PS21962-4S Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 IntellimodTM Module Dual-In-Line Intelligent Power Module 5 Amperes/600 Volts R A D N O C P L K X DETAIL "B" 4 17 16 15 14 13 12 11 10 9 8 7 6 5 3 2 1 DETAIL "A" E B Q 19 20 21 23 24 F E M 25 HEATSINK SIDE Description: DIP-IPMs are intelligent power modules that integrate power devices, drivers, and protection circuitry in an ultra compact dual-in-line transfer-mold package for use in driving small three phase motors. Use of 5th generation IGBTs, DIP packaging, and application specific HVICs allow the designer to reduce inverter size and overall design time. T DETAIL "C" U R 22 J V G AF 18 H AE K Z AC P AD AH AA AB DETAIL "B" HEATSINK SIDE W W AG TERMINAL CODE 1 2 3 4 5 (VNC) 6 VUFB 7 VVFB 8 VWFB 9 UP 10 VP WP VP1 VNC UN 11 12 13 14 15 VN WN VN1 FO CIN 16 17 18 19 20 VNC NC NW NV NU 21 22 23 24 25 W V U P NC S Y DETAIL "A" DETAIL "C" Outline Drawing and Circuit Diagram Dimensions Inches Millimeters Dimensions Inches Millimeters A 1.500.02 38.00.5 S 0.12 2.8 B 0.940.02 24.00.5 T 0.024 0.6 C 0.14 3.5 U 0.10.008 2.540.2 D 1.40 35.56 V 1.330.02 33.70.5 E 0.570.02 14.40.5 W 0.03 0.678 F 0.740.02 18.90.5 X 0.04 1.0 G 1.150.02 29.20.5 Y 0.05 1.2 H 0.14 3.5 Z 1.40 35.56 J 0.13 3.3 AA 0.220.02 5.50.5 K 0.016 0.4 AB 0.370.02 9.50.5 L 0.060.02 1.50.05 AC 0 ~ 5 0 ~ 5 M 0.031 0.8 AD 0.06 Min. 1.5 Min. N 1.390.019 35.00.3 AE 0.05 1.2 O 0.070.008 1.7780.2 AF 0.063 Rad. 1.6 Rad. P 0.02 0.5 AG 0.118 Min. 3.0 Min. AH 0.098 Min. 2.5 Min. Q 0.47 12.0 R 0.011 0.28 Rev. 12/09 Features: Compact Packages Single Power Supply Integrated HVICs Direct Connection to CPU Reduced Rth Applications: Refrigerators Air Conditioners Small Servo Motors Small Motor Control Ordering Information: PS21962-4S is a 600V, 5 Ampere short pin DIP Intelligent Power Module. 1 Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 PS21962-4S IntellimodTM Module Dual-In-Line Intelligent Power Module 5 Amperes/600 Volts Absolute Maximum Ratings, Tj = 25C unless otherwise specified Characteristics Symbol PS21962-4S Units Tj -20 to 150 C Storage Temperature Tstg -40 to 125 C Case Operating Temperature (Note 1) TC -20 to 100 C Mounting Torque, M3 Mounting Screws -- 6 in-lb Module Weight (Typical) -- 10 Grams Power Device Junction Temperature* Heatsink Flatness (Note 2) Self-protection Supply Voltage Limit (Short Circuit Protection Capability)** Isolation Voltage, AC 1 minute, 60Hz Sinusoidal, Connection Pins to Heatsink Plate -- -50 to 100 m VCC(prot.) 400 Volts VISO 1500 Volts *The ma ximum junction temperature rating of the power chips integrated within the DIP-IPM is 150C (@TC 100C). However, to ensure safe operation of the DIP-IPM, the average junction temperature should be limited to Tj(avg) 125C (@TC 100C). **VD = 13.5 ~ 16.5V, Inverter Part, Tj = 125C, Non-repetitive, Less than 2s IGBT Inverter Sector Collector-Emitter Voltage VCES 600 Volts Each Collector Current, (TC = 25C) IC 5 Amperes Each Peak Collector Current, (TC = 25C, Less than 1ms) ICP 10 Amperes Supply Voltage (Applied between P - N) VCC 450 Volts VCC(surge) 500 Volts PC 21.3 Watts Supply Voltage (Applied between VP1-VNC, VN1-VNC) VD 20 Volts Supply Voltage (Applied between VUFB-U, VVFB-V, VWFB-W) VDB 20 Volts Input Voltage (Applied between UP, VP, WP-VNC, UN, VN, WN-VNC) VIN -0.5 ~ VD+0.5 Volts Fault Output Supply Voltage (Applied between FO-VNC) VFO -0.5 ~ VD+0.5 Volts Supply Voltage, Surge (Applied between P - N) Collector Dissipation (TC = 25C, per 1 Chip) Control Sector Fault Output Current (Sink Current at FO Terminal) IFO 1 mA Current Sensing Input Voltage (Applied between CIN-VNC) VSC -0.5 ~ VD+0.5 Volts Note 1 - TC Measure Point Note 2 - Flatness Measurement Position CONTROL TERMINALS DIP-IPM MEASUREMENT POINT 11.6mm 3.0mm IGBT CHIP FWDi CHIP TC POINT PLACE TO CONTACT A HEATSINK HEATSINK HEATSINK SIDE POWER TERMINALS 2 4.6mm + - - + HEATSINK Rev.12/09 Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 PS21962-4S IntellimodTM Module Dual-In-Line Intelligent Power Module 5 Amperes/600 Volts Electrical and Mechanical Characteristics, Tj = 25C unless otherwise specified Characteristics Symbol Test Conditions Min. Typ. Max. Units -- 1.70 2.20 Volts IGBT Inverter Sector Collector-Emitter Saturation Voltage VCE(sat) Diode Forward Voltage VEC Inductive Load Switching Times VD = VDB = 15V, IC = 5A, VIN = 5V, Tj = 25C VD = VDB = 15V, IC = 5A, VIN = 5V, Tj = 125C -- 1.80 2.30 Volts -IC = 5A, VIN = 0V -- 1.70 2.20 Volts ton 0.50 1.00 1.60 s VCC = 300V, VD = VDB = 15V, -- 0.30 -- s tC(on) IC = 5A, Tj = 125C, -- 0.30 0.50 s toff VIN = 0 5V, Inductive Load, -- 1.40 2.00 s trr tC(off) Collector Cutoff Current ICES -- 0.50 0.80 s VCE = VCES, Tj = 25C -- -- 1.0 mA VCE = VCES, Tj = 125C -- -- 10 mA Total of VP1-VNC, VN1-VNC -- -- 2.80 mA VUFB-U, VVFB-V, VWFB-W -- -- 0.55 mA Control Sector Circuit Current ID VIN = 5V VD = VDB = 15V VIN = 0V Total of VP1-VNC, VN1-VNC -- -- 2.80 mA VUFB-U, VVFB-V, VWFB-W -- -- 0.55 mA VFOH VSC = 0V, FO Terminal Pull-up to 5V by 10k 4.9 -- -- Volts VFOL VSC = 1V, IFO = 1mA -- -- 0.95 Volts Fault Output Voltage Input Current Short Circuit Trip Level* Supply Circuit Under-voltage Fault Output Pulse Width** ON Threshold Voltage IIN VIN = 5V 0.70 1.00 1.50 mA VSC(ref) VD = 15V* 0.43 0.48 0.53 Volts UVDBt Trip Level, Tj 125C 10.0 -- 12.0 Volts UVDBr Reset Level, Tj 125C 10.5 -- 12.5 Volts UVDt Trip Level, Tj 125C 10.3 -- 12.5 Volts UVDr Reset Level, Tj 125C 10.8 -- 13.0 Volts tFO Vth(on) Applied between 20 -- -- s -- 2.1 2.6 Volts OFF Threshold Voltage Vth(off) UP, VP, WP-VNC, 0.8 1.3 -- Volts ON/OFF Threshold Hysteresis Voltage Vth(hys) UN, VN, WN-VNC 0.35 0.65 -- Volts * Short Circuit protection is functioning only for the low-arms. Please select the value of the external shunt resistor such that the SC trip level is less than 1.7 times the current rating. **Fault signal is asserted only for a UV or SC condition on the low side. On a SC fault the FO duration will be 20sec. On a UV condition the fault signal will be asserted as long as the UV condition exists or for 20sec, whichever is longer. Rev. 12/09 3 Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 PS21962-4S IntellimodTM Module Dual-In-Line Intelligent Power Module 5 Amperes/600 Volts Thermal Characteristics Characteristic Junction to Case Symbol Condition Min. Typ. Max. Units Rth(j-c)Q Inverter IGBT (Per 1/6 Module) -- -- 4.7 C/Watt Rth(j-c)D Inverter FWDi (Per 1/6 Module) -- -- 5.4 C/Watt Min. Typ. Value Units 0 300 400 Volts Recommended Conditions for Use Characteristic Supply Voltage Control Supply Voltage Symbol Applied between P-N Terminals VD Applied between VP1-VNC, VN1-VNC 13.5 15.0 16.5 Volts VDB Applied between VUFB-U, 13.0 15.0 18.5 Volts -1 -- 1 V/s Control Supply Variation Arm Shoot-through Blocking Time Condition VCC VVFB-V, VWFB-W dVD, dVDB tDEAD For Each Input Signal, TC 100C Allowable Minimum Input PWIN(on) Pulse Width* PWIN(off) VNC Voltage Variation VNC Between VNC-N (Including Surge) 1.5 -- -- s 0.5 -- -- s 0.5 -- -- s -5.0 -- 5.0 Volts *DIP-IPM might not make response or work properly if the input signal pulse width is less than the recommended minimum value. 4 Rev.12/09 Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 PS21962-4S IntellimodTM Module Dual-In-Line Intelligent Power Module 5 Amperes/600 Volts Application Circuit Rev. 12/09 5 Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 PS21962-4S IntellimodTM Module Dual-In-Line Intelligent Power Module 5 Amperes/600 Volts Protection Function Timing Diagrams Short-Circuit Protection (Lower-arms only with the external shunt resistor and CR filter) A7 LOWER-ARMS CONTROL INPUT A6 PROTECTION CIRCUIT STATE SET RESET A3 INTERNAL IGBT GATE SC A1 A2 A4 A8 OUTPUT CURRENT IC SC REFERENCE VOLTAGE SENSE VOLTAGE OF THE SHUNT RESISTOR FAULT OUTPUT FO A1: A2: A3: A4: A5: A6: A7: A8: A5 CR CIRCUIT TIME CONTAINS DELAY Normal operation - IGBT turn on and conducting current. Short-circuit current detected (SC trigger). IGBT gate hard interrupted. IGBT turn off. FO output with a fixed pulse width of tFO(min) = 20s. Input "L" - IGBT off. Input "H" - IGBT on is blocked during the FO output period. IGBT stays in off state. Under-Voltage Protection (Lower-side, UVD) CONTROL INPUT PROTECTION CIRCUIT STATE UVDr CONTROL SUPPLY VOLTAGE VD SET RESET B1 UVDt B2 RESET B6 B3 B4 B7 OUTPUT CURRENT IC FAULT OUTPUT FO B5 B1: Control supply voltage rise - After the voltage level reaches UVDr, the drive circuit begins to work at the rising edge of the next input signal. B2 : Normal operation - IGBT turn on and conducting current. B3: Under-voltage trip (UVDt). B4: IGBT turn off regardless of the control input level. B5: FO output during under-voltage period, however, the minimum pulse width is 20s. B6: Under-voltage reset (UVDr). B7: Normal operation - IGBT turn on and conducting current. 6 Rev.12/09 Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 PS21962-4S IntellimodTM Module Dual-In-Line Intelligent Power Module 5 Amperes/600 Volts Protection Function Timing Diagrams Under-Voltage Protection (Upper-side, UVDB) CONTROL INPUT PROTECTION CIRCUIT STATE CONTROL SUPPLY VOLTAGE VDB SET RESET UVDBr C1 UVDt RESET C5 C3 C2 C4 C6 OUTPUT CURRENT IC FAULT OUTPUT FO HIGH LEVEL (NO FAULT OUTPUT) C1: Control supply voltage rises - After the voltage level reaches UVDBr, the drive circuit begins to work at the rising edge of the next input signal. C2: Normal operation - IGBT turn on and conducting current. C3: Under-voltage trip (UVDBt). C4: IGBT stays off regardless of the control input level, but there is no FO signal output. C5: Under-voltage reset (UVDr). C6: Normal operation - IGBT turn on and conducting current. Typical Interface Circuit 5V LINE DIP-IPM 10k UP, VP, WP, UN, VN, WN MCU 3.3k (MIN) FO NOTE: RC coupling at each input (parts shown dotted) may change depending on the PWM control scheme used in the application and the wiring impedance of the printed circuit board. The DIP-IPM input signal section integrates a 3.3k (min) pull-down resistor. Therefore, when using an external filtering resistor, care must be taken to satisfy the turn-on threshold voltage requirement. VNC (LOGIC) Wiring Method Around Shunt Resistor Wiring inductance should be less than 10nH. (Equivalent to the inductance of a copper pattern with length = 17mm, width = 3mm, and thickness = 100m.) DIP-IPM Shunt Resistors NU NV VNC NW Please make the connection of shunt resistor close to VNC terminal. Rev. 12/09 7 Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 PS21962-4S IntellimodTM Module Dual-In-Line Intelligent Power Module 5 Amperes/600 Volts COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL - INVERTER PART) OUTPUT CHARACTERISTICS (TYPICAL - INVERTER PART) 8 13.5 6 4 2 0 0.5 1.0 1.5 2.0 VD = VDB =15V Tj = 25C Tj = 125C 0.5 0 2 4 6 8 10 IC = 3A 1.4 IC = 1A 1.2 1.0 0.8 13 12 14 15 16 17 FREE-WHEEL DIODE FORWARD CHARACTERISTICS (TYPICAL - INVERTER PART) REVERSE RECOVERY CHARACTERISTICS (TYPICAL - INVERTER PART N-SIDE) REVERSE RECOVERY CHARACTERISTICS (TYPICAL - INVERTER PART N-SIDE) 6 4 VD = 15V Tj = 25C Tj = 125C 2 0 0.5 1.0 1.5 2.0 2.5 3.0 101 103 VCC = 300V VCIN = 0 5V VD = 15V Tj = 25C Tj = 125C INDUCTIVE LOAD 100 100 REVERSE RECOVERY TIME, trr, (ns) 8 102 101 100 101 VCC = 300V VCIN = 0 5V VD = 15V Tj = 25C Tj = 125C INDUCTIVE LOAD 101 EMITTER-COLLECTOR VOLTAGE, VEC, (VOLTS) COLLECTOR CURRENT, IC, (AMPERES) COLLECTOR CURRENT, IC, (AMPERES) REVERSE RECOVERY CHARACTERISTICS (TYPICAL - INVERTER PART P-SIDE) REVERSE RECOVERY CHARACTERISTICS (TYPICAL - INVERTER PART P-SIDE) SWITCHING LOSS (ON) VS. COLLECTOR CURRENT (TYPICAL - INVERTER PART N-SIDE) 103 100 100 101 100 SWITCHING LOSS, PSW(on), (mJ/PULSE) VCC = 300V VCIN = 0 5V VD = VDB = 15V Tj = 25C Tj = 125C INDUCTIVE LOAD REVERSE RECOVERY TIME, trr, (ns) COLLECTOR CURRENT, -IC, (AMPERES) REVERSE RECOVERY CURRENT, Irr, (AMPERES) 1.0 1.6 SUPPLY VOLTAGE, VD, (VOLTS) COLLECTOR CURRENT, IC, (AMPERES) 8 1.5 1.8 COLLECTOR-CURRENT, IC, (AMPERES) 10 101 2.0 Tj = 25C Tj = 125C IC = 5A COLLECTOR-EMITTER VOLTAGE, VCE(sat), (VOLTS) 12 0 2.5 0 2.5 COLLECTOR-EMITTER SATURATION VOLTAGE, VCE(sat), (VOLTS) VD = 16.5V COLLECTOR-EMITTER SATURATION VOLTAGE, VCE(sat), (VOLTS) 15 10 0 2.0 3.0 Tj = 25C REVERSE RECOVERY CURRENT, Irr, (AMPERES) COLLECTOR CURRENT, IC, (AMPERES) 12 COLLECTOR-EMITTER SATURATION VOLTAGE VS. SUPPLY VOLTAGE CHARACTERISTICS (TYPICAL - INVERTER PART) 102 VCC = 300V VCIN = 0 5V VD = VDB = 15V Tj = 25C Tj = 125C INDUCTIVE LOAD 101 100 101 COLLECTOR CURRENT, IC, (AMPERES) 10-1 10-2 100 VCC = 300V VCIN = 0 5V VD = 15V Tj = 25C Tj = 125C INDUCTIVE LOAD 101 COLLECTOR CURRENT, IC, (AMPERES) Rev.12/09 Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 PS21962-4S IntellimodTM Module Dual-In-Line Intelligent Power Module 5 Amperes/600 Volts SWITCHING LOSS (OFF) VS. COLLECTOR CURRENT (TYPICAL - INVERTER PART N-SIDE) SWITCHING LOSS (ON) VS. COLLECTOR CURRENT (TYPICAL - INVERTER PART P-SIDE) 10-1 VCC = 300V VCIN = 0 5V VD = 15V Tj = 25C Tj = 125C INDUCTIVE LOAD 10-2 100 VCC = 300V VCIN = 0 5V VD = VDB = 15V Tj = 25C Tj = 125C INDUCTIVE LOAD 10-1 VCC = 300V VCIN = 0 5V VD = VDB = 15V Tj = 25C Tj = 125C INDUCTIVE LOAD 10-2 100 101 101 COLLECTOR CURRENT, IC, (AMPERES) COLLECTOR CURRENT, IC, (AMPERES) COLLECTOR CURRENT, IC, (AMPERES) SWITCHING TIME (ON) VS. COLLECTOR CURRENT (TYPICAL - INVERTER PART N-SIDE) SWITCHING TIME (OFF) VS. COLLECTOR CURRENT (TYPICAL - INVERTER PART N-SIDE) SWITCHING TIME (ON) VS. COLLECTOR CURRENT (TYPICAL - INVERTER PART P-SIDE) 103 102 100 104 SWITCHING TIME, ton, (ns) 104 VCC = 300V VCIN = 0 5V VD = 15V Tj = 25C Tj = 125C INDUCTIVE LOAD SWITCHING TIME, toff, (ns) 103 VCC = 300V VCIN = 0 5V VD = 15V Tj = 25C Tj = 125C INDUCTIVE LOAD 102 100 101 VCC = 300V VCIN = 0 5V VD = VDB = 15V Tj = 25C Tj = 125C INDUCTIVE LOAD 103 102 100 101 101 COLLECTOR CURRENT, IC, (AMPERES) COLLECTOR CURRENT, IC, (AMPERES) COLLECTOR CURRENT, IC, (AMPERES) SWITCHING TIME (OFF) VS. COLLECTOR CURRENT (TYPICAL - INVERTER PART P-SIDE) SWITCHING TIME (ON) VS. COLLECTOR CURRENT (TYPICAL - INVERTER PART N-SIDE) SWITCHING TIME (OFF) VS. COLLECTOR CURRENT (TYPICAL - INVERTER PART N-SIDE) 103 SWITCHING TIME, tc(on), (ns) 104 103 VCC = 300V VCIN = 0 5V VD = VDB = 15V Tj = 25C Tj = 125C INDUCTIVE LOAD 102 100 101 COLLECTOR CURRENT, IC, (AMPERES) Rev. 12/09 103 102 101 100 VCC = 300V VCIN = 0 5V VD = 15V Tj = 25C Tj = 125C INDUCTIVE LOAD 101 COLLECTOR CURRENT, IC, (AMPERES) SWITCHING TIME, tc(off), (ns) SWITCHING TIME, ton, (ns) 10-1 10-2 100 101 104 SWITCHING TIME, toff, (ns) 100 SWITCHING LOSS, PSW(off), (mJ/PULSE) 100 SWITCHING LOSS, PSW(on), (mJ/PULSE) SWITCHING LOSS, PSW(off), (mJ/PULSE) 100 SWITCHING LOSS (OFF) VS. COLLECTOR CURRENT (TYPICAL - INVERTER PART P-SIDE) 102 101 100 VCC = 300V VCIN = 0 5V VD = 15V Tj = 25C Tj = 125C INDUCTIVE LOAD 101 COLLECTOR CURRENT, IC, (AMPERES) 9 Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 PS21962-4S IntellimodTM Module Dual-In-Line Intelligent Power Module 5 Amperes/600 Volts SWITCHING TIME (OFF) VS. COLLECTOR CURRENT (TYPICAL - INVERTER PART P-SIDE) SWITCHING TIME (ON) VS. COLLECTOR CURRENT (TYPICAL - INVERTER PART P-SIDE) 103 102 101 100 VCC = 300V VCIN = 0 5V VD = VDB = 15V Tj = 25C Tj = 125C INDUCTIVE LOAD 101 COLLECTOR CURRENT, IC, (AMPERES) 10 SWITCHING TIME, tc(off), (ns) SWITCHING TIME, tc(on), (ns) 103 102 101 100 VCC = 300V VCIN = 0 5V VD = VDB = 15V Tj = 25C Tj = 125C INDUCTIVE LOAD 101 COLLECTOR CURRENT, IC, (AMPERES) Rev.12/09