HEXFET® Power MOSFET
Benefits
lImproved Gate, Avalanche and Dynamic dV/dt
Ruggedness
lFully Characterized Capacitance and Avalanche
SOA
lEnhanced body diode dV/dt and dI/dt Capability
l Lead-Free
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
GDS
Gate Drain Source
D
S
G
D2Pak
IRF3610SPbF
V
DSS
100V
R
DS
(
on
)
typ. 9.3m
max. 11.6m
I
D
103A
S
D
G
Absolute Maximum Ratings
Symbol Parameter Units
I
D
@ T
C
= 25°C
I
D
@ T
C
= 100°C
I
DM
Pulsed Drain Current
d
P
D
@T
C
= 25°C Maximum Power Dissipation W
Linear Derating Factor W/°C
V
GS
Gate-to-Source Voltage V
dv/dt Peak Diode Recovery
f
V/ns
T
J
Operating Junction and
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
Avalanche Characteristics
E
AS
Sin
g
le Pulse Avalanche Ener
g
y (Thermally Limited)
d
mJ
I
AR
Avalanche Current
c
A
E
AR
Repetitive Avalanche Ener
g
y
c
mJ
Thermal Resistance
Symbol Parameter Typ. Max. Units
R
θJC
Junction-to-Case
jk
––– 0.50 °C/W
R
θJA
Junction-to-Ambient (PCB Mount)
i
––– 40
460
See Fig. 14, 15, 22a, 22b
333
23
A
°C
300 (1.6mm from case)
Max.
103
73
410
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
-55 to + 175
± 20
2.2
IRF3610SPbF
1www.irf.com © 2014 International Rectifier Submit Datasheet Feedback March 26, 2014
IRF3610SPbF
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback March 26, 2014
2
Notes:
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by TJmax, starting TJ = 25°C, L = 0.24mH
RG = 50, IAS = 62A, VGS =10V. Part not recommended for use
above this value.
ISD 62A, di/dt 1935A/µs, VDD V(BR)DSS, TJ 175°C.
Pulse width 400µs; duty cycle 2%.
Coss eff. (TR) is a fixed capacitance that gives the same charging
time as Coss while VDS is rising from 0 to 80% VDSS.
S
D
G
Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recom-
mended footprint and soldering techniques refer to application note #AN-994.
Rθ is measured at TJ approximately 90°C.
RθJC value shown is at time zero.
Static @ T
J
= 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
V
(BR)DSS
Drain-to-Source Breakdown Volta
g
e 100 ––– ––– V
V
(BR)DSS
/
T
J
Breakdown Volta
g
e Temp. Coefficient ––– 0.10 ––– V/°C
R
DS(on)
Static Drain-to-Source On-Resistance ––– 9.3 11.6 m
V
GS(th)
Gate Threshold Volta
g
e 2.0 ––– 4.0 V
g
fs Forward Transconductance 110 ––– ––– S
R
G
Internal Gate Resistance ––– 2.2 –––
I
DSS
Drain-to-Source Leaka
e Current ––– ––– 20 µA
––– ––– 250
I
GSS
Gate-to-Source Forward Leaka
g
e ––– ––– 200 nA
Gate-to-Source Reverse Leaka
g
e ––– ––– -200
Dynamic @ T
J
= 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
Q
g
Total Gate Char
g
e ––– 100 150 nC
Q
gs
Gate-to-Source Char
g
e ––– 23 –––
Q
gd
Gate-to-Drain ("Miller") Char
g
e ––– 42 –––
Q
sync
Total Gate Char
g
e Sync. (Q
g
- Q
gd
)––– 58 –––
t
d(on)
Turn-On Delay Time ––– 15 ––– ns
t
r
Rise Time ––– 55 –––
t
d(off)
Turn-Off Delay Time ––– 77 –––
t
f
Fall Time ––– 43 –––
C
iss
Input Capacitance ––– 5380 ––– pF
C
oss
Output Capacitance ––– 690 –––
C
rss
Reverse Transfer Capacitance ––– 100 –––
C
oss
eff. (ER) Effective Output Capacitance (Energy Related) ––– 560 –––
C
oss
eff. (TR) Effective Output Capacitance (Time Related) ––– 750 –––
Diode Characteristics
Symbol Parameter Min. Typ. Max. Units
I
S
Continuous Source Current ––– ––– 103 A
(Body Diode)
I
SM
Pulsed Source Current ––– ––– 410 A
(Body Diode)
d
V
SD
Diode Forward Volta
g
e ––– ––– 1.3 V
t
rr
Reverse Recovery Time ––– 110 ––– ns T
J
= 25°C V
R
= 85V,
––– 120 ––– T
J
= 125°C I
F
= 62A
Q
rr
Reverse Recovery Char
g
e ––– 570 ––– nC T
J
= 25°C
di/d
t
=
100A/
µs
f
––– 710 ––– T
J
= 125°C
I
RRM
Reverse Recovery Current ––– -9.5 ––– A T
J
= 25°C
t
on
Forward Turn-On Time Intrinsic turn-on time is ne
g
li
g
ible (turn-on is dominated by LS+LD)
V
DS
= 25V, I
D
= 62A
I
D
= 62A
R
G
= 2.7
V
GS
= 10V
f
V
DD
= 65V
I
D
= 62A, V
DS
=0V, V
GS
= 10V
Conditions
I
D
= 62A
V
GS
= 20V
V
GS
= -20V
T
J
= 25°C, I
S
= 62A, V
GS
= 0V
f
integral reverse
p-n junction diode.
Conditions
V
GS
= 0V, I
D
= 250µA
Reference to 25°C, I
D
= 1.0mA
c
V
GS
= 10V, I
D
= 62A
f
V
DS
= V
GS
, I
D
= 250µA
V
DS
= 100V, V
GS
= 0V
V
DS
= 100V, V
GS
= 0V, T
J
= 125°C
MOSFET symbol
showing the
V
DS
=50V
Conditions
V
GS
= 10V
f
V
GS
= 0V
V
DS
= 25V
ƒ = 1.0 MHz, See Fig. 5
V
GS
= 0V, V
DS
= 0V to 80V
h
, See Fig. 11
V
GS
= 0V, V
DS
= 0V to 80V
g
IRF3610SPbF
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback March 26, 20143
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature
Fig 2. Typical Output Characteristics
Fig 6. Typical Gate Charge vs. Gate-to-Source VoltageFig 5. Typical Capacitance vs. Drain-to-Source Voltage
0.1 110 100 1000
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
6.0V
5.0V
4.7V
4.5V
4.2V
BOTTOM 4.0V
60µs PULSE WIDTH
Tj = 25°C
4.0V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
4.0V
60µs PULSE WIDTH
Tj = 175°C
VGS
TOP 15V
10V
6.0V
5.0V
4.7V
4.5V
4.2V
BOTTOM 4.0V
2 3 4 5 6 7 8 9 10 11
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
TJ = 25°C
TJ = 175°C
VDS = 50V
60µs PULSE WIDTH
-60 -40 -20 020 40 60 80 100120140160180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
3.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 62A
VGS = 10V
110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
100000
C, Capacitance (pF)
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0 20 40 60 80 100 120 140
QG, Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
VGS, Gate-to-Source Voltage (V)
VDS= 80V
VDS= 50V
VDS= 20V
ID= 62A
IRF3610SPbF
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback March 26, 2014
4
Fig 8. Maximum Safe Operating Area
Fig 10. Drain-to-Source Breakdown Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 11. Typical COSS Stored Energy
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
0.0 0.5 1.0 1.5 2.0
VSD, Source-to-Drain Voltage (V)
1.0
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
20
40
60
80
100
120
ID, Drain Current (A)
-60 -40 -20 020 40 60 80 100120140160180
TJ , Temperature ( °C )
95
100
105
110
115
120
125
V(BR)DSS, Drain-to-Source Breakdown Voltage (V)
ID = 1.0mA
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
400
800
1200
1600
2000
EAS , Single Pulse Avalanche Energy (mJ)
ID
TOP 13A
27A
BOTTOM 62A
0 20 40 60 80 100 120
VDS, Drain-to-Source Voltage (V)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
Energy (µJ)
1 10 100 1000
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1ms
10ms
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µs
DC
3ms
IRF3610SPbF
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback March 26, 20145
Fig 13. Maximum Effective Transient Thermal Impedance Junction-to-Case
Fig 14. Typical Avalanche Current vs. Pulse Width
Fig 15. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 13, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
100
200
300
400
500
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 62A
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
Thermal Response ( Z thJC ) °C/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
0.1
1
10
100
1000
Avalanche Current (A)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τj = 25°C and
Tstart = 150°C.
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart =25°C (Single Pulse)
IRF3610SPbF
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback March 26, 2014
6
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
Fig. 19 - Typical Stored Charge vs. dif/dtFig. 18 - Typical Recovery Current vs. dif/dt
Fig. 20 - Typical Stored Charge vs. dif/dt
-100 -50 050 100 150 200
TJ , Temperature ( °C )
1.5
2.0
2.5
3.0
3.5
4.0
4.5
VGS(th), Gate threshold Voltage (V)
ID = 250µA
ID = 1.0mA
ID = 1.0A
100 200 300 400 500 600 700 800 900 1000
diF /dt (A/µs)
0
10
20
30
40
50
60
IRRM (A)
IF = 62A
VR = 85V
TJ = 25°C
TJ = 125°C
100 200 300 400 500 600 700 800 900 1000
diF /dt (A/µs)
0
10
20
30
40
50
60
IRRM (A)
IF = 41A
VR = 85V
TJ = 25°C
TJ = 125°C
100 200 300 400 500 600 700 800 900 1000
diF /dt (A/µs)
500
1000
1500
2000
2500
3000
3500
4000
QRR (nC)
IF = 41A
VR = 85V
TJ = 25°C
TJ = 125°C
100 200 300 400 500 600 700 800 900 1000
diF /dt (A/µs)
500
1000
1500
2000
2500
3000
3500
4000
QRR (nC)
IF = 62A
VR = 85V
TJ = 25°C
TJ = 125°C
IRF3610SPbF
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback March 26, 20147
Fig 23a. Switching Time Test Circuit Fig 23b. Switching Time Waveforms
Fig 22b. Unclamped Inductive Waveforms
Fig 22a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
Inductor Current
D.U.T. VDS
ID
IG
3mA
VGS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
VDS
90%
10%
VGS
t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
VGS
IRF3610SPbF
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback March 26, 2014
8
D2Pak (TO-263AB) Part Marking Information
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
IRF3610SPbF
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback March 26, 20149
D2Pak (TO-263AB) Tape & Reel Information
Dimensions are shown in millimeters (inches)
3
4
4
TRR
FEED DIRECTION
1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
TRL
FEED DIRECTION
10.90 (.429)
10.70 (.421)
16.10 (.634)
15.90 (.626)
1.75 (.069)
1.25 (.049)
11.60 (.457)
11.40 (.449) 15.42 (.609)
15.22 (.601)
4.72 (.136)
4.52 (.178)
24.30 (.957)
23.90 (.941)
0.368 (.0145)
0.342 (.0135)
1.60 (.063)
1.50 (.059)
13.50 (.532)
12.80 (.504)
330.00
(14.173)
MAX.
27.40 (1.079)
23.90 (.941)
60.00 (2.362)
MIN.
30.40 (1.197)
MAX.
26.40 (1.039)
24.40 (.961)
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/