NVCC_DRAM DDR ALT0 DRAM_ADDR09 Output 100 k pull-up DRAM_ADDR10 M2 NVCC_DRAM DDR ALT0 DRAM_ADDR10 Output 100 k pull-up DRAM_ADDR11 K5 NVCC_DRAM DDR ALT0 DRAM_ADDR11 Output 100 k pull-up DRAM_ADDR12 L3 NVCC_DRAM DDR ALT0 DRAM_ADDR12 Output 100 k pull-up DRAM_ADDR13 H4 NVCC_DRAM DDR ALT0 DRAM_ADDR13 Output 100 k pull-up DRAM_ADDR14 E3 NVCC_DRAM DDR ALT0 DRAM_ADDR14 Output 100 k pull-up DRAM_ADDR15 E2 NVCC_DRAM DDR ALT0 DRAM_ADDR15 Output 100 k pull-up DRAM_CAS_B G4 NVCC_DRAM DDR ALT0 DRAM_CAS_B Output 100 k pull-up DRAM_CS0_B L1 NVCC_DRAM DDR ALT0 DRAM_CS0_B Output 100 k pull-up DRAM_CS1_B H5 NVCC_DRAM DDR ALT0 DRAM_CS1_B Output 100 k pull-up DRAM_DATA00 T3 NVCC_DRAM DDR ALT0 DRAM_DATA00 Input 100 k pull-up DRAM_DATA01 N5 NVCC_DRAM DDR ALT0 DRAM_DATA01 Input 100 k pull-up DRAM_DATA02 T4 NVCC_DRAM DDR ALT0 DRAM_DATA02 Input 100 k pull-up DRAM_DATA03 T5 NVCC_DRAM DDR ALT0 DRAM_DATA03 Input 100 k pull-up DRAM_DATA04 U5 NVCC_DRAM DDR ALT0 DRAM_DATA04 Input 100 k pull-up DRAM_DATA05 T6 NVCC_DRAM DDR ALT0 DRAM_DATA05 Input 100 k pull-up DRAM_DATA06 R4 NVCC_DRAM DDR ALT0 DRAM_DATA06 Input 100 k pull-up DRAM_DATA07 U3 NVCC_DRAM DDR ALT0 DRAM_DATA07 Input 100 k pull-up DRAM_DATA08 P1 NVCC_DRAM DDR ALT0 DRAM_DATA08 Input 100 k pull-up i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 120 NXP Semiconductors Package information and contact assignments Table 94. 9x9 mm Functional Contact Assignments (continued) DRAM_DATA09 U2 NVCC_DRAM DDR ALT0 DRAM_DATA09 Input 100 k pull-up DRAM_DATA10 P3 NVCC_DRAM DDR ALT0 DRAM_DATA10 Input 100 k pull-up DRAM_DATA11 R2 NVCC_DRAM DDR ALT0 DRAM_DATA11 Input 100 k pull-up DRAM_DATA12 P4 NVCC_DRAM DDR ALT0 DRAM_DATA12 Input 100 k pull-up DRAM_DATA13 N2 NVCC_DRAM DDR ALT0 DRAM_DATA13 Input 100 k pull-up DRAM_DATA14 N1 NVCC_DRAM DDR ALT0 DRAM_DATA14 Input 100 k pull-up DRAM_DATA15 P2 NVCC_DRAM DDR ALT0 DRAM_DATA15 Input 100 k pull-up DRAM_DQM0 U4 NVCC_DRAM DDR ALT0 DRAM_DQM0 Output 100 k pull-up DRAM_DQM1 R1 NVCC_DRAM DDR ALT0 DRAM_DQM1 Output 100 k pull-up DRAM_ODT0 K2 NVCC_DRAM DDR ALT0 DRAM_ODT0 Output 100 k pull-down DRAM_ODT1 E1 NVCC_DRAM DDR ALT0 DRAM_ODT1 Output 100 k pull-down DRAM_RAS_B L4 NVCC_DRAM DDR ALT0 DRAM_RAS_B Output 100 k pull-up DRAM_RESET F2 NVCC_DRAM DDR ALT0 DRAM_RESET Output 100 k pull-down DRAM_SDBA0 H3 NVCC_DRAM DDR ALT0 DRAM_SDBA0 Output 100 k pull-up DRAM_SDBA1 F5 NVCC_DRAM DDR ALT0 DRAM_SDBA1 Output 100 k pull-up DRAM_SDBA2 G3 NVCC_DRAM DDR ALT0 DRAM_SDBA2 Output 100 k pull-up DRAM_SDCKE0 L2 NVCC_DRAM DDR ALT0 DRAM_SDCKE0 Output 100 k pull-down DRAM_SDCKE1 K1 NVCC_DRAM DDR ALT0 DRAM_SDCKE1 Output 100 k pull-down DRAM_SDCLK0_N K4 NVCC_DRAM DDRCLK ALT0 DRAM_SDCLK0_N Input 100 k pull-up DRAM_SDCLK0_P K3 NVCC_DRAM DDRCLK ALT0 DRAM_SDCLK0_P Input 100 k pull-up DRAM_SDQS0_N R5 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS0_N Input 100 k pull-down i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 121 Package information and contact assignments Table 94. 9x9 mm Functional Contact Assignments (continued) DRAM_SDQS0_P P5 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS0_P Input 100 k pull-down DRAM_SDQS1_N N4 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS1_P Input 100 k pull-down DRAM_SDQS1_P N3 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS1_N Input 100 k pull-down DRAM_SDWE_B F4 NVCC_DRAM DDR ALT0 DRAM_SDWE_B Output 100 k pull-up DRAM_ZQPAD T2 NVCC_DRAM GPIO -- DRAM_ZQPAD Input Keeper ENET1_RX_DATA0 G17 NVCC_ENET GPIO ALT5 ENET1_RX_DATA0 Input Keeper ENET1_RX_DATA1 F16 NVCC_ENET GPIO ALT5 ENET1_RX_DATA1 Input Keeper ENET1_RX_EN G16 NVCC_ENET GPIO ALT5 ENET1_RX_EN Input Keeper ENET1_RX_ER G14 NVCC_ENET GPIO ALT5 ENET1_RX_ER Input Keeper ENET1_TX_CLK G15 NVCC_ENET GPIO ALT5 ENET1_TX_CLK Input Keeper ENET1_TX_DATA0 E16 NVCC_ENET GPIO ALT5 ENET1_TX_DATA0 Input Keeper ENET1_TX_DATA1 F13 NVCC_ENET GPIO ALT5 ENET1_TX_DATA1 Input Keeper ENET1_TX_EN F15 NVCC_ENET GPIO ALT5 ENET1_TX_EN Input Keeper ENET2_RX_DATA0 E17 NVCC_ENET GPIO ALT5 ENET2_RX_DATA0 Input Keeper ENET2_RX_DATA1 D17 NVCC_ENET GPIO ALT5 ENET2_RX_DATA1 Input Keeper ENET2_RX_EN D16 NVCC_ENET GPIO ALT5 ENET2_RX_EN Input Keeper ENET2_RX_ER H13 NVCC_ENET GPIO ALT5 ENET2_RX_ER Input Keeper ENET2_TX_CLK H14 NVCC_ENET GPIO ALT5 ENET2_TX_CLK Input Keeper ENET2_TX_DATA0 E14 NVCC_ENET GPIO ALT5 ENET2_TX_DATA0 Input Keeper ENET2_TX_DATA1 F14 NVCC_ENET GPIO ALT5 ENET2_TX_DATA1 Input Keeper ENET2_TX_EN E15 NVCC_ENET GPIO ALT5 ENET2_TX_EN Input Keeper GPIO1_IO00 M14 NVCC_GPIO GPIO ALT5 GPIO1_IO00 Input Keeper GPIO1_IO01 M15 NVCC_GPIO GPIO ALT5 GPIO1_IO01 Input Keeper GPIO1_IO02 M16 NVCC_GPIO GPIO ALT5 GPIO1_IO02 Input Keeper GPIO1_IO03 N16 NVCC_GPIO GPIO ALT5 GPIO1_IO03 Input Keeper GPIO1_IO04 N17 NVCC_GPIO GPIO ALT5 GPIO1_IO04 Input Keeper GPIO1_IO05 P15 NVCC_GPIO GPIO ALT5 GPIO1_IO05 Input Keeper GPIO1_IO06 N15 NVCC_GPIO GPIO ALT5 GPIO1_IO06 Input Keeper GPIO1_IO07 N14 NVCC_GPIO GPIO ALT5 GPIO1_IO07 Input Keeper GPIO1_IO08 P14 NVCC_GPIO GPIO ALT5 GPIO1_IO08 Input Keeper GPIO1_IO09 P16 NVCC_GPIO GPIO ALT5 GPIO1_IO09 Input Keeper i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 122 NXP Semiconductors Package information and contact assignments Table 94. 9x9 mm Functional Contact Assignments (continued) JTAG_MOD R13 NVCC_GPIO GPIO ALT5 JTAG_MOD Input 100 k pull-up JTAG_TCK R17 NVCC_GPIO GPIO ALT5 JTAG_TCK Input 47 k pull-up JTAG_TDI P17 NVCC_GPIO GPIO ALT5 JTAG_TDI Input 47 k pull-up JTAG_TDO R16 NVCC_GPIO GPIO ALT5 JTAG_TDO Output Keeper JTAG_TMS R14 NVCC_GPIO GPIO ALT5 JTAG_TMS Input 47 k pull-up JTAG_TRST_B P13 NVCC_GPIO GPIO ALT5 JTAG_TRST_B Input 47 k pull-up LCD_CLK C11 NVCC_LCD GPIO ALT5 LCD_CLK Input Keeper LCD_DATA00 D11 NVCC_LCD GPIO ALT5 LCD_DATA00 Input Keeper LCD_DATA01 B12 NVCC_LCD GPIO ALT5 LCD_DATA01 Input Keeper LCD_DATA02 D10 NVCC_LCD GPIO ALT5 LCD_DATA02 Input Keeper LCD_DATA03 B11 NVCC_LCD GPIO ALT5 LCD_DATA03 Input Keeper LCD_DATA04 A11 NVCC_LCD GPIO ALT5 LCD_DATA04 Input Keeper LCD_DATA05 D12 NVCC_LCD GPIO ALT5 LCD_DATA05 Input Keeper LCD_DATA06 D13 NVCC_LCD GPIO ALT5 LCD_DATA06 Input Keeper LCD_DATA07 C12 NVCC_LCD GPIO ALT5 LCD_DATA07 Input Keeper LCD_DATA08 B13 NVCC_LCD GPIO ALT5 LCD_DATA08 Input Keeper LCD_DATA09 A13 NVCC_LCD GPIO ALT5 LCD_DATA09 Input Keeper LCD_DATA10 D14 NVCC_LCD GPIO ALT5 LCD_DATA10 Input Keeper LCD_DATA11 C13 NVCC_LCD GPIO ALT5 LCD_DATA11 Input Keeper LCD_DATA12 C14 NVCC_LCD GPIO ALT5 LCD_DATA12 Input Keeper LCD_DATA13 A14 NVCC_LCD GPIO ALT5 LCD_DATA13 Input Keeper LCD_DATA14 B14 NVCC_LCD GPIO ALT5 LCD_DATA14 Input Keeper LCD_DATA15 A16 NVCC_LCD GPIO ALT5 LCD_DATA15 Input Keeper LCD_DATA16 A15 NVCC_LCD GPIO ALT5 LCD_DATA16 Input Keeper LCD_DATA17 D15 NVCC_LCD GPIO ALT5 LCD_DATA17 Input Keeper LCD_DATA18 B15 NVCC_LCD GPIO ALT5 LCD_DATA18 Input Keeper LCD_DATA19 E12 NVCC_LCD GPIO ALT5 LCD_DATA19 Input Keeper LCD_DATA20 B17 NVCC_LCD GPIO ALT5 LCD_DATA20 Input Keeper LCD_DATA21 C16 NVCC_LCD GPIO ALT5 LCD_DATA21 Input Keeper LCD_DATA22 B16 NVCC_LCD GPIO ALT5 LCD_DATA22 Input Keeper LCD_DATA23 C17 NVCC_LCD GPIO ALT5 LCD_DATA23 Input Keeper i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 123 Package information and contact assignments Table 94. 9x9 mm Functional Contact Assignments (continued) LCD_ENABLE A10 NVCC_LCD GPIO ALT5 LCD_ENABLE Input Keeper LCD_HSYNC B10 NVCC_LCD GPIO ALT5 LCD_HSYNC Input Keeper LCD_RESET E10 NVCC_LCD GPIO ALT5 LCD_RESET Input Keeper LCD_VSYNC C10 NVCC_LCD GPIO ALT5 LCD_VSYNC Input Keeper NAND_ALE D8 NVCC_NAND GPIO ALT5 VDDSOC Input Keeper NAND_CE0_B E8 NVCC_NAND GPIO ALT5 NAND_CE0_B Input Keeper NAND_CE1_B B6 NVCC_NAND GPIO ALT5 NAND_CE1_B Input Keeper NAND_CLE B7 NVCC_NAND GPIO ALT5 NAND_CLE Input Keeper NAND_DATA00 D7 NVCC_NAND GPIO ALT5 NAND_DATA00 Input Keeper NAND_DATA01 A9 NVCC_NAND GPIO ALT5 NAND_DATA01 Input Keeper NAND_DATA02 C9 NVCC_NAND GPIO ALT5 NAND_DATA02 Input Keeper NAND_DATA03 C7 NVCC_NAND GPIO ALT5 NAND_DATA03 Input Keeper NAND_DATA04 C8 NVCC_NAND GPIO ALT5 NAND_DATA04 Input Keeper NAND_DATA05 A6 NVCC_NAND GPIO ALT5 NAND_DATA05 Input Keeper NAND_DATA06 B9 NVCC_NAND GPIO ALT5 NAND_DATA06 Input Keeper NAND_DATA07 B8 NVCC_NAND GPIO ALT5 NAND_DATA07 Input Keeper NAND_DQS E6 NVCC_NAND GPIO ALT5 NAND_DQS Input Keeper NAND_RE_B D9 NVCC_NAND GPIO ALT5 NAND_RE_B Input Keeper NAND_READY_B E9 NVCC_NAND GPIO ALT5 NAND_READY_B Input Keeper NAND_WE_B A8 NVCC_NAND GPIO ALT5 NAND_WE_B Input Keeper NAND_WP_B D6 NVCC_NAND GPIO ALT5 NAND_WP_B Input Keeper ONOFF R6 VDD_SNVS_IN GPIO ALT0 ONOFF Input 100 k pull-up POR_B R10 VDD_SNVS_IN GPIO ALT0 POR_B Input 100 k pull-up RTC_XTALI T12 VDD_SNVS_CAP ANALOG -- RTC_XTALI -- -- RTC_XTALO U12 VDD_SNVS_CAP ANALOG -- RTC_XTALO -- -- SD1_CLK C5 NVCC_SD GPIO ALT5 SD1_CLK Input Keeper SD1_CMD C6 NVCC_SD GPIO ALT5 SD1_CMD Input Keeper SD1_DATA0 A5 NVCC_SD GPIO ALT5 SD1_DATA0 Input Keeper SD1_DATA1 A4 NVCC_SD GPIO ALT5 SD1_DATA1 Input Keeper SD1_DATA2 B5 NVCC_SD GPIO ALT5 SD1_DATA2 Input Keeper SD1_DATA3 B4 NVCC_SD GPIO ALT5 SD1_DATA3 Input Keeper SNVS_PMIC_ON_REQ T7 VDD_SNVS_IN GPIO ALT0 SNVS_PMIC_ON_REQ Output 100 k pull-up i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 124 NXP Semiconductors Package information and contact assignments Table 94. 9x9 mm Functional Contact Assignments (continued) SNVS_TAMPER0 R8 VDD_SNVS_IN GPIO -- GPIO5_IO00/SNVS_TAM PER01 Input Keeper/n on-conne cted1,2 SNVS_TAMPER1 P6 VDD_SNVS_IN GPIO -- GPIO5_IO01/SNVS_TAM PER11 Input Keeper/n on-conne cted1,2 SNVS_TAMPER2 N10 VDD_SNVS_IN GPIO -- GPIO5_IO02/SNVS_TAM PER21 Input Keeper/n on-conne cted1,2 SNVS_TAMPER3 P10 VDD_SNVS_IN GPIO -- GPIO5_IO03/SNVS_TAM PER31 Input Keeper/n on-conne cted1,2 SNVS_TAMPER4 P7 VDD_SNVS_IN GPIO -- GPIO5_IO04/SNVS_TAM PER41 Input Keeper/n on-conne cted1,2 SNVS_TAMPER5 P8 VDD_SNVS_IN GPIO -- GPIO5_IO05/SNVS_TAM PER51 Input Keeper/n on-conne cted1,2 SNVS_TAMPER6 R7 VDD_SNVS_IN GPIO -- GPIO5_IO06/SNVS_TAM PER61 Input Keeper/n on-conne cted1,2 SNVS_TAMPER7 N9 VDD_SNVS_IN GPIO -- GPIO5_IO07/SNVS_TAM PER71 Input Keeper/n on-conne cted1,2 SNVS_TAMPER8 N8 VDD_SNVS_IN GPIO -- GPIO5_IO08/SNVS_TAM PER81 Input Keeper/n on-conne cted1,2 SNVS_TAMPER9 P9 VDD_SNVS_IN GPIO -- GPIO5_IO09/SNVS_TAM PER91 Input Keeper/n on-conne cted1,2 TEST_MODE N7 VDD_SNVS_IN GPIO ALT0 TEST_MODE Input Keeper UART1_CTS_B L14 NVCC_UART GPIO ALT5 UART1_CTS_B Input Keeper UART1_RTS_B K14 NVCC_UART GPIO ALT5 UART1_RTS_B Input Keeper UART1_RX_DATA L17 NVCC_UART GPIO ALT5 UART1_RX_DATA Input Keeper UART1_TX_DATA L15 NVCC_UART GPIO ALT5 UART1_TX_DATA Input Keeper UART2_CTS_B J17 NVCC_UART GPIO ALT5 UART2_CTS_B Input Keeper UART2_RTS_B J14 NVCC_UART GPIO ALT5 UART2_RTS_B Input Keeper UART2_RX_DATA K16 NVCC_UART GPIO ALT5 UART2_RX_DATA Input Keeper UART2_TX_DATA L16 NVCC_UART GPIO ALT5 UART2_TX_DATA Input Keeper UART3_CTS_B H16 NVCC_UART GPIO ALT5 UART3_CTS_B Input Keeper UART3_RTS_B H15 NVCC_UART GPIO ALT5 UART3_RTS_B Input Keeper UART3_RX_DATA K15 NVCC_UART GPIO ALT5 UART3_RX_DATA Input Keeper i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 125 Package information and contact assignments Table 94. 9x9 mm Functional Contact Assignments (continued) UART3_TX_DATA K17 NVCC_UART GPIO ALT5 UART3_TX_DATA Input Keeper UART4_RX_DATA H17 NVCC_UART GPIO ALT5 UART4_RX_DATA Input Keeper UART4_TX_DATA J16 NVCC_UART GPIO ALT5 UART4_TX_DATA Input Keeper UART5_RX_DATA J13 NVCC_UART GPIO ALT5 UART5_RX_DATA Input Keeper UART5_TX_DATA K13 NVCC_UART GPIO ALT5 UART5_TX_DATA Input Keeper USB_OTG1_CHD_B T15 OPEN DRAIN GPIO -- USB_OTG1_CHD_B -- -- USB_OTG1_DN R11 VDD_USB_CAP ANALOG -- USB_OTG1_DN -- -- USB_OTG1_DP P11 VDD_USB_CAP ANALOG -- USB_OTG1_DP -- -- USB_OTG1_VBUS T9 USB_VBUS VBUS POWER -- USB_OTG1_VBUS -- -- USB_OTG2_DN T10 VDD_USB_CAP ANALOG -- USB_OTG2_DN -- -- USB_OTG2_DP U10 VDD_USB_CAP ANALOG -- USB_OTG2_DP -- -- USB_OTG2_VBUS U9 USB_VBUS VBUS POWER -- USB_OTG2_VBUS -- -- XTALI T14 NVCC_PLL ANALOG -- XTALI -- -- XTALO U14 NVCC_PLL ANALOG -- XTALO -- -- 1 SNVS_TAMPER0 to SNVS_TAMPER9 can be configured as GPIO or tamper detection pin, it is depending on the fuse setting TAMPER_PIN_DISABLE[1:0]. When the pad is configured as GPIO, the value is keeper out of reset. 2 SNVS_TAMPER0 to SNVS_TAMPER9 is input unconnected in the following conditions. --SNVS low power mode when configured as GPIO --Tamper functions are not used when configured as TAMPER detection pins It is required to connect external 1M Ohm pull-up or pull-down resistors to the pad to avoid the undesired leakage under two conditions above. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 126 NXP Semiconductors NXP Semiconductors LCD_ENABLE 10 11 12 13 14 15 16 17 LCD_DATA04 VSS LCD_DATA09 LCD_DATA13 LCD_DATA16 LCD_DATA15 VSS LCD_HSYNC LCD_DATA03 LCD_DATA01 LCD_DATA08 LCD_DATA14 LCD_DATA18 LCD_DATA22 LCD_DATA20 LCD_VSYNC LCD_CLK LCD_DATA07 LCD_DATA11 LCD_DATA12 VSS LCD_DATA21 LCD_DATA23 LCD_DATA02 LCD_DATA00 LCD_DATA05 LCD_DATA06 LCD_DATA10 LCD_DATA17 ENET2_RX_EN LCD_RESET NVCC_NAND LCD_DATA19 NVCC_LCD ENET2_TX_EN VSS F G E D ENET2_RX_DATA0 ENET2_RX_DATA1 ENET1_RX_DATA1 ENET1_TX_DATA0 ENET1_TX_EN ENET2_TX_DATA1 ENET2_TX_DATA0 ENET1_TX_DATA1 VSS ENET1_RX_DATA0 ENET1_RX_EN ENET1_TX_CLK ENET1_RX_ER NVCC_ENET VDD_ARM_CAP VDD_ARM_CAP C NAND_DATA02 NAND_DATA06 NAND_DATA01 9 NAND_RE_B NAND_READY_B VDD_ARM_CAP B A 8 NAND_DATA04 NAND_DATA07 NAND_ALE NAND_CE0_B VDD_SOC_CAP NAND_WEB NAND_DATA03 NAND_DATA00 NVCC_SD1 VSS NAND_CE1_B NAND_DATA05 6 SD1_CMD NAND_WP_B NAND_DQS 7 5 SD1_DATA0 SD1_DATA2 SD1_CLK CSI_PIXCLK NVCC_CSI DRAM_SDBA1 NVCC_DRAM VSS 4 SD1_DATA1 SD1_DATA3 CSI_DATA04 CSI_DATA01 DRAM_ADDR06 DRAM_SDWE_B DRAM_CAS_B NAND_CLE 3 CSI_DATA06 CSI_DATA05 CSI_DATA00 CSI_VSYNC DRAM_ADDR14 VSS DRAM_SDBA2 VDD_SOC_CAP 2 VSS CSI_DATA02 CSI_DATA07 CSI_HSYNC DRAM_ADDR15 DRAM_RESET 1 DRAM_ADDR01 A VSS B CSI_MCLK C CSI_DATA03 D DRAM_ODT1 E VSS F 6.2.3 DRAM_ADDR00 G Package information and contact assignments 9x9 mm, 0.5 mm pitch, ball map Table 95 shows the 9x9 mm, 0.5 mm pitch ball map for the i.MX 6UltraLite. Table 95. 9x9 mm, 0.5 mm Pitch, Ball Map i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 127 128 TEST_MODE SNVS_TAMPER4 VSS GPIO1_IO04 JTAG_TDI M GPIO1_IO02 GPIO1_IO03 GPIO1_IO09 N GPIO_IO01 GPIO1_IO06 GPIO1_IO05 P UART1_CTS_B GPIO1_IO00 GPIO1_IO07 GPIO1_IO08 UART1_RTS_B L K J UART2_CTS_B H UART4_RX_DATA UART3_CTS_B UART3_RTS_B VSS UART2_RX_DATA UART4_TX_DATA UART1_RX_DATA UART3_TX_DATA UART2_TX-DATA ENET2_TX_CLK ENET2_RX_ER UART2_RTS_B UART5_TX_DATA UART5_RX_DATA UART1_TX_DATA UART3_RX_DATA NVCC_UART NVCC_GPIO ADC_VREFH JTAG_TRST_B VSS VDD_ARM_CAP VDD_SOC_IN VDD_SOC_IN VDD_SOC_IN VSS VDD_ARM_CAP VDD_SOC_IN VDD_SOC_IN VDD_SOC_IN VDD_SNVS_CAP VDD_ARM_CAP VDD_SOC_IN VDD_SOC_IN VDD_SOC_IN VDD_SNVS_IN VDD_SOC_CAP VDD_SOC_CAP VDD_SOC_CAP VDD_SOC_CAP VDD_USB_CAP NGND_KEL0 VSS VDD_SOC_CAP VDD_SOC_CAP VSS VDD_SOC_CAP NVCC_DRAM_2P5 VDD_SOC_CAP USB_OTG1_DP SNVS_TAMPER3 SNVS_DAMPER2 SNVS_TAMPER9 SNVS_TAMPER7 SNVS_TAMPER5 SNVS_TAMPER8 NVCC_DRAM DRAM_CSI_B DRAM_ADDR08 DRAM_ADDR11 NVCC_DRAM SNVS_TAMPER1 DRAM_ADDR13 DRAM_ADDR07 DRAM_SDCLK0_N DRAM_RAS_B DRAM_SDQS1_N DRAM_ADDR04 DRAM_DATA12 NVCC_DRAM DRAM_SDBA0 VSS DRAM_SDCLK0_P DRAM_ADDR12 VSS DRAM_SDQS1_P DRAM_DATA10 DRAM_DATA01 DRAM_ADDR05 DRAM_ADDR03 DRAM_ODT0 DRAM_SDCKE0 DRAM_ADDR10 DRAM_DATA13 DRAM_DATA15 DRAM_SDQS0_P DRAM_ADDR02 H DRAM_ADDR09 J DRAM_SDCKE1 K DRAM_CS0_B L VSS M DRAM_DATA14 N DRAM_DATA08 P Package information and contact assignments Table 95. 9x9 mm, 0.5 mm Pitch, Ball Map (continued) i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 6.3 JTAG_MOD JTAG_TMS VSS JTAG_TDO JTAG_TCK R XTALI USB_OTG1_CHD_B CCM_CLK1_P VDDA_ADC_3P3 T XTALO VDD_HIGH_IN CCM_CLK1_N VSS U 14 15 16 17 VSS RTC_XTALI RTC_XTALO 12 NVCC_PLL USB_OTG1_DN GPANAIO VDD_HIGH_CAP 11 VSS POR_B USB_OTG2_DN USB_OTG2_DP 10 13 VSS USB_OTG1_VBUS USB_OTG2_VBUS 9 SNVS_TAMPER0 BOOT_MODE0 BOOT_MODE1 8 7 CCM_PMIC_STBY_REQ SNVS_PMIC_ON_REQ SNVS_TAMPER6 ONOFF DRAM_DATA05 VSS 6 DRAM_DATA06 DRAM_DATA02 DRAM_DQM0 4 DRAM_SDQS0_N VSS DRAM_DATA00 DRAM_DATA07 3 DRAM_DATA03 DRAM_DATA11 DRAM_ZQPAD DRAM_DATA09 2 DRAM_DATA04 DRAM_DM1 DRAM_VREF VSS 1 5 R T U Table 95. 9x9 mm, 0.5 mm Pitch, Ball Map (continued) GPIO reset behaviors during reset Table 96 shows the GPIO behaviors during reset. Table 96. GPIO Behaviors during Reset 1 Ball Name Mux Mode Function Input/Output Value GPIO01_IO03 ALT7 Reserved Input 100 k pull-down UART3_TX_DATA ALT7 SJC_JTAG_ACT Output 0 LCD_DATA00 ALT6 SRC_BT_CFG[0] Input 100 k pull-down LCD_DATA01 ALT6 SRC_BT_CFG[1] Input 100 k pull-down LCD_DATA02 ALT6 SRC_BT_CFG[2] Input 100 k pull-down LCD_DATA03 ALT6 SRC_BT_CFG[3] Input 100 k pull-down LCD_DATA04 ALT6 SRC_BT_CFG[4] Input 100 k pull-down LCD_DATA05 ALT6 SRC_BT_CFG[5] Input 100 k pull-down LCD_DATA06 ALT6 SRC_BT_CFG[6] Input 100 k pull-down LCD_DATA07 ALT6 SRC_BT_CFG[7] Input 100 k pull-down LCD_DATA08 ALT6 SRC_BT_CFG[8] Input 100 k pull-down LCD_DATA09 ALT6 SRC_BT_CFG[9] Input 100 k pull-down Package information and contact assignments Table 96. GPIO Behaviors during Reset (continued)1 1 Ball Name Mux Mode Function Input/Output Value LCD_DATA10 ALT6 SRC_BT_CFG[10] Input 100 k pull-down LCD_DATA11 ALT6 SRC_BT_CFG[11] Input 100 k pull-down LCD_DATA12 ALT6 SRC_BT_CFG[12] Input 100 k pull-down LCD_DATA13 ALT6 SRC_BT_CFG[13] Input 100 k pull-down LCD_DATA14 ALT6 SRC_BT_CFG[14] Input 100 k pull-down LCD_DATA15 ALT6 SRC_BT_CFG[15] Input 100 k pull-down LCD_DATA16 ALT6 SRC_BT_CFG[16] Input 100 k pull-down LCD_DATA17 ALT6 SRC_BT_CFG[17] Input 100 k pull-down LCD_DATA18 ALT6 SRC_BT_CFG[18] Input 100 k pull-down LCD_DATA19 ALT6 SRC_BT_CFG[19] Input 100 k pull-down LCD_DATA20 ALT6 SRC_BT_CFG[20] Input 100 k pull-down LCD_DATA21 ALT6 SRC_BT_CFG[21] Input 100 k pull-down LCD_DATA22 ALT6 SRC_BT_CFG[22] Input 100 k pull-down LCD_DATA23 ALT6 SRC_BT_CFG[23] Input 100 k pull-down Others are same as value in the column "Out of Reset Condition" of Table 91 and Table 94. i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 130 NXP Semiconductors Revision history 7 Revision history Table 97 provides a revision history for this data sheet. Table 97. i.MX 6UltraLite Data Sheet Document Revision History Rev. Number Date 0 01/2016 * Initial release 0.1 02/2016 * Updated Figure 1, "Part Number Nomenclature--i.MX 6UltraLite" * Updated Table 1, "Ordering Information" * Updated Table 3, "i.MX 6UltraLite Modules List" 1 04/2016 * * * * * * * * * * * * Updated Table 3 i.MX 6UltraLite Module list for BCH descriptions Updated Table 4 Special Signal Considerations Added a note for Table 9 14x14 MM Package Thermal Resistance Updated Table 15 Low Power Mode Current and Power Consumption Added a note for Table 23 XTALI and RTC_XTALI DC Parameters Updated Table 38 EIM Internal Module Multiplexing Updated Table 51 SDR50/SDR104 Interface Timing Specification Updated Table 91 14x14 mm Functional Contact Assignments and footnote Updated Section 4.1.1, "Absolute maximum ratings" Updated Section 4.6.3, "DDR I/O DC parameters" Added Section 4.12.8, "LCD Controller (LCDIF) parameters" Updated Section 4.12.9, "QUAD SPI (QSPI) timing parameters" 2 02/2017 * * * * * * * * * * Updated Table 8, "Absolute Maximum Ratings" Added a footnote in the Table 11, "Operating Ranges" Updated Section 4.2.1, "Power-Up sequence" and Section 4.2.2, "Power-Down sequence" Removed Section 4.9.4 DDR SDRAM Specific Parameters (DDR3 and LPDDR2) Updated Figure 18, "Asynchronous A/D Muxed Write Access" Added a new Section 4.10, "Multi-Mode DDR Controller (MMDC)" Added a new Section 4.12.8.1, "LCDIF signal mapping" Updated Table 51, "SDR50/SDR104 Interface Timing Specification" Updated Figure 40, "HS200 Mode Timing" Updated Table 52, "HS200 Interface Timing Specification" 2.1 03/2017 * Updated the silicon revision definition in the Figure 1, "Part Number Nomenclature--i.MX 6UltraLite" * Added Rev.1.2 part numbers in the Table 1, "Ordering Information" 2.2 05/2017 * Changed terminology from "floating" to "not connected" * Added a footnote regarding maximum voltage allowance in the Table 8, "Absolute Maximum Ratings" * Replaced the MMDC compatible information with a cross reference in the Section 4.6.3, "DDR I/O DC parameters" and Section 4.7.2, "DDR I/O AC parameters" * Changed SD3 min to 1.7 ns in the Table 50, "eMMC4.4/4.41 Interface Timing Specification" Substantive Change(s) i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017 NXP Semiconductors 131 How to Reach Us: Information in this document is provided solely to enable system and software Home Page: nxp.com implementers to use NXP products. There are no express or implied copyright licenses Web Support: nxp.com/support information in this document. NXP reserves the right to make changes without further granted hereunder to design or fabricate any integrated circuits based on the notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals" must be validated for each customer application by customer customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. NXP, the NXP logo, Freescale, the Freescale logo, and the Energy Efficient Solutions logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, the ARM Powered logo, and Cortex are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. The USB-IF Logo is a registered trademark of USB Implementers Forum, Inc. All rights reserved. (c) 2016-2017 NXP B.V. Document Number: IMX6ULIEC Rev. 2.2 05/2017