IRF2804S-7PPbF
HEXFET® Power MOSFET
VDSS = 40V
RDS(on) = 1.6m
ID = 160A
07/22/10
www.irf.com 1
HEXFET® is a registered trademark of International Rectifier.
Description
This HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating. These features combine
to make this design an extremely efficient and
reliable device for use in a wide variety of
applications.
S
D
G
Features
lAdvanced Process Technology
lUltra Low On-Resistance
l175°C Operating Temperature
lFast Switching
lRepetitive Avalanche Allowed up to Tjmax
lLead-Free
Absolute Maximum Ratings
Parameter Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) A
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (See Fig. 9)
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited)
IDM Pulsed Drain Current
c
PD @TC = 25°C Maximum Power Dissipation W
Linear Derating Factor W/°C
VGS Gate-to-Source Voltage V
EAS Single Pulse Avalanche Energy (Thermally Limited)
d
mJ
EAS (tested) Single Pulse Avalanche Energy Tested Value
h
IAR Avalanche Current
c
A
EAR Repetitive Avalanche Energy
g
mJ
TJ Operating Junction and °C
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw
Thermal Resistance
Parameter Typ. Max. Units
RθJC Junction-to-Case
j
––– 0.50 °C/W
RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––
RθJA Junction-to-Ambient
j
––– 62
RθJA Junction-to-Ambient (PCB Mount, steady state)
ij
––– 40
Max.
320
230
1360
160
10 lbf•in (1.1N•m)
330
2.2
± 20
630
1050
See Fig.12a,12b,15,16
300 (1.6mm from case )
-55 to + 175
S (Pin 2, 3 ,5,6,7)
G (Pin 1)
PD - 97057A
IRF2804S-7PPbF
2www.irf.com
S
D
G
S
D
G
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Limited by TJmax, starting TJ = 25°C,
L=0.049mH, RG = 25, IAS = 160A, VGS =10V.
Part not recommended for use above this value.
Pulse width 1.0ms; duty cycle 2%.
Coss eff. is a fixed capacitance that gives the same
charging time as Coss while VDS is rising from 0 to
80% VDSS.
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical
repetitive avalanche performance.
This value determined from sample failure population.
100% tested to this value in production.
This is applied to D2Pak, when mounted on 1" square PCB
( FR-4 or G-10 Material ). For recommended footprint and
soldering techniques refer to application note #AN-994.
Rθ is measured at TJ of approximately 90°C.
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
V(BR)DSS Drain-to-Source Breakdown Voltage 40 ––– –– V
∆ΒVDSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.028 –– VC
RDS(on) SMD Static Drain-to-Source On-Resistance –– 1.2 1.6 m
VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V
gfs Forward Transconductance 220 ––– ––– S
IDSS Drain-to-Source Leakage Current ––– –– 20 µA
––– –– 250
IGSS Gate-to-Source Forward Leakage ––– –– 200 nA
Gate-to-Source Reverse Leakage ––– –– -200
QgTotal Gate Charge –– 170 260 nC
Qgs Gate-to-Source Charge ––– 63 –––
Qgd Gate-to-Drain ("Miller") Charge ––– 71 –––
td(on) Turn-On Delay Time ––– 17 –– ns
trRise Time ––– 150 ––
td(off) Turn-Off Delay Time –– 110 ––
tfFall Time –– 105 ––
LDInternal Drain Inductance ––– 4.5 –– nH Between lead,
6mm (0.25in.)
LSInternal Source Inductance ––– 7.5 ––– from package
and center of die contact
Ciss Input Capacitance ––– 6930 –– pF
Coss Output Capacitance ––– 1750 ––
Crss Reverse Transfer Capacitance ––– 970 ––
Coss Output Capacitance ––– 5740 ––
Coss Output Capacitance ––– 1570 ––
Coss eff. Effective Output Capacitance ––– 2340 ––
Diode Characteristics
Parameter Min. Typ. Max. Units
ISContinuous Source Current ––– –– 320
(Body Diode) A
ISM Pulsed Source Current ––– –– 1360
(Body Diode)
c
VSD Diode Forward Voltage ––– –– 1.3 V
trr Reverse Recovery Time 4365ns
Qrr Reverse Recovery Charge ––– 48 72 nC
VDS = VGS, ID = 250µA
VDS = 40V, VGS = 0V
VDS = 40V, VGS = 0V, TJ = 125°C
Conditions
VGS = 0V, ID = 25A
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 160A
e
TJ = 25°C, IF = 160A, VDD = 20V
di/dt = 100As
e
TJ = 25°C, IS = 160A, VGS = 0V
e
showing the
integral reverse
p-n junction diode.
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
VGS = 10V
d
MOSFET symbol
VGS = 0V
VDS = 25V
VGS = 0V, VDS = 32V, ƒ = 1.0MHz
Conditions
VGS = 0V, VDS = 0V to 32V
ƒ = 1.0MHz, See Fig. 5
RG = 2.6
ID = 160A
VDS = 10V, ID = 160A
VDD = 20V
ID = 160A
VGS = 20V
VGS = -20V
VDS = 32V
VGS = 10V
e
IRF2804S-7PPbF
www.irf.com 3
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance
vs. Drain Current
0.1 110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
ID, Drain-to-Source Current (A)
60µs PULSE WIDTH
Tj = 25°C
4.5V
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
2.0 3.0 4.0 5.0 6.0 7.0 8.0
VGS, Gate-to-Source Voltage (V)
0.1
1.0
10.0
100.0
1000.0
ID, Drain-to-Source Current
(Α)
VDS = 20V
60µs PULSE WIDTH
TJ = 25°C
TJ = 175°C
0 20 40 60 80 100 120 140
ID, Drain-to-Source Current (A)
0
40
80
120
160
200
240
Gfs, Forward Transconductance (S)
TJ = 25°C
TJ = 175°C
VDS = 10V
380µs PULSE WIDTH
0.1 110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
ID, Drain-to-Source Current (A)
60µs PULSE WIDTH
Tj = 175°C
4.5V
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
IRF2804S-7PPbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
110 100
VDS, Drain-to-Source Voltage (V)
0
2000
4000
6000
8000
10000
12000
14000
C, Capacitance (pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0.0 0.4 0.8 1.2 1.6 2.0 2.4
VSD, Source-to-Drain Voltage (V)
0.1
1.0
10.0
100.0
1000.0
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
0 50 100 150 200 250 300
QG Total Gate Charge (nC)
0
4
8
12
16
20
VGS, Gate-to-Source Voltage (V)
VDS= 32V
VDS= 20V
ID= 160A
0 1 10 100 1000
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
DC
IRF2804S-7PPbF
www.irf.com 5
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
Thermal Response ( Z
thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Normalized On-Resistance
vs. Temperature
-60 -40 -20 020 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 160A
VGS = 10V
Ri (°C/W) τi (sec)
0.1951 0.000743
0.3050 0.008219
τJ
τJ
τ1
τ1
τ2
τ2
R1
R1R2
R2
τ
τC
Ci i/Ri
Ci= τi/Ri
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
50
100
150
200
250
300
350
ID , Drain Current (A)
LIMITED BY PACKAGE
IRF2804S-7PPbF
6www.irf.com
QG
QGS QGD
VG
Charge
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
Fig 14. Threshold Voltage vs. Temperature
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
1K
VCC
DUT
0
L
25 50 75 100 125 150 175
Starting TJ, Junction Temperature (°C)
0
500
1000
1500
2000
2500
EAS, Single Pulse Avalanche Energy (mJ)
I D
TOP 21A
33A
BOTTOM 160A
-75 -50 -25 025 50 75 100 125 150 175
TJ , Temperature ( °C )
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
VGS(th) Gate threshold Voltage (V)
ID = 1.0A
ID = 1.0mA
ID = 250µA
IRF2804S-7PPbF
www.irf.com 7
Fig 15. Typical Avalanche Current vs.Pulsewidth
Fig 16. Maximum Avalanche Energy
vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
0.1
1
10
100
1000
10000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
0.01
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
200
400
600
800
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1% Duty Cycle
ID = 160A
IRF2804S-7PPbF
8www.irf.com
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
VGS=10V
VDD
ISD
Driver Gate Drive
D.U.T. ISD Waveform
D.U.T. VDS Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
VDS
90%
10%
VGS
t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
Fig 18a. Switching Time Test Circuit
Fig 18b. Switching Time Waveforms
IRF2804S-7PPbF
www.irf.com 9
D2Pak - 7 Pin Package Outline
Dimensions are shown in millimeters (inches)
D2Pak - 7 Pin Part Marking Information
14
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/ auirf2804s-7p.pdf
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
IRF2804S-7PPbF
10 www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 07/2010
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
D2Pak - 7 Pin Tape and Reel
IRF2804STRL-7P
IRF2804STRL-7P
IRF2804STRL-7P