This is information on a product in full production.
October 2018 DS9118 Rev 14 1/149
STM32F303xB STM32F303xC
Arm®-based Cortex®-M4 32b MCU+FPU, up to 256KB Flash+
48KB SRAM, 4 ADCs, 2 DAC ch., 7 comp, 4 PGA, timers, 2.0-3.6 V
Datasheet - production data
Features
Core: Arm® Cortex®-M4 32-bit CPU with FPU
(72 MHz max), single-cycle multiplication and
HW division, 90 DMIPS (from CCM), DSP
instruction and MPU (memory protection unit)
Operating conditions:
–V
DD, VDDA voltage range: 2.0 V to 3.6 V
Memories
128 to 256 Kbytes of Flash memory
Up to 40 Kbytes of SRAM, with HW parity
check implemented on the first 16 Kbytes.
Routine booster: 8 Kbytes of SRAM on
instruction and data bus, with HW parity
check (CCM)
CRC calculation unit
Reset and supply management
Power-on/power-down reset (POR/PDR)
Programmable voltage detector (PVD)
Low-power modes: Sleep, Stop and
Standby
–V
BAT supply for RTC and backup registers
Clock management
–4
to 32 MHz crystal oscillator
32 kHz oscillator for RTC with calibration
Internal 8 MHz RC with x 16 PLL option
Internal 40 kHz oscillator
Up to 87 fast I/Os
All mappable on external interrupt vectors
Several 5 V-tolerant
Interconnect matrix
12-channel DMA controller
Four ADCs 0.20 µS (up to 39 channels) with
selectable resolution of 12/10/8/6 bits, 0 to
3.6 V conversion range, single
ended/differential input, separate analog
supply from 2 to 3.6 V
Two 12-bit DAC channels with analog supply
from 2.4 to 3.6 V
Seven fast rail-to-rail analog comparators with
analog supply from 2 to 3.6 V
Four operational amplifiers that can be used in
PGA mode, all terminals accessible with
analog supply from 2.4 to 3.6 V
Up to 24 capacitive sensing channels supporting
touchkey, linear and rotary touch sensors
Up to 13 timers
One 32-bit timer and two 16-bit timers with
up to 4 IC/OC/PWM or pulse counter and
quadrature (incremental) encoder input
Two 16-bit 6-channel advanced-control
timers, with up to 6 PWM channels,
deadtime generation and emergency stop
One 16-bit timer with 2 IC/OCs, 1
OCN/PWM, deadtime generation and
emergency stop
Two 16-bit timers with IC/OC/OCN/PWM,
deadtime generation and emergency stop
Two watchdog timers (independent,
window)
SysTick timer: 24-bit downcounter
Two 16-bit basic timers to drive the DAC
Calendar RTC with Alarm, periodic wakeup
from Stop/Standby
Communication interfaces
CAN interface (2.0B Active)
–Two I
2C Fast mode plus (1 Mbit/s) with
20 mA current sink, SMBus/PMBus,
wakeup from STOP
LQFP64 (10 × 10 mm)
LQFP100 (14 × 14 mm)
LQFP48 (7 × 7 mm)
WLCSP100 (0.4 mm pitch)
www.st.com
STM32F303xB STM32F303xC
2/149 DS9118 Rev 14
Up to five USART/UARTs (ISO 7816
interface, LIN, IrDA, modem control)
Up to three SPIs, two with multiplexed
half/full duplex I2S interface, 4 to 16
programmable bit frames
USB 2.0 full speed interface
Infrared transmitter
Serial wire debug, Cortex®-M4 with FPU ETM,
JTAG
96-bit unique ID
Table 1. Device summary
Reference Part number
STM32F303xB STM32F303CB, STM32F303RB, STM32F303VB
STM32F303xC STM32F303CC, STM32F303RC, STM32F303VC
DS9118 Rev 14 3/149
STM32F303xB STM32F303xC Contents
5
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Arm® Cortex®-M4 core with FPU with embedded Flash and SRAM . . . . 14
3.2 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.2 Power supply supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.8 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 20
3.13 Fast analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.13.4 OPAMP reference voltage (VREFOPAMP) . . . . . . . . . . . . . . . . . . . . . . 22
3.14 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.15 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.16 Fast comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.17 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.17.1 Advanced timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Contents STM32F303xB STM32F303xC
4/149 DS9118 Rev 14
3.17.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17) . . . 24
3.17.3 Basic timers (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.17.5 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.17.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.18 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 25
3.19 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.20 Universal synchronous/asynchronous receiver transmitter (USART) . . . 27
3.21 Universal asynchronous receiver transmitter (UART) . . . . . . . . . . . . . . . 27
3.22 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) . 28
3.23 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.24 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.25 Infrared Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.26 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.27 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.27.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.27.2 Embedded trace macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 61
6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 61
DS9118 Rev 14 5/149
STM32F303xB STM32F303xC Contents
5
6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3.6 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.16 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.17 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.18 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.19 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.20 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3.21 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.23 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.1 LQFP100 – 14 x 14 mm, low-profile quad flat package
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2 LQFP64 – 10 x 10 mm, low-profile quad flat package
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.3 LQFP48 – 7 x 7 mm, low-profile quad flat package
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.4 WLCSP100 - 0.4 mm pitch wafer level chip scale package information 135
7.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.5.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.5.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 140
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
List of tables STM32F303xB STM32F303xC
6/149 DS9118 Rev 14
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. STM32F303xB/STM32F303xC family device features and peripheral counts . . . . . . . . . . 12
Table 3. External analog supply values for analog peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 4. STM32F303xB/STM32F303xC peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . 17
Table 5. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 6. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 7. STM32F303xB/STM32F303xC I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 8. USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 9. STM32F303xB/STM32F303xC SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 10. Capacitive sensing GPIOs available on STM32F303xB/STM32F303xC devices . . . . . . . 30
Table 11. No. of capacitive sensing channels available on STM32F303xB/STM32F303xC devices. 30
Table 12. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 13. STM32F303xB/STM32F303xC pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 14. Alternate functions for port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 15. Alternate functions for port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 16. Alternate functions for port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 17. Alternate functions for port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 18. Alternate functions for port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 19. Alternate functions for port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 20. STM32F303xB/STM32F303xC memory map, peripheral register boundary addresses . . 54
Table 21. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 22. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 23. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 24. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 25. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 26. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 27. Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 28. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 29. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 30. Typical and maximum current consumption from VDD supply at VDD = 3.6V . . . . . . . . . . . 64
Table 31. Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . . 65
Table 32. Typical and maximum VDD consumption in Stop and Standby modes. . . . . . . . . . . . . . . . 66
Table 33. Typical and maximum VDDA consumption in Stop and Standby modes. . . . . . . . . . . . . . . 66
Table 34. Typical and maximum current consumption from VBAT supply. . . . . . . . . . . . . . . . . . . . . . 67
Table 35. Typical current consumption in Run mode, code with data processing running from Flash68
Table 36. Typical current consumption in Sleep mode, code running from Flash or RAM. . . . . . . . . 69
Table 37. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 38. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 39. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 40. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 41. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 42. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 43. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 44. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 45. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 46. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 47. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 48. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
DS9118 Rev 14 7/149
STM32F303xB STM32F303xC List of tables
7
Table 49. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 50. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 51. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 52. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 53. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 54. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 55. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 56. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 57. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 58. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 59. IWDG min/max timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 60. WWDG min-max timeout value @72 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 61. I2C timings specification (see I2C specification, rev.03, June 2007) . . . . . . . . . . . . . . . . . 95
Table 62. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 63. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 64. I2S characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 65. USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 66. USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 67. USB: Full-speed electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 68. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 69. Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 70. ADC accuracy - limited test conditions, 100-pin packages . . . . . . . . . . . . . . . . . . . . . . . 109
Table 71. ADC accuracy, 100-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 72. ADC accuracy - limited test conditions, 64-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 73. ADC accuracy, 64-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 74. ADC accuracy at 1MSPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 75. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 76. Comparator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 77. Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 78. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 79. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 80. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 81. LQPF100 – 14 x 14 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . 126
Table 82. LQFP64 – 10 x 10 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . . 129
Table 83. LQFP48 – 7 x 7 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . . . . 132
Table 84. WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 85. WLCSP100 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . 137
Table 86. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 87. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 88. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
List of figures STM32F303xB STM32F303xC
8/149 DS9118 Rev 14
List of figures
Figure 1. STM32F303xB/STM32F303xC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 3. Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 4. STM32F303xB/STM32F303xC LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 5. STM32F303xB/STM32F303xC LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 6. STM32F303xB/STM32F303xC LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 7. STM32F303xB/STM32F303xC WLCSP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 8. STM32F303xB/STM32F303xC memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 9. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 10. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 11. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 12. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 13. Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’) . . . . . . . . . . . 67
Figure 14. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 15. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 16. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 17. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 18. HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 81
Figure 19. TC and TTa I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 20. TC and TTa I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 21. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . . 89
Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . 89
Figure 23. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 24. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 25. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 26. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 27. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 28. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 29. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 30. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 31. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 32. ADC typical current consumption on VDDA pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 33. ADC typical current consumption on VREF+ pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 34. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 35. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 36. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 37. Maximum VREFINT scaler startup time from power down . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 38. OPAMP voltage noise versus frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 39. LQFP100 – 14 x 14 mm, low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . 126
Figure 40. LQFP100 – 14 x 14 mm, low-profile quad flat package recommended footprint . . . . . . . 127
Figure 41. LQFP100 – 14 x 14 mm, low-profile quad flat package top view example . . . . . . . . . . . . 128
Figure 42. LQFP64 – 10 x 10 mm, low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . 129
Figure 43. LQFP64 – 10 x 10 mm, low-profile quad flat package recommended footprint . . . . . . . . 130
Figure 44. LQFP64 – 10 x 10 mm, low-profile quad flat package top view example . . . . . . . . . . . . . 131
Figure 45. LQFP48 – 7 x 7 mm, low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . 132
Figure 46. LQFP48 - 7 x 7 mm, low-profile quad flat package recommended footprint. . . . . . . . . . . 133
Figure 47. LQFP48 - 7 x 7 mm, low-profile quad flat package top view example . . . . . . . . . . . . . . . 134
Figure 48. WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale
DS9118 Rev 14 9/149
STM32F303xB STM32F303xC List of figures
9
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 49. WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure 50. WLCSP100, 0.4 mm pitch wafer level chip scale package
top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Introduction STM32F303xB STM32F303xC
10/149 DS9118 Rev 14
1 Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32F303xB/STM32F303xC microcontrollers.
This STM32F303xB/STM32F303xC datasheet should be read in conjunction with the
STM32F303x, STM32F358xC and STM32F328x4/6/8 reference manual (RM0316). The
reference manual is available from the STMicroelectronics website www.st.com.
For information on the Arm®(a) Cortex®-M4 core with FPU, refer to:
Cortex®-M4 with FPU Technical Reference Manual, available from the
http://www.arm.com website.
STM32F3xxx and STM32F4xxx Cortex®-M4 programming manual (PM0214)
available from our website www.st.com.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS9118 Rev 14 11/149
STM32F303xB STM32F303xC Description
55
2 Description
The STM32F303xB/STM32F303xC family is based on the high-performance Arm® Cortex®-
M4 32-bit RISC core with FPU operating at a frequency of up to 72 MHz, and embedding a
floating point unit (FPU), a memory protection unit (MPU) and an embedded trace macrocell
(ETM). The family incorporates high-speed embedded memories (up to 256 Kbytes of Flash
memory, up to 40 Kbytes of SRAM) and an extensive range of enhanced I/Os and
peripherals connected to two APB buses.
The devices offer up to four fast 12-bit ADCs (5 Msps), seven comparators, four operational
amplifiers, up to two DAC channels, a low-power RTC, up to five general-purpose 16-bit
timers, one general-purpose 32-bit timer, and two timers dedicated to motor control. They
also feature standard and advanced communication interfaces: up to two I2Cs, up to three
SPIs (two SPIs are with multiplexed full-duplex I2Ss), three USARTs, up to two UARTs, CAN
and USB. To achieve audio class accuracy, the I2S peripherals can be clocked via an
external PLL.
The STM32F303xB/STM32F303xC family operates in the -40 to +85 °C and -40 to +105 °C
temperature ranges from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving
mode allows the design of low-power applications.
The STM32F303xB/STM32F303xC family offers devices in four packages ranging from
48 pins to 100 pins.
The set of included peripherals changes with the device chosen.
Description STM32F303xB STM32F303xC
12/149 DS9118 Rev 14
Table 2. STM32F303xB/STM32F303xC family device features and peripheral counts
Peripheral STM32F303Cx STM32F303Rx STM32F303Vx
Flash (Kbytes) 128 256 128 256 128 256
SRAM (Kbytes) on data bus 32 40 32 40 32 40
CCM (Core Coupled Memory)
RAM (Kbytes) 8
Timers
Advanced
control 2 (16-bit)
General purpose 5 (16-bit)
1 (32-bit)
Basic 2 (16-bit)
PWM channels (all) (1)
1. This total number considers also the PWMs generated on the complementary output channels
31 33
PWM channels (except
complementary) 22 24
Communication
interfaces
SPI (I2S)(2)
2. The SPI interfaces can work in an exclusive way in either the SPI mode or the I2S audio mode.
3(2)
I2C2
USART 3
UART 0 2
CAN 1
USB 1
GPIOs
Normal I/Os
(TC, TTa) 20 27 45 in LQFP100
37 in WLCSP100
5-volt tolerant
I/Os (FT, FTf) 17 25 42 in LQFP100
40 in WLCSP100
DMA channels 12
Capacitive sensing channels 17 18 24
12-bit ADCs
Number of channels
4
15 22 39 in LQFP100
32 in WLCSP100
12-bit DAC channels 2
Analog comparator 7
Operational amplifiers 4
CPU frequency 72 MHz
Operating voltage 2.0 to 3.6 V
Operating temperature Ambient operating temperature: - 40 to 85 °C / - 40 to 105 °C
Junction temperature: - 40 to 125 °C
Packages LQFP48 LQFP64 LQFP100
WLCSP100
DS9118 Rev 14 13/149
STM32F303xB STM32F303xC Description
55
Figure 1. STM32F303xB/STM32F303xC block diagram
1. AF: alternate function on I/O pins.
MS18960V4
Touch Sensing
Controller
TIMER 16
2 Channels,1 Comp
Channel, BRK as AF
TIMER 17
TIMER 1 / PWM
TIMER 8 / PWM
4 Channels,
4 Comp channels,
ETR, BRK as AF
SPI1
MOSI, MISO,
SCK,NSS as AF
USART1
RX, TX, CTS, RTS,
SmartCard as AF
WinWATCHDOG
BusMatrix
MPU/FPU
Cortex M4 CPU
F
max
: 72 MHz
NVIC
GP DMA1
7 channels
CCM RAM
8KB
Flash
interface
OBL
FLASH 256 KB
64 bits
JTRST
JTDI
JTCK/SWCLK
JTMS/SWDIO
JTDO
As AF
Power
Voltage reg.
3.3 V to 1.8V
V
DD18
Supply
Supervision
POR /PDR
PVD
POR
Reset
Int.
V
DDIO
= 2 to 3.6 V
V
SS
NRESET
V
DDA
V
SSA
Ind. WDG32K
Standby
interface
PLL
@V
DDIO
@V
DDA
XTAL OSC
4 -32 MHz
Reset &
clock
control
AHBPCLK
APBP1CLK
APBP2CLK
AHB2
APB2
AHB2
APB1
CRC
APB1 F
max
= 36 MHz
APB2 f
max
= 72 MHz
GPIO PORT A
GPIO PORT B
GPIO PORT C
GPIO PORT D
GPIO PORT E
OSC_IN
OSC_OUT
SPI3/I2S
SCL, SDA, SMBA as AF
USART2
SCL, SDA, SMBA as AF
USART3
RC LS
TIMER6
TIMER 4
SPI2/I2S
12bit DAC1IF
@V
DDA
TIMER2
(32-bit/PWM)
PA[15:0]
PB[15:0]
PC[15:0]
MOSI/SD, MISO/ext_SD,
SCK/CK, NSS/WS, MCLK as AF
4 Channels, ETR as AF
USB_DP, USB_DM
DAC1_CH1 as AF
HCLK
FCLK
USARTCLK
RC HS 8MHz
SRAM
40 KB
ETM
Trace/Trig
SWJTAG
TPIU
Ibus
TRADECLK
TRACED[0-3]
as AF
Dbus
System
GP DMA2
5 channels
12-bit ADC1
12-bit ADC2
IF
Temp. sensor
V
REF+
V
REF-
TIMER 15
EXT.IT
WKUP
XX AF
1 Channel, 1 Comp
Channel, BRK as AF
1 Channel, 1 Comp
Channel, BRK as AF
4 Channels,
4 Comp channels,
ETR, BRK as AF
GPIO PORT F
PD[15:0]
PE[15:0]
TIMER7
USB SRAM 512B
PF[7:0]
12-bit ADC3
IF
12-bit ADC4
I2CCLK
ADC SAR
1/2/3/4 CLK
@V
DDIO
@V
DDA
@VSW
XTAL 32kHz OSC32_IN
OSC32_OUT
V
BAT
= 1.65V to 3.6V
RTC
AWU
Backup
Reg
(64Byte)
Backup
interface
ANTI-TAMP
TIMER 3
UART4
UART5
I2C1
I2C2
bx CAN &
512B SRAM
USB 2.0 FS
DAC1_CH2 as AF
OpAmp1
OpAmp2
OpAmp3
OpAmp4
@V
DDA
INxx / OUTxx
INxx / OUTxx
INxx / OUTxx
INxx / OUTxx
INTERFACE
SYSCFG CTL
GP Comparator 7
p
GP Comparator...
GP Comparator 1
CAN TX, CAN RX
4 Channels, ETR as AF
4 Channels, ETR as AF
MOSI/SD, MISO/ext_SD,
SCK/CK, NSS/WS, MCLK as AF
RX, TX, CTS, RTS, as AF
RX, TX, CTS, RTS, as AF
RX, TX as AF
RX, TX as AF
@V
DDA
Xx Ins, 7 OUTs as AF
XX Groups of
4 channels as AF
AHB2
AHB3
Functional overview STM32F303xB STM32F303xC
14/149 DS9118 Rev 14
3 Functional overview
3.1 Arm® Cortex®-M4 core with FPU with embedded Flash and
SRAM
The Arm Cortex-M4 processor with FPU is the latest generation of Arm processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The Arm Cortex-M4 32-bit RISC processor with FPU features exceptional code-efficiency,
delivering the high-performance expected from an Arm core in the memory size usually
associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage
development tools, while avoiding saturation.
With its embedded Arm core, the STM32F303xB/STM32F303xC family is compatible with
all Arm tools and software.
Figure 1 shows the general block diagram of the STM32F303xB/STM32F303xC family
devices.
3.2 Memory protection unit (MPU)
The memory protection unit (MPU) is used to separate the processing of tasks from the data
protection. The MPU can manage up to 8 protection areas that can all be further divided up
into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes
of addressable memory.
The memory protection unit is especially helpful for applications where some critical or
certified code has to be protected against the misbehavior of other tasks. It is usually
managed by an RTOS (real-time operating system). If a program accesses a memory
location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS
environment, the kernel can dynamically update the MPU area setting, based on the
process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
3.3 Embedded Flash memory
All STM32F303xB/STM32F303xC devices feature up to 256 Kbytes of embedded Flash
memory available for storing programs and data. The Flash memory access time is adjusted
to the CPU clock frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz
and 2 wait states above).
DS9118 Rev 14 15/149
STM32F303xB STM32F303xC Functional overview
55
3.4 Embedded SRAM
STM32F303xB/STM32F303xC devices feature up to 48 Kbytes of embedded SRAM with
hardware parity check. The memory can be accessed in read/write at CPU clock speed with
0 wait states, allowing the CPU to achieve 90 Dhrystone Mips at 72 MHz (when running
code from the CCM (Core Coupled Memory) RAM).
8 Kbytes of CCM RAM mapped on both instruction and data bus, used to execute
critical routines or to access data (parity check on all of CCM RAM).
40 Kbytes of SRAM mapped on the data bus (parity check on first 16 Kbytes of SRAM).
3.5 Boot modes
At startup, Boot0 pin and Boot1 option bit are used to select one of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
The boot loader is located in the system memory. It is used to reprogram the Flash memory
by using USART1 (PA9/PA10), USART2 (PD5/PD6) or USB (PA11/PA12) through DFU
(device firmware upgrade).
3.6 Cyclic redundancy check (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at
linktime and stored at a given memory location.
Functional overview STM32F303xB STM32F303xC
16/149 DS9118 Rev 14
3.7 Power management
3.7.1 Power supply schemes
VSS, VDD = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. It is
provided externally through VDD pins.
VSSA, VDDA = 2.0 to 3.6 V: external analog power supply for ADC, DACs, comparators
operational amplifiers, reset blocks, RCs and PLL. The minimum voltage to be applied
to VDDA differs from one analog peripheral to another. Table 3 provides the summary of
the VDDA ranges for analog peripherals. The VDDA voltage level must be always
greater or equal to the VDD voltage level and must be provided first.
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
3.7.2 Power supply supervision
The device has an integrated power-on reset (POR) and power-down reset (PDR) circuits.
They are always active, and ensure proper operation above a threshold of 2 V. The device
remains in reset mode when the monitored supply voltage is below a specified threshold,
VPOR/PDR, without the need for an external reset circuit.
The POR monitors only the VDD supply voltage. During the startup phase it is required
that VDDA should arrive first and be greater than or equal to VDD.
The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce
the power consumption if the application design ensures that VDDA is higher than or
equal to VDD.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD power supply and compares it to the VPVD threshold. An interrupt can be generated
when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD
threshold. The interrupt service routine can then generate a warning message and/or put
the MCU into a safe state. The PVD is enabled by software.
3.7.3 Voltage regulator
The regulator has three operation modes: main (MR), low-power (LPR), and power-down.
The MR mode is used in the nominal regulation mode (Run)
The LPR mode is used in Stop mode.
The power-down mode is used in Standby mode: the regulator output is in high
impedance, and the kernel circuitry is powered down thus inducing zero consumption.
The voltage regulator is always enabled after reset. It is disabled in Standby mode.
Table 3. External analog supply values for analog peripherals
Analog peripheral Minimum VDDA supply Maximum VDDA supply
ADC / COMP 2.0 V 3.6 V
DAC / OPAMP 2.4 V 3.6V
DS9118 Rev 14 17/149
STM32F303xB STM32F303xC Functional overview
55
3.7.4 Low-power modes
The STM32F303xB/STM32F303xC supports three low-power modes to achieve the best
compromise between low-power consumption, short startup time and available wakeup
sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line
source can be one of the 16 external lines, the PVD output, the USB wakeup, the RTC
alarm, COMPx, I2Cx or U(S)ARTx.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, SRAM and register contents are lost except for registers in the Backup
domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a
rising edge on the WKUP pin or an RTC alarm occurs.
Note: The RTC, the IWDG and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
3.8 Interconnect matrix
Several peripherals have direct connections between them. This allows autonomous
communication between peripherals, saving CPU resources thus power supply
consumption. In addition, these hardware connections allow fast and predictable latency.
Table 4. STM32F303xB/STM32F303xC peripheral interconnect matrix
Interconnect source Interconnect
destination Interconnect action
TIMx
TIMx Timers synchronization or chaining
ADCx
DAC1 Conversion triggers
DMA Memory to memory transfer trigger
Compx Comparator output blanking
COMPx TIMx Timer input: OCREF_CLR input, input capture
ADCx TIMx Timer triggered by analog watchdog
Functional overview STM32F303xB STM32F303xC
18/149 DS9118 Rev 14
Note: For more details about the interconnect actions, please refer to the corresponding sections
in the reference manual (RM0316).
3.9 Clocks and startup
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is
selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example with
failure of an indirectly used external oscillator).
Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and
the low speed APB (APB1) domains. The maximum frequency of the AHB and the high
speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed
APB domain is 36 MHz.
GPIO
RTCCLK
HSE/32
MC0
TIM16 Clock source used as input channel for HSI and
LSI calibration
CSS
CPU (hard fault)
COMPx
PVD
GPIO
TIM1, TIM8,
TIM15, 16, 17 Timer break
GPIO
TIMx External trigger, timer break
ADCx
DAC1 Conversion external trigger
DAC1 COMPx Comparator inverting input
Table 4. STM32F303xB/STM32F303xC peripheral interconnect matrix (continued)
Interconnect source Interconnect
destination Interconnect action
DS9118 Rev 14 19/149
STM32F303xB STM32F303xC Functional overview
55
Figure 2. Clock tree
/32
4-32 MHz
HSE OSC
OSC_IN
OSC_OUT
OSC32_IN
OSC32_OUT
8 MHz
HSI RC
IWDGCLK
to IWDG
PLL
x2,x3,..
x16
PLLMUL
AHB APB1
prescaler
/1,2,4,8,16
HCLK
PLLCLK
to AHB bus, core,
memory and DMA
LSE
LSI
HSI
HSI
HSE
to RTC
PLLSRC SW /8
SYSCLK
RTCCLK
RTCSEL[1:0]
to TIM 2,3,4,6,7
If (APB1 prescaler
=1) x1 else x2
FLITFCLK
to Flash programming interface
to I2Cx (x = 1,2)
to U(S)ARTx (x = 2..5)
LSE
HSI
SYSCLK
/2
PCLK1
SYSCLK
HSI
PCLK1
MS19989V5
to I2Sx (x = 2,3)
USBCLK
to USB interface
to cortex System timer
FHCLK Cortex free
running clock
to APB1 peripherals
AHB
prescaler
/1,2,..512
CSS
/2,/3,...
/16
LSE OSC
32.768kHz
LSI RC
40kHz
USB
prescaler
/1,1.5
APB2
prescaler
/1,2,4,8,16
to TIM 15,16,17
If (APB2 prescaler
=1) x1 else x2
to USART1
LSE
HSI
SYSCLK
PCLK2
PCLK2
to APB2 peripherals
TIM1/8
ADC
Prescaler
/1,2,4
to ADCxy
(xy = 12, 34)
ADC
Prescaler
/1,2,4,6,8,10,12,16,
32,64,128,256
I2SSRC
SYSCLK
Ext. clock
I2S_CKIN
x2
MCO
Main clock
output
/2 PLLCLK
HSI
HSE
MCO
SYSCLK
LSI
Functional overview STM32F303xB STM32F303xC
20/149 DS9118 Rev 14
3.10 General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current
capable except for analog inputs.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
Fast I/O handling allows I/O toggling up to 36 MHz.
3.11 Direct memory access (DMA)
The flexible general-purpose DMA is able to manage memory-to-memory, peripheral-to-
memory and memory-to-peripheral transfers. The DMA controller supports circular buffer
management, avoiding the generation of interrupts when the controller reaches the end of
the buffer.
Each of the 12 DMA channels is connected to dedicated hardware DMA requests, with
software trigger support for each channel. Configuration is done by software and transfer
sizes between source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose timers,
DAC and ADC.
3.12 Interrupts and events
3.12.1 Nested vectored interrupt controller (NVIC)
The STM32F303xB/STM32F303xC devices embed a nested vectored interrupt controller
(NVIC) able to handle up to 66 maskable interrupt channels and 16 priority levels.
The NVIC benefits are the following:
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal
interrupt latency.
DS9118 Rev 14 21/149
STM32F303xB STM32F303xC Functional overview
55
3.13 Fast analog-to-digital converter (ADC)
four fast analog-to-digital converters 5 MSPS, with selectable resolution between 12 and 6
bit, are embedded in the STM32F303xB/STM32F303xC family devices. The ADCs have up
to 39 external channels. Some of the external channels are shared between ADC1&2 and
between ADC3&4. Channels can be configured to be either single-ended input or differential
input. The ADCs can perform conversions in single-shot or scan modes. In scan mode,
automatic conversion is performed on a selected group of analog inputs.
The ADCs have also internal channels: Temperature sensor connected to ADC1 channel
16, VBAT/2 connected to ADC1 channel 17, Voltage reference VREFINT connected to the 4
ADCs channel 18, VOPAMP1 connected to ADC1 channel 15, VOPAMP2 connected to
ADC2 channel 17, VREFOPAMP3 connected to ADC3 channel 17 and VREFOPAMP4
connected to ADC4 channel 17.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
Single-shunt phase current reading techniques.
The ADC can be served by the DMA controller. 3 analog watchdogs per ADC are available.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
The events generated by the general-purpose timers and the advanced-control timers
(TIM1 and TIM8) can be internally connected to the ADC start trigger and injection trigger,
respectively, to allow the application to synchronize A/D conversion and timers.
3.13.1 Temperature sensor
The temperature sensor (TS) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC1_IN16 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
3.13.2 Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and Comparators. VREFINT is internally connected to the ADCx_IN18, x=1...4 input
channel. The precise voltage of VREFINT is individually measured for each part by ST during
production test and stored in the system memory area. It is accessible in read-only mode.
Functional overview STM32F303xB STM32F303xC
22/149 DS9118 Rev 14
3.13.3 VBAT battery voltage monitoring
This embedded hardware feature allows the application to measure the VBAT battery voltage
using the internal ADC channel ADC1_IN17. As the VBAT voltage may be higher than VDDA,
and thus outside the ADC input range, the VBAT pin is internally connected to a bridge
divider by 2. As a consequence, the converted digital value is half the VBAT voltage.
3.13.4 OPAMP reference voltage (VREFOPAMP)
Every OPAMP reference voltage can be measured using a corresponding ADC internal
channel: VREFOPAMP1 connected to ADC1 channel 15, VREFOPAMP2 connected to
ADC2 channel 17, VREFOPAMP3 connected to ADC3 channel 17, VREFOPAMP4
connected to ADC4 channel 17.
3.14 Digital-to-analog converter (DAC)
Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage
signal outputs. The chosen design structure is composed of integrated resistor strings and
an amplifier in inverting configuration.
This digital interface supports the following features:
Two DAC output channels
8-bit or 10-bit monotonic output
Left or right data alignment in 12-bit mode
Synchronized update capability
Noise-wave generation
Triangular-wave generation
Dual DAC channel independent or simultaneous conversions
DMA capability (for each channel)
External triggers for conversion
3.15 Operational amplifier (OPAMP)
The STM32F303xB/STM32F303xC embeds four operational amplifiers with external or
internal follower routing and PGA capability (or even amplifier and filter capability with
external components). When an operational amplifier is selected, an external ADC channel
is used to enable output measurement.
The operational amplifier features:
8.2 MHz bandwidth
0.5 mA output capability
Rail-to-rail input/output
In PGA mode, the gain can be programmed to be 2, 4, 8 or 16.
DS9118 Rev 14 23/149
STM32F303xB STM32F303xC Functional overview
55
3.16 Fast comparators (COMP)
The STM32F303xB/STM32F303xC devices embed seven fast rail-to-rail comparators with
programmable reference voltage (internal or external), hysteresis and speed (low speed for
low-power) and with selectable output polarity.
The reference voltage can be one of the following:
External I/O
DAC output pin
Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to Table 28: Embedded
internal reference voltage on page 63 for the value and precision of the internal
reference voltage.
All comparators can wake up from STOP mode, generate interrupts and breaks for the
timers and can be also combined per pair into a window comparator
3.17 Timers and watchdogs
The STM32F303xB/STM32F303xC includes two advanced control timers, up to six general-
purpose timers, two basic timers, two watchdog timers and a SysTick timer. The table below
compares the features of the advanced control, general purpose and basic timers.
Note: TIM1/8 can have PLL as clock source, and therefore can be clocked at 144 MHz.
Table 5. Timer feature comparison
Timer type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
Channels
Complementary
outputs
Advanced TIM1,
TIM8 16-bit Up, Down,
Up/Down
Any integer
between 1
and 65536
Yes 4 Yes
General-
purpose TIM2 32-bit Up, Down,
Up/Down
Any integer
between 1
and 65536
Yes 4 No
General-
purpose TIM3, TIM4 16-bit Up, Down,
Up/Down
Any integer
between 1
and 65536
Yes 4 No
General-
purpose TIM15 16-bit Up
Any integer
between 1
and 65536
Yes 2 1
General-
purpose TIM16, TIM17 16-bit Up
Any integer
between 1
and 65536
Yes 1 1
Basic TIM6,
TIM7 16-bit Up
Any integer
between 1
and 65536
Yes 0 No
Functional overview STM32F303xB STM32F303xC
24/149 DS9118 Rev 14
3.17.1 Advanced timers (TIM1, TIM8)
The advanced-control timers (TIM1 and TIM8) can each be seen as a three-phase PWM
multiplexed on six channels. They have complementary PWM outputs with programmable
inserted dead-times. They can also be seen as complete general-purpose timers. The four
independent channels can be used for:
Input capture
Output compare
PWM generation (edge or center-aligned modes) with full modulation capability (0-
100%)
One-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs
disabled to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose TIM timers (described in
Section 3.17.2 using the same architecture, so the advanced-control timers can work
together with the TIM timers via the Timer Link feature for synchronization or event chaining.
3.17.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17)
There are up to six synchronizable general-purpose timers embedded in the
STM32F303xB/STM32F303xC (see Table 5 for differences). Each general-purpose timer
can be used to generate PWM outputs, or act as a simple time base.
TIM2, 3, and TIM4
These are full-featured general-purpose timers:
TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler
TIM3 and 4 have 16-bit auto-reload up/downcounters and 16-bit prescalers.
These timers all feature 4 independent channels for input capture/output compare,
PWM or one-pulse mode output. They can work together, or with the other general-
purpose timers via the Timer Link feature for synchronization or event chaining.
The counters can be frozen in debug mode.
All have independent DMA request generation and support quadrature encoders.
TIM15, 16 and 17
These three timers general-purpose timers with mid-range features:
They have 16-bit auto-reload upcounters and 16-bit prescalers.
TIM15 has 2 channels and 1 complementary channel
TIM16 and TIM17 have 1 channel and 1 complementary channel
All channels can be used for input capture/output compare, PWM or one-pulse mode
output.
The timers can work together via the Timer Link feature for synchronization or event
chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.
3.17.3 Basic timers (TIM6, TIM7)
These timers are mainly used for DAC trigger generation. They can also be used as a
generic 16-bit time base.
DS9118 Rev 14 25/149
STM32F303xB STM32F303xC Functional overview
55
3.17.4 Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 40 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free running timer for application timeout
management. It is hardware or software configurable through the option bytes. The counter
can be frozen in debug mode.
3.17.5 Window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.17.6 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0.
Programmable clock source
3.18 Real-time clock (RTC) and backup registers
The RTC and the 16 backup registers are supplied through a switch that takes power from
either the VDD supply when present or the VBAT pin. The backup registers are sixteen 32-bit
registers used to store 64 bytes of user application data when VDD power is not present.
They are not reset by a system or power reset, or when the device wakes up from Standby
mode.
The RTC is an independent BCD timer/counter.It supports the following features:
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
Automatic correction for 28, 29 (leap year), 30 and 31 days of the month.
Two programmable alarms with wake up from Stop and Standby mode capability.
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal
inaccuracy.
Three anti-tamper detection pins with programmable filter. The MCU can be woken up
from Stopand Standby modes on tamper event detection.
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be
woken up from Stop and Standby modes on timestamp event detection.
Functional overview STM32F303xB STM32F303xC
26/149 DS9118 Rev 14
17-bit Auto-reload counter for periodic interrupt with wakeup from STOP/STANDBY
capability.
The RTC clock sources can be:
A 32.768 kHz external crystal
A resonator or oscillator
The internal low-power RC oscillator (typical frequency of 40 kHz)
The high-speed external clock divided by 32.
3.19 Inter-integrated circuit interface (I2C)
Up to two I2C bus interfaces can operate in multimaster and slave modes. They can support
standard (up to 100 KHz), fast (up to 400 KHz) and fast mode + (up to 1 MHz) modes.
Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses
(2 addresses, 1 with configurable mask). They also include programmable analog and
digital noise filters.
In addition, they provide hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability,
Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and
ALERT protocol management. They also have a clock domain independent from the CPU
clock, allowing the I2Cx (x=1,2) to wake up the MCU from Stop mode on address match.
The I2C interfaces can be served by the DMA controller.
Refer to Table 7 for the features available in I2C1 and I2C2.
Table 6. Comparison of I2C analog and digital filters
Analog filter Digital filter
Pulse width of
suppressed spikes 50 ns Programmable length from 1 to 15
I2C peripheral clocks
Benefits Available in Stop mode
1. Extra filtering capability vs.
standard requirements.
2. Stable length
Drawbacks Variations depending on
temperature, voltage, process
Wakeup from Stop on address
match is not available when digital
filter is enabled.
Table 7. STM32F303xB/STM32F303xC I2C implementation
I2C features(1) I2C1 I2C2
7-bit addressing mode X X
10-bit addressing mode X X
Standard mode (up to 100 kbit/s) X X
Fast mode (up to 400 kbit/s) X X
Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) X X
Independent clock X X
DS9118 Rev 14 27/149
STM32F303xB STM32F303xC Functional overview
55
3.20 Universal synchronous/asynchronous receiver transmitter
(USART)
The STM32F303xB/STM32F303xC devices have three embedded universal
synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3).
The USART interfaces are able to communicate at speeds of up to 9 Mbits/s.
They provide hardware management of the CTS and RTS signals, they support IrDA SIR
ENDEC, the multiprocessor communication mode, the single-wire half-duplex
communication mode and have LIN Master/Slave capability. The USART interfaces can be
served by the DMA controller.
3.21 Universal asynchronous receiver transmitter (UART)
The STM32F303xB/STM32F303xC devices have 2 embedded universal asynchronous
receiver transmitters (UART4, and UART5). The UART interfaces support IrDA SIR
ENDEC, multiprocessor communication mode and single-wire half-duplex communication
mode. The UART4 interface can be served by the DMA controller.
Refer to Table 8 for the features available in all U(S)ART interfaces.
SMBus X X
Wakeup from STOP X X
1. X = supported.
Table 7. STM32F303xB/STM32F303xC I2C implementation (continued)
I2C features(1) I2C1 I2C2
Table 8. USART features
USART modes/features(1) USART1 USART2 USART3 UART4 UART5
Hardware flow control for modem X X X - -
Continuous communication using DMA X X X X -
Multiprocessor communication X X X X X
Synchronous mode X X X - -
Smartcard mode X X X - -
Single-wire half-duplex communication X X X X X
IrDA SIR ENDEC block X X X X X
LIN mode XXXXX
Dual clock domain and wakeup from Stop mode X X X X X
Receiver timeout interrupt XXXXX
Modbus communication X X X X X
Auto baud rate detection X X X - -
Driver Enable X X X - -
1. X = supported.
Functional overview STM32F303xB STM32F303xC
28/149 DS9118 Rev 14
3.22 Serial peripheral interface (SPI)/Inter-integrated sound
interfaces (I2S)
Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in
full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame size is configurable from 4 bits to 16 bits.
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) supporting four different
audio standards can operate as master or slave at half-duplex and full duplex
communication modes. They can be configured to transfer 16 and 24 or 32 bits with 16-bit
or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency
from 8 kHz up to 192 kHz can be set by 8-bit programmable linear prescaler. When
operating in master mode it can output a clock for an external audio component at 256 times
the sampling frequency.
Refer to Table 9 for the features available in SPI1, SPI2 and SPI3.
3.23 Controller area network (CAN)
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It
can receive and transmit standard frames with 11-bit identifiers as well as extended frames
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and
14 scalable filter banks.
3.24 Universal serial bus (USB)
The STM32F303xB/STM32F303xC devices embed an USB device peripheral compatible
with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s)
function interface. It has software-configurable endpoint setting and suspend/resume
support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock
source must use a HSE crystal oscillator). The USB has a dedicated 512-bytes SRAM
memory for data transmission and reception.
Table 9. STM32F303xB/STM32F303xC SPI/I2S implementation
SPI features(1)
1. X = supported.
SPI1 SPI2 SPI3
Hardware CRC calculation X X X
Rx/Tx FIFO X X X
NSS pulse mode X X X
I2S mode - X X
TI mode XXX
DS9118 Rev 14 29/149
STM32F303xB STM32F303xC Functional overview
55
3.25 Infrared Transmitter
The STM32F303xB/STM32F303xC devices provide an infrared transmitter solution. The
solution is based on internal connections between TIM16 and TIM17 as shown in the figure
below.
TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be
sent. The infrared output signal is available on PB9 or PA13.
To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must
be properly configured to generate correct waveforms. All standard IR pulse modulation
modes can be obtained by programming the two timers output compare channels.
Figure 3. Infrared transmitter
3.26 Touch sensing controller (TSC)
The STM32F303xB/STM32F303xC devices provide a simple solution for adding capacitive
sensing functionality to any application. These devices offer up to 24 capacitive sensing
channels distributed over 8 analog I/O groups.
Capacitive sensing technology is able to detect the presence of a finger near a sensor which
is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation
introduced by the finger (or any conductive object) is measured using a proven
implementation based on a surface charge transfer acquisition principle. It consists of
charging the sensor capacitance and then transferring a part of the accumulated charges
into a sampling capacitor until the voltage across this capacitor has reached a specific
threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the
hardware touch sensing controller and only requires few external components to operate.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware
library which is free to use and allows touch sensing functionality to be implemented reliably
in the end application.
MSv30365V1
TIMER 16
(for envelop)
TIMER 17
(for carrier)
OC
OC
PB9/PA13
Functional overview STM32F303xB STM32F303xC
30/149 DS9118 Rev 14
Table 10. Capacitive sensing GPIOs available on STM32F303xB/STM32F303xC
devices
Group Capacitive sensing
signal name
Pin
name Group Capacitive sensing
signal name
Pin
name
1
TSC_G1_IO1 PA0
5
TSC_G5_IO1 PB3
TSC_G1_IO2 PA1 TSC_G5_IO2 PB4
TSC_G1_IO3 PA2 TSC_G5_IO3 PB6
TSC_G1_IO4 PA3 TSC_G5_IO4 PB7
2
TSC_G2_IO1 PA4
6
TSC_G6_IO1 PB11
TSC_G2_IO2 PA5 TSC_G6_IO2 PB12
TSC_G2_IO3 PA6 TSC_G6_IO3 PB13
TSC_G2_IO4 PA7 TSC_G6_IO4 PB14
3
TSC_G3_IO1 PC5
7
TSC_G7_IO1 PE2
TSC_G3_IO2 PB0 TSC_G7_IO2 PE3
TSC_G3_IO3 PB1 TSC_G7_IO3 PE4
TSC_G3_IO4 PB2 TSC_G7_IO4 PE5
4
TSC_G4_IO1 PA9
8
TSC_G8_IO1 PD12
TSC_G4_IO2 PA10 TSC_G8_IO2 PD13
TSC_G4_IO3 PA13 TSC_G8_IO3 PD14
TSC_G4_IO4 PA14 TSC_G8_IO4 PD15
Table 11. No. of capacitive sensing channels available on
STM32F303xB/STM32F303xC devices
Analog I/O group
Number of capacitive sensing channels
STM32F303Vx STM32F303Rx STM32F303Cx
G1 3 3 3
G2 3 3 3
G3 3 3 2
G4 3 3 3
G5 3 3 3
G6 3 3 3
G7 3 0 0
G8 3 0 0
Number of capacitive
sensing channels 24 18 17
DS9118 Rev 14 31/149
STM32F303xB STM32F303xC Functional overview
55
3.27 Development support
3.27.1 Serial wire JTAG debug port (SWJ-DP)
The Arm SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
3.27.2 Embedded trace macrocell™
The Arm embedded trace macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F303xB/STM32F303xC through a small number of ETM pins to an external
hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using
a high-speed channel. Real-time instruction and data flow activity can be recorded and then
formatted for display on the host computer running debugger software. TPA hardware is
commercially available from common development tool vendors. It operates with third party
debugger software tools.
Pinouts and pin description STM32F303xB STM32F303xC
32/149 DS9118 Rev 14
4 Pinouts and pin description
Figure 4. STM32F303xB/STM32F303xC LQFP48 pinout
MSv40448V1
47 46 45 44 43 42 41
VSS
BOOT0
PB5
40 39 38 37
36
35
34
33
32
31
30
29
28
27
26
25
21 22 23 24
PB4
PB3
VDD
VSS
PA12
PB15
PB14
PB13
PB12
PB10
VSS
PB11
VDD
48
13
2
3
4
5
6
7
8
9
10
11
VBAT
PC14/OSC32_IN
PC15/OSC32_OUT
NRST
VSSA/VREF-
VDDA
PA0
PA1
PA2
VDD
PF0/OSC_IN
PF1/OSC_OUT
PC13
12
1
14 15 16 17 18 19 20
PA7
PB1
PB2
LQFP48
PA13
PA11
PA10
PA9
PA8
PA3
PA4
PA5
PA6
PB0
PB9
PB8
PB7
PB6
PA15
PA14
DS9118 Rev 14 33/149
STM32F303xB STM32F303xC Pinouts and pin description
55
Figure 5. STM32F303xB/STM32F303xC LQFP64 pinout
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
VBAT
PC14/OSC32_IN
PC15/OSC32_OUT
NRST
PC0
PC1
PC2
PC3
VSSA/VREF-
VDDA
PA0
PA1
PA2
VDD
PD2
PC12
PC11
PC10
VDD
VSS
PC8
PC7
PC6
PB12
PF4
PA3
VDD
PC4
PC5
PB2
PB10
PF1/OSC_OUT
PF0/OSC_IN
PC13
VSS
PB11
VSS
VDD
LQFP64
MS40449V2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PB15
PB14
PB13
PA4
PA5
PA6
PA7
PB0
PB1
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
Pinouts and pin description STM32F303xB STM32F303xC
34/149 DS9118 Rev 14
Figure 6. STM32F303xB/STM32F303xC LQFP100 pinout
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
PE2
PE3
PE4
PE5
PE6
VBAT
PC14/OSC32_IN
PC15/OSC32_OUT
PF9
PF10
PF0/OSC_IN
NRST
PC0
PC1
PC2
PC3
PF2
VSSA/VREF-
VREF+
VDDA
PA0
PA1
PA2
VDD
VSS
PF6
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
PA3
PF4
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
VSS
VDD
VDD
VSS
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
MS40450V1
LQFP100
PC13
PF1/OSC_OUT
PB11
DS9118 Rev 14 35/149
STM32F303xB STM32F303xC Pinouts and pin description
55
Figure 7. STM32F303xB/STM32F303xC WLCSP100 pinout
MSv40453V1
A
B
C
D
E
F
G
H
J
K
PA2
PA3
PA5
PA4
PA7
7
BOOT0
PE0
VSS
PE3
PE6
PA8
PE12
PE11
VDD
PB2
5
PB3
PB4
PB7
PB8
PA9
PC5
PC4
PA6
PB0
PB1
6
PB5
PB6
PB9
PE2
PE8
PC6
PD9
PB15
PB12
PB10
4
PD2
PD3
PD4
PD7
PC10
PC12
PA13
PC9
PD13
PD10
PB13
PB11
3
PD0
PD1
PC11
PC7
PD14
PD11
PB14
VSS
2
VSS
PA15
PA14
VDD
PA11
PC8
PD15
PD12
VSS
VSS
1
VSS
VSS
PF6
PA12
PA10
PC2
VSSA
VREF+
VDD
PE7
8
PE1
VDD
PE4
VBAT
PF2
PF0
OSCIN
PC0
PC3
VDDA
VSS
10
VDD
VDD
PC14
OSC32IN
PF9
PF10
PC13
PC15
OSC32OUT
NRST
PC1
PA0
PA1
VSS
PF1
OSCOUT
9
VDD
PE5
Pinouts and pin description STM32F303xB STM32F303xC
36/149 DS9118 Rev 14
Table 12. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function
during and after reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input / output pin
I/O structure
FT 5 V tolerant I/O
FTf 5 V tolerant I/O, FM+ capable
TTa 3.3 V tolerant I/O directly connected to ADC
TC Standard 3.3V I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during
and after reset
Pin
functions
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
Table 13. STM32F303xB/STM32F303xC pin definitions
Pin number
Pin name
(function
after
reset)
Pin type
I/O structure
Notes
Pin functions
WLCSP100
LQFP100
LQFP64
LQFP48
Alternate functions Additional functions
D6 1 - - PE2 I/O FT (1) TRACECK, TIM3_CH1,
TSC_G7_IO1, EVENTOUT -
D7 2 - - PE3 I/O FT (1) TRACED0, TIM3_CH2,
TSC_G7_IO2, EVENTOUT -
C8 3 - - PE4 I/O FT (1) TRACED1, TIM3_CH3,
TSC_G7_IO3, EVENTOUT -
B9 4 - - PE5 I/O FT (1) TRACED2, TIM3_CH4,
TSC_G7_IO4, EVENTOUT -
E7 5 - - PE6 I/O FT (1) TRACED3, EVENTOUT WKUP3, RTC_TAMP3
D8611 V
BAT S - - Backup power supply
DS9118 Rev 14 37/149
STM32F303xB STM32F303xC Pinouts and pin description
55
C9722PC13
(2) I/O TC - TIM1_CH1N WKUP2, RTC_TAMP1,
RTC_TS, RTC_OUT
C10833
PC14(2)
OSC32_IN
(PC14)
I/O TC - - OSC32_IN
D9944
PC15(2)
OSC32_
OUT
(PC15)
I/O TC - - OSC32_OUT
D10 10 - - PF9 I/O FT (1) TIM15_CH1, SPI2_SCK,
EVENTOUT -
E10 11 - - PF10 I/O FT (1) TIM15_CH2, SPI2_SCK,
EVENTOUT -
F10 12 5 5
PF0-
OSC_IN
(PF0)
I/O FTf - TIM1_CH3N, I2C2_SDA, OSC_IN
F9 13 6 6
PF1-
OSC_OUT
(PF1)
I/O FTf - I2C2_SCL OSC_OUT
E9 14 7 7 NRST I/O RS
TDevice reset input / internal reset output (active low)
G10 15 8 - PC0 I/O TTa (1) EVENTOUT ADC12_IN6, COMP7_INM
G9 16 9 - PC1 I/O TTa (1) EVENTOUT ADC12_IN7, COMP7_INP
G8 17 10 - PC2 I/O TTa (1) COMP7_OUT, EVENTOUT ADC12_IN8
H10 18 11 - PC3 I/O TTa (1) TIM1_BKIN2, EVENTOUT ADC12_IN9
E8 19 - - PF2 I/O TTa (1) EVENTOUT ADC12_IN10
H8 20 12 8 VSSA/
VREF- S-- Analog ground/Negative reference voltage
J8 21 - - VREF+(3) S-- Positive reference voltage
J10 22 - - VDDA S -- Analog power supply
--139VDDA/
VREF+ S-- Analog power supply/Positive reference voltage
H9 23 14 10 PA0 I/O TTa (4)
USART2_CTS,
TIM2_CH1_ETR,TIM8_BKIN,
TIM8_ETR,TSC_G1_IO1,
COMP1_OUT, EVENTOUT
ADC1_IN1, COMP1_INM,
RTC_ TAMP2, WKUP1,
COMP7_INP
Table 13. STM32F303xB/STM32F303xC pin definitions (continued)
Pin number
Pin name
(function
after
reset)
Pin type
I/O structure
Notes
Pin functions
WLCSP100
LQFP100
LQFP64
LQFP48
Alternate functions Additional functions
Pinouts and pin description STM32F303xB STM32F303xC
38/149 DS9118 Rev 14
J9 24 15 11 PA1 I/O TTa (4)
USART2_RTS_DE,
TIM2_CH2, TSC_G1_IO2,
TIM15_CH1N, RTC_REFIN,
EVENTOUT
ADC1_IN2, COMP1_INP,
OPAMP1_VINP,
OPAMP3_VINP
F7 25 16 12 PA2 I/O TTa
(4)
(5)
USART2_TX, TIM2_CH3,
TIM15_CH1, TSC_G1_IO3,
COMP2_OUT, EVENTOUT
ADC1_IN3, COMP2_INM,
OPAMP1_VOUT
G7 26 17 13 PA3 I/O TTa (4)
USART2_RX, TIM2_CH4,
TIM15_CH2, TSC_G1_IO4,
EVENTOUT
ADC1_IN4, OPAMP1_VINP,
COMP2_INP,
OPAMP1_VINM
- 27 18 - PF4 I/O TTa
(1)
(4) COMP1_OUT, EVENTOUT ADC1_IN5
K9,
K10 - - - VSS S - - Digital ground
K8 28 19 - VDD S -- Digital power supply
J7 29 20 14 PA4 I/O TTa
(4)
(5)
SPI1_NSS,
SPI3_NSS,I2S3_WS,
USART2_CK, TSC_G2_IO1,
TIM3_CH2, EVENTOUT
ADC2_IN1, DAC1_OUT1,
OPAMP4_VINP,
COMP1_INM, COMP2_INM,
COMP3_INM, COMP4_INM,
COMP5_INM, COMP6_INM,
COMP7_INM
H7 30 21 15 PA5 I/O TTa
(4)
(5)
SPI1_SCK, TIM2_CH1_ETR,
TSC_G2_IO2, EVENTOUT
ADC2_IN2, DAC1_OUT2
OPAMP1_VINP,
OPAMP2_VINM,
OPAMP3_VINP
COMP1_INM, COMP2_INM,
COMP3_INM, COMP4_INM,
COMP5_INM, COMP6_INM,
COMP7_INM
H6 31 22 16 PA6 I/O TTa
(4)
(5)
SPI1_MISO, TIM3_CH1,
TIM8_BKIN, TIM1_BKIN,
TIM16_CH1, COMP1_OUT,
TSC_G2_IO3, EVENTOUT
ADC2_IN3, OPAMP2_VOUT
K7 32 23 17 PA7 I/O TTa (4)
SPI1_MOSI, TIM3_CH2,
TIM17_CH1, TIM1_CH1N,
TIM8_CH1N, TSC_G2_IO4,
COMP2_OUT, EVENTOUT
ADC2_IN4, COMP2_INP,
OPAMP2_VINP,
OPAMP1_VINP
G6 33 24 - PC4 I/O TTa
(1)
(4) USART1_TX, EVENTOUT ADC2_IN5
Table 13. STM32F303xB/STM32F303xC pin definitions (continued)
Pin number
Pin name
(function
after
reset)
Pin type
I/O structure
Notes
Pin functions
WLCSP100
LQFP100
LQFP64
LQFP48
Alternate functions Additional functions
DS9118 Rev 14 39/149
STM32F303xB STM32F303xC Pinouts and pin description
55
F6 34 25 - PC5 I/O TTa (1) USART1_RX, TSC_G3_IO1,
EVENTOUT
ADC2_IN11, OPAMP2_VINM,
OPAMP1_VINM
J6 35 26 18 PB0 I/O TTa -
TIM3_CH3, TIM1_CH2N,
TIM8_CH2N,TSC_G3_IO2,
EVENTOUT
ADC3_IN12, COMP4_INP,
OPAMP3_VINP,
OPAMP2_VINP
K6 36 27 19 PB1 I/O TTa
(4)
(5)
TIM3_CH4, TIM1_CH3N,
TIM8_CH3N, COMP4_OUT,
TSC_G3_IO3, EVENTOUT
ADC3_IN1, OPAMP3_VOUT-
K5 37 28 20 PB2 I/O TTa - TSC_G3_IO4, EVENTOUT ADC2_IN12, COMP4_INM,
OPAMP3_VINM
F8 38 - - PE7 I/O TTa (1) TIM1_ETR, EVENTOUT ADC3_IN13, COMP4_INP
E6 39 - - PE8 I/O TTa (1) TIM1_CH1N, EVENTOUT COMP4_INM, ADC34_IN6
- 40 - - PE9 I/O TTa
(4)
(1) TIM1_CH1, EVENTOUT ADC3_IN2
- 41 - - PE10 I/O TTa (1) TIM1_CH2N, EVENTOUT ADC3_IN14
H5 42 - - PE11 I/O TTa (1) TIM1_CH2, EVENTOUT ADC3_IN15
G5 43 - - PE12 I/O TTa (1) TIM1_CH3N, EVENTOUT ADC3_IN16
- 44 - - PE13 I/O TTa (1) TIM1_CH3, EVENTOUT ADC3_IN3
- 45 - - PE14 I/O TTa
(4)
(1)
TIM1_CH4, TIM1_BKIN2,
EVENTOUT ADC4_IN1
- 46 - - PE15 I/O TTa
(4)
(1)
USART3_RX, TIM1_BKIN,
EVENTOUT ADC4_IN2
K4 47 29 21 PB10 I/O TTa - USART3_TX, TIM2_CH3,
TSC_SYNC, EVENTOUT
COMP5_INM,
OPAMP4_VINM,
OPAMP3_VINM
K3 48 30 22 PB11 I/O TTa - USART3_RX, TIM2_CH4,
TSC_G6_IO1, EVENTOUT COMP6_INP, OPAMP4_VINP
K1,
J1,
K2
49 31 23 VSS S - - Digital ground
J5 50 32 24 VDD S - - Digital power supply
J4 51 33 25 PB12 I/O TTa
(4)
(5)
SPI2_NSS,I2S2_WS,I2C2_S
MBA, USART3_CK,
TIM1_BKIN, TSC_G6_IO2,
EVENTOUT
ADC4_IN3, COMP3_INM,
OPAMP4_VOUT
Table 13. STM32F303xB/STM32F303xC pin definitions (continued)
Pin number
Pin name
(function
after
reset)
Pin type
I/O structure
Notes
Pin functions
WLCSP100
LQFP100
LQFP64
LQFP48
Alternate functions Additional functions
Pinouts and pin description STM32F303xB STM32F303xC
40/149 DS9118 Rev 14
J3 52 34 26 PB13 I/O TTa (4)
SPI2_SCK,I2S2_CK,USART3
_CTS, TIM1_CH1N,
TSC_G6_IO3, EVENTOUT
ADC3_IN5, COMP5_INP,
OPAMP4_VINP,
OPAMP3_VINP
J2 53 35 27 PB14 I/O TTa (4)
SPI2_MISO,I2S2ext_SD,
USART3_RTS_DE,
TIM1_CH2N, TIM15_CH1,
TSC_G6_IO4, EVENTOUT
COMP3_INP, ADC4_IN4,
OPAMP2_VINP
H4 54 36 28 PB15 I/O TTa (4)
SPI2_MOSI, I2S2_SD,
TIM1_CH3N, RTC_REFIN,
TIM15_CH1N, TIM15_CH2,
EVENTOUT
ADC4_IN5, COMP6_INM
- 55 - - PD8 I/O TTa (1) USART3_TX, EVENTOUT ADC4_IN12, OPAMP4_VINM
G4 56 - - PD9 I/O TTa (1) USART3_RX, EVENTOUT ADC4_IN13
H3 57 - - PD10 I/O TTa (1) USART3_CK, EVENTOUT ADC34_IN7, COMP6_INM
H2 58 - - PD11 I/O TTa (1) USART3_CTS, EVENTOUT ADC34_IN8, COMP6_INP,
OPAMP4_VINP
H1 59 - - PD12 I/O TTa (1)
USART3_RTS_DE,
TIM4_CH1, TSC_G8_IO1,
EVENTOUT
ADC34_IN9, COMP5_INP
G3 60 - - PD13 I/O TTa (1) TIM4_CH2, TSC_G8_IO2,
EVENTOUT ADC34_IN10, COMP5_INM
G2 61 - - PD14 I/O TTa (1) TIM4_CH3, TSC_G8_IO3,
EVENTOUT
COMP3_INP, ADC34_IN11,
OPAMP2_VINP
G1 62 - - PD15 I/O TTa (1) SPI2_NSS, TIM4_CH4,
TSC_G8_IO4, EVENTOUT COMP3_INM
F4 63 37 - PC6 I/O FT (1)
I2S2_MCK, COMP6_OUT,
TIM8_CH1, TIM3_CH1,
EVENTOUT
-
F2 64 38 - PC7 I/O FT (1)
I2S3_MCK, TIM8_CH2,
TIM3_CH2, COMP5_OUT,
EVENTOUT
-
F1 65 39 - PC8 I/O FT (1) TIM8_CH3, TIM3_CH3,
COMP3_OUT, EVENTOUT -
F3 66 40 - PC9 I/O FT (1)
TIM8_CH4,
TIM8_BKIN2,TIM3_CH4,
I2S_CKIN, EVENTOUT
-
Table 13. STM32F303xB/STM32F303xC pin definitions (continued)
Pin number
Pin name
(function
after
reset)
Pin type
I/O structure
Notes
Pin functions
WLCSP100
LQFP100
LQFP64
LQFP48
Alternate functions Additional functions
DS9118 Rev 14 41/149
STM32F303xB STM32F303xC Pinouts and pin description
55
F5 67 41 29 PA8 I/O FT -
I2C2_SMBA,I2S2_MCK,
USART1_CK, TIM1_CH1,
TIM4_ETR, MCO,
COMP3_OUT, EVENTOUT
-
E5 68 42 30 PA9 I/O FTf -
I2C2_SCL,I2S3_MCK,
USART1_TX, TIM1_CH2,
TIM2_CH3, TIM15_BKIN,
TSC_G4_IO1, COMP5_OUT,
EVENTOUT
-
E1 69 43 31 PA10 I/O FTf -
I2C2_SDA, USART1_RX,
TIM1_CH3, TIM2_CH4,
TIM8_BKIN, TIM17_BKIN,
TSC_G4_IO2, COMP6_OUT,
EVENTOUT
-
E2 70 44 32 PA11 I/O FT -
USART1_CTS, USB_DM,
CAN_RX, TIM1_CH1N,
TIM1_CH4, TIM1_BKIN2,
TIM4_CH1, COMP1_OUT,
EVENTOUT
-
D1 71 45 33 PA12 I/O FT -
USART1_RTS_DE, USB_DP,
CAN_TX, TIM1_CH2N,
TIM1_ETR, TIM4_CH2,
TIM16_CH1, COMP2_OUT,
EVENTOUT
-
E3 72 46 34 PA13 I/O FT -
USART3_CTS, TIM4_CH3,
TIM16_CH1N, TSC_G4_IO3,
IR_OUT, SWDIO-JTMS,
EVENTOUT
-
C1 73 - - PF6 I/O FTf (1)
I2C2_SCL,
USART3_RTS_DE,
TIM4_CH4, EVENTOUT
-
A1,
A2,
B1
74 47 35 VSS S -- Ground
D2 75 48 36 VDD S -- Digital power supply
C2 76 49 37 PA14 I/O FTf -
I2C1_SDA, USART2_TX,
TIM8_CH2,TIM1_BKIN,
TSC_G4_IO4, SWCLK-JTCK,
EVENTOUT
-
Table 13. STM32F303xB/STM32F303xC pin definitions (continued)
Pin number
Pin name
(function
after
reset)
Pin type
I/O structure
Notes
Pin functions
WLCSP100
LQFP100
LQFP64
LQFP48
Alternate functions Additional functions
Pinouts and pin description STM32F303xB STM32F303xC
42/149 DS9118 Rev 14
B2 77 50 38 PA15 I/O FTf -
I2C1_SCL, SPI1_NSS,
SPI3_NSS, I2S3_WS, JTDI,
USART2_RX, TIM1_BKIN,
TIM2_CH1_ETR, TIM8_CH1,
EVENTOUT
-
E4 78 51 - PC10 I/O FT (1)
SPI3_SCK, I2S3_CK,
USART3_TX, UART4_TX,
TIM8_CH1N, EVENTOUT
-
D3 79 52 - PC11 I/O FT (1)
SPI3_MISO, I2S3ext_SD,
USART3_RX, UART4_RX,
TIM8_CH2N, EVENTOUT
-
A3 80 53 - PC12 I/O FT (1)
SPI3_MOSI, I2S3_SD,
USART3_CK, UART5_TX,
TIM8_CH3N, EVENTOUT
-
B3 81 - - PD0 I/O FT (1) CAN_RX, EVENTOUT -
C3 82 - - PD1 I/O FT (1) CAN_TX, TIM8_CH4,
TIM8_BKIN2,EVENTOUT -
A4 83 54 - PD2 I/O FT (1) UART5_RX, TIM3_ETR,
TIM8_BKIN, EVENTOUT -
B4 84 - - PD3 I/O FT (1)
USART2_CTS,
TIM2_CH1_ETR,
EVENTOUT
-
C4 85 - - PD4 I/O FT (1) USART2_RTS_DE,
TIM2_CH2, EVENTOUT -
- 86 - - PD5 I/O FT (1) USART2_TX, EVENTOUT -
- 87 - - PD6 I/O FT (1) USART2_RX, TIM2_CH4,
EVENTOUT -
D4 88 - - PD7 I/O FT (1) USART2_CK, TIM2_CH3,
EVENTOUT -
A5 89 55 39 PB3 I/O FT -
SPI3_SCK, I2S3_CK,
SPI1_SCK, USART2_TX,
TIM2_CH2, TIM3_ETR,
TIM4_ETR, TIM8_CH1N,
TSC_G5_IO1, JTDO-
TRACESWO, EVENTOUT
-
Table 13. STM32F303xB/STM32F303xC pin definitions (continued)
Pin number
Pin name
(function
after
reset)
Pin type
I/O structure
Notes
Pin functions
WLCSP100
LQFP100
LQFP64
LQFP48
Alternate functions Additional functions
DS9118 Rev 14 43/149
STM32F303xB STM32F303xC Pinouts and pin description
55
B5 90 56 40 PB4 I/O FT -
SPI3_MISO, I2S3ext_SD,
SPI1_MISO, USART2_RX,
TIM3_CH1, TIM16_CH1,
TIM17_BKIN, TIM8_CH2N,
TSC_G5_IO2, NJTRST,
EVENTOUT
-
A6 91 57 41 PB5 I/O FT -
SPI3_MOSI, SPI1_MOSI,
I2S3_SD, I2C1_SMBA,
USART2_CK, TIM16_BKIN,
TIM3_CH2, TIM8_CH3N,
TIM17_CH1, EVENTOUT
-
B6 92 58 42 PB6 I/O FTf -
I2C1_SCL, USART1_TX,
TIM16_CH1N, TIM4_CH1,
TIM8_CH1,TSC_G5_IO3,
TIM8_ETR, TIM8_BKIN2,
EVENTOUT
-
C5 93 59 43 PB7 I/O FTf -
I2C1_SDA, USART1_RX,
TIM3_CH4, TIM4_CH2,
TIM17_CH1N, TIM8_BKIN,
TSC_G5_IO4, EVENTOUT
-
A7 94 60 44 BOOT0 I B - Boot memory selection
D5 95 61 45 PB8 I/O FTf -
I2C1_SCL, CAN_RX,
TIM16_CH1, TIM4_CH3,
TIM8_CH2, TIM1_BKIN,
TSC_SYNC, COMP1_OUT,
EVENTOUT
-
C6 96 62 46 PB9 I/O FTf -
I2C1_SDA, CAN_TX,
TIM17_CH1, TIM4_CH4,
TIM8_CH3, IR_OUT,
COMP2_OUT, EVENTOUT
-
B7 97 - - PE0 I/O FT (1) USART1_TX, TIM4_ETR,
TIM16_CH1, EVENTOUT -
A8 98 - - PE1 I/O FT (1) USART1_RX, TIM17_CH1,
EVENTOUT -
C7 99 63 47 VSS S - - Ground
A9,
A10,
B10,
B8
100 64 48 VDD S - - Digital power supply
Table 13. STM32F303xB/STM32F303xC pin definitions (continued)
Pin number
Pin name
(function
after
reset)
Pin type
I/O structure
Notes
Pin functions
WLCSP100
LQFP100
LQFP64
LQFP48
Alternate functions Additional functions
Pinouts and pin description STM32F303xB STM32F303xC
44/149 DS9118 Rev 14
1. Function availability depends on the chosen device.
When using the small packages (48 and 64 pin packages), the GPIO pins which are not present on these packages, must
not be configured in analog mode.
2. PC13, PC14 and PC15 are supplied through the power switch. Since the switch sinks only a limited amount of current
(3 mA), the use of GPIO PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (e.g. to drive an LED).
After the first backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the
content of the Backup registers which is not reset by the main reset. For details on how to manage these GPIOs, refer to
the Battery backup domain and BKP register description sections in the RM0316 reference manual.
3. The VREF+ functionality is available only on the 100 pin package. On the 64-pin and 48-pin packages, the VREF+ is
internally connected to VDDA.
4. Fast ADC channel.
5. These GPIOs offer a reduced touch sensing sensitivity. It is thus recommended to use them as sampling capacitor I/O.
DS9118 Rev 14 53/149
STM32F303xB STM32F303xC Memory mapping
55
5 Memory mapping
Figure 8. STM32F303xB/STM32F303xC memory map
0xFFFF FFFF
0xE000 0000
0xC000 0000
0xA000 0000
0x8000 0000
0x6000 0000
0x4000 0000
0x2000 0000
0x0000 0000
0
1
2
3
4
5
6
7
Cortex-M4
with FPU
Internal
Peripherals
Peripherals
SRAM
CODE
Option bytes
System memory
CCM RAM
Flash memory
Flash, system
memory or SRAM,
depending on BOOT
configuration
AHB2
AHB1
APB2
APB1
0x5000 0000
0x4800 1800
0x4800 0000
0x4002 43FF
0x4002 0000
0x4001 6C00
0x4001 0000
0x4000 A000
0x4000 0000
0x1FFF FFFF
0x1FFF F800
0x1FFF D800
0x1000 2000
0x0804 0000
0x0800 0000
0x0004 0000
0x0000 0000
0x1000 0000
Reserved
MSv30355V2
AHB3
0x5000 07FF
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Memory mapping STM32F303xB STM32F303xC
54/149 DS9118 Rev 14
Table 20. STM32F303xB/STM32F303xC memory map, peripheral register boundary
addresses(1)
Bus Boundary address Size
(bytes) Peripheral
AHB3 0x5000 0400 - 0x5000 07FF 1 K ADC3 - ADC4
0x5000 0000 - 0x5000 03FF 1 K ADC1 - ADC2
0x4800 1800 - 0x4FFF FFFF ~132 M Reserved
AHB2
0x4800 1400 - 0x4800 17FF 1 K GPIOF
0x4800 1000 - 0x4800 13FF 1 K GPIOE
0x4800 0C00 - 0x4800 0FFF 1 K GPIOD
0x4800 0800 - 0x4800 0BFF 1 K GPIOC
0x4800 0400 - 0x4800 07FF 1 K GPIOB
0x4800 0000 - 0x4800 03FF 1 K GPIOA
0x4002 4400 - 0x47FF FFFF ~128 M Reserved
AHB1
0x4002 4000 - 0x4002 43FF 1 K TSC
0x4002 3400 - 0x4002 3FFF 3 K Reserved
0x4002 3000 - 0x4002 33FF 1 K CRC
0x4002 2400 - 0x4002 2FFF 3 K Reserved
0x4002 2000 - 0x4002 23FF 1 K Flash interface
0x4002 1400 - 0x4002 1FFF 3 K Reserved
0x4002 1000 - 0x4002 13FF 1 K RCC
0x4002 0800 - 0x4002 0FFF 2 K Reserved
0x4002 0400 - 0x4002 07FF 1 K DMA2
0x4002 0000 - 0x4002 03FF 1 K DMA1
0x4001 8000 - 0x4001 FFFF 32 K Reserved
APB2
0x4001 4C00 - 0x4001 7FFF 13 K Reserved
0x4001 4800 - 0x4001 4BFF 1 K TIM17
0x4001 4400 - 0x4001 47FF 1 K TIM16
0x4001 4000 - 0x4001 43FF 1 K TIM15
0x4001 3C00 - 0x4001 3FFF 1 K Reserved
0x4001 3800 - 0x4001 3BFF 1 K USART1
0x4001 3400 - 0x4001 37FF 1 K TIM8
0x4001 3000 - 0x4001 33FF 1 K SPI1
0x4001 2C00 - 0x4001 2FFF 1 K TIM1
0x4001 0800 - 0x4001 2BFF 9 K Reserved
0x4001 0400 - 0x4001 07FF 1 K EXTI
0x4001 0000 - 0x4001 03FF 1 K SYSCFG + COMP + OPAMP
DS9118 Rev 14 55/149
STM32F303xB STM32F303xC Memory mapping
55
0x4000 8000 - 0x4000 FFFF 32 K Reserved
APB1
0x4000 7800 - 0x4000 7FFF 2 K Reserved
0x4000 7400 - 0x4000 77FF 1 K DAC (dual)
0x4000 7000 - 0x4000 73FF 1 K PWR
0x4000 6800 - 0x4000 6FFF 2 K Reserved
0x4000 6400 - 0x4000 67FF 1 K bxCAN
0x4000 6000 - 0x4000 63FF 1 K USB SRAM 512 bytes
0x4000 5C00 - 0x4000 5FFF 1 K USB device FS
0x4000 5800 - 0x4000 5BFF 1 K I2C2
0x4000 5400 - 0x4000 57FF 1 K I2C1
0x4000 5000 - 0x4000 53FF 1 K UART5
0x4000 4C00 - 0x4000 4FFF 1 K UART4
0x4000 4800 - 0x4000 4BFF 1 K USART3
0x4000 4400 - 0x4000 47FF 1 K USART2
0x4000 4000 - 0x4000 43FF 1 K I2S3ext
0x4000 3C00 - 0x4000 3FFF 1 K SPI3/I2S3
0x4000 3800 - 0x4000 3BFF 1 K SPI2/I2S2
0x4000 3400 - 0x4000 37FF 1 K I2S2ext
0x4000 3000 - 0x4000 33FF 1 K IWDG
0x4000 2C00 - 0x4000 2FFF 1 K WWDG
0x4000 2800 - 0x4000 2BFF 1 K RTC
0x4000 1800 - 0x4000 27FF 4 K Reserved
0x4000 1400 - 0x4000 17FF 1 K TIM7
0x4000 1000 - 0x4000 13FF 1 K TIM6
0x4000 0C00 - 0x4000 0FFF 1 K Reserved
0x4000 0800 - 0x4000 0BFF 1 K TIM4
0x4000 0400 - 0x4000 07FF 1 K TIM3
0x4000 0000 - 0x4000 03FF 1 K TIM2
1. The gray color is used for reserved Flash memory addresses.
Table 20. STM32F303xB/STM32F303xC memory map, peripheral register boundary
addresses(1) (continued)
Bus Boundary address Size
(bytes) Peripheral
Electrical characteristics STM32F303xB STM32F303xC
56/149 DS9118 Rev 14
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes. Based on characterization, the minimum and maximum
values refer to sample tests and represent the mean value plus or minus three times the
standard deviation (mean±3σ).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3.3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2σ).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 9.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 10.
Figure 9. Pin loading conditions Figure 10. Pin input voltage
MS19210V1
MCU pin
C = 50 pF
MS19211V1
MCU pin
VIN
DS9118 Rev 14 57/149
STM32F303xB STM32F303xC Electrical characteristics
125
6.1.6 Power supply scheme
Figure 11. Power supply scheme
1. Dotted lines represent the internal connections on low pin count packages, joining the dedicated supply
pins.
Caution: Each power supply pair (VDD/VSS, VDDA/VSSA etc..) must be decoupled with filtering
ceramic capacitors as shown above. These capacitors must be placed as close as possible
to, or below the appropriate pins on the underside of the PCB to ensure the good
functionality of the device.
MS19875V5
Level shifter
Analog: RCs,
PLL,comparators, OPAMP,
....
Power
switch
ADC/DAC
Kernel logic
(CPU,
digital
& memories)
I/O logic
Backup circuitry
(LSE, RTC,
Wakeup logic,
Backup registers)
VBAT
1.65 – 3.6 V
GP I/Os
VDD
OUT
IN
Regulator
4 x VDD
4 x VSS
VDDA
VDDA
VREF+
VREF-
VSSA
4 x 100 nF
+ 1 x 4.7 μF
10 nF
+ 1 μF
Electrical characteristics STM32F303xB STM32F303xC
58/149 DS9118 Rev 14
6.1.7 Current consumption measurement
Figure 12. Current consumption measurement scheme
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 21: Voltage characteristics,
Table 22: Current characteristics, and Table 23: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
MS19213V1
VBAT
VDD
VDDA
IDD
IDDA
IDD_VBAT
Table 21. Voltage characteristics(1)
Symbol Ratings Min Max Unit
VDD–VSS
External main supply voltage (including VDDA, VBAT
and VDD)-0.3 4.0
V
VDD–VDDA Allowed voltage difference for VDD > VDDA -0.4
VREF+–VDDA(2) Allowed voltage difference for VREF+ > VDDA -0.4
VIN(3)
Input voltage on FT and FTf pins VSS 0.3 VDD + 4.0
Input voltage on TTa pins VSS 0.3 4.0
Input voltage on any other pin VSS 0.3 4.0
Input voltage on Boot0 pin 0 9
|ΔVDDx| Variations between different VDD power pins - 50 mV
|VSSX VSS| Variations between all the different ground pins(4) -50
VESD(HBM)
Electrostatic discharge voltage (human body
model)
see Section 6.3.12: Electrical
sensitivity characteristics -
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range. The following relationship must be respected between VDDA and VDD:
VDDA must power on before or at the same time as VDD in the power up sequence.
VDDA must be greater than or equal to VDD.
DS9118 Rev 14 59/149
STM32F303xB STM32F303xC Electrical characteristics
125
2. VREF+ must be always lower or equal than VDDA (VREF+ VDDA). If unused then it must be connected to VDDA.
3. VIN maximum must always be respected. Refer to Table 22: Current characteristics for the maximum allowed injected
current values.
4. Include VREF- pin.
Table 22. Current characteristics
Symbol Ratings Max. Unit
ΣIVDD Total current into sum of all VDD power lines (source) 160
mA
ΣIVSS Total current out of sum of all VSS ground lines (sink) 160
IVDD Maximum current into each VDD power line (source)(1) 100
IVSS Maximum current out of each VSS ground line (sink)(1) 100
IIO(PIN)
Output current sunk by any I/O and control pin 25
Output current source by any I/O and control pin 25
ΣIIO(PIN)
Total output current sunk by sum of all IOs and control pins(2) 80
Total output current sourced by sum of all IOs and control pins(2) 80
IINJ(PIN)
Injected current on FT, FTf and B pins(3) -5/+0
Injected current on TC and RST pin(4) ± 5
Injected current on TTa pins(5) ± 5
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins)(6) ± 25
1. All main power (VDD, VDDA) and ground (VSS and VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins.The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
4. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN< VSS. IINJ(PIN) must never be
exceeded. Refer to Table 21: Voltage characteristics for the maximum allowed input voltage values.
5. A positive injection is induced by VIN > VDDA while a negative injection is induced by VIN< VSS. IINJ(PIN) must never be
exceeded. Refer also to Table 21: Voltage characteristics for the maximum allowed input voltage values. Negative injection
disturbs the analog performance of the device. See note (2) below Table 70.
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 23. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150 °C
TJMaximum junction temperature 150 °C
Electrical characteristics STM32F303xB STM32F303xC
60/149 DS9118 Rev 14
6.3 Operating conditions
6.3.1 General operating conditions
Table 24. General operating conditions
Symbol Parameter Conditions Min Max Unit
fHCLK Internal AHB clock frequency - 0 72
MHzfPCLK1 Internal APB1 clock frequency - 0 36
fPCLK2 Internal APB2 clock frequency - 0 72
VDD Standard operating voltage - 2 3.6 V
VDDA
Analog operating voltage
(OPAMP and DAC not used) Must have a potential
equal to or higher than
VDD
23.6
V
Analog operating voltage
(OPAMP and DAC used) 2.4 3.6
VBAT Backup operating voltage - 1.65 3.6 V
VIN I/O input voltage
TC I/O –0.3 VDD+0.3
V
TTa I/O –0.3 VDDA+0.3
FT and FTf I/O(1)
1. To sustain a voltage higher than VDD+0.3 V, the internal pull-up/pull-down resistors must be disabled.
–0.3 5.5
BOOT0 0 5.5
PD
Power dissipation at TA =
85 °C for suffix 6 or TA =
105 °C for suffix 7(2)
2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 7.5: Thermal
characteristics).
WLCSP100 - 500
mW
LQFP100 - 488
LQFP64 - 444
LQFP48 - 364
TA
Ambient temperature for 6
suffix version
Maximum power
dissipation –40 85 °C
Low-power dissipation(3)
3. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see
Section 7.5: Thermal characteristics).
–40 105
Ambient temperature for 7
suffix version
Maximum power
dissipation –40 105 °C
Low-power dissipation(3) –40 125
TJ Junction temperature range 6 suffix version –40 105 °C
7 suffix version –40 125
DS9118 Rev 14 61/149
STM32F303xB STM32F303xC Electrical characteristics
125
6.3.2 Operating conditions at power-up / power-down
The parameters given in Table 25 are derived from tests performed under the ambient
temperature condition summarized in Table 24.
6.3.3 Embedded reset and power control block characteristics
The parameters given in Table 26 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 24.
Table 25. Operating conditions at power-up / power-down
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate
-
0
µs/V
VDD fall time rate 20
tVDDA
VDDA rise time rate
-
0
VDDA fall time rate 20
Table 26. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPOR/PDR(1)
1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector
monitors only VDD.
Power on/power down
reset threshold
Falling edge 1.8(2)
2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
1.88 1.96 V
Rising edge 1.84 1.92 2.0 V
VPDRhyst(1) PDR hysteresis - - 40 - mV
tRSTTEMPO(3)
3. Guaranteed by design.
POR reset
temporization - 1.5 2.5 4.5 ms
Electrical characteristics STM32F303xB STM32F303xC
62/149 DS9118 Rev 14
Table 27. Programmable voltage detector characteristics
Symbol Parameter Conditions Min(1)
1. Guaranteed by characterization results.
Typ Max(1) Unit
VPVD0 PVD threshold 0 Rising edge 2.1 2.18 2.26
V
Falling edge 2 2.08 2.16
VPVD1 PVD threshold 1 Rising edge 2.19 2.28 2.37
Falling edge 2.09 2.18 2.27
VPVD2 PVD threshold 2 Rising edge 2.28 2.38 2.48
Falling edge 2.18 2.28 2.38
VPVD3 PVD threshold 3 Rising edge 2.38 2.48 2.58
Falling edge 2.28 2.38 2.48
VPVD4 PVD threshold 4 Rising edge 2.47 2.58 2.69
Falling edge 2.37 2.48 2.59
VPVD5 PVD threshold 5 Rising edge 2.57 2.68 2.79
Falling edge 2.47 2.58 2.69
VPVD6 PVD threshold 6 Rising edge 2.66 2.78 2.9
Falling edge 2.56 2.68 2.8
VPVD7 PVD threshold 7 Rising edge 2.76 2.88 3
Falling edge 2.66 2.78 2.9
VPVDhyst(2)
2. Guaranteed by design.
PVD hysteresis - - 100 - mV
IDD(PVD) PVD current
consumption - - 0.15 0.26 µA
DS9118 Rev 14 63/149
STM32F303xB STM32F303xC Electrical characteristics
125
6.3.4 Embedded reference voltage
The parameters given in Table 28 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 24.
6.3.5 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 12: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to CoreMark code.
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at VDD or VSS (no load)
All peripherals are disabled except when explicitly mentioned
The Flash memory access time is adjusted to the fHCLK frequency (0 wait state from 0
to 24 MHz,1 wait state from 24 to 48 MHz and 2 wait states from 48 to 72 MHz)
Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
When the peripherals are enabled fPCLK2 = fHCLK and fPCLK1 = fHCLK/2
When fHCLK > 8 MHz, the PLL is ON and the PLL input is equal to HSI/2 (4 MHz) or
HSE (8 MHz) in bypass mode.
Table 28. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.2 1.23 1.25 V
–40 °C < TA < +85 °C 1.2 1.23 1.24(1)
1. Guaranteed by characterization results.
V
TS_vrefint
ADC sampling time when
reading the internal
reference voltage
-2.2--µs
VRERINT
Internal reference voltage
spread over the
temperature range
VDD = 3 V ±10 mV - - 10(2)
2. Guaranteed by design.
mV
TCoeff Temperature coefficient - - - 100(2) ppm/°C
Table 29. Internal reference voltage calibration values
Calibration value name Description Memory address
VREFINT_CAL
Raw data acquired at
temperature of 30 °C
VDDA= 3.3 V
0x1FFF F7BA - 0x1FFF F7BB
Electrical characteristics STM32F303xB STM32F303xC
64/149 DS9118 Rev 14
The parameters given in Table 30 to Ta ble 34 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 24.
Table 30. Typical and maximum current consumption from VDD supply at VDD = 3.6V
Symbol Parameter Conditions fHCLK
All peripherals enabled All peripherals disabled
Unit
Typ
Max @ TA(1)
Typ
Max @ TA(1)
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
IDD
Supply
current in
Run mode,
executing
from Flash
External
clock (HSE
bypass)
72 MHz 61.2 65.8 67.6 68.5 27.8 30.3 30.7 31.5
mA
64 MHz 54.7 59.1 60.2 61.1 24.6 27.2 27.6 28.3
48 MHz 41.7 45.1 46.2 47.2 19.2 21.1 21.4 21.8
32 MHz 28.1 31.5 32.5 32.7 12.9 14.6 14.8 15.3
24 MHz 21.4 23.7 24.4 25.2 10.0 11.4 11.4 12.1
8 MHz 7.4 8.4 8.6 9.4 3.6 4.1 4.4 5.0
1 MHz 1.3 1.6 1.8 2.6 0.8 1.0 1.2 2.1
Internal
clock (HSI)
64 MHz 49.7 54.4 55.4 56.3 24.5 27.2 27.4 28.1
48 MHz 37.9 42.2 43.0 43.5 18.9 21.4 21.5 21.6
32 MHz 25.8 29.2 29.2 30.0 12.7 14.2 14.6 15.2
24 MHz 19.7 22.3 22.6 23.2 6.7 7.7 7.9 8.5
8 MHz 6.9 7.8 8.3 8.8 3.5 4.0 4.4 5.0
Supply
current in
Run mode,
executing
from RAM
External
clock (HSE
bypass)
72 MHz 60.8 66.2(2) 69.7 70.4(2) 27.4 31.7(2) 32.2 32.5(2)
64 MHz 54.3 59.1 62.2 63.3 24.3 28.3 28.7 28.8
48 MHz 41.0 45.6 47.3 47.9 18.3 21.6 21.9 22.1
32 MHz 27.6 32.4 32.4 32.9 12.3 15.0 15.2 15.4
24 MHz 20.8 23.9 24.3 25.0 9.3 11.3 11.4 12.0
8 MHz 6.9 7.8 8.7 9.0 3.1 3.7 4.2 4.9
1 MHz 0.9 1.2 1.5 2.3 0.4 0.6 1.0 1.8
Internal
clock (HSI)
64 MHz 49.2 53.9 55.2 57.4 23.9 27.8 28.2 28.4
48 MHz 37.3 40.8 41.4 44.1 18.2 21.0 21.6 21.9
32 MHz 25.1 27.6 29.1 30.1 12.0 14.0 14.5 15.1
24 MHz 19.0 21.6 22.1 22.9 6.3 7.2 7.7 8.1
8 MHz 6.4 7.3 7.9 8.4 3.0 3.5 4.0 4.7
DS9118 Rev 14 65/149
STM32F303xB STM32F303xC Electrical characteristics
125
IDD
Supply
current in
Sleep
mode,
executing
from Flash
or RAM
External
clock (HSE
bypass)
72 MHz 44.0 48.4 49.4 50.5 6.6 7.5 7.9 8.7
mA
64 MHz 39.2 43.3 44.0 45.2 6.0 6.8 7.2 7.9
48 MHz 29.6 32.7 33.3 34.3 4.5 5.2 5.6 6.3
32 MHz 19.7 23.3 23.3 23.5 3.1 3.5 4.0 4.8
24 MHz 14.9 17.6 17.8 18.3 2.4 2.8 3.3 3.9
8 MHz 4.9 5.7 6.1 6.9 0.8 1.0 1.4 2.2
1 MHz 0.6 0.9 1.2 2.1 0.1 0.3 0.6 1.5
Internal
clock (HSI)
64 MHz 34.2 38.1 39.2 40.3 5.7 6.3 6.8 7.5
48 MHz 25.8 28.7 29.6 30.3 4.3 4.8 5.2 5.9
32 MHz 17.4 19.4 19.9 20.7 2.9 3.2 3.7 4.5
24 MHz 13.2 15.1 15.6 15.9 1.5 1.8 2.2 2.9
8 MHz 4.5 5.0 5.6 6.2 0.7 0.9 1.2 2.1
1. Guaranteed by characterization results unless otherwise specified.
2. Data based on characterization results and tested in production with code executing from RAM.
Table 30. Typical and maximum current consumption from VDD supply at VDD = 3.6V (continued)
Symbol Parameter Conditions fHCLK
All peripherals enabled All peripherals disabled
Unit
Typ
Max @ TA(1)
Typ
Max @ TA(1)
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
Table 31. Typical and maximum current consumption from the VDDA supply
Symbol Parameter Conditions
(1) fHCLK
VDDA = 2.4 V VDDA = 3.6 V
Unit
Typ
Max @ TA(2)
Typ
Max @ TA(2)
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
IDDA
Supply
current in
Run/Sleep
mode,
code
executing
from Flash
or RAM
HSE
bypass
72 MHz 225 276 289 297 245 302 319 329
µA
64 MHz 198 249 261 268 216 270 284 293
48 MHz 149 195 204 211 159 209 222 230
32 MHz 102 145 152 157 110 154 162 169
24 MHz 80 119 124 128 86 126 131 135
8 MHz 2 3 4 6 3 4 5 9
1 MHz 2 3 5 7 3 4 6 9
HSI clock
64 MHz 270 323 337 344 299 354 371 381
48 MHz 220 269 280 286 244 293 309 318
32 MHz 173 218 228 233 193 239 251 257
24 MHz 151 194 200 204 169 211 219 225
8 MHz 73 97 99 103 88 105 110 116
1. Current consumption from the VDDA supply is independent of whether the peripherals are on or off. Furthermore when the
PLL is off, IDDA is independent from the frequency.
2. Guaranteed by characterization results.
Electrical characteristics STM32F303xB STM32F303xC
66/149 DS9118 Rev 14
Table 32. Typical and maximum VDD consumption in Stop and Standby modes
Symbol Parameter Conditions
Typ @VDD (VDD=VDDA)Max
(1)
Unit
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply
current in
Stop mode
Regulator in run mode,
all oscillators OFF 20.05 20.33 20.42 20.50 20.67 20.80 44.2(2) 350 735(2)
µA
Regulator in low-power
mode, all oscillators OFF 7.63 7.77 7.90 8.07 8.17 8.33 30.6(2) 335 720(2)
Supply
current in
Standby
mode
LSI ON and IWDG ON 0.80 0.96 1.09 1.23 1.37 1.51 - - -
LSI OFF and IWDG OFF 0.60 0.74 0.83 0.93 1.02 1.11 5.0(2) 7.8 13.3(2)
1. Guaranteed by characterization results unless otherwise specified.
2. Data based on characterization results and tested in production.
Table 33. Typical and maximum VDDA consumption in Stop and Standby modes
Symbol Parameter Conditions
Typ @VDD (VDD = VDDA)Max
(1)
Unit
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V TA =
25 °C
TA =
85 °C
TA =
105 °C
IDDA
Supply
current in
Stop mode
VDDA monitoring ON
Regulator in run mode,
all oscillators OFF 1.81 1.95 2.07 2.20 2.35 2.52 3.7 5.5 8.8
µA
Regulator in low-power
mode, all oscillators
OFF
1.81 1.95 2.07 2.20 2.35 2.52 3.7 5.5 8.8
Supply
current in
Standby
mode
LSI ON and IWDG ON 2.22 2.42 2.59 2.78 3.0 3.24 - - -
LSI OFF and IWDG
OFF 1.69 1.82 1.94 2.08 2.23 2.40 3.5 5.4 9.2
Supply
current in
Stop mode
VDDA monitoring OFF
Regulator in run mode,
all oscillators OFF 1.05 1.08 1.10 1.15 1.22 1.29 - - -
Regulator in low-power
mode, all oscillators
OFF
1.05 1.08 1.10 1.15 1.22 1.29 - - -
Supply
current in
Standby
mode
LSI ON and IWDG ON 1.44 1.52 1.60 1.71 1.84 1.98 - - -
LSI OFF and IWDG
OFF 0.93 0.95 0.98 1.02 1.08 1.15 - - -
1. Guaranteed by characterization results.
The total consumption is the sum of IDD and IDDA.
DS9118 Rev 14 67/149
STM32F303xB STM32F303xC Electrical characteristics
125
Figure 13. Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’)
Table 34. Typical and maximum current consumption from VBAT supply
Symbol Para
meter
Conditions
(1)
Typ @VBAT
Max
@VBAT = 3.6 V(2)
Unit
1.65V 1.8V 2V 2.4V 2.7V 3V 3.3V 3.6V TA =
25°C
TA =
85°C
TA =
105°C
IDD_VBAT
Backup
domain
supply
current
LSE & RTC
ON; "Xtal
mode"
lower
driving
capability;
LSEDRV[1:
0] = '00'
0.48 0.50 0.52 0.58 0.65 0.72 0.80 0.90 1.1 1.5 2.0
µA
LSE & RTC
ON; "Xtal
mode"
higher
driving
capability;
LSEDRV[1:
0] = '11'
0.83 0.86 0.90 0.98 1.03 1.10 1.20 1.30 1.5 2.2 2.9
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.
2. Guaranteed by characterization results.
0
0.2
0.4
0.6
0.8
1
1.2
1.4
25°C 60°C 85°C 105°C
1.6
5 V
1.8
V
2 V
2.4
V
2.7
V
3 V
3.3
V
3.6
V
T
A(°C)
(μA)
IVBAT
MS31124V1
Electrical characteristics STM32F303xB STM32F303xC
68/149 DS9118 Rev 14
Typical current consumption
The MCU is placed under the following conditions:
VDD = VDDA = 3.3 V
All I/O pins available on each package are in analog input configuration
The Flash access time is adjusted to fHCLK frequency (0 wait states from 0 to 24 MHz,
1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz), and Flash
prefetch is ON
When the peripherals are enabled, fAPB1 = fAHB/2, fAPB2 = fAHB
PLL is used for frequencies greater than 8 MHz
AHB prescaler of 2, 4, 8,16 and 64 is used for the frequencies 4 MHz, 2 MHz, 1 MHz,
500 kHz and 125 kHz respectively.
Table 35. Typical current consumption in Run mode, code with data processing running from
Flash
Symbol Parameter Conditions fHCLK
Typ
Unit
Peripherals
enabled
Peripherals
disabled
IDD
Supply current in
Run mode from
VDD supply
Running from HSE
crystal clock 8 MHz,
code executing from
Flash
72 MHz 61.3 28.0
mA
64 MHz 54.8 25.4
48 MHz 41.9 19.3
32 MHz 28.5 13.3
24 MHz 21.8 10.4
16 MHz 14.9 7.2
8 MHz 7.7 3.9
4 MHz 4.5 2.5
2 MHz 2.8 1.7
1 MHz 1.9 1.3
500 kHz 1.4 1.1
125 kHz 1.1 0.9
IDDA(1) (2)
Supply current in
Run mode from
VDDA supply
72 MHz 240.3 239.5
µA
64 MHz 210.9 210.3
48 MHz 155.8 155.6
32 MHz 105.7 105.6
24 MHz 82.1 82.0
16 MHz 58.8 58.8
8 MHz 2.4 2.4
4 MHz 2.4 2.4
2 MHz 2.4 2.4
1 MHz 2.4 2.4
500 kHz 2.4 2.4
125 kHz 2.4 2.4
1. VDDA monitoring is ON.
2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators,
OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.
DS9118 Rev 14 69/149
STM32F303xB STM32F303xC Electrical characteristics
125
Table 36. Typical current consumption in Sleep mode, code running from Flash or RAM
Symbol Parameter Conditions fHCLK
Typ
Unit
Peripherals
enabled
Peripherals
disabled
IDD
Supply current in
Sleep mode from
VDD supply
Running from HSE
crystal clock 8 MHz,
code executing from
Flash or RAM
72 MHz 44.1 7.0
mA
64 MHz 39.7 6.3
48 MHz 30.3 4.9
32 MHz 20.5 3.5
24 MHz 15.4 2.8
16 MHz 10.6 2.0
8 MHz 5.4 1.1
4 MHz 3.2 1.0
2 MHz 2.1 0.9
1 MHz 1.5 0.8
500 kHz 1.2 0.8
125 kHz 1.0 0.8
IDDA(1) (2)
Supply current in
Sleep mode from
VDDA supply
72 MHz 239.7 238.5
µA
64 MHz 210.5 209.6
48 MHz 155.0 155.6
32 MHz 105.3 105.2
24 MHz 81.9 81.8
16 MHz 58.7 58.6
8 MHz 2.4 2.4
4 MHz 2.4 2.4
2 MHz 2.4 2.4
1 MHz 2.4 2.4
500 kHz 2.4 2.4
125 kHz 2.4 2.4
1. VDDA monitoring is ON.
2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators,
OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.
Electrical characteristics STM32F303xB STM32F303xC
70/149 DS9118 Rev 14
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 54: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption (seeTable 38: Peripheral current
consumption), the I/Os used by an application also contribute to the current consumption.
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to
the pin:
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT+CS
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
ISW VDD fSW C××=
DS9118 Rev 14 71/149
STM32F303xB STM32F303xC Electrical characteristics
125
Table 37. Switching output I/O current consumption
Symbol Parameter Conditions(1)
1. CS = 5 pF (estimated value).
I/O toggling
frequency (fSW)Typ Unit
ISW
I/O current
consumption
VDD = 3.3 V
Cext = 0 pF
C = CINT + CEXT+ CS
2 MHz 0.90
mA
4 MHz 0.93
8 MHz 1.16
18 MHz 1.60
36 MHz 2.51
48 MHz 2.97
VDD = 3.3 V
Cext = 10 pF
C = CINT + CEXT +CS
2 MHz 0.93
4 MHz 1.06
8 MHz 1.47
18 MHz 2.26
36 MHz 3.39
48 MHz 5.99
VDD = 3.3 V
Cext = 22 pF
C = CINT + CEXT +CS
2 MHz 1.03
4 MHz 1.30
8 MHz 1.79
18 MHz 3.01
36 MHz 5.99
VDD = 3.3 V
Cext = 33 pF
C = CINT + CEXT+ CS
2 MHz 1.10
4 MHz 1.31
8 MHz 2.06
18 MHz 3.47
36 MHz 8.35
VDD = 3.3 V
Cext = 47 pF
C = CINT + CEXT+ CS
2 MHz 1.20
4 MHz 1.54
8 MHz 2.46
18 MHz 4.51
36 MHz 9.98
Electrical characteristics STM32F303xB STM32F303xC
72/149 DS9118 Rev 14
On-chip peripheral current consumption
The MCU is placed under the following conditions:
all I/O pins are in analog input configuration
all peripherals are disabled unless otherwise mentioned
the given value is calculated by measuring the current consumption
with all peripherals clocked off
with only one peripheral clocked on
ambient operating temperature at 25°C and VDD = VDDA = 3.3 V.
Table 38. Peripheral current consumption
Peripheral
Typical consumption(1)
Unit
IDD
BusMatrix (2) 12.6
µA/MHz
DMA1 7.6
DMA2 6.1
CRC 2.1
GPIOA 10.0
GPIOB 10.3
GPIOC 2.2
GPIOD 8.8
GPIOE 3.3
GPIOF 3.0
TSC 5.5
ADC1&2 17.3
ADC3&4 18.8
APB2-Bridge (3) 3.6
SYSCFG 7.3
TIM1 40.0
SPI1 8.8
TIM8 36.4
USART1 23.3
TIM15 17.1
TIM16 10.1
TIM17 11.0
APB1-Bridge (3) 6.1
TIM2 49.1
TIM3 38.8
TIM4 38.3
DS9118 Rev 14 73/149
STM32F303xB STM32F303xC Electrical characteristics
125
TIM6 9.7
µA/MHz
TIM7 12.1
WWDG 6.4
SPI2 40.4
SPI3 40.0
USART2 41.9
USART3 40.2
UART4 36.5
UART5 30.8
I2C1 10.5
I2C2 10.4
USB 26.2
CAN 33.4
PWR 5.7
DAC 15.4
1. The power consumption of the analog part (IDDA) of peripherals such as ADC, DAC, Comparators, OpAmp
etc. is not included. Refer to the tables of characteristics in the subsequent sections.
2. BusMatrix is automatically active when at least one master is ON (CPU, DMA1 or DMA2).
3. The APBx bridge is automatically active when at least one peripheral is ON on the same bus.
Table 38. Peripheral current consumption (continued)
Peripheral
Typical consumption(1)
Unit
IDD
Electrical characteristics STM32F303xB STM32F303xC
74/149 DS9118 Rev 14
6.3.6 Wakeup time from low-power mode
The wakeup times given in Table 39 are measured starting from the wakeup event trigger up
to the first instruction executed by the CPU:
For Stop or Sleep mode: the wakeup event is WFE.
WKUP1 (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 24.
Table 39. Low-power mode wakeup timings
Symbol Parameter Conditions
Typ @VDD, VDD = VDDA
Max Unit
2.0 V 2.4 V 2.7 V 3 V 3.3 V 3.6 V
tWUSTOP
Wakeup from
Stop mode
Regulator in
run mode 4.1 3.9 3.8 3.7 3.6 3.5 4.5
µs
Regulator in
low-power
mode
7.9 6.7 6.1 5.7 5.4 5.2 9
tWUSTANDBY(1) Wakeup from
Standby mode
LSI and
IWDG OFF 69.2 60.3 56.4 53.7 51.7 50 100
tWUSLEEP
Wakeup from
Sleep mode -6-
CPU
clock
cycles
1. Guaranteed by characterization results.
DS9118 Rev 14 75/149
STM32F303xB STM32F303xC Electrical characteristics
125
6.3.7 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The
external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the
recommended clock input waveform is shown in Figure 14.
Figure 14. High-speed external clock source AC timing diagram
Table 40. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
User external clock source
frequency(1)
1. Guaranteed by design.
-
1832MHz
VHSEH OSC_IN input pin high level voltage 0.7VDD -V
DD V
VHSEL OSC_IN input pin low level voltage VSS -0.3V
DD
tw(HSEH)
tw(HSEL)
OSC_IN high or low time(1) 15 - -
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1) --20
MS19214V2
VHSEH
tf(HSE)
90%
10%
THSE
t
tr(HSE)
VHSEL
tw(HSEH)
tw(HSEL)
Electrical characteristics STM32F303xB STM32F303xC
76/149 DS9118 Rev 14
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The
external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the
recommended clock input waveform is shown in Figure 15
Figure 15. Low-speed external clock source AC timing diagram
Table 41. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext
User External clock source
frequency(1)
1. Guaranteed by design.
-
- 32.768 1000 kHz
VLSEH
OSC32_IN input pin high level
voltage 0.7VDD -V
DD
V
VLSEL
OSC32_IN input pin low level
voltage VSS -0.3V
DD
tw(LSEH)
tw(LSEL)
OSC32_IN high or low time(1) 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1) --50
MS19215V2
VLSEH
tf(LSE)
90%
10%
TLSE
t
tr(LSE)
VLSEL
tw(LSEH)
tw(LSEL)
DS9118 Rev 14 77/149
STM32F303xB STM32F303xC Electrical characteristics
125
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 42. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Table 42. HSE oscillator characteristics
Symbol Parameter Conditions(1)
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
Min(2)
2. Guaranteed by design.
Typ Max(2) Unit
fOSC_IN Oscillator frequency - 4 8 32 MHz
RFFeedback resistor - - 200 kΩ
IDD HSE current consumption
During startup(3)
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time.
--8.5
mA
VDD=3.3 V, Rm= 30Ω,
CL=10 pF@8 MHz -0.4-
VDD=3.3 V, Rm= 45Ω,
CL=10 pF@8 MHz -0.5-
VDD=3.3 V, Rm= 30Ω,
CL=5 pF@32 MHz -0.8-
VDD=3.3 V, Rm= 30Ω,
CL=10 pF@32 MHz -1-
VDD=3.3 V, Rm= 30Ω,
CL=20 pF@32 MHz -1.5-
gmOscillator transconductance Startup 10 - - mA/V
tSU(HSE)(4)
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer.
Startup time VDD is stabilized - 2 - ms
Electrical characteristics STM32F303xB STM32F303xC
78/149 DS9118 Rev 14
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 16). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 16. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
MS19876V1
(1)
OSC_IN
OSC_OUT
RF
Bias
controlled
gain
fHSE
REXT
8 MHz
resonator
Resonator with integrated
capacitors
CL1
CL2
DS9118 Rev 14 79/149
STM32F303xB STM32F303xC Electrical characteristics
125
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 43. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Table 43. LSE oscillator characteristics (fLSE = 32.768 kHz)
Symbol Parameter Conditions(1) Min(2) Typ Max(2) Unit
IDD LSE current consumption
LSEDRV[1:0]=00
lower driving capability -0.50.9
µA
LSEDRV[1:0]=10
medium low driving capability --1
LSEDRV[1:0]=01
medium high driving capability --1.3
LSEDRV[1:0]=11
higher driving capability --1.6
gm
Oscillator
transconductance
LSEDRV[1:0]=00
lower driving capability 5--
µA/V
LSEDRV[1:0]=10
medium low driving capability 8- -
LSEDRV[1:0]=01
medium high driving capability 15 - -
LSEDRV[1:0]=11
higher driving capability 25 - -
tSU(LSE)(3) Startup time VDD is stabilized - 2 - s
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
2. Guaranteed by design.
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer.
Electrical characteristics STM32F303xB STM32F303xC
80/149 DS9118 Rev 14
Figure 17. Typical application with a 32.768 kHz crystal
Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
6.3.8 Internal clock source characteristics
The parameters given in Table 44 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 24.
High-speed internal (HSI) RC oscillator
MS30253V2
OSC32_IN
OSC32_OUT
Drive
programmable
amplifier
f
LSE
32.768 kHz
resonator
Resonator with integrated
capacitors
C
L1
C
L2
Table 44. HSI oscillator characteristics(1)
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - - 8 - MHz
TRIM HSI user trimming step - - - 1(2)
2. Guaranteed by design.
%
DuCy(HSI) Duty cycle - 45(2) -55
(2) %
ACCHSI Accuracy of the HSI oscillator
TA = -40 to
105°C -2.8(3)
3. Guaranteed by characterization results.
-3.8
(3)
%
TA = -10 to 85°C -1.9(3) -2.3
(3)
TA = 0 to 85°C -1.9(3) -2
(3)
TA = 0 to 70°C -1.3(3) -2
(3)
TA = 0 to 55°C -1(3) -2
(3)
TA = 25°C(4)
4. Factory calibrated, parts not soldered.
-1 - 1
tsu(HSI) HSI oscillator startup time - 1(2) -2
(2) µs
IDDA(HSI)
HSI oscillator power
consumption - - 80 100(2) µA
DS9118 Rev 14 81/149
STM32F303xB STM32F303xC Electrical characteristics
125
Figure 18. HSI oscillator accuracy characterization results for soldered parts
Low-speed internal (LSI) RC oscillator
Table 45. LSI oscillator characteristics(1)
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI Frequency 30 40 50 kHz
tsu(LSI)(2)
2. Guaranteed by design.
LSI oscillator startup time - - 85 µs
IDD(LSI)(2) LSI oscillator power consumption - 0.75 1.2 µA
MS30985V4
T [ºC]
A
MAX
MIN
-40 -20 0 20 40 60 80 100 120
4%
3%
2%
1%
0%
-1%
-2%
-3%
-4%
Electrical characteristics STM32F303xB STM32F303xC
82/149 DS9118 Rev 14
6.3.9 PLL characteristics
The parameters given in Table 46 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 24.
6.3.10 Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
Table 46. PLL characteristics
Symbol Parameter
Value
Unit
Min Typ Max
fPLL_IN
PLL input clock(1)
1. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT.
1(2) -24
(2) MHz
PLL input clock duty cycle 40(2) -60
(2) %
fPLL_OUT PLL multiplier output clock 16(2) -72MHz
tLOCK PLL lock time - - 200(2) µs
Jitter Cycle-to-cycle jitter - - 300(2)
2. Guaranteed by design.
ps
Table 47. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max(1)
1. Guaranteed by design.
Unit
tprog 16-bit programming time TA = –40 to +105 °C 40 53.5 60 µs
tERASE Page (2 KB) erase time TA = –40 to +105 °C 20 - 40 ms
tME Mass erase time TA = –40 to +105 °C 20 - 40 ms
IDD Supply current Write mode - - 10 mA
Erase mode - - 12 mA
Table 48. Flash memory endurance and data retention
Symbol Parameter Conditions
Value
Unit
Min(1)
1. Guaranteed by characterization results.
NEND Endurance TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions) 10 kcycles
tRET Data retention
1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
30
Years1 kcycle(2) at TA = 105 °C 10
10 kcycles(2) at TA = 55 °C 20
DS9118 Rev 14 83/149
STM32F303xB STM32F303xC Electrical characteristics
125
6.3.11 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 49. They are based on the EMS levels and classes
defined in the application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Table 49. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, LQFP100, TA = +25°C,
fHCLK = 72 MHz
conforms to IEC 61000-4-2
3B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP100, TA = +25°C,
fHCLK = 72 MHz
conforms to IEC 61000-4-4
4A
Electrical characteristics STM32F303xB STM32F303xC
84/149 DS9118 Rev 14
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
6.3.12 Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114, ANSI/ESD STM5.3.1 standard.
Table 50. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs. [fHSE/fHCLK]
Unit
8/72 MHz
SEMI Peak level
VDD = 3.6 V, TA = 25 °C,
LQFP100 package
compliant with IEC
61967-2
0.1 to 30 MHz 7
dBµV30 to 130 MHz 20
130 MHz to 1GHz 27
SAE EMI Level 4-
Table 51. ESD absolute maximum ratings
Symbol Ratings Conditions Packages Class Maximum
value(1)
1. Guaranteed by characterization results.
Unit
VESD(HBM)
Electrostatic
discharge voltage
(human body model)
TA = +25 °C, conforming
to ANSI/ESDA/JEDEC JS-001 All 2 2000
V
VESD(CDM)
Electrostatic
discharge voltage
(charge device model)
TA = +25 °C, conforming
to ANSI/ESDA/JEDEC JS-002 All C2a 500
DS9118 Rev 14 85/149
STM32F303xB STM32F303xC Electrical characteristics
125
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
6.3.13 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of –5 µA/+0 µA range), or other functional failure (for example reset occurrence or oscillator
frequency deviation).
The test results are given in Table 53.
Table 52. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78A II level A
Electrical characteristics STM32F303xB STM32F303xC
86/149 DS9118 Rev 14
Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may
potentially inject negative currents.
Table 53. I/O current injection susceptibility
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on BOOT0 – 0 NA
mA
Injected current on PC0, PC1, PC2, PC3, PF2, PA0,
PA1, PA2, PA3, PF4, PA4, PA5, PA6, PA7, PC4, PC5,
PB2 with induced leakage current on other pins from this
group less than -50 µA
– 5 -
Injected current on PB0, PB1, PE7, PE8, PE9, PE10,
PE11, PE12, PE13, PE14, PE15, PB12, PB13, PB14,
PB15, PD8, PD9, PD10, PD11, PD12, PD13, PD14 with
induced leakage current on other pins from this group
less than -50 µA
– 5 -
Injected current on PC0, PC1, PC2, PC3, PF2, PA0,
PA1, PA2, PA3, PF4, PA4, PA5, PA6, PA7, PC4, PC5,
PB2, PB0, PB1, PE7, PE8, PE9, PE10, PE11, PE12,
PE13, PE14, PE15, PB12, PB13, PB14, PB15, PD8,
PD9, PD10, PD11, PD12, PD13, PD14 with induced
leakage current on other pins from this group less than
400 µA
-+5
Injected current on any other FT and FTf pins – 5 NA
Injected current on any other pins – 5 +5
DS9118 Rev 14 87/149
STM32F303xB STM32F303xC Electrical characteristics
125
6.3.14 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 54 are derived from tests
performed under the conditions summarized in Table 24. All I/Os are CMOS and TTL
compliant.
Table 54. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
Low level input
voltage
TC and TTa I/O - - 0.3 VDD+0.07 (1)
V
FT and FTf I/O - - 0.475 VDD-0.2 (1)
BOOT0 - - 0.3 VDD–0.3 (1)
All I/Os except BOOT0 - - 0.3 VDD (2)
VIH
High level input
voltage
TC and TTa I/O 0.445 VDD+0.398 (1) --
FT and FTf I/O 0.5 VDD+0.2 (1) --
BOOT0 0.2 VDD+0.95 (1) --
All I/Os except BOOT0 0.7 VDD (2) --
Vhys Schmitt trigger
hysteresis
TC and TTa I/O - 200 (1) -
mVFT and FTf I/O - 100 (1) -
BOOT0 - 300 (1) -
Ilkg
Input leakage
current (3)
TC, FT and FTf I/O
TTa I/O in digital mode
VSS VIN VDD
--±0.1
µA
TTa I/O in digital mode
VDD VIN VDDA
--1
TTa I/O in analog mode
VSS VIN VDDA
--±0.2
FT and FTf I/O(4)
VDD VIN 5 V --10
RPU
Weak pull-up
equivalent resistor(5) VIN = VSS 25 40 55 kΩ
RPD
Weak pull-down
equivalent resistor(5) VIN = VDD 25 40 55 kΩ
CIO I/O pin capacitance - - 5 - pF
1. Data based on design simulation.
2. Tested in production.
3. Leakage could be higher than the maximum value. if negative current is injected on adjacent pins. Refer to Table 53: I/O
current injection susceptibility.
4. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimum (~10% order).
Electrical characteristics STM32F303xB STM32F303xC
88/149 DS9118 Rev 14
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 19 and Figure 20 for standard I/Os.
Figure 19. TC and TTa I/O input characteristics - CMOS port
Figure 20. TC and TTa I/O input characteristics - TTL port
MS30255V2
VDD (V)
VIHmin 2.0
VILmax 0.7
VIL/VIH (V)
1.3
2.0 3.6
V
ILmax
= 0.3V
DD
+0.07
0.6
2.7 3.0 3.3
CMOS standard requirements VILmax = 0.3VDD
V
IHmin
= 0.445V
DD
+0.398
Area not determined
Tested in production
Tested in production
Based on design simulations
Based on design simulations
CMOS standard requirements VIHmin = 0.7VDD
MS30256V2
VDD (V)
VIHmin 2.0
VILmax 0.8
VIL/VIH (V)
1.3
2.0 3.6
V
ILmax
= 0.3V
DD
+0.07
0.7
2.7 3.0 3.3
TTL standard requirements VILmax = 0.8V
V
IHmin
= 0.445V
DD
+0.398
Area not determined
Based on design simulations
Based on design simulations
TTL standard requirements VIHmin = 2V
DS9118 Rev 14 89/149
STM32F303xB STM32F303xC Electrical characteristics
125
Figure 21. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port
Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port
VDD (V)
2.0
0.5
VIL/VIH (V)
2.0 3.6
1.0
2.7
Area not determined
MS30257V3
V
ILmax
= 0.475V
DD
-0.2
V
IHmin
= 0.5V
DD
+0.2
Based on design simulations
Based on design simulations
CMOS standard requirements V
IH
min = 0.7V
DD
CMOS standard requirements V
IL
max = 0.3V
DD
MS30258V2
VDD (V)
2.0
VIL/VIH (V)
1.0
2.0 3.6
V
ILmin
= 0.475V
DD
-0.2
0.5
V
IHmin
= 0.5V
DD
+0.2
Area not determined
2.7
TTL standard requirements VIHmin = 2V
TTL standard requirements VILmax = 0.8V
0.8
Based on design simulations
Based on design simulations
Electrical characteristics STM32F303xB STM32F303xC
90/149 DS9118 Rev 14
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or
source up to +/- 20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 22).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
ΣIVSS (see Table 22).
Output voltage levels
Unless otherwise specified, the parameters given in Table 55 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 24. All I/Os (FT, TTa and TC unless otherwise specified) are CMOS and TTL
compliant.
Table 55. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
VOL(1) Output low level voltage for an I/O pin CMOS port(2)
IIO = +8 mA
2.7 V < VDD < 3.6 V
-0.4
V
VOH(3) Output high level voltage for an I/O pin VDD–0.4 -
VOL (1) Output low level voltage for an I/O pin TTL port(2)
IIO = +8 mA
2.7 V < VDD < 3.6 V
-0.4
VOH (3) Output high level voltage for an I/O pin 2.4 -
VOL(1)(4) Output low level voltage for an I/O pin IIO = +20 mA
2.7 V < VDD < 3.6 V
-1.3
VOH(3)(4) Output high level voltage for an I/O pin VDD–1.3 -
VOL(1)(4) Output low level voltage for an I/O pin IIO = +6 mA
2 V < VDD < 2.7 V
-0.4
VOH(3)(4) Output high level voltage for an I/O pin VDD–0.4 -
VOLFM+(1)(4) Output low level voltage for an FTf I/O pin in
FM+ mode
IIO = +20 mA
2.7 V < VDD < 3.6 V -0.4
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 22 and the sum of
IIO (I/O ports and control pins) must not exceed ΣIIO(PIN).
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 22 and the sum
of IIO (I/O ports and control pins) must not exceed ΣIIO(PIN).
4. Data based on design simulation.
DS9118 Rev 14 91/149
STM32F303xB STM32F303xC Electrical characteristics
125
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 23 and
Table 56, respectively.
Unless otherwise specified, the parameters given are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 24.
Table 56. I/O AC characteristics(1)
OSPEEDRy [1:0]
value(1) Symbol Parameter Conditions Min Max Unit
x0
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V - 2(3) MHz
tf(IO)out
Output high to low level
fall time CL = 50 pF, VDD = 2 V to 3.6 V
- 125(3)
ns
tr(IO)out
Output low to high level
rise time - 125(3)
01
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V - 10(3) MHz
tf(IO)out
Output high to low level
fall time CL = 50 pF, VDD = 2 V to 3.6 V
-25
(3)
ns
tr(IO)out
Output low to high level
rise time -25
(3)
11
fmax(IO)out Maximum frequency(2)
CL = 30 pF, VDD = 2.7 V to 3.6 V - 50(3) MHz
CL = 50 pF, VDD = 2.7 V to 3.6 V - 30(3) MHz
CL = 50 pF, VDD = 2 V to 2.7 V - 20(3) MHz
tf(IO)out
Output high to low level
fall time
CL = 30 pF, VDD = 2.7 V to 3.6 V - 5(3)
ns
CL = 50 pF, VDD = 2.7 V to 3.6 V - 8(3)
CL = 50 pF, VDD = 2 V to 2.7 V - 12(3)
tr(IO)out
Output low to high level
rise time
CL = 30 pF, VDD = 2.7 V to 3.6 V - 5(3)
CL = 50 pF, VDD = 2.7 V to 3.6 V - 8(3)
CL = 50 pF, VDD = 2 V to 2.7 V - 12(3)
FM+
configuration(4)
fmax(IO)out Maximum frequency(2)
CL = 50 pF, VDD = 2 V to 3.6 V
-2
(4) MHz
tf(IO)out
Output high to low level
fall time -12
(4)
ns
tr(IO)out
Output low to high level
rise time -34
(4)
-t
EXTIpw
Pulse width of external
signals detected by the
EXTI controller
-10
(3) -ns
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0316 reference manual for a description of
GPIO Port configuration register.
2. The maximum frequency is defined in Figure 23.
3. Guaranteed by design.
4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the STM32F303x STM32F313xx reference manual
RM0316 for a description of FM+ I/O mode configuration.
Electrical characteristics STM32F303xB STM32F303xC
92/149 DS9118 Rev 14
Figure 23. I/O AC characteristics definition
6.3.15 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 54).
Unless otherwise specified, the parameters given in Table 57 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 24.
ai14131c
10%
90%
50%
tr(IO)out
OUTPUT
EXTERNAL
ON 50pF
Maximum frequency is achieved if (tr + tf) ≤ 2/3)T and if the duty cycle is (45-55%)
10%
50%
90%
when loaded by 50pF
T
tf(IO)out
Table 57. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST)(1) NRST Input low level voltage - - - 0.3VDD+
0.07(1)
V
VIH(NRST)(1) NRST Input high level voltage - 0.445VDD+
0.398(1) --
Vhys(NRST) NRST Schmitt trigger voltage hysteresis - - 200 - mV
RPU Weak pull-up equivalent resistor(2) VIN = VSS 25 40 55 kΩ
VF(NRST)(1) NRST Input filtered pulse - - - 100(1) ns
VNF(NRST)(1) NRST Input not filtered pulse - 500(1) --ns
1. Guaranteed by design.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10% order).
DS9118 Rev 14 93/149
STM32F303xB STM32F303xC Electrical characteristics
125
Figure 24. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 57. Otherwise the reset will not be taken into account by the device.
6.3.16 Timer characteristics
The parameters given in Table 58 are guaranteed by design.
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
MS19878V1
External
reset circuitry (1)
NRST (2)
0.1 μF
VDD
RPU
Filter
Internal reset
Table 58. TIMx(1)(2) characteristics
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM4, TIM8, TIM15, TIM16 and TIM17
timers.
2. Guaranteed by design.
Symbol Parameter Conditions Min Max Unit
tres(TIM) Timer resolution time
-1-
tTIMxCLK
fTIMxCLK = 72 MHz 13.9 - ns
fTIMxCLK = 144 MHz
x=1.8 6.95 - ns
fEXT Timer external clock
frequency on CH1 to CH4
-0
fTIMxCLK/2 MHz
fTIMxCLK = 72 MHz 0 36 MHz
ResTIM Timer resolution TIMx (except TIM2) - 16 bit
TIM2 - 32
tCOUNTER 16-bit counter clock period
- 1 65536 tTIMxCLK
fTIMxCLK = 72 MHz 0.0139 910 µs
fTIMxCLK = 144 MHz
x=1.8 0.0069 455 µs
tMAX_COUNT Maximum possible count
with 32-bit counter
- - 65536 × 65536 tTIMxCLK
fTIMxCLK = 72 MHz - 59.65 s
fTIMxCLK = 144 MHz
x=1.8 - 29.825 s
Electrical characteristics STM32F303xB STM32F303xC
94/149 DS9118 Rev 14
Table 59. IWDG min/max timeout period at 40 kHz (LSI) (1)
1. These timings are given for a 40 kHz clock but the microcontroller’s internal RC frequency can vary from 30
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing
of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.
Prescaler divider PR[2:0] bits Min timeout (ms) RL[11:0]=
0x000
Max timeout (ms) RL[11:0]=
0xFFF
/4 0 0.1 409.6
/8 1 0.2 819.2
/16 2 0.4 1638.4
/32 3 0.8 3276.8
/64 4 1.6 6553.6
/128 5 3.2 13107.2
/256 7 6.4 26214.4
Table 60. WWDG min-max timeout value @72 MHz (PCLK)(1)
1. Guaranteed by design.
Prescaler WDGTB Min timeout value Max timeout value
1 0 0.05687 3.6409
2 1 0.1137 7.2817
4 2 0.2275 14.564
8 3 0.4551 29.127
DS9118 Rev 14 95/149
STM32F303xB STM32F303xC Electrical characteristics
125
6.3.17 Communications interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev.03 for:
Standard-mode (Sm) : with a bit rate up to 100 Kbits/s
Fast-mode (Fm) : with a bit rate up to 400 Kbits/s
Fast-mode Plus (Fm+) : with a bit rate up to 1Mbits/s
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to Reference manual).
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and
SCL I/O pins are “true” open-drain. When configured as open-drain, the PMOS connected
between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins support
Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port
characteristics.
All I2C I/Os embed an analog filter. refer to theTable 62: I2C analog filter characteristics.
Table 61. I2C timings specification (see I2C specification, rev.03, June 2007)(1)
Symbol Parameter
Standard mode Fast mode Fast Mode Plus
Unit
Min Max Min Max Min Max
fSCL SCL clock frequency 0 100 0 400 0 1000 KHz
tLOW Low period of the SCL clock 4.7 - 1.3 - 0.5 - µs
tHIGH High Period of the SCL clock 4 0.6 0.26 - µs
tr
Rise time of both SDA and SCL
signals - 1000 - 300 - 120 ns
tf
Fall time of both SDA and SCL
signals - 300 - 300 - 120 ns
tHD;DAT Data hold time 0 - 0 - 0 - µs
tVD;DAT Data valid time - 3.45(2) -0.9
(2) -0.45
(2) µs
tVD;ACK Data valid acknowledge time - 3.45(2) -0.9
(2) -0.45
(2) µs
tSU;DAT Data setup time 250 - 100 - 50 - ns
tHD:STA Hold time (repeated) START
condition 4.0 - 0.6 - 0.26 - µs
tSU:STA Set-up time for a repeated START
condition 4.7 - 0.6 - 0.26 µs
tSU:STO Set-up time for STOP condition 4.0 - 0.6 - 0.26 - µs
tBUF
Bus free time between a
STOP and START condition 4.7 - 1.3 - 0.5 - µs
CbCapacitive load for each bus line - 400 - 400 - 550 pF
tSP
Pulse width of spikes that are
suppressed by the analog filter for
Standard and Fast mode
050
(3) 050
(3) --ns
Electrical characteristics STM32F303xB STM32F303xC
96/149 DS9118 Rev 14
Figure 25. I2C bus AC waveforms and measurement circuit
1. Rs: Series protection resistors, Rp: Pull-up resistors, VDD_I2C: I2C bus supply.
1. The I2C characteristics are the requirements from I2C bus specification rev03. They are guaranteed by design when
I2Cx_TIMING register is correctly programmed (Refer to the RM0316 reference manual).
2. The maximum tHD;DAT could be 3.45 µs, 0.9 µs and 0.45 µs for standard mode, fast mode and fast mode plus, but must
be less than the maximum of tVD;DAT or tVD;ACK by a transition time.
3. The minimum width of the spikes filtered by the analog filter is above tSP(max).
Table 62. I2C analog filter characteristics(1)
1. Guaranteed by design.
Symbol Parameter Min Max Unit
tAF
Pulse width of spikes that are
suppressed by the analog filter 50 260 ns
MS19879V3
Rs
I2C bus
Rp
Rs
VDD_I2C
MCU
SDA
SCL
Rp
VDD_I2C
continued
continued
SDA
SCL
SDA
SCL
70%
30%
70%
30%
70%
30%
70%
30%
70%
30%
70%
30%
tf
tf
tr
tr
tSU;DAT
tHD;DAT tHIGH tVD;DAT
t
1 / fSCL
tLOW 9th clock
1st clock cycle
tSU;STA tHD;STA
tSP
tVD;ACK tSU;STO
tBUF
9th clock
SrSP
S
HD;STA
DS9118 Rev 14 97/149
STM32F303xB STM32F303xC Electrical characteristics
125
SPI/I2S characteristics
Unless otherwise specified, the parameters given in Table 63 for SPI or in Table 64 for I2S
are derived from tests performed under ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 24.
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S).
Table 63. SPI characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode, SPI1
2.7<VDD<3.6
--
24
MHz
Slave mode, SPI1
2.7<VDD<3.6 24
Master mode, SPI1/2/3
2<VDD<3.6 18
Slave mode, SPI1/2/3
2<VDD<3.6 18
DuCy(SCK) Duty cycle of SPI clock frequency Slave mode 30 50 70 %
tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4*Tpclk - -
ns
th(NSS) NSS hold time Slave mode, SPI presc = 2 2*Tpclk - -
tw(SCKH)
tw(SCKL)
SCK high and low time Master mode Tpclk-2 Tpclk Tpclk+2
tsu(MI) Data input setup time Master mode 5.5 - -
tsu(SI) Slave mode 6.5 - -
th(MI) Data input hold time Master mode 5 - -
th(SI) Slave mode 5 - -
ta(SO) Data output access time Slave mode 0 - 4*Tpclk
tdis(SO) Data output disable time Slave mode 0 - 24
tv(SO) Data output valid time
Slave mode - 12 27
Slave mode, SPI1
2.7<VDD<3.6V -1218
tv(MO) Master mode - 1.5 3
th(SO) Data output hold time Slave mode 11 - -
th(MO) Master mode 0 - -
1. Guaranteed by characterization results.
Electrical characteristics STM32F303xB STM32F303xC
98/149 DS9118 Rev 14
Figure 26. SPI timing diagram - slave mode and CPHA = 0
Figure 27. SPI timing diagram - slave mode and CPHA = 1(1)
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.
ai14135b
NSS input
tSU(NSS) tc(SCK) th(NSS)
SCK input
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tw(SCKH)
tw(SCKL)
ta(SO) tv(SO) th(SO) tr(SCK)
tf(SCK) tdis(SO)
MISO
OUTPUT
MOSI
INPUT
tsu(SI) th(SI)
MSB OUT
MSB IN
BIT6 OUT LSB OUT
LSB IN
BIT 1 IN
DS9118 Rev 14 99/149
STM32F303xB STM32F303xC Electrical characteristics
125
Figure 28. SPI timing diagram - master mode(1)
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.
ai14136c
SCK Output
CPHA= 0
MOSI
OUTPUT
MISO
INP UT
CPHA= 0
LSB OUT
LSB IN
CPOL=0
CPOL=1
B I T1 OUT
NSS input
tc(SCK)
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
th(MI)
High
SCK Output
CPHA=1
CPHA=1
CPOL=0
CPOL=1
tsu(MI)
tv(MO) th(MO)
MSB IN BIT6 IN
MSB OUT
Electrical characteristics STM32F303xB STM32F303xC
100/149 DS9118 Rev 14
Table 64. I2S characteristics(1)
1. Guaranteed by characterization results.
Symbol Parameter Conditions Min Max Unit
fCK
1/tc(CK)
I2S clock frequency
Master data: 16 bits,
audio freq=48 kHz 1.496 1.503 MHz
Slave 0 12.288
tr(CK)
tf(CK)
I2S clock rise and fall
time
Capacitive load
CL = 30 pF -8
ns
tw(CKH) I2S clock high time Master fPCLK= 36 MHz,
audio frequency =
48 kHz
331 -
tw(CKL) I2S clock low time 332 -
tv(WS) WS valid time Master mode 4 -
th(WS) WS hold time Master mode 4 -
tsu(WS) WS setup time Slave mode 4 -
th(WS) WS hold time Slave mode 0 -
Duty Cycle I2S slave input clock
duty cycle Slave mode 30 70 %
tsu(SD_MR) Data input setup time Master receiver 9 -
ns
tsu(SD_SR) Data input setup time Slave receiver 2 -
th(SD_MR) Data input hold time Master receiver 0 -
th(SD_SR) Slave receiver 0 -
tv(SD_ST) Data output valid time Slave transmitter
(after enable edge) -29
th(SD_ST) Data output hold time Slave transmitter
(after enable edge) 12 -
tv(SD_MT) Data output valid time Master transmitter
(after enable edge) -3
th(SD_MT) Data output hold time Master transmitter
(after enable edge) 2-
DS9118 Rev 14 101/149
STM32F303xB STM32F303xC Electrical characteristics
125
Figure 29. I2S slave timing diagram (Philips protocol)(1)
1. Measurement points are done at 0.5VDD and with external CL=30 pF.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 30. I2S master timing diagram (Philips protocol)(1)
1. Measurement points are done at 0.5VDD and with external CL=30 pF.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Electrical characteristics STM32F303xB STM32F303xC
102/149 DS9118 Rev 14
USB characteristics
Figure 31. USB timings: definition of data signal rise and fall time
Table 65. USB startup time
Symbol Parameter Max Unit
tSTARTUP(1)
1. Guaranteed by design.
USB transceiver startup time 1 µs
Table 66. USB DC electrical characteristics
Symbol Parameter Conditions Min.(1)
1. All the voltages are measured from the local ground potential.
Max.(1) Unit
Input levels
VDD USB operating voltage(2)
2. To be compliant with the USB 2.0 full-speed electrical specification, the USB_DP (D+) pin should be pulled
up with a 1.5 kΩ resistor to a 3.0-to-3.6 V voltage range.
-3.0
(3)
3. The STM32F303xB/STM32F303xC USB functionality is ensured down to 2.7 V but not the full USB
electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
3.6 V
VDI(4)
4. Guaranteed by design.
Differential input sensitivity I(USB_DP, USB_DM) 0.2 -
VVCM(4) Differential common mode range Includes VDI range 0.8 2.5
VSE(4) Single ended receiver threshold - 1.3 2.0
Output levels
VOL Static output level low RL of 1.5 kΩ to 3.6 V(5)
5. RL is the load connected on the USB drivers.
-0.3
V
VOH Static output level high RL of 15 kΩ to VSS(5) 2.8 3.6
ai14137b
Cross over
points
Differential
data lines
VCRS
VSS
tftr
DS9118 Rev 14 103/149
STM32F303xB STM32F303xC Electrical characteristics
125
CAN (controller area network) interface
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (CAN_TX and CAN_RX).
Table 67. USB: Full-speed electrical characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
Driver characteristics
trRise time(2) CL = 50 pF 4 - 20 ns
tfFall time(2) CL = 50 pF 4 - 20 ns
trfm Rise/ fall time matching tr/tf90 - 110 %
VCRS Output signal crossover voltage - 1.3 - 2.0 V
Output driver
Impedance(3) ZDRV driving high and low 28 40 44 Ω
1. Guaranteed by design.
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter
7 (version 2.0).
3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-), the matching impedance is
already included in the embedded driver.
DS9118 Rev 14 107/149
STM32F303xB STM32F303xC Electrical characteristics
125
Figure 32. ADC typical current consumption on VDDA pin
Figure 33. ADC typical current consumption on VREF+ pin
Clock frequency (MSPS)
ADC current consumption (μA)
MS36607V1
0
100
200
300
400
500
600
700
800
900
1
000
510.2
Differential mode
Single-ended mode
Clock frequency (MSPS)
ADC current consumption (μA)
MS36606V1
0
20
40
60
80
100
120
140
160
180
200
510.2
Single-ended mode
Differential mode
Electrical characteristics STM32F303xB STM32F303xC
108/149 DS9118 Rev 14
Table 69. Maximum ADC RAIN (1)
Resolution
Sampling
cycle @
72 MHz
Sampling
time [ns] @
72 MHz
RAIN max (kΩ)
Fast channels(2) Slow
channels
Other
channels(3)
12 bits
1.5 20.83 0.018 NA NA
2.5 34.72 0.150 NA 0.022
4.5 62.50 0.470 0.220 0.180
7.5 104.17 0.820 0.560 0.470
19.5 270.83 2.70 1.80 1.50
61.5 854.17 8.20 6.80 4.70
181.5 2520.83 22.0 18.0 15.0
601.5 8354.17 82.0 68.0 47.0
10 bits
1.5 20.83 0.082 NA NA
2.5 34.72 0.270 0.082 0.100
4.5 62.50 0.560 0.390 0.330
7.5 104.17 1.20 0.82 0.68
19.5 270.83 3.30 2.70 2.20
61.5 854.17 10.0 8.2 6.8
181.5 2520.83 33.0 27.0 22.0
601.5 8354.17 100.0 82.0 68.0
8 bits
1.5 20.83 0.150 NA 0.039
2.5 34.72 0.390 0.180 0.180
4.5 62.50 0.820 0.560 0.470
7.5 104.17 1.50 1.20 1.00
19.5 270.83 3.90 3.30 2.70
61.5 854.17 12.00 12.00 8.20
181.5 2520.83 39.00 33.00 27.00
601.5 8354.17 100.00 100.00 82.00
6 bits
1.5 20.83 0.270 0.100 0.150
2.5 34.72 0.560 0.390 0.330
4.5 62.50 1.200 0.820 0.820
7.5 104.17 2.20 1.80 1.50
19.5 270.83 5.60 4.70 3.90
61.5 854.17 18.0 15.0 12.0
181.5 2520.83 56.0 47.0 39.0
601.5 8354.17 100.00 100.0 100.0
1. Guaranteed by characterization results.
2. All fast channels, expect channels on PA2, PA6, PB1, PB12.
DS9118 Rev 14 109/149
STM32F303xB STM32F303xC Electrical characteristics
125
3. Channels available on PA2, PA6, PB1, PB12.
Table 70. ADC accuracy - limited test conditions, 100-pin packages (1)(2)
Symbol Parameter Conditions Min
(3) Typ Max
(3) Unit
ET
To t al
unadjusted
error
ADC clock freq. 72 MHz
Sampling freq. 5 Msps
VDDA = VREF+ = 3.3 V
25°C
100-pin package
Single ended Fast channel 5.1 Ms - ±3.5 ±4.5
LSB
Slow channel 4.8 Ms - ±4±4.5
Differential Fast channel 5.1 Ms - ±3±3
Slow channel 4.8 Ms - ±3±3
EO Offset error
Single ended Fast channel 5.1 Ms - ±1±1.5
Slow channel 4.8 Ms - ±1±2.5
Differential Fast channel 5.1 Ms - ±1±1.5
Slow channel 4.8 Ms - ±1±1.5
EG Gain error
Single ended Fast channel 5.1 Ms - ±3±4
Slow channel 4.8 Ms - ±3.5 ±4
Differential Fast channel 5.1 Ms - ±1.5 ±2.5
Slow channel 4.8 Ms - ±2±2.5
ED
Differential
linearity
error
Single ended Fast channel 5.1 Ms - ±1±1.5
Slow channel 4.8 Ms - ±1±1.5
Differential Fast channel 5.1 Ms - ±1±1
Slow channel 4.8 Ms - ±1±1
EL
Integral
linearity
error
Single ended Fast channel 5.1 Ms - ±1.5 ±2
Slow channel 4.8 Ms - ±1.5 ±3
Differential Fast channel 5.1 Ms - ±1±1.5
Slow channel 4.8 Ms - ±1±1.5
ENOB(4)
Effective
number of
bits
Single ended Fast channel 5.1 Ms 10.7 10.8 -
bits
Slow channel 4.8 Ms 10.7 10.8 -
Differential Fast channel 5.1 Ms 11.2 11.3 -
Slow channel 4.8 Ms 11.1 11.3 -
SINAD(4)
Signal-to-
noise and
distortion
ratio
Single ended Fast channel 5.1 Ms 66 67 -
dB
Slow channel 4.8 Ms 66 67 -
Differential Fast channel 5.1 Ms 69 70 -
Slow channel 4.8 Ms 69 70 -
Electrical characteristics STM32F303xB STM32F303xC
110/149 DS9118 Rev 14
SNR(4) Signal-to-
noise ratio ADC clock freq. 72 MHz
Sampling freq 5 Msps
VDDA = VREF+ = 3.3 V
25°C
100-pin package
Single ended Fast channel 5.1 Ms 66 67 -
dB
Slow channel 4.8 Ms 66 67 -
Differential Fast channel 5.1 Ms 69 70 -
Slow channel 4.8 Ms 69 70 -
THD(4)
To t al
harmonic
distortion
Single ended Fast channel 5.1 Ms - -76 -76
Slow channel 4.8 Ms - -76 -76
Differential Fast channel 5.1 Ms - -80 -80
Slow channel 4.8 Ms - -80 -80
1. ADC DC accuracy values are measured after internal calibration.
2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC
accuracy.
3. Guaranteed by characterization results.
4. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.
Table 70. ADC accuracy - limited test conditions, 100-pin packages (1)(2) (continued)
Symbol Parameter Conditions Min
(3) Typ Max
(3) Unit
DS9118 Rev 14 111/149
STM32F303xB STM32F303xC Electrical characteristics
125
Table 71. ADC accuracy, 100-pin packages(1)(2)(3)
Symbol Parameter Conditions Min (4) Max(4) Unit
ET
Tot a l
unadjusted
error
ADC clock freq. 72 MHz,
Sampling freq. 5 Msps
2 V VDDA , VREF+ 3.6 V
100-pin package
Single
Ended
Fast channel 5.1 Ms - ±6.5
LSB
Slow channel 4.8 Ms - ±6.5
Differential Fast channel 5.1 Ms - ±4
Slow channel 4.8 Ms - ±4
EO Offset error
Single
Ended
Fast channel 5.1 Ms - ±3
Slow channel 4.8 Ms - ±3
Differential Fast channel 5.1 Ms - ±2
Slow channel 4.8 Ms - ±2
EG Gain error
Single
Ended
Fast channel 5.1 Ms - ±6
Slow channel 4.8 Ms - ±6
Differential Fast channel 5.1 Ms - ±3
Slow channel 4.8 Ms - ±3
ED
Differential
linearity
error
Single
Ended
Fast channel 5.1 Ms - ±1.5
Slow channel 4.8 Ms - ±1.5
Differential Fast channel 5.1 Ms - ±1.5
Slow channel 4.8 Ms - ±1.5
EL
Integral
linearity
error
Single
Ended
Fast channel 5.1 Ms - ±2
Slow channel 4.8 Ms - ±3
Differential Fast channel 5.1 Ms - ±2
Slow channel 4.8 Ms - ±2
ENOB
(5)
Effective
number of
bits
Single
Ended
Fast channel 5.1 Ms 10.4 -
bits
Slow channel 4.8 Ms 10.2 -
Differential Fast channel 5.1 Ms 10.8 -
Slow channel 4.8 Ms 10.8 -
Electrical characteristics STM32F303xB STM32F303xC
112/149 DS9118 Rev 14
SINAD
(5)
Signal-to-
noise and
distortion
ratio
ADC clock freq. 72 MHz,
Sampling freq. 5 Msps,
2 V VDDA, VREF+ 3.6 V
100-pin package
Single
Ended
Fast channel 5.1 Ms 64 -
dB
Slow channel 4.8 Ms 63 -
Differential Fast channel 5.1 Ms 67 -
Slow channel 4.8 Ms 67 -
SNR(5) Signal-to-
noise ratio
Single
Ended
Fast channel 5.1 Ms 64 -
Slow channel 4.8 Ms 64 -
Differential Fast channel 5.1 Ms 67 -
Slow channel 4.8 Ms 67 -
THD(5)
Tot a l
harmonic
distortion
Single
Ended
Fast channel 5.1 Ms - -74
Slow channel 4.8 Ms - -74
Differential Fast channel 5.1 Ms - -78
Slow channel 4.8 Ms - -76
1. ADC DC accuracy values are measured after internal calibration.
2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC
accuracy.
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.
4. Guaranteed by characterization results.
5. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.
Table 71. ADC accuracy, 100-pin packages(1)(2)(3) (continued)
Symbol Parameter Conditions Min (4) Max(4) Unit
DS9118 Rev 14 113/149
STM32F303xB STM32F303xC Electrical characteristics
125
Table 72. ADC accuracy - limited test conditions, 64-pin packages(1)(2)
Symbol Parameter Conditions Min
(3) Typ Max
(3) Unit
ET
To t al
unadjusted
error
ADC clock freq. 72 MHz
Sampling freq. 5 Msps
VDDA = 3.3 V
25°C
64-pin package
Single ended Fast channel 5.1 Ms - ±4 ±4.5
LSB
Slow channel 4.8 Ms - ±5.5 ±6
Differential Fast channel 5.1 Ms - ±3.5 ±4
Slow channel 4.8 Ms - ±3.5 ±4
EO Offset error
Single ended Fast channel 5.1 Ms - ±2 ±2
Slow channel 4.8 Ms - ±1.5 ±2
Differential Fast channel 5.1 Ms - ±1.5 ±2
Slow channel 4.8 Ms - ±1.5 ±2
EG Gain error
Single ended Fast channel 5.1 Ms - ±3 ±4
Slow channel 4.8 Ms - ±5 ±5.5
Differential Fast channel 5.1 Ms - ±3 ±3
Slow channel 4.8 Ms - ±3 ±3.5
ED
Differential
linearity
error
Single ended Fast channel 5.1 Ms - ±1 ±1
Slow channel 4.8 Ms - ±1 ±1
Differential Fast channel 5.1 Ms - ±1 ±1
Slow channel 4.8 Ms - ±1 ±1
EL
Integral
linearity
error
Single ended Fast channel 5.1 Ms - ±1.5 ±2
Slow channel 4.8 Ms - ±2 ±3
Differential Fast channel 5.1 Ms - ±1.5 ±1.5
Slow channel 4.8 Ms - ±1.5 ±2
ENOB
(4)
Effective
number of
bits
Single ended Fast channel 5.1 Ms 10.8 10.8 -
bit
Slow channel 4.8 Ms 10.8 10.8 -
Differential Fast channel 5.1 Ms 11.2 11.3 -
Slow channel 4.8 Ms 11.2 11.3 -
SINAD
(4)
Signal-to-
noise and
distortion
ratio
Single ended Fast channel 5.1 Ms 66 67 -
dB
Slow channel 4.8 Ms 66 67 -
Differential Fast channel 5.1 Ms 69 70 -
Slow channel 4.8 Ms 69 70 -
Electrical characteristics STM32F303xB STM32F303xC
114/149 DS9118 Rev 14
SNR(4) Signal-to-
noise ratio ADC clock freq. 72 MHz
Sampling freq 5 Msps
VDDA = 3.3 V
25°C
64-pin package
Single ended Fast channel 5.1 Ms 66 67 -
dB
Slow channel 4.8 Ms 66 67 -
Differential Fast channel 5.1 Ms 69 70 -
Slow channel 4.8 Ms 69 70 -
THD(4)
To t al
harmonic
distortion
Single ended Fast channel 5.1 Ms - -80 -80
Slow channel 4.8 Ms - -78 -77
Differential Fast channel 5.1 Ms - -83 -82
Slow channel 4.8 Ms - -81 -80
1. ADC DC accuracy values are measured after internal calibration.
2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC
accuracy.
3. Guaranteed by characterization results.
4. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.
Table 72. ADC accuracy - limited test conditions, 64-pin packages(1)(2) (continued)
Symbol Parameter Conditions Min
(3) Typ Max
(3) Unit
DS9118 Rev 14 115/149
STM32F303xB STM32F303xC Electrical characteristics
125
Table 73. ADC accuracy, 64-pin packages(1)(2)(3)
Symbol Parameter Conditions Min(4) Max
(4) Unit
ET
Tot a l
unadjusted
error
ADC clock freq. 72 MHz,
Sampling freq. 5 Msps
2.0 V VDDA 3.6 V
64-pin package
Single ended Fast channel 5.1 Ms - ±6.5
LSB
Slow channel 4.8 Ms - ±6.5
Differential Fast channel 5.1 Ms - ±4
Slow channel 4.8 Ms - ±4.5
EO Offset error
Single ended Fast channel 5.1 Ms - ±3
Slow channel 4.8 Ms - ±3
Differential Fast channel 5.1 Ms - ±2.5
Slow channel 4.8 Ms - ±2.5
EG Gain error
Single ended Fast channel 5.1 Ms - ±6
Slow channel 4.8 Ms - ±6
Differential Fast channel 5.1 Ms - ±3.5
Slow channel 4.8 Ms - ±4
ED
Differential
linearity
error
Single ended Fast channel 5.1 Ms - ±1.5
Slow channel 4.8 Ms - ±1.5
Differential Fast channel 5.1 Ms - ±1.5
Slow channel 4.8 Ms - ±1.5
EL
Integral
linearity
error
Single ended Fast channel 5.1 Ms - ±3
Slow channel 4.8 Ms - ±3.5
Differential Fast channel 5.1 Ms - ±2
Slow channel 4.8 Ms - ±2.5
ENOB
(5)
Effective
number of
bits
Single ended Fast channel 5.1 Ms 10.4 -
bits
Slow channel 4.8 Ms 10.4 -
Differential Fast channel 5.1 Ms 10.8 -
Slow channel 4.8 Ms 10.8 -
SINAD
(5)
Signal-to-
noise and
distortion
ratio
Single ended Fast channel 5.1 Ms 64 -
dB
Slow channel 4.8 Ms 63 -
Differential Fast channel 5.1 Ms 67 -
Slow channel 4.8 Ms 67 -
Electrical characteristics STM32F303xB STM32F303xC
116/149 DS9118 Rev 14
SNR(5) Signal-to-
noise ratio
ADC clock freq. 72 MHz,
Sampling freq 5 Msps,
2 V VDDA 3.6 V
64-pin package
Single ended Fast channel 5.1 Ms 64 -
dB
Slow channel 4.8 Ms 64 -
Differential Fast channel 5.1 Ms 67 -
Slow channel 4.8 Ms 67 -
THD(5)
Tot a l
harmonic
distortion
Single ended Fast channel 5.1 Ms - -75
Slow channel 4.8 Ms - -75
Differential Fast channel 5.1 Ms - -79
Slow channel 4.8 Ms - -78
1. ADC DC accuracy values are measured after internal calibration.
2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC
accuracy.
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.
4. Guaranteed by characterization results.
5. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.
Table 73. ADC accuracy, 64-pin packages(1)(2)(3) (continued)
Symbol Parameter Conditions Min(4) Max
(4) Unit
Table 74. ADC accuracy at 1MSPS(1)(2)
Symbol Parameter Test conditions Typ Max(3) Unit
ET Total unadjusted error
ADC Freq 72 MHz
Sampling Freq 1MSPS
2.4 V VDDA = VREF+ 3.6 V
Single-ended mode
Fast channel ±2.5 ±5
LSB
Slow channel ±3.5 ±5
EO Offset error Fast channel ±1 ±2.5
Slow channel ±1.5 ±2.5
EG Gain error Fast channel ±2 ±3
Slow channel ±3 ±4
ED Differential linearity error Fast channel ±0.7 ±2
Slow channel ±0.7 ±2
EL Integral linearity error Fast channel ±1 ±3
Slow channel ±1.2 ±3
1. ADC DC accuracy values are measured after internal calibration.
2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.. Any positive injection current
within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 6.3.14: I/O port characteristics does not affect the ADC
accuracy.
3. Guaranteed by characterization results.
DS9118 Rev 14 117/149
STM32F303xB STM32F303xC Electrical characteristics
125
Figure 34. ADC accuracy characteristics
Figure 35. Typical connection diagram using the ADC
1. Refer to Table 68 for the values of RAIN.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 11. The 10 nF capacitor
should be ceramic (good quality) and it should be placed as close as possible to the chip.
(1) Example of an actu al transfer curve
(2) The ideal transfer cu rve
(3) End point correlation line
4095
4094
4093
5
4
3
2
1
0
7
6
12 3 456 7 4093 4094 4095 4096
(1)
(2)
(3)
ai14395e
ET = Total unadjusted Error: maximum deviation
between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual
transition and the last actual one.
EG = Gain Error: deviation between the last ideal
transition and the last actual one.
ED = Differential Linearity Error: maximum deviation
between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation
between any actual transition and the end-point
correlation line.
VSSA VDDA
1 LSB IDEAL
ED
EL
EO
ET
EG
[1LSB IDEAL =
VREF+
4096
VDDA
4096
(or depending on package)
12-bit
converter
Sample and hold ADC
converter
R
AIN(1)
AINx
V
AIN
C
parasitic
V
DD
V
T
0.6 V
V
T
0.6 V
I
L
± 1 μA
R
ADC
C
ADC
MS19881V3
Electrical characteristics STM32F303xB STM32F303xC
118/149 DS9118 Rev 14
6.3.19 DAC electrical specifications
Table 75. DAC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Analog supply voltage - 2.4 - 3.6 V
RLOAD(1) Resistive load DAC output
buffer ON
Connected to VSSA 5- - kΩ
Connected to VDDA 25 - -
RO(1) Output impedance DAC output buffer OFF - - 15 kΩ
CLOAD(1) Capacitive load DAC output buffer ON - - 50 pF
VDAC_OUT (1) Voltage on DAC_OUT
output
Corresponds to 12-bit input
code (0x0E0) to (0xF1C) at
VDDA = 3.6 V
and (0x155) and (0xEAB) at
VDDA = 2.4 V DAC output buffer
ON.
0.2 - VDDA – 0.2 V
DAC output buffer OFF - 0.5 VDDA - 1LSB mV
IDDA(3)
DAC DC current
consumption in quiescent
mode (Standby mode)(2)
With no load, middle code
(0x800) on the input. -- 380µA
With no load, worst code
(0xF1C) on the input. -- 480µA
DNL(3)
Differential non linearity
Difference between two
consecutive code-1LSB)
Given for a 10-bit input code - - ±0.5 LSB
Given for a 12-bit input code - - ±2 LSB
INL(3)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 4095)
Given for a 10-bit input code - - ±1 LSB
Given for a 12-bit input code - - ±4 LSB
Offset(3)
Offset error (difference
between measured value at
Code (0x800) and the ideal
value = VDDA/2)
---±10mV
Given for a 10-bit input code at
VDDA = 3.6 V -- ±3LSB
Given for a 12-bit input code at
VDDA = 3.6 V -- ±12LSB
Gain error(3) Gain error Given for a 12-bit input code - - ±0.5 %
tSETTLING(3)
Settling time (full scale: for a
12-bit input code transition
between the lowest and the
highest input codes when
DAC_OUT reaches final
value ±1LSB
CLOAD 50 pF,
RLOAD 5 kΩ-3 4 µs
Update
rate(3)
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
CLOAD 50 pF,
RLOAD 5 kΩ-- 1MS/s
DS9118 Rev 14 119/149
STM32F303xB STM32F303xC Electrical characteristics
125
Figure 36. 12-bit buffered /non-buffered DAC
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.
tWAKEUP(3)
Wakeup time from off state
(Setting the ENx bit in the
DAC Control register)
CLOAD 50 pF,
RLOAD 5 kΩ- 6.5 10 µs
PSRR+ (1)
Power supply rejection ratio
(to VDDA) (static DC
measurement
CLOAD = 50 pF,
No RLOAD 5 kΩ, -–6740 dB
1. Guaranteed by design.
2. Quiescent mode refers to the state of the DAC a keeping steady value on the output, so no dynamic consumption is
involved.
3. Guaranteed by characterization results.
Table 75. DAC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
RL
CL
Buffered/Non-buffered DAC
DAC_OUTx
Buffer(1)
12-bit
digital to
analog
converter
ai17157V3
Electrical characteristics STM32F303xB STM32F303xC
120/149 DS9118 Rev 14
6.3.20 Comparator characteristics
Table 76. Comparator characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
VDDA Analog supply voltage - 2 - 3.6
VVIN
Comparator input voltage
range -0-V
DDA
VBG Scaler input voltage - - 1.2 -
VSC Scaler offset voltage - - ±5 ±10 mV
tS_SC
VREFINT scaler startup
time from power down
First VREFINT scaler activation after device
power on --1
(2) s
Next activations - - 0.2 ms
tSTART Comparator startup time Startup time to reach propagation delay
specification - - 60 µs
tD
Propagation delay for
200 mV step with 100 mV
overdrive
Ultra-low-power mode - 2 4.5
µsLow-power mode - 0.7 1.5
Medium power mode - 0.3 0.6
High speed mode VDDA 2.7 V - 50 100 ns
VDDA < 2.7 V - 100 240
Propagation delay for full
range step with 100 mV
overdrive
Ultra-low-power mode - 2 7
µsLow-power mode - 0.7 2.1
Medium power mode - 0.3 1.2
High speed mode VDDA 2.7 V - 90 180 ns
VDDA < 2.7 V - 110 300
Voffset Comparator offset error - - ±4±10 mV
dVoffset/dT Offset error temperature
coefficient --18-
µV/°
C
IDD(COMP)
COMP current
consumption
Ultra-low-power mode - 1.2 1.5
µA
Low-power mode - 3 5
Medium power mode - 10 15
High speed mode - 75 100
DS9118 Rev 14 121/149
STM32F303xB STM32F303xC Electrical characteristics
125
Figure 37. Maximum VREFINT scaler startup time from power down
Vhys Comparator hysteresis
No hysteresis
(COMPxHYST[1:0]=00) --0-
mV
Low hysteresis
(COMPxHYST[1:0]=01)
High speed mode 3
8
13
All other power
modes 510
Medium hysteresis
(COMPxHYST[1:0]=10)
High speed mode 7
15
26
All other power
modes 919
High hysteresis
(COMPxHYST[1:0]=11)
High speed mode 18
31
49
All other power
modes 19 40
1. Data guaranteed by design.
2. For more details and conditions, see Figure 37 Maximum VREFINT scaler startup time from power down.
Table 76. Comparator characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
MS36682V1
Electrical characteristics STM32F303xB STM32F303xC
122/149 DS9118 Rev 14
6.3.21 Operational amplifier characteristics
Table 77. Operational amplifier characteristics(1)
Symbol Parameter Condition Min Typ Max Unit
VDDA Analog supply voltage - 2.4 - 3.6 V
CMIR Common mode input range - 0 - VDDA V
VIOFFSET
Input offset
voltage
Maximum
calibration
range
25°C, No Load
on output. --4
mV
All
voltage/Temp. --6
After offset
calibration
25°C, No Load
on output. --1.6
All
voltage/Temp. --3
ΔVIOFFSET Input offset voltage drift - - 5 - µV/°C
ILOAD Drive current - - - 500 µA
IDDOPAMP Consumption No load,
quiescent mode - 690 1450 µA
TS_OPAMP_VOUT ADC sampling time when reading
the OPAMP output. -400--ns
CMRR Common mode rejection ratio - - 90 - dB
PSRR Power supply rejection ratio DC 73 117 - dB
GBW Bandwidth - - 8.2 - MHz
SR Slew rate - - 4.7 - V/µs
RLOAD Resistive load - 4 - - kΩ
CLOAD Capacitive load - - - 50 pF
VOHSAT High saturation voltage(2)
Rload = min,
Input at VDDA.VDDA -100 - -
mV
Rload = 20K,
Input at VDDA.VDDA -20 - -
VOLSAT High saturation voltage(2)
Rload = min,
input at 0V --100
Rload = 20K,
input at 0V. --20
ϕm Phase margin - - 62 - °
tOFFTRIM
Offset trim time: during calibration,
minimum time needed between
two steps to have 1 mV accuracy
---2ms
tWAKEUP Wake up time from OFF state.
CLOAD 50 pf,
RLOAD 4 kΩ,
Follower
configuration
-2.85µs
DS9118 Rev 14 123/149
STM32F303xB STM32F303xC Electrical characteristics
125
PGA gain Non inverting gain value -
-2--
-4--
-8--
-16--
Rnetwork
R2/R1 internal resistance values in
PGA mode (3)
Gain=2 - 5.4/5.4 -
kΩ
Gain=4 - 16.2/5.4 -
Gain=8 - 37.8/5.4 -
Gain=16 - 40.5/2.7 -
PGA gain error PGA gain error - -1% - 1%
Ibias OPAMP input bias current - - - ±0.2(4) µA
PGA BW PGA bandwidth for different non
inverting gain
PGA Gain = 2,
Cload = 50pF,
Rload = 4 KΩ
-4-
MHz
PGA Gain = 4,
Cload = 50pF,
Rload = 4 KΩ
-2-
PGA Gain = 8,
Cload = 50pF,
Rload = 4 KΩ
-1-
PGA Gain = 16,
Cload = 50pF,
Rload = 4 KΩ
-0.5-
en Voltage noise density
@ 1KHz, Output
loaded with
4 KΩ
-109-
@ 10KHz,
Output loaded
with 4 KΩ
-43-
1. Guaranteed by design.
2. The saturation voltage can be also limited by the Iload (drive current).
3. R2 is the internal resistance between OPAMP output and OPAMP inverting input.
R1 is the internal resistance between OPAMP inverting input and ground.
The PGA gain =1+R2/R1
4. Mostly TTa I/O leakage, when used in analog mode.
Table 77. Operational amplifier characteristics(1) (continued)
Symbol Parameter Condition Min Typ Max Unit
nV
Hz
-----------
Electrical characteristics STM32F303xB STM32F303xC
124/149 DS9118 Rev 14
Figure 38. OPAMP voltage noise versus frequency
6.3.22 Temperature sensor characteristics
Table 78. TS characteristics
Symbol Parameter Min Typ Max Unit
TL(1)
1. Guaranteed by design.
VSENSE linearity with temperature - ±1±C
Avg_Slope(1) Average slope 4.0 4.3 4.6 mV/°C
V25 Voltage at 25 °C 1.34 1.43 1.52 V
tSTART(1) Startup time 4 - 10 µs
TS_temp(1)(2)
2. Shortest sampling time can be determined in the application by multiple iterations.
ADC sampling time when reading the
temperature 2.2 - - µs
Table 79. Temperature sensor calibration values
Calibration value name Description Memory address
TS_CAL1
TS ADC raw data acquired at
temperature of 30 °C,
VDDA= 3.3 V
0x1FFF F7B8 - 0x1FFF F7B9
TS_CAL2
TS ADC raw data acquired at
temperature of 110 °C
VDDA= 3.3 V
0x1FFF F7C2 - 0x1FFF F7C3
DS9118 Rev 14 125/149
STM32F303xB STM32F303xC Electrical characteristics
125
6.3.23 VBAT monitoring characteristics
Table 80. VBAT monitoring characteristics
Symbol Parameter Min Typ Max Unit
R Resistor bridge for VBAT -50-KΩ
QRatio on VBAT measurement - 2 -
Er(1)
1. Guaranteed by design.
Error on Q -1 - +1 %
TS_vbat(1)(2)
2. Shortest sampling time can be determined in the application by multiple iterations.
ADC sampling time when reading the VBAT
1mV accuracy 2.2 - - µs
Package information STM32F303xB STM32F303xC
126/149 DS9118 Rev 14
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1 LQFP100 – 14 x 14 mm, low-profile quad flat package
information
Figure 39. LQFP100 – 14 x 14 mm, low-profile quad flat package outline
1. Drawing is not to scale.
e
IDENTIFICATION
PIN 1
GAUGE PLANE
0.25 mm
SEATING PLANE
D
D1
D3
E3
E1
E
K
ccc C
C
125
26
100
76
75 51
50
1L_ME_V5
A2
A
A1
L1
L
c
b
A1
Table 81. LQPF100 – 14 x 14 mm, low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.60 - - 0.063
A1 0.05 - 0.15 0.002 - 0.0059
DS9118 Rev 14 127/149
STM32F303xB STM32F303xC Package information
142
Figure 40. LQFP100 – 14 x 14 mm, low-profile quad flat package recommended
footprint
1. Dimensions are in millimeters.
A2 1.35 1.40 1.45 0.0531 0.0551 0.0571
b 0.17 0.22 0.27 0.0067 0.0087 0.0106
c 0.09 - 0.2 0.0035 - 0.0079
D 15.80 16.00 16.2 0.622 0.6299 0.6378
D1 13.80 14.00 14.2 0.5433 0.5512 0.5591
D3 - 12.00 - - 0.4724 -
E 15.80 16.00 16.2 0.622 0.6299 0.6378
E1 13.80 14.00 14.2 0.5433 0.5512 0.5591
E3 - 12.00 - - 0.4724 -
e - 0.50 - - 0.0197 -
L 0.45 0.60 0.75 0.0177 0.0236 0.0295
L1 - 1.00 - - 0.0394 -
K 0°3.5°7° 0°3.5°7°
ccc - - 0.08 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 81. LQPF100 – 14 x 14 mm, low-profile quad flat package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
75 51
5076 0.5
0.3
16.7 14.3
100 26
12.3
25
1.2
16.7
1
ai14906c
Package information STM32F303xB STM32F303xC
128/149 DS9118 Rev 14
LQFP100 device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 41. LQFP100 – 14 x 14 mm, low-profile quad flat package top view example
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
MSv36501V2
Revision code
Product identification(1)
Date code
Pin 1
indentifier
STM32F303
VCT6 R
YWW
DS9118 Rev 14 129/149
STM32F303xB STM32F303xC Package information
142
7.2 LQFP64 – 10 x 10 mm, low-profile quad flat package
information
Figure 42. LQFP64 – 10 x 10 mm, low-profile quad flat package outline
1. Drawing is not to scale.
Table 82. LQFP64 – 10 x 10 mm, low-profile quad flat package mechanical
data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.60 - - 0.0630
A1 0.05 - 0.15 0.0020 - 0.0059
A2 1.350 1.40 1.45 0.0531 0.0551 0.0571
b 0.17 0.22 0.27 0.0067 0.0087 0.0106
c 0.09 - 0.20 0.0035 0.0079
D - 12.00 - - 0.4724 -
D1 - 10.00 - - 0.3937 -
D3 - 7.50 - - 0.2953 -
E - 12.00 - - 0.4724 -
5W_ME_V3
A1
A2
A
SEATING PLANE
ccc C
b
C
c
A1
L
L1
K
IDENTIFICATION
PIN 1
D
D1
D3
e
116
17
32
33
48
49
64
E3
E1
E
GAUGE PLANE
0.25 mm
Package information STM32F303xB STM32F303xC
130/149 DS9118 Rev 14
Figure 43. LQFP64 – 10 x 10 mm, low-profile quad flat package recommended
footprint
1. Dimensions are in millimeters.
E1 - 10.00 - - 0.3937 -
E3 - 7.50 - - 0.2953 -
e - 0.50 - - 0.0197 -
K 0°3.5°7° 0°3.5°7°
L 0.45 0.60 0.75 0.0177 0.0236 0.0295
L1 - 1.00 - - 0.0394 -
ccc - - 0.08 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 82. LQFP64 – 10 x 10 mm, low-profile quad flat package mechanical data
(continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
48
32
49
64 17
116
1.2
0.3
33
10.3
12.7
10.3
0.5
7.8
12.7
ai14909c
DS9118 Rev 14 131/149
STM32F303xB STM32F303xC Package information
142
LQFP64 device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 44. LQFP64 – 10 x 10 mm, low-profile quad flat package top view example
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
MSv36502V1
Revision code
STM32F303
Product identification(1)
Date code
YWW
Pin 1
indentifier
RCT6
R
Package information STM32F303xB STM32F303xC
132/149 DS9118 Rev 14
7.3 LQFP48 – 7 x 7 mm, low-profile quad flat package
information
Figure 45. LQFP48 – 7 x 7 mm, low-profile quad flat package outline
1. Drawing is not to scale.
Table 83. LQFP48 – 7 x 7 mm, low-profile quad flat package mechanical
data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.60 - - 0.0630
A1 0.05 - 0.15 0.0020 - 0.0059
A2 1.35 1.40 1.45 0.0531 0.0551 0.0571
b 0.17 0.22 0.27 0.0067 0.0087 0.0106
c 0.09 - 0.20 0.0035 - 0.0079
D 8.80 9.00 9.20 0.3465 0.3543 0.3622
D1 6.80 7.00 7.20 0.2677 0.2756 0.2835
D3 - 5.50 - - 0.2165 -
E 8.80 9.00 9.20 0.3465 0.3543 0.3622
5B_ME_V2
PIN 1
IDENTIFICATION
ccc C
C
D3
0.25 mm
GAUGE PLANE
b
A1
A
A2
c
A1
L1
L
D
D1
E3
E1
E
e
12
1
13
24
25
36
37
48
SEATING
PLANE
K
DS9118 Rev 14 133/149
STM32F303xB STM32F303xC Package information
142
Figure 46. LQFP48 - 7 x 7 mm, low-profile quad flat package recommended footprint
1. Dimensions are in millimeters.
E1 6.80 7.00 7.20 0.2677 0.2756 0.2835
E3 - 5.50 - - 0.2165 -
e - 0.50 - - 0.0197 -
L 0.45 0.60 0.75 0.0177 0.0236 0.0295
L1 - 1.00 - - 0.0394 -
K0°3.5°7° 0°3.5°7°
ccc - - 0.08 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 83. LQFP48 – 7 x 7 mm, low-profile quad flat package mechanical data
(continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
9.70 5.80 7.30
12
24
0.20
7.30
1
37
36
1.20
5.80
9.70
0.30
25
1.20
0.50
ai14911d
1348
Package information STM32F303xB STM32F303xC
134/149 DS9118 Rev 14
LQFP48 device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 47. LQFP48 - 7 x 7 mm, low-profile quad flat package top view example
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
(1)
Product
identification STM32F303
CCT6
R
YWW
Pin 1
identification Revision code
Date code
MS36605V1
DS9118 Rev 14 135/149
STM32F303xB STM32F303xC Package information
142
7.4 WLCSP100 - 0.4 mm pitch wafer level chip scale package
information
Figure 48. WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale
package outline
1. Drawing is not to scale.
A
K
WLCSP100L_A01Q_ME_V1
A1 ORIENTATION
REFERENCE
FRONT VIEW
BOTTOM VIEW
SIDE VIEW
DETAIL A
A1 BALL LOCATION
(4X)
aaa
TOP VIEW
WAFER BACK SIDE
ROTATED 90°
DETAIL A
Package information STM32F303xB STM32F303xC
136/149 DS9118 Rev 14
Table 84. WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale
package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Typ Min Max
A 0.525 0.555 0.585 0.0207 0.0219 0.0230
A1 - 0.17 - - 0.0067 -
A2 - 0.38 - - 0.0150 -
A3(2)
2. Back side coating.
- 0.025 - - 0.0010 -
Ø b(3)
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
0.22 0.25 0.28 - 0.0098 0.0110
D 4.166 4.201 4.236 - 0.1654 0.1668
E 4.628 4.663 4.698 - 0.1836 0.1850
e - 0.4 - - 0.0157 -
e1 - 3.6 - - 0.1417 -
e2 - 3.6 - - 0.1417 -
F - 0.3005 - - 0.0118 -
G - 0.5315 - - 0.0209 -
N - 100 - - 3.9370 -
aaa - 0.1 - - 0.0039 -
bbb - 0.1 - - 0.0039 -
ccc - 0.1 - - 0.0039 -
ddd - 0.05 - - 0.0020 -
eee - 0.05 - - 0.0020 -
DS9118 Rev 14 137/149
STM32F303xB STM32F303xC Package information
142
Figure 49. WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale
package recommended footprint
Table 85. WLCSP100 recommended PCB design rules (0.4 mm pitch)
Dimension Recommended values
Pitch 0.4 mm
Dpad 0.225 mm
Dsm 0.290 mm
Stencil thickness 0.1 mm
WLCSP100L_A01Q_FP_V1
Dpad
Dsm
Package information STM32F303xB STM32F303xC
138/149 DS9118 Rev 14
WLCSP100 device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 50. WLCSP100, 0.4 mm pitch wafer level chip scale package
top view example
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
MSv40444V1
Ball A1 identifier
Product identification(1)
YWW R
Revision code
32F303VC6
DS9118 Rev 14 139/149
STM32F303xB STM32F303xC Package information
142
7.5 Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 24: General operating conditions on page 60.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x Θ
JA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
7.5.1 Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org
Table 86. Package thermal characteristics
Symbol Parameter Value Unit
Θ
JA
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch 45
°C/W
Thermal resistance junction-ambient
LQFP48 - 7 × 7 mm 55
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch 41
Thermal resistance junction-ambient
WLCSP100 - 0.4 mm pitch 40
Package information STM32F303xB STM32F303xC
140/149 DS9118 Rev 14
7.5.2 Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the ordering
information scheme shown in Section 8: Ordering information.
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at
maximum dissipation and, to a specific maximum junction temperature.
As applications do not commonly use the STM32F303xB/STM32F303xC at maximum
dissipation, it is useful to calculate the exact power consumption and junction temperature
to determine which temperature range will be best suited to the application.
The following examples show how to calculate the temperature range needed for a given
application.
Example 1: High-performance application
Assuming the following application conditions:
Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2),
IDDmax = 50 mA, VDD = 3.5 V, maximum 3 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V and maximum 2 I/Os used at the same time in output
at low level with IOL = 20 mA, VOL= 1.3 V
PINTmax = 50 mA × 3.5 V= 175 mW
PIOmax = 3 × 8 mA × 0.4 V + 2 × 20 mA × 1.3 V = 61.6 mW
This gives: PINTmax = 175 mW and PIOmax = 61.6 mW:
PDmax = 175 + 61.6 = 236.6 mW
Thus: PDmax = 236.6 mW
Using the values obtained in Table 86 TJmax is calculated as follows:
For LQFP64, 45°C/W
TJmax = 82 °C + (45°C/W × 236.6 mW) = 82 °C + 10.65 °C = 92.65 °C
This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 6 (see
Section 8: Ordering information).
DS9118 Rev 14 141/149
STM32F303xB STM32F303xC Package information
142
Example 2: High-temperature application
Using the same rules, it is possible to address applications that run at high ambient
temperatures with a low dissipation, as long as junction temperature TJ remains within the
specified range.
Assuming the following application conditions:
Maximum ambient temperature TAmax = 115 °C (measured according to JESD51-2),
IDDmax = 20 mA, VDD = 3.5 V, maximum 9 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V
PINTmax = 20 mA × 3.5 V= 70 mW
PIOmax = 9 × 8 mA × 0.4 V = 28.8 mW
This gives: PINTmax = 70 mW and PIOmax = 28.8 mW:
PDmax = 70 + 28.8 = 98.8 mW
Thus: PDmax = 98.8 mW
Using the values obtained in Table 86 TJmax is calculated as follows:
For LQFP100, 41°C/W
TJmax = 115 °C + (41°C/W × 98.8 mW) = 115 °C + 4.05 °C = 119.05 °C
This is within the range of the suffix 7 version parts (–40 < TJ < 125 °C).
In this case, parts must be ordered at least with the temperature range suffix 7 (see
Section 8: Ordering information).
Ordering information STM32F303xB STM32F303xC
142/149 DS9118 Rev 14
8 Ordering information
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
Table 87. Ordering information scheme
Example: STM32 F 303 R B T 6 xxx
Device family
STM32 = Arm-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
303 = STM32F303xx
Pin count
C = 48 pins
R = 64 pins
V = 100 pins
Flash memory size
B = 128 Kbytes of Flash memory
C = 256 Kbytes of Flash memory
Package
T = LQFP
Y = WLCSP
Temperature range
6 = Industrial temperature range, –40 to 85 °C
7 = Industrial temperature range, –40 to 105 °C
Options
xxx = programmed parts
TR = tape and reel
DS9118 Rev 14 143/149
STM32F303xB STM32F303xC Revision history
148
9 Revision history
Table 88. Document revision history
Date Revision Changes
22-Jun-2012 1 Initial release
07-Sep-2012 2
Modified Features on cover page.
Modified Table 2: STM32F301xx family device features and peripheral
counts
Added clock tree to Section 3.9: Clocks and startup
Added Table 10: STM32F302xB/STM32F302xC I2C implementation
Added Table 11: USART features
Added Table 12: STM32F302xB/STM32F302xC SPI/I2S implementation
Modified Table 13: Capacitive sensing GPIOs available on
STM32F302xB/STM32F302xC devices
Modified Figure 7, Figure 8 and Figure 9: STM32F302xB/STM32F302xC
LQFP100 pinout
Modified Table 16: STM32F302xB/STM32F302xC pin definitions
Modified Figure 11: Power supply scheme
Modified Table 21: Voltage characteristics
Modified Table 22: Current characteristics
Modified Table 25: Operating conditions at power-up / power-down
Added footnote to Table 31: Typical and maximum current consumption
from the VDDA supply
Added footnote to Table 35 and Table 36: Typical current consumption in
Sleep mode, code running from Flash or RAM
Removed table “Switching output I/O current consumption” and table
“Peripheral current consumption”
Added note under Figure 17: Typical application with a 32.768 kHz
crystal
Updated Table 44: HSI oscillator characteristics
Updated Wakeup time from low-power mode and Table 39: Low-power
mode wakeup timings
Updated Table 47: Flash memory characteristics
Updated Table 52: Electrical sensitivities
Updated Table 53: I/O current injection susceptibility
Updated Table 54: I/O static characteristics
Updated Table 55: Output voltage characteristics
Updated Table 57: NRST pin characteristics
Updated Table 63: SPI characteristics
Updated Table 64: I2S characteristics
Corrected LQFP100 in Section 7.2.3: Selecting the product temperature
range
21-Sep-2012 3 Updated Table 63: SPI characteristics
Revision history STM32F303xB STM32F303xC
144/149 DS9118 Rev 14
05-Dec-2012 4
Updated first page
Removed references to VDDSDx and VSSSD
Added reference to PM0214 in Section 1
Moved Temp. sensor calibartion values toTable 79 and VREF calibration
values to Table 29
Updated Table 3: STM32F303xx family device features and peripheral
counts
UpdatedSection 3.4: Embedded SRAM
Updated Section 3.2: Memory protection unit (MPU)
Updated Section 3.24: Universal serial bus (USB)
Modified Section 3.26: Touch sensing controller (TSC)
Updated heading of Table 11: USART features
Updated Table 16: STM32F302xB/STM32F302xC pin definitions
Added notes to PC13, PC14 and PC15 in Table 16:
STM32F302xB/STM32F302xC pin definitions
Updated Figure 11: Power supply scheme
Modified Table 21: Voltage characteristics
Modified Table 22: Current characteristics
Modified Table 24: General operating conditions
Modified Figure 13: Typical VBAT current consumption (LSE and RTC
ON/LSEDRV[1:0] = ’00’)
Updated Section 6.3.14: I/O port characteristics
Updated Table 30: Typical and maximum current consumption from VDD
supply at VDD = 3.6V and Table 31: Typical and maximum current
consumption from the VDDA supply
Updated Table 32: Typical and maximum VDD consumption in Stop and
Standby modes and Table 33: Typical and maximum VDDA consumption
in Stop and Standby modes
Updated Table 34: Typical and maximum current consumption from VBAT
supply
Added Figure 13: Typical VBAT current consumption (LSE and RTC
ON/LSEDRV[1:0] = ’00’)
Updated Table 35: Typical current consumption in Run mode, code with
data processing running from Flash and Table 36: Typical current
consumption in Sleep mode, code running from Flash or RAM
Added Table 38: Peripheral current consumption
Added Table 37: Switching output I/O current consumption
Updated Section 6.3.6: Wakeup time from low-power mode
Modified ESD absolute maximum ratings
Modified Table 55: Output voltage characteristics
Updated EMI characteristics
Updated Table 56: I/O AC characteristics
Updated Table 53: I/O current injection susceptibility
Updated Table 58: TIMx characteristics
Updated Section 7.4: WLCSP100 - 0.4 mm pitch wafer level chip scale
package information
Added Table 69: Maximum ADC RAIN
Added Table 70: ADC accuracy - limited test conditions, 100-pin
packages
Updated Table 64: ADC accuracy - limited test conditions 2)
Updated Table 75: DAC characteristics
Updated Table 77: Operational amplifier characteristics
Updated figures and tables in Section 7: Package information
Table 88. Document revision history (continued)
Date Revision Changes
DS9118 Rev 14 145/149
STM32F303xB STM32F303xC Revision history
148
08-Jan-2013 5
Updated Vhys and Ilkg in Table 54: I/O static characteristics.
Updated VIL(NRST), VIH(NRST), and VNF(NRST) in Table 57: NRST pin
characteristics.
Updated Table 70: ADC accuracy - limited test conditions, 100-pin
packages and Table 64: ADC accuracy - limited test conditions 2).
24-Jun-2013 6
Replaced Cortex-M4F with Cortex M4 with FPU
Updated Core, Memories and SPI bullet points in Features
Removed 8KB CCM SRAM from STM32F302xx devices, updated
Figure 2: STM32F303xB/STM32F303xC block diagram and Table 3:
STM32F303xx family device features and peripheral counts
Updated Section 3.4: Embedded SRAM
Added VREF+ in Section 3.14: Digital-to-analog converter (DAC)
Removed DMA support for UART5 in Table 11: USART features
Added ‘reference clock detection’ bullet in Section 3.18: Real-time clock
(RTC) and backup registers
Added paragraph ‘The touch sensing controller is fully...’ in Section 3.26:
Touch sensing controller (TSC)
Updated Comparison of I2C analog and digital filters
Updated Section 3.10: General-purpose input/outputs (GPIOs)
Added ‘EVENTOUT’ in Table 16: STM32F302xB/STM32F302xC pin
definitions and added note to ‘VREF+’ pin
Updated ΣIVDD in Table 22: Current characteristics and Output driving
current
Updated Table 61: I2C timings specification (see I2C specification,
rev.03, June 2007) and Figure 25: I2C bus AC waveforms and
measurement circuit
Added VREF+ row to Table 68: ADC characteristics, replaced VDDA
with VREF+, updated tconv and added note to ‘conversion voltage range
Added VREF+ row to Table 75: DAC characteristics and replaced VDDA
with VREF+
Added ‘PGA BW’ and ‘en’ in Table 77: Operational amplifier
characteristics
13-Nov-2013 7
Removed STM32F302xB/STM32F302xC products (now in a separate
datasheet).
Added I2S feature for SPI2 and SPI3
Added tSP to Table 61: I2C timings specification (see I2C specification,
rev.03, June 2007).
Renamed tSP to tAN inTable 62: I2C analog filter characteristics.
Added tSTAB in Table 68: ADC characteristics
Renamed VOPAMPx to VREFOPAMPx
Updated Table 71: ADC accuracy, 100-pin packages.
Updated ADC channel names in Section 3.13.1, Section 3.13.2 and
Section 3.13.3.
Table 88. Document revision history (continued)
Date Revision Changes
Revision history STM32F303xB STM32F303xC
146/149 DS9118 Rev 14
18-Apr-2014 8
Updated Table 50: EMI characteristics conditions :3.3v replaced by 3.6V.
Updated Section 6.3.17: Communications interfaces I2C interface.
Updated Table 77: Operational amplifier characteristics adding
TS_OPAMP_VOUT row.
Updated Section 3.13: Fast analog-to-digital converter (ADC).
updated Arm and Cortex trademark.
Updated Table 32: Typical and maximum VDD consumption in Stop and
Standby modes with Max value at 85°C and 105°C.
Updated Table 70: ADC accuracy - limited test conditions, 100-pin
packages and Table 71: ADC accuracy, 100-pin packages for 100-pin
package.
Added Table 72: ADC accuracy - limited test conditions, 64-pin
packages and Table 73: ADC accuracy, 64-pin packagesfor 64-pin
package.
Added Table 74: ADC accuracy at 1MSPS for 1MSPS sampling
frequency.
Updated Table 63: SPI characteristics.
Updated Table 75: DAC characteristics.
09-Dec-2014 9
Updated core description in cover page.
Updated HSI characteristics Table 44: HSI oscillator characteristics and
Figure 18: HSI oscillator accuracy characterization results for soldered
parts.
Updated Table 58: TIMx characteristics.
Updated Table 16: STM32F302xB/STM32F302xC pin definitions adding
note for I/Os featuring an analog output function
(DAC_OUT,OPAMP_OUT).
Updated Table 68: ADC characteristics adding IDDA & IREF
consumptions.
Added Figure 32: ADC typical current consumption on VDDA pin and
Figure 33: ADC typical current consumption on VREF+ pin.
Added Section 3.8: Interconnect matrix.
Updated Figure 5: Clock tree.
Added note after Table 32: Typical and maximum VDD consumption in
Stop and Standby modes.
Updated Section : In order to meet environmental requirements, ST
offers these devices in different grades of ECOPACK® packages,
depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at:
www.st.com. ECOPACK® is an ST trademark. with new LQFP100,
LQFP64, LQFP48 package marking.
Updated Table 16: STM32F302xB/STM32F302xC pin definitions and
alternate functions tables replacing usart_rts by usart_rts_de.
29-Jan-2015 10
Updated Section 6.3.20: Comparator characteristics modifying ts_sc
characteristics in Table 76 and adding Figure 37: Maximum VREFINT
scaler startup time from power down.
Updated IDD data in Table 42: HSE oscillator characteristics.
Table 88. Document revision history (continued)
Date Revision Changes
DS9118 Rev 14 147/149
STM32F303xB STM32F303xC Revision history
148
17-Apr-2015 11
Updated Section 7: Package information: with new package information
structure adding 1 sub paragraph for each package.
Updated Figure 41: LQFP100 – 14 x 14 mm, low-profile quad flat
package top view example removing gate mark.
Added note for all packages about the device marking orientation: “the
following figure gives an example of topside marking orientation versus
pin 1 identifier location”.
Updated Table 82: LQFP64 – 10 x 10 mm, low-profile quad flat package
mechanical data.
11-Dec-2015 12
Added WLCSP100:
Updated cover page.
Updated Table 2: STM32F303xB/STM32F303xC family device
features and peripheral counts.
Added Figure 7: STM32F303xB/STM32F303xC WLCSP100 pinout.
Updated Table 13: STM32F303xB/STM32F303xC pin definitions.
Updated Table 24: General operating conditions.
Added Section 7.4: WLCSP100 - 0.4 mm pitch wafer level chip scale
package information.
Updated Table 86: Package thermal characteristics.
Updated Table 87: Ordering information scheme.
Updated Figure 4, Figure 5, Figure 6, Table 13 and Table 22 removing
all VDD and VSS indexes.
Updated all the notes removing ‘not tested in production’.
Updated Table 68: ADC characteristics adding VREF- negative voltage
reference.
Update Table 21: Voltage characteristics adding table note 4.
Table 88. Document revision history (continued)
Date Revision Changes
Revision history STM32F303xB STM32F303xC
148/149 DS9118 Rev 14
06-May-2016 13
Updated Table 43: LSE oscillator characteristics (fLSE = 32.768 kHz)
LSEDRV[1:0] bits.
Updated Table 28: Embedded internal reference voltage VREFINT
internal reference voltage (min and typ values).
Updated Figure 5: STM32F303xB/STM32F303xC LQFP64 pinout
replacing VSS by PF4.
Updated Table 51: ESD absolute maximum ratings ESD CDM at class 3
and 4 including WLCSP100 package information.
Updated Table 13: STM32F303xB/STM32F303xC pin definitions:
Adding ‘digital power supply’ in the Pin function column at the line
corresponding to K8/28/19 pins.
Adding VSS digital ground line with WLCSP100 K9 and K10 pins
connected.
Replacing in VDD line for WLCSP100: ‘A10, B10’ by ‘A9, A10, B10,
B8’.
Updated Figure 21: Five volt tolerant (FT and FTf) I/O input
characteristics - CMOS port.
Updated Table 77: Operational amplifier characteristics high saturation
and low saturation voltages.
Updated Table 13: STM32F303xB/STM32F303xC pin definitions adding
note ‘Fast ADC channel’ for ADCx_IN1..5.
Updated Table 75: DAC characteristics resistive load.
Updated Table 68: ADC characteristics adding CMIR parameter and
modifying tSTAB parameter characteristics.
30-Oct-2018 14
Updated Table 51: ESD absolute maximum ratings ESD class.
Updated cover on 2 pages.
Updated Section 1: Introduction with Arm logo.
Updated Section 7: Package information adding information:
Other optional marking or inset/upset marks.
The printed markings may differ depending on the supply chain.
Updated note 1 below all the package device marking figures.
Table 88. Document revision history (continued)
Date Revision Changes
DS9118 Rev 14 149/149
STM32F303xB STM32F303xC
149
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2018 STMicroelectronics – All rights reserved